Image: Construction Image: Construction Image: Construction Image: Construction NHTSA Heavy Vehicle Crash Avoidance Research

2025 TRB Annual Meeting Truck and Bus Safety Committee (ACS60)

Alrik Svenson Research Engineer National Highway Traffic Safety Administration

www.nhtsa.gov

NHTSA Heavy Vehicle Research

Overview

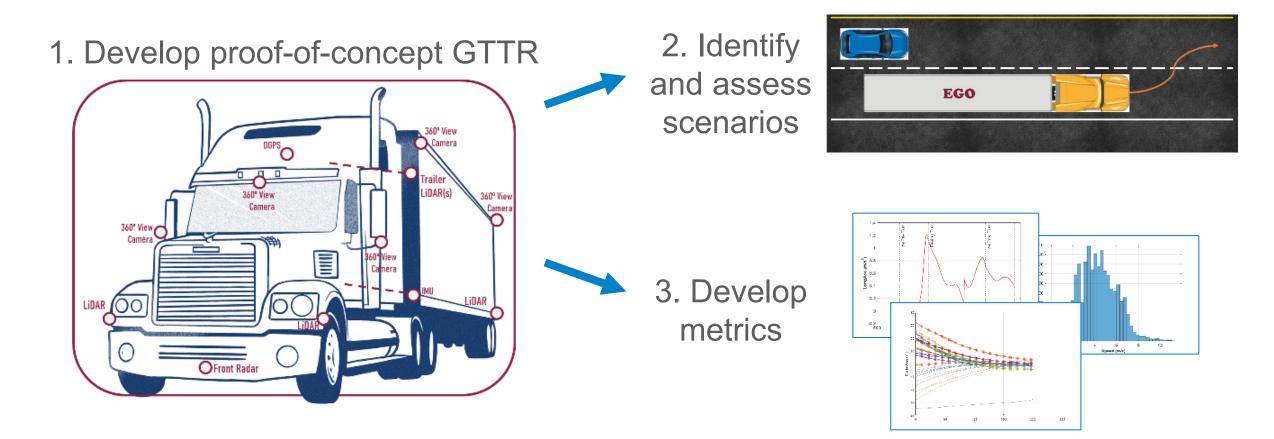
January 8, 2025

Heavy Vehicle Ground Truth Trip Recorder

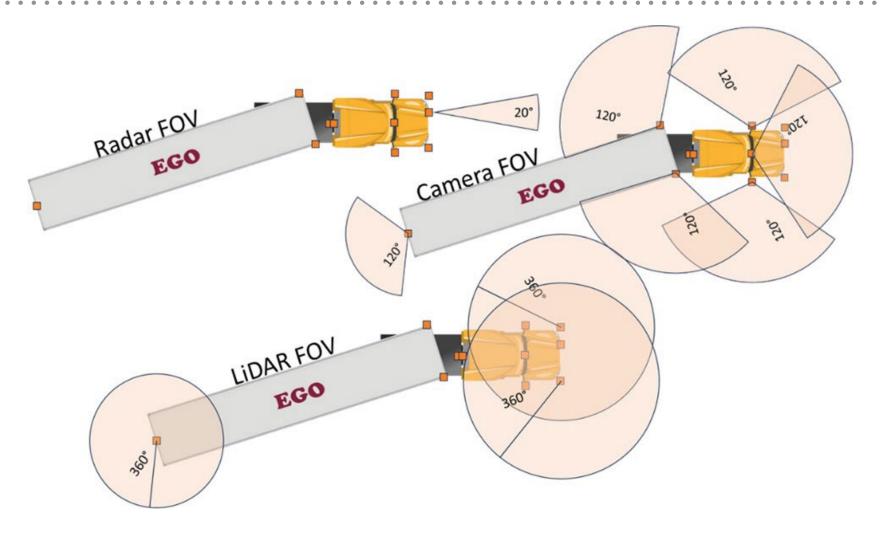
Heavy Vehicle Collision Avoidance Systems (CAS) Field Operational Test Study

