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a  b  s  t  r  a  c  t

Geologists  have  used  remote  sensing  data  since  the advent  of the  technology  for regional  mapping,  struc-
tural  interpretation  and  to aid in  prospecting  for ores  and  hydrocarbons.  This  paper  provides  a review
of  multispectral  and  hyperspectral  remote  sensing  data,  products  and  applications  in geology.  During
the  early  days  of  Landsat  Multispectral  scanner  and  Thematic  Mapper,  geologists  developed  band  ratio
techniques  and selective  principal  component  analysis  to produce  iron  oxide  and hydroxyl  images  that
could  be  related  to  hydrothermal  alteration.  The  advent  of  the  Advanced  Spaceborne  Thermal  Emission
and  Reflectance  Radiometer  (ASTER)  with  six  channels  in  the shortwave  infrared  and  five  channels  in  the
thermal region  allowed  to  produce  qualitative  surface  mineral  maps  of  clay  minerals  (kaolinite,  illite),
sulfate  minerals  (alunite),  carbonate  minerals  (calcite,  dolomite),  iron  oxides  (hematite,  goethite),  and
silica  (quartz)  which  allowed  to map  alteration  facies  (propylitic,  argillic  etc.).  The  step  toward  quanti-
tative  and validated  (subpixel)  surface  mineralogic  mapping  was  made  with  the  advent  of high  spectral
resolution  hyperspectral  remote  sensing.  This  led to a  wealth  of  techniques  to  match  image  pixel  spectra
to library  and  field  spectra  and  to unravel  mixed  pixel  spectra  to pure  endmember  spectra  to  derive  sub-
pixel surface  compositional  information.  These  products  have  found  their  way  to the  mining  industry  and
are to  a lesser  extent  taken  up  by  the  oil and  gas  sector.  The  main  threat  for geologic  remote  sensing  lies
in the  lack  of  (satellite)  data  continuity.  There  is  however  a  unique  opportunity  to  develop  standardized

protocols  leading  to  validated  and  reproducible  products  from  satellite  remote  sensing  for  the  geology
community.  By  focusing  on  geologic  mapping  products  such  as  mineral  and  lithologic  maps,  geochem-
istry,  P-T  paths,  fluid  pathways  etc. the  geologic  remote  sensing  community  can  bridge  the  gap  with the
geosciences  community.  Increasingly  workflows  should  be multidisciplinary  and  remote  sensing  data
should be  integrated  with  field  observations  and  subsurface  geophysical  data  to monitor  and  understand
geologic  processes.
© 2011  Elsevier  B.V.  All  rights  reserved.
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. Introduction

Geological remote sensing has been ill-defined in the literature.
he name suggests that remote sensing data (this can be field-
ased, airborne or spaceborne geophysical measurements) are used
o study geology. Traditionally, geology deals with the composi-
ion, structure, and history of the Earth. However, more and more
eology deals with processes that have formed the Earth and other
lanets indicating that geology becomes more multidisciplinary
nd more positioned on issues of societal relevance. There are sev-
ral text books on geologic remote sensing. However, these books
redominantly are introductory to remote sensing using exam-
les in the field of geosciences. Floyd Sabins wrote probably one
f the most sold and cited textbooks on remote sensing (Sabins,
996). Although he is a remote sensing geologist, his book is writ-
en for the general remote sensing audience contrary to the book
f Steven Drury, another remote sensing geologist, who dedicated

 book to geologic image interpretation (Drury, 1987). Ravi Gupta,
rofessor from the Earth Sciences department of the University of
oorkee (India) wrote a book on geologic remote sensing (Gupta,
003). In addition, there are a number of review articles on aspects
f geologic remote sensing including remote sensing for mineral
xploration (Sabins, 1999), applications of hyperspectral remote
ensing in geology (Cloutis, 1996), and the use of remote sensing
nd GIS in mineral resource mapping (Rajesh, 2004). Some of the
arly founding papers were published by Gregg Vane and Alexander
oetz when both were working at the NASA Jet Propulsion Labora-

ory (Vane and Goetz, 1993, 1988). Much of the geologic remote
ensing in the visible-near infrared (VNIR), shortwave infrared
SWIR), mid  infrared (MIR) and thermal infrared (TIR) part of the
pectrum resulted from pioneering work of Hunt and Salisbury
Hunt, 1977; Salisbury et al., 1989; Cooper et al., 2002) who metic-
lously measured mineral and rock spectra forming the basis for
irborne and spaceborne instruments. Remote sensing geologists
ave actively contributed to the development of active sensor
echnology (predominantly SAR and InSAR) and passive sensor
echnology (multispectral and hyperspectral remote sensing in the
NIR to SWIR and TIR parts of the spectrum). The latter is the sub-

ect of this review. The aim is to present an overview of nearly 30
ears of science at the interface of geology and remote sensing.
his paper is written to take stock of the developments, review the
apers that made an impact, signal trends and present some of the
hortcomings and future challenges.

