HEAVY VEHICLE STABILITY CONTROL

NHTSA Policy Issues

George Soodoo U.S. DOT/NHTSA

2011 TRB Annual Meeting Committee on Truck and Bus Safety Washington, DC January 25, 2011

Background

- Stability Control systems automatically apply selective brakes to mitigate rollover and/or loss-of-control
- NHTSA has evaluated two types of Stability Control systems
 - Roll Stability Control (RSC): reduces roll instability
 - Electronic Stability Control (ESC): reduces roll instability and directional loss-of-control

Background

 NHTSA is working on several analyses on heavy vehicle stability control technology

First Group includes truck tractors and motorcoaches

Second Group includes single unit trucks and other buses

Types of Stability Control Systems

• Roll Stability Control (RSC)

Designed to help mitigate on-road, untripped rollovers

• Electronic Stability Control (ESC)

Designed to assist drivers in mitigating vehicle directional loss-of-control and untripped rollover crashes

How Do Stability Control Systems Work?

• RSC

- Includes electronic control unit (ECU) to monitor vehicle speed, lateral acceleration, and vehicle load
- ECU estimates roll stability threshold and detects when lateral acceleration is likely to cause a rollover
- If lateral acceleration exceeds threshold, RSC intervenes by decreasing power and applying drive-axle and trailer brakes

• ESC

- Incorporates same system inputs as RSC, plus steering wheel angle and vehicle yaw rate
- Response to roll instability is same as for RSC except that ESC can respond earlier due to steering wheel sensor, and decelerates vehicle at a higher rate due to addition of steer axle brake actuation
- Response to yaw instability includes application of selective brakes to create a yaw moment to turn vehicle back to its steered direction

Summary of NHTSA Research

- Vehicles tested
 - ✤ 3 truck tractors: Freightliner with ESC and (separate) RSC; Volvo with ESC; and Sterling with RSC
 - ✤ 6 trailers: 1 tanker; 2 box vans; and 3 flatbeds
- Test maneuvers evaluated
 - J-turn; Double Lane Change; Slowly Increasing Steer; Ramp Steer Maneuver; and Sine with Dwell
- Research Findings
 - Stability Control systems improved both roll and yaw stability of vehicle compared with no stability control
 - Tractor-based stability control systems were able to mitigate trailer wheel lift at higher speeds than trailer-only systems
 - Of all trailer types tested, box van trailers achieved highest test speed before wheel lift occurred; tanker trailer was similar to box van in terms of test speeds that produced wheel lift

Stability Control - Federal Regulations

- Current Federal Regulation
 - FMVSS 126: applies to light vehicles with GVWR of 10,000 lb or less
 - Mandatory Effective date: September 1, 2011
 - Light Vehicle ESC Standard includes
 - equipment requirement Functional Definition
 - performance requirement Sine with Dwell maneuver at 50 mph
 - Pass/fail: 1) yaw rate decay; and 2) lateral responsiveness
- Development of Heavy Vehicle Proposed Requirements
 - We are considering both equipment and performance requirements to address both roll instability and yaw instability

ESC Functional Definitions in Other Standards

- ESC definitions
 - ✤ SAE Recommended Practice J2627 includes functional definition
 - ECE Regulation 13: includes definitions of rollover control and directional control
 - Desired functional definition attributes: senses lateral acceleration, yaw rate and steering input; has capability to modulate the brakes
 - Similar, but not identical, to definition in light vehicle standard in FMVSS 126
- FMVSS 126 Equipment Requirement
 - Performance-only requirement is not able to address the multitude of maneuvers a driver could use in real-world crashthreatening situations where ESC might activate

Potential Metrics to Measure Stability Control System Performance

- Similar Metrics used in FMVSS 126
 - Yaw rate decay used to evaluate "spinout" (yaw) propensity
 - Lateral displacement used to evaluate vehicle responsiveness
- Other Potential metrics
 - Lateral acceleration reduction used to evaluate "rollover" propensity
 - Engine torque data used to verify automatic engine torque reduction
 - Trailer brake pressure measured to verify automatic trailer brake application

Docket Number

 Agency opened a Docket for submissions on Heavy Vehicle Stability Control

• Docket Number is: NHTSA-2010-0034

QUESTIONS???