2

3

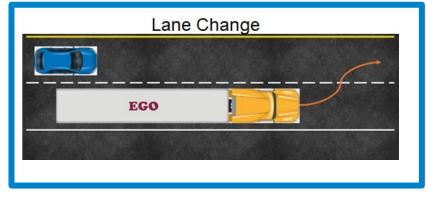

4

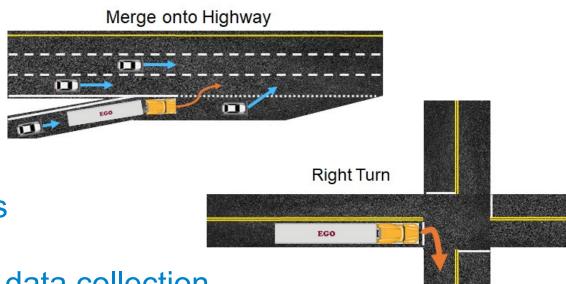
Applied Heavy Vehicle Research Track Testing


Heavy Truck Trailer Strikable Target Development

Heavy Vehicle Ground Truth Trip Recorder

 Design, prototype, and test a proof-of-concept Ground Truth Trip Recorder (GTTR) for a Class 8 tractor-trailer during on-road operations


HV GTTR Field of View



HV GTTR Scenario and Metrics Assessment

Determine the feasibility of:

- Parsing, defining, and categorizing scenarios from on-road data collected by the GTTR
- Evaluating driving performance by calculating a set of metrics

- Scenario selection criteria:
 - 1) Representative of HV ADS operations
 - 2) Capability to "stress test" GTTR
 - 3) Ability to execute scenario in on-road data collection

Heavy Vehicle Collision Avoidance Systems (CAS) Field Operational Test Study

- Assess validity of collision avoidance system (CAS) activations
- Collect subjective driver and safety manager ratings of CAS technology
- Investigate whether CAS activations change over time per driver
- Understand driver behaviors in response to CAS activations
- Characterize real-world scenarios and conditions involving CAS activations

Participating Vehicles and Fleets

Participating Vehicles

Make	Model	Model Year	Number of Vehicles	
Freightliner	Cascadia	2020 - 2021	54	
Kenworth	T680	2018 - 2023	34	
Peterbilt	579	2020-2023	25	
Volvo	VNL	2021-2022	3	
Mack	Anthem	2023	1	
Total	All	All	117	

FOT focused on Class 8 tractor-trailers due to system availability and fleet participation

Participating Fleets

System	# Trucking Companies	Locations in Study		
Detroit Assurance	1	 Elkton, MD Kendallville, IN McKinney, TX Rock Hill, SC Shafter, CA Lebanon, TN 		
Bendix Wingman	4	 Alabaster, AL Sylacauga, AL Holly Springs, GA Villa Rica, GA Calera, GA Farmington, NY Sublette, KS Denver, CO 		

Naturalistic Data: Exposure

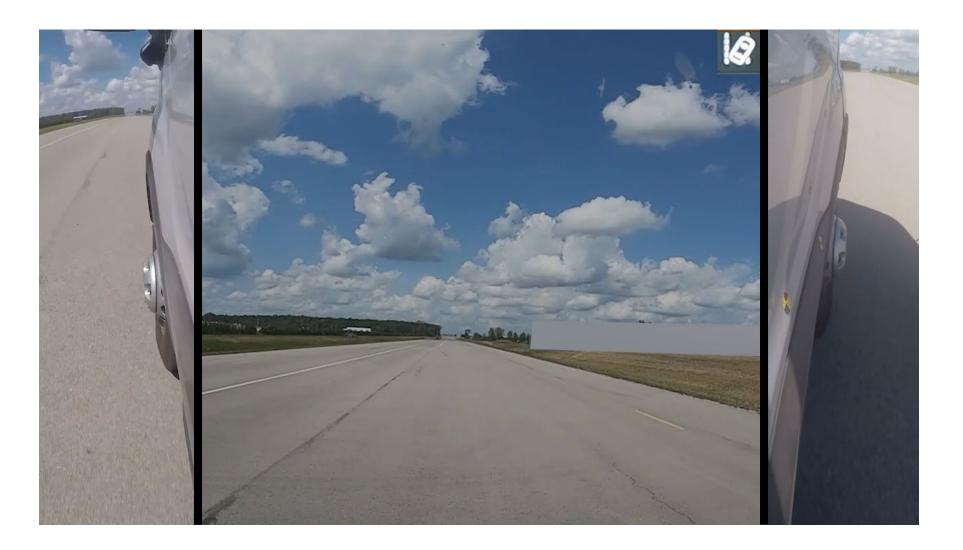
- Exposure targeted regions across the United States
- Driver data collection period of generally 3 months
- CAS systems were de-identified as part of the study