Throughout this paper, examples from the Rodalquilar gold min-
ng area (Fig. 1) located in the Sierra del Cabo de Gata (Cabo de Gata
ational Park) in the south-eastern corner of Spain (Rytuba et al.,
990) will be presented as illustrative products generated from var-

ous multi- and hyperspectral sensors using analytical techniques
iscussed in the text. The area consists of calc-alkaline volcanic
ocks (andesites and rhyolites) of late Tertiary age which have
een extensively altered to form an assemblage of metamorphic
inerals from high to low temperature as: silica, alunite, kaolin-

te, montmorillonite and chlorite. The following alteration facies
Fig. 2) are distinguished: silicic, advanced argillic, intermediate
rgillic and propylitic. Associated are high sulfidation gold deposits

ocated in the central part of the volcanic field. The geology, geo-
hemistry and mineralization of the area is well described (Arribas
t al., 1995) and several geologic remote sensing studies have been
onducted at Rodalquilar (Debba et al., 2009; Bedini et al., 2009;
van der Meer, 2006b); hence, it serves as a good example to illus-
trate various techniques and sensor data sets. The image data used
are shown in Fig. 3.

2. Multispectral: the Landsat era

Ratioing techniques and geologic image interpretation date back
to the early days of air photo geology and the early Landsat mul-
tispectral scanner (MSS) data sets where the VNIR bands were
first deployed to derive iron oxide ratio images (Goetz and Rowan,
1981). The French Satellite Pour l’Observation de la Terre (SPOT)
system was used by the geology community because of its (at
that time) unprecedented spatial resolution and stereo capability.
Several studies show the use of SPOT data for lithologic mapping
(Bilotti et al., 2000) and for (semi)automatic detection and delin-
eation of faults (Kaya et al., 2004; Kavak, 2005; Kavak and Inan,
2002). It has also been shown that subpixel measurement of surface
displacement along faults can be derived from SPOT data (Crippen
et al., 1991, 1996). While other instruments such as IRS-1A (Bhan
et al., 1991) were also used by the geologic remote sensing commu-
nity, the uptake of remote sensing in geology accelerated with the
advent of the Landsat Thematic Mapper (TM) instrument. Landsat
TM images have been used for many years by the geologic remote
sensing community for mapping of lithology and delineation of
lineaments specifically to map  alteration mineralogy. In particular
band ratioing techniques, decorrelation stretching and saturation
enhancement and principal component (PC) analysis (PCA) have
been popular techniques (Chavez et al., 1991; Yesou et al., 1993).
The Landsat TM band 7/band 5 ratio is generally used to separate
argillic from non-argillic materials, thus, reflecting the presence
or absence of hydroxyl absorption bands. Fe-O versus non-Fe-O
mapping is done using the band 3/band 1 ratio. A qualitative inter-
pretation scheme for a false color composite ratio image of R = 5/7,
G = 3/1, B = 5 in red–green–blue is provided in Table 1. Instead of
using ratio images, spectral gradients can be used where the gra-
dient expressed as a fraction of the average radiance is given by
the intensity of two channels normalized to their average value as
(Gillespie et al., 1987):

DDNij =
(

DNi − DNj

DNi + DNj

)
2

�i − �j
, (1)

where DDNij is the value of the normalized intensity for Land-
sat channels i and j and �i and �j are their respective wavelengths.
This normalization reduces the effect of albedo and topographic
effects. A qualitative interpretation scheme for a false color com-
posite normalized (following equation (1)) ratio image of 5/7, 3/1,
5 in red–green–blue is provided in Table 2.

To optimally display Landsat (MSS and TM)  data in three color
composite images, the optimum index factor (OIF) has for some
time been used (Chavez et al., 1980). The OIF is calculated for all pos-
sible three-band combinations as the ratio of the sum of standard
deviations over the sum of correlations. The idea behind this ratio
is that the three-band combination that ranks highest on this score

theoretically combines the largest amount of ‘information’ (i.e. a
high sum of standard deviations) with the least amount of ‘dupli-
cation’ (i.e. low interband correlation). There are many examples of
studies that used the OIF technique to enhance geologic features in
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Fig. 1. Location of the Rodalquilar gold deposit (inset map  B) in volcanic belt of SE Spain (map A).
Source:  Modified after Rytuba et al. (1990).
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Fig. 2. Simplified surface alteration system of the Rodalquilar caldera (area B in Fig. 1).
Source:  Modified after Rytuba et al. (1990).
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ig. 3. ASTER image with overlain HyMAP 126 channel imaging spectrometer airb
epicted on the HyMAP image.
andsat data (Abrams et al., 1983; Prinz, 1996) and more recently
n ASTER data (Gad and Kusky, 2007).

Through the analysis of eigenvalues of PC images spectral
nformation was used to enhance surface mineralogy (Crosta and

able 1
 qualitative interpretation scheme for a false color composite ratio image of 5/7, 3/1, 5 i

TM ratioa Image 

Red:5/7 Green:3/1 Blue:5

H L L Red 

H  L H Magen
H  L M Pink 

L  M L Dark g
L  M–H  L–M Light g
L  M–H  M–H Cyan 

L  L M Blue 

L  M H Light b
M–H  M–H  L–M Yellow
M  M L Brown
H H  H White
L  L L Black

a Relative ratio values: L = low; M = moderate; H = high.

able 2
 qualitative interpretation scheme for a false color composite normalized (according to 

TM ratioa

Red:5/7 (normalized) Green:3/1 (normalized) Blue:5 (n

M L M
H  M–H  L 

L M L 

H L L 

L  M–H  M–H  

L L–M M 

M–H  L–M L 

H  H H 

a Relative ratio values: L = low; M = moderate; H = high.
data set and Landsat TM window used in this study. The alteration system can be
McMoore, 1989). The technique deployed was coined to the orig-
inator, thus the term ‘Crosta technique’ is often used. Several
researchers applied the Crosta method of selective PC analysis for
mapping of granitoids (Kalelioglu et al., 2009; Aydal et al., 2007)

n red–green–blue.

color Absorption feature

H2O, OH, low albedo
ta H2O, high albedo

H2O, OH
reen Weak Fe3+, low albedo
reen Weak Fe3+, low albedo, H2O, OH,  carbonaceous materials

Strong Fe3+, moderate albedo, low H2O
Moderate albedo

lue High albedo, moderate Fe3+, low H2O
 Moderate Fe3+, moderate H2O

equation (1)) ratio image of 5/7, 3/1, 5 in red–green–blue.

Image color Absorption feature

ormalized)

Magenta H2O
Yellow Weak H2O,  OH, Fe3+

Dark green Fe3+

Red H2O
Cyan Fe3+

Dark cyan Low Fe3+

Brown Low Fe3+, moderate H2O
White
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Fig. 4. Examples of Landsat TM geologic products (from top to bottom): 3/1 band
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ASTER processing and calibration includes channel co-registration,
atio, 5/7 band ratio, PC 3 of TM 1-3-4-5, PC 3 of TM 1-4-5-7, PC4 of TM 1-4-5-7.

nd alteration systems (Tangestani and Moore, 2001; Ranjbar et al.,
004).

Selective PC analysis using two spectral bands has resulted in
erric iron images (using PC2 on Landsat TM band 1 and 3) and
ydroxyl images (using PC2 on Landsat TM band 5 and 7 (Chavez
nd Kwarteng, 1989). An alternative approach to the use of selec-
ive PC analysis on Landsat TM data was the ‘feature-oriented PCs’
Loughlin, 1991). Here a hydroxyl image is generated using PC3 or

 from a Landsat TM 1-4-5-7 band combination and a ferric oxide
mage is derived from PC4 of a TM 1-3-4-5 band set. Examples
f Landsat TM geologic data products for the Rodalquilar site are
hown in Fig. 4.

Most geologic remote sensing studies focus on arid environ-
ents thus circumventing the problems with outcrops being

bscured by the presence of vegetation. A method referred to as
he “forced invariance” approach has been proposed to subdue the
xpression of vegetation and enhance the expression of the under-
ying lithology in remotely sensed imagery (Crippen and Blom,

001). The method subsequently corrects for additive path radi-
nce, finds a relationship between a vegetation index and digital
umber (DN) values in each band, and multiplies the DN values as
h Observation and Geoinformation 14 (2012) 112–128

a function of the index so that the average value becomes invariant
across all index values.

Landsat TM data have been used widely by the geologic remote
sensing community for a wide range of applications including geo-
logic (Schetselaar et al., 2000; Fraser et al., 1997), lithologic (Gad
and Kusky, 2006) and structural (Boccaletti et al., 1998; Yesou
et al., 1993) mapping, volcanic deposits and volcano monitoring
(Oppenheimer et al., 1993), coral reef mapping (Mumby et al.,
1997), natural oil seep detection (Macdonald et al., 1993), landslide
mapping (Singhroy et al., 1998; Lee and Talib, 2005) and issues
related to mineral exploration (Abdelsalam et al., 2000; Sabins,
1999; Ferrier et al., 2002). Landsat TM data have also been inte-
grated with other airborne geophysical (gravity, magnetic, gamma
ray) and spaceborne remote sensing (SAR, SIR-C) data to foster
spatially integrated mapping approaches (Kettles et al., 2000) and
image fusion techniques such as the IHS transformation have been
used widely (Yesou et al., 1993; Rigol and Chica-Olmo, 1998)
although it is questionable what the added value in terms of extra
information is of a fused product as opposed to the individual
products (van der Meer, 1997). Another recent study on physic-
ochemical properties of post mining lakes demonstrated the use of
multitemporal analysis Landsat TM5/ETM + 7 satellite data as the
basis of a monitoring system for the geochemistry of mining lakes
(Schroeter and Glasser, 2011; Glasser et al., 2011). An overview of
image fusion techniques and applications is provided in (Pohl and
van Genderen, 1998).