System	Hours of Naturalistic Driving Data Collected		
А	19,618.9		
В	12,094.5		
Total	31,713.4		
Naturalistic Driving Data Collection Summary			

# Drivers	150		
# Miles	1,889,797		
CAS Longitudinal Activations	236,665		
CAS Lateral Activations	40,869		

Applied Heavy Vehicle Research Track Testing

- Rollover and loss of control maneuvers
 - Obstacle avoidance maneuver sine with dwell
 - Speed to fast for a curve maneuver 150-foot J-turn
- Rear-end crashes
 - Lead vehicle stopped, slower moving, and decelerating scenarios
 - False activation scenarios
- Pedestrian crashes
 - Crossing subject vehicle path scenario
 - Along subject vehicle path scenario
- Lane departure crashes
 - Straight 12-foot wide lane with solid and dashed lane lines
 - Turn signals and system deactivation suppression test scenarios
 - Sources: SAE J3240 (modified to test trucks)


Sample Test Results Medium Duty Truck Lane Departure Test

- Unintended lane departure scenario
- Subject vehicle speeds
 - 72 km/h (~45mph)
 - 100 km/h (~62 mph)
- Lane lines solid and dashed
 - left and right departures
- Lateral velocity targets
 - 0.2 to 0.6 m/s, relative to the lane line
- 2 test trials per condition

	1						
		Lateral	Vehicle Speed is 72 km/h (45 mph)				
	Velocity to Lane Line (m/s)	Steer Direction	Left		Right		
		(Test Trial	1	2	1	2
Lane Departure Rates	0.2	Out of Lane (m)	0.03	-	0.44	0.01	
		LKA Intervention	\checkmark	\checkmark	\checkmark	\checkmark	
	0.3	Out of Lane (m)	0.20	-	0.52	0.50	
		LKA Intervention	\checkmark	\checkmark	\checkmark	\checkmark	
		0.4	Out of Lane (m)	0.33	0.03	0.31	0.29
	0.4	LKA Intervention	\checkmark	\checkmark	\checkmark	\checkmark	
	0.5	Out of Lane (m)	0.69	0.18	0.62	0.90	
		LKA Intervention	\checkmark	\checkmark	\checkmark	\checkmark	
	0.6	Out of Lane (m)	0.73	0.38	1.64	1.28	
		LKA Intervention	\checkmark	\checkmark	No Correction	\checkmark	

Lane Keeping Assist Test

Heavy Truck Trailer Strikable Target Development

- Supports NHTSA's Crash Avoidance testing with a realistic, durable, and reusable target vehicle.
- Similar concept to other test targets currently being used by NHTSA.
- Project is being conducted by Dynamic Research, Inc. (DRI).

Trailer Target Design

Trailer Target Build and Testing

Response Test Video

Durability Testing Video – Vehicle Impact

NHTSA Heavy Vehicle Crash Avoidance Research

Thank you for your attention!

For more information on these and other NHTSA Safety Research:

https://www.nhtsa.gov/events/nhtsasafety-research-portfolio-publicmeeting-fall-2024

Alrik Svenson Alrik.Svenson@dot.gov