3. Multispectral: the ASTER era

During recent years, the Advanced Spaceborne Thermal
Emission and Reflectance Radiometer, ASTER (Abrams, 2000;
Yamaguchi et al., 1998; Abrams and Hook, 1995), on the Terra
platform launched on December 18, 1999 has provided enhanced
mineral mapping capabilities for the geologic remote sensing
community. ASTER (see Table 3 for a programmetric descrip-
tion) is designed with three bands in the VNIR spectral range
with a 15 m spatial resolution, six bands in the SWIR with a
30 m spatial resolution, and five bands in the TIR with a 90 m
spatial resolution. Simultaneously, a single band in the near-
infrared is provided for along-track stereo capability. The swath
width is 60 km and the temporal resolution is <16 days. Higher
level calibrated ASTER products (radiance, reflectance, emissiv-
ity, temperature) can be ordered directly. Unfortunately, ASTER
does not have a band in the blue wavelength which Landsat TM
has. Thus ASTER cannot produce natural color composite images.
However, ASTER has stereo capability allowing the generation
of DEM’s and the bands in the SWIR allow a wealth of mineral
indices to be calculated. In particular the narrow bands in the
SWIR and the additional channels in the TIR allow the step from
mapping alteration indices (with Landsat TM)  to mapping min-
eral indices. The in situ calibrated ASTER images may be affected
by the ‘crosstalk’ instrument problem, which is caused by light
reflected from band 4 optical components leaking into the other
SWIR band detectors (Abrams, 2002, personal communication).
Particularly band 5 (centred at 2.165 �m)  and band 9 (centred
at 2.390 �m),  physically situated on either side of the band 4
detector on the ASTER instrument, are affected by the anoma-
lous reflectance. Although the anomalous reflectance appears to
be small compared to the spectral reflectance differences of typical
targets, we  believe that the sensor acquires inaccurate reflectance
and interpretation in terms of band absorptions is not feasible.
geometric and radiometric correction, crosstalk correction and
atmospheric correction, respectively, to retrieve pseudo reflectance
data.



F.D. van der Meer et al. / International Journal of Applied Earth Observation and Geoinformation 14 (2012) 112–128 117

Table  3
ASTER band passes and instrument characteristics.

Characteristic VNIR SWIR TIR

Spectral range 1a: 0.52–0.60 �m Nadir looking 4:1.600–1.700 �m 10:8.125–8.475 �m
2:  0.63–0.69 �m Nadir looking 5:2.145–2.185 �m 11:8.475–8.825 �m
3N:  0.76–0.86 �m Nadir looking 6:2.185–2.225 �m 12:8.925–9.275 �m
3B:  0.76–0.86 �m Backward looking 7:2.235–2.285 �m 13:10.25–10.95 �m

8:2.295–2.365 �m 14:10.95–11.65 �m
9:2.360–2.430 �m

Ground resolution 15 m 30 m 90 m
Data  rate (Mbits/s) 62 23 4.2
Cross-track pointing (◦) ±24 ±8.55 ±8.55
Cross-track pointing (km) ±318 ±116 ±116
Swath width (km) 60 60 60
Detector type Si 

Quantization (bits) 8 

a The numbers indicate the band number.

Table 4
ASTER band ratios for enhancing mineral features.

Mineral feature ASTER band combination(s)

Ferric iron 2/1
Ferrous iron 5/3 and 1/2
Ferric oxide 4/3
Gossan 4/2
Carbonate/chlorite/epidote (7 + 9)/8
Epidote/Chlorite/Amphibole (6 + 9)/(7 + 8)
Amphibole (6 + 9)/8 and 6/8
Dolomite (6 + 8)/7
Carbonate 13/14
Sericite/Muscovite/Illite/Smectite (5 + 7)/6
Alunite/Kaolinite/Pyrophyllite (4 + 6)/5
Phengite 5/6
Kaolinite 7/5
Silica 11/10, 11/12, 13/10
SiO2 13/12, 12/13

S

(

•

•

•

•
•
•
•
•

b

T
A

S

Siliceous rocks (11 × 11)/(10 × 12)

ource of data: A selection from: http://www.ga.gov.au/image cache/GA7833.pdf.

Several band ratios have been proposed to map  mineral indices
Cudahy and Hewson, 2002):

Silica index → band 11/band 10, band 11/band 12, band 13/band
10;
Biotite-epidote–chlorite–amphibole index → (band 6 + band
9)/(band 7 + band 8);
Skarn carbonates–epidote index → (band 6 + band 9)/(band
7 + band 8), band 13/band 14;
Garnets-pyroxenes index → band 12/band 13;
Iron oxide index → band 2/band 1;
White micas Al-OH depth → (band 5 + band 7)/band 6;
Carbonates Mg  OH depth → (band 6 + band 9)/(band 7 + band 8);

Carbonate abundance → band13/band14.

A comprehensive overview of mineral indices that can
e derived from ASTER data is the ‘ASTER Mineral Index

able 5
STER False color composites for enhancing mineral features.

Mineral feature Red 

Advanced argillic alteration 5/6 (phengite) 

Gossan,  alteration host rock 4/2 (Gossan) 

Gossan, alteration host rock 6 (Gossan) 

Silica,  carbonate (11 × 11)/(10 × 12) 

Silica 11/10 

Product for geologic mapping 4/1
Mapping sulfidesulfide rich areas 12 

Enhancing structures 7 

ource of data: A selection from: http://www.ga.gov.au/image cache/GA7833.pdf.
PtSi-Si HgCdTe
8 12

Processing Manual’ compiled by Aleks Kalinowski and Simon
Oliver (http://www.ga.gov.au/image cache/GA7833.pdf). These
authors suggest a range of band combinations and ratios for map-
ping various mineral assemblages in relation to different styles
of alteration (Table 4) and false color composites that highlight
alteration intensity (Table 5). In addition, the ASTER team proposed
an empirical silica index using the ASTER TIR bands formulated as
(Watanabe, 2002):

SiO2(%) = 56.20 − 271.09

× Log((Ems[10] + Ems[11] + Ems[12])/3), (2)

where Ems[n] is the emissivity of ASTER band n. A Calcite-, Alunite-,
Kaolinite- and Montmorillonite-index based on linear combina-
tions of ASTER SWIR bands was  presented and tested on ASTER
data from the Cuprite mining area in Nevada (Yamaguchi and
Naito, 2003). Analysis of resampled ASTER spectra on magnetite
quartzite and associated lithologies of garnet-ferrous pyroxene
granulite, hornblende biotite gneiss, amphibolite, dunite, and
pegmatite showed absorption features around the ASTER spectral
bands 1, 3, 5, and 7. A RGD color composite image of ASTER band
ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) was used to successfully map
these sequences (Rajendran et al., 2011).

The ASTER SWIR bands allow to some extent the mapping of sur-
face mineralogy (provided that the data are transformed to surface
reflectance and provided that mineral occurrences are relatively
large so that they can be ‘seen’ at the spatial footprint of ASTER).
A recent study (Mars and Rowan, 2010), which compares ASTER
image spectra to a spectral library for two  alteration areas (e.g.,
Cuprite, Nevada and Mountain Pass, CA, USA), showed that on the
basis of spectrum matching results that advanced minerals groups
including argillic minerals (kaolinite, alunite, dickite), phyllic alter-
ation minerals (sericite) and propylitic minerals (calcite, epidote,

chlorite) can be separated. However, this study also concluded that
detailed mapping of kaolinite versus alunite is not possible. Exam-
ples of ASTER geologic data products for the Rodalquilar site are
shown in Fig. 5.

Green Blue

7/6 (Muscovite) 7/5 (Kaolinite)
4/5 (Altered) 5/6 (Host rock)
2 (Altered) 1 (Host rock)
13/14 12/13
11/12 13/10
3/1 12/14
5 3
4 2

http://www.ga.gov.au/image_cache/GA7833.pdf
http://www.ga.gov.au/image_cache/GA7833.pdf
http://www.ga.gov.au/image_cache/GA7833.pdf
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Fig. 5. Examples of ASTER geologic data products for the Rodalquilar site (from top
to  bottom): 2/1 band ratio, 4/3 band ratio, (4 + 6)/5 band ratio, 5/3 band ratio, (5 + 7)/6
band ratio.
h Observation and Geoinformation 14 (2012) 112–128

There is a wealth of literature on the use of ASTER data in var-
ious geologic settings. Most of these studies are based on single
ASTER scenes, but there are also regional geologic mapping projects
targeted to mineral prospectivity of mining regions that apply
seamlessly merged data sets of over 100 ASTER scenes (Rockwell
and Hofstra, 2008; Hewson et al., 2005). ASTER has been exten-
sively used for lithologic mapping (Li et al., 2007; Qiu  et al., 2006;
Rowan and Mars, 2003; Gomez et al., 2005; Khan et al., 2007). There
are several papers on granites (Massironi et al., 2008; Watts et al.,
2005), ophiolite sequences (Qiu et al., 2006; Khan et al., 2007) and
basement rocks (Qari et al., 2008; Gad and Kusky, 2007; Vaughan
et al., 2005). Although ASTER is widely used by the oil and gas
industry there are few scientific articles on its applicability. An
integrated study using ASTER and several other satellite sensor
data sets to map  sedimentary terrains in Southern Tunisia illus-
trates the potential of ASTER data (Pena and Abdelsalam, 2006).
Most papers centre on the use of ASTER for mineral exploration
with emphasis on geothermal (Vaughan et al., 2005), hydrother-
mal  (Zhang et al., 2007; Hubbard et al., 2003; Yamaguchi and Naito,
2003; Carranza et al., 2008; Mars and Rowan, 2006, 2010), car-
bonatites (Mars and Rowan, 2011), barite mineralization (Madani
and Emam, 2011) and evaporate systems (Kavak, 2005; Oztan and
Suzen, 2011). Some works focus on the more generic lithology map-
ping (Haselwimmer et al., 2011) and ASTER was also used to map
granitoids in western Nepal by establishing a relationship between
the presence of lichens and these granitoid bodies (Bertoldi et al.,
2011).

A new application of ASTER data is related to mapping the
mineralogic composition of dune fields (Scheidt et al., 2011). By
means of a spatial interpolation of sample compositions, visual
interpretation of image data revealed sand transport pathways and
gradients of composition between the dune field and surrounding
local sources.

An interesting application of ASTER data is found in measur-
ing surface displacements over time by co-registration of optically
sensed images and measuring the spatial (de)correlation. This so
called COSI-Corr method (Ayoub et al., 2009; Leprince et al., 2007)
allows to measure the horizontal displacement vector along faults
and provides information similar to radar interferometry. The tech-
nique is similar to the subpixel displacement mapping approach
using SPOT images discussed earlier.

4. The hyperspectral ERA

4.1. Background

Reflectance spectra of minerals are dominated in the VNIR
wavelength range by the presence or absence of transition metal
ions (e.g., Fe, Cr, Co, Ni) resulting in absorption features due to elec-
tronic processes. The presence or absence of water and hydroxyl,
carbonate and sulfate determine absorption features in the SWIR
region due to vibrational processes. In addition, absorption band
depth is related to grain or particle size, as the amount of light
scattered and absorbed by a grain is dependent on grain size. A
larger grain has a greater internal path where photons may be
absorbed. On the contrary in smaller grains there are proportionally
more surface reflections compared to internal photon path lengths,
if multiple scattering dominates, the reflectance decreases with
increasing grain size. As the grain size becomes larger, more light
is absorbed and the reflectance drops. In general, absorption band
depth is correlated with the (relative) amount of material present.

Based on relative absorption depth, for example, it has been shown
that kaolinite content can be derived with an accuracy of about 2%
by weight and organic carbon can be quantified with an accuracy
of about 2 wt.% (Kruger et al., 1998).
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Absorption of energy and thus the presence of absorption
eatures in reflectance spectra due to electronic processes (e.g.,
e2+ → Fe3+ transitions) manifests in the VNIR part of the spec-
rum in broad and rather shallow features. Vibration gives rise
o narrow and more pronounced features in the SWIR (as over-
one features of mid  infrared and longwave infrared absorption)
oughly at 1.400 �m combined with 1.900 �m due to molecular
ater, 1.400 �m due to OH−,  2.200 �m due to Al-OH, 2.300 �m
ue to Mg-OH and 2.320–2.350 �m due to Ca CO3.

The objective of hyperspectral remote sensing (also referred to
s imaging spectrometry or imaging spectroscopy) is to measure
uantitatively the components of the Earth System from calibrated
radiance, reflectance or emissivity) spectra acquired as images in

any, narrow and contiguous spectral bands. For geologic appli-
ations this is done by using spectral absorption features to map
arth surface composition (in terms of mineralogy or lithology) or
o quantify rock or soil chemistry or physics using derivative image
roducts.

.2. Sensors

The first scanning imaging spectrometer was  the Scanning
maging Spectroradiometer (SIS) constructed in the early 1970s for
ASA’s Johnson Space Centre. After that, civilian airborne spec-

rometer data were collected in 1981 using a one-dimensional
rofile spectrometer developed by the Geophysical Environmental
esearch Company which acquired data in 576 channels covering
he 0.4–2.5 �m wavelength followed by the Shuttle Multispec-
ral Infrared Radiometer (SMIRR) in 1981. The first imaging device
as the Fluorescence Line Imager (FLI) developed by Canada’s
epartment of Fisheries and Oceans in 1981. NASA’s Jet Propulsion
aboratory developed the Airborne Imaging Spectrometer (AIS) of
hich the first version became operational in 1983 (128 spectral

ands, 1.2–2.4 �m,  32 pixels across-track for AIS-1 and 64 for AES-
). Since 1987 to date NASA operates the Airborne Visible/Infrared
maging Spectrometer (Vane et al., 1993), AVIRIS (224 bands, 0.4 to
.5 �m region, sampling interval and resolution <10 nm,  FOV 30◦,
14 pixel swath).

Several companies develop hyperspectral sensors. The Finnish
pectral Imaging (SPECIM) manufactures the AISA (Airborne
maging Spectrometer for Applications) Family of Airborne Imag-
ng Spectrometers (the AisaEAGLE, VNIR 0.400–0.970 �m,  512
r 1024 spatial pixels, 488 spectral bands; AisaHAWK, SWIR
.970–2.500 �m,  320 spatial pixels, 254 spectral bands; AisaOWL,
–12 �m,  384 pixels, 84 spectral bands). In Canada, ITRES
eveloped the Compact Airborne Spectrographic Imager (CASI),
perational since 1989 (288 spectral channel, 1.9 nm.  resolution,
12–1500 pixels across track, 400–1100 range) and similar systems

n the SWIR (SASI), MIR  (MASI) and TIR (TASI). The Geophysi-
al Environmental Research Corporation (GER) developed the GER
maging Spectrometer (GERIS), the Digital Airborne Imaging Spec-
rometer (DAIS; 72 channels, 0.4–2.5 �m,  FOV of 3.3 mrad and
ix channels in the 8–12 �m region). The Australia-based com-
any Integrated Spectronics designed the HYperspectral MAPper
HyMAP; in the U.S. known as Probe-1) a 126 channel sensor cov-
ring the 0.4–2.5 �m region.

The first satellite imaging spectrometer was  the LEWIS Hyper-
pectral Imager (HSI) from TRW company which was launched in
997 but failed. Within the framework of the New Millennium Pro-
ram NASA launched Hyperion on New Millennium Program (NMP)
arth Observing (EO)-1. Hyperion (Pearlman et al., 2003), being
ased on the LEWIS concept, has 220 spectral bands (from 0.4 to

.5 �m)  with a 30 m spatial resolution imaging a 7.5 km by 100 km
rea per frame flying a 705 km circular sun-synchronous orbit at

 98.7◦ inclination which allows to match within one minute the
andsat 7 orbit. The European Space Agency currently operates the
h Observation and Geoinformation 14 (2012) 112–128 119

Compact High Resolution Imaging Spectrometer, CHRIS (Barnsley
et al., 2004), on board the Proba-1 (9 years of operation) which
measures directional spectral reflectance using multiple viewing
and illumination geometries, a spectral range of 0.415–1.050 �m,
a spectral resolution of 5–12 nm with up to 19 spectral bands and
a spatial resolution of 20 m at nadir on a 14 km swath.

At present, GFZ and DLR are developing a hyperspectral space-
borne instrument under the Environmental Mapping and Analysis
Programme (ENMAP). ENMAP (Stuffler et al., 2007) will be a
dedicated imaging pushbroom hyperspectral sensor covering the
spectral range from 0.430 to 0.950 �m (VNIR) and from 0.950 to
2.400 �m (SWIR) with 184 channels, a swath width of 30 km at
high spatial resolution of 30 m and off-nadir (30◦) pointing fea-
ture for fast target revisit (<3 days). The present design concept
(Guanter et al., 2009b,  Segl et al., 2010) foresees in 89 bands from
423 to 994 nm and 155 bands from 905 to 2446 nm using fast tar-
geting revisit using tilt mode (±30◦), thus reaching a 4-day revisit.
Tentative launch is scheduled for April 2015.

Another spaceborne hyperspectral sensor under design is the
PRISMA mission (700 km orbit, 20–30 m resolution, swath width of
30–60 km,  0.4–2.5 �m continuous coverage with 10 nm bands) to
be launched in 2012 by the Italian Space Agency. ESA is preparing
under the GMES programme the Sentinel-2 mission which carries
a MultiSpectral Imager (MSI) with a swath of 290 km, providing 13
spectral VNIR-SWIR bands (four spectral bands at 10 m,  six bands at
20 m and three bands at 60 m spatial resolution). NASA is currently
working on the HYpSPectral InfRared Imager (HyspIRI) mission
(tentative launch in 2020); an imaging spectrometer that measures
from the VNIR to SWIR and a TIR imager both at a spatial resolution
of 60 m at nadir. For a review on spaceborne hyperspectral missions
consult (Buckingham and Staenz, 2008).

The hyper–multi spectral mission named HISUI (Hyperspec-
tral Imager SUIte), formerly Hyper-X, is a Japanese hyperspectral
mission on board the ALOS-3 satellite. HISUI is the follow up
mission of ASTER and specifications now foresee in 57 VNIR
bands (0.4–0.97 �m at 10 nm resolution) and 128 SWIR bands
(0.9–2.5 �m at 12.5 nm resolution) at a 30 m spatial resolution and
30 km swath (Kawashima et al., 2010). Tentative launch is set for
2014.

There are two  hyperspectral imagers that are circling the planet
Mars that are noteworthy to mention: CRISM and OMEGA. The
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
on the Mars Reconnaissance Orbiter (Murchie et al., 2007) cov-
ers the VNIR wavelengths (0.37–3.92 �m)  and produces several
summary products including those capturing surface mineralog-
ical information (Pelkey et al., 2007). The OMEGA hyperspectral
imager (OMEGA stands for Observatoire pour la Mineralogie, l’Eau,
les Glaces, et I’Activite) on board ESA’s Mars Express mission, is
dedicated to surface compositional mapping of Mars at a 0.3–5 km.
resolution (Bibring et al., 2005).

4.3. Processing

The pre-processing chain of hyperspectral data includes pre-
flight laboratory calibration and in-flight calibration of the sensor
to establish the relationship between photon counts on the detec-
tor and (spectral) radiance and to model the spectral response
functions for each channel and the point spread function of the
sensor. Several authors provide an overview of the pre-processing
chain for hyperspectral data (Schaepman et al., 2009; van der Meer
et al., 2009) or radiometric calibration principles (Kohler et al.,
2004). In most cases, the end user is provided with at-sensor

radiance data which then need to be atmospherically corrected
and subsequently geocoded. Most airborne systems carry on-
board GPS and inertial navigation systems (INS) the first providing
geographic coordinates during image acquisition and the latter

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight



1 d Earth Observation and Geoinformation 14 (2012) 112–128

p
p
t
t
(
S
o
1

o
s
i
o
w
n

i
t
s
2
d
a
v
(
r
1
m
u
b
a
t
t
2
t
e

i
t
t
c
m
m
k
b
l
a
o
i
b
t
(
t
a
r
s
t
t
a
t
m
(
(
u
H
a
C

Table 6
Summary of the main spectrally active minerals in relation to different alteration
styles and environments of formation.

Environment of formation Main spectrally active alteration
minerals

High sulfidation epithermal Alunite, pyrophyllite, dickite, kaolinite,
diaspore, zunyite, smectite, illite

Low sulfidation epithermal Sericite, illite, smectite, chlorite,
carbonate

Porphyry: Cu, Cu-Au Biotite, anhydrite, chlorite, sericite,
pyrophyllite, zeolite, smectite,
carbonate, tourmaline

Carlin-type Illite, dickite, kaolinite
Volcanogenic massive sulfide Sericite, chlorite, chloritoid,

carbonates, anhydrite, gypsum,
amphibole

Archean Lode Gold Carbonate, talc, tremolite, muscovite,
paragonite

Calcic skarn Garnet, clinopyroxene, wollastonite,
actinolite

Retrograde skarn Calcite, chlorite, hematite, illite
20 F.D. van der Meer et al. / International Journal of Applie

roviding attitude information on the aircraft together allowing
recise geocoding of the data. Removal of atmospheric effects (scat-
ering and absorption as well as terrain illumination effects) is done
hrough absolute correction methods using radiative transfer codes
Guanter et al., 2009a,  Richter, 1996; Richter et al., 2002; Richter and
chlapfer, 2002) or empirical correction using scene information
nly (Ben-Dor and Levin, 2000) and/or field measurements (Ferrier,
995).

The advent of high spectral resolution sensors led to the devel-
pment of a new suite of techniques to extract information from
pectra with the ultimate goal of deriving surface compositional
nformation on the Earth’s surface. There are two broad categories
f analytical techniques that were developed and that are used
idely for classifying hyperspectral data: spectrum matching tech-
iques and subpixel methods (van der Meer, 2006a).

Spectrum matching techniques aim to express the spectral sim-
larity of reference (library or field spectra of known materials)
o test (image) spectra. One of the most used techniques is the
pectral angle mapper, SAM (Kruse et al., 1993; Hecker et al.,
008), which treats the two spectra as vectors in an n (channel)-
imensional space and calculates the angle between the vectors as

 measure of similarity. At small angles this converges to a con-
entional Euclidian distance. A matching algorithm based on the
cross) correlation of image and reference spectra is the cross cor-
elogram spectral matching technique (van der Meer and Bakker,
997). More recently a stochastic measure, called the spectral infor-
ation divergence was proposed (Chang, 2000). The commonly

sed spectral feature fitting (SFF) approach, that derives a match
etween library-endmember spectra and pixel spectra based on
bsorption feature characteristics, recently was used in combina-
ion with user-defined constraints in spectral absorption features
o extract target information from hyperspectral images (Xu et al.,
011). Also popular image mining approaches such as support vec-
or machines have been applied to hyperspectral data (Mountrakis
t al., 2011).

Subpixel methods comprise techniques to unmix hyperspectral
mages with the aim of quantifying the relative abundance (in frac-
ions, percent or area) of various materials within a pixel. Typically
he first step is to find spectrally unique signatures of pure ground
omponents (endmembers), and the second step is to unmix the
ixed pixel spectra as (linear or non-linear) combinations of end-
ember spectra/materials. Assuming the image interpreter has

nowledge of the scene or the area to be investigated, endmem-
ers can be extracted directly from target pixels or from spectral

ibraries. This has the advantage of being a knowledge-based
pproach, but the disadvantage that certain endmembers may be
verlooked which gives errors in the statistical deconvolution of the
mage. Alternatively there are statistical techniques for endmem-
er selection by which means endmembers can be set to minimize
he error of unmixing a scene based on the overall scene variance
Tompkins et al., 1997; van der Meer, 1999) or by comparing spec-
ral mixtures from library spectra to mixed pixel signals (Dennison
nd Roberts, 2003). An endmember search technique that incorpo-
ates spectral scene information in combination with spatial image
tructure was recently proposed (Zortea and Plaza, 2009). A popular
echnique has been the pixel purity index (PPI). PPI derives a statis-
ic for each pixel in a hyperspectral scene based on its proximity to

 vertex in an n-dimensional feature space assuming that pixels
hat are closer to these vertices are more likely to represent pure

aterials. Recently an outline of a fast pixel purity index was given
Chang and Plaza, 2006), and a review paper on PPI was published
Martinez et al., 2006). Some of the early algorithms on spectral

nmixing (Settle and Drake, 1993; Shimabukuro and Smith, 1991;
arsanyi and Chang, 1994) assumed linearity among endmembers
nd used least squares regression analysis for estimating fractions.
oming from the field of fuzzy classification, Foody was among the
Magnesium skarn Fosterite, serpentine-talc, magnetite,
calcite

first to acknowledge the problem of non-linearity and introducing
non-linear unmixing (Foody et al., 1997) which too date has found
its way  into many algorithms and paper (Nielsen, 2001; Plaza et al.,
2004).

4.4. Applications in geology: the VIS-SWIR range

The driver for applications of hyperspectral remote sensing
in geology has been and still are is mineral mapping and the
retrieval of surface compositional information for mineral explo-
ration purposes. Often this is related to hydrothermal systems
(Huntington, 1996). Fig. 6 (Sillitoe, 1996, 2010) gives a schematic
overview of intrusion related alteration systems and associated
mineral deposits. Table 6 gives an overview of spectrally active and
most abundant minerals for different alteration settings and related
mineralizations. These can be translated through combinations of
key absorption features into areas in the VIS-SWIR spectrum where
diagnostic information is found for mapping these mineral assem-
blages (Fig. 7).

The most frequently studied systems are hydrothermal as
these include abundant spectrally active mineral groups such
as hydroxyl-bearing minerals (hydrothermal clays, sulfates),
ammonium-bearing minerals, phyllosilicates, iron oxides, and car-
bonates. A classic and well studied hydrothermal system is the
NASA-JPL test site at the Cuprite mining district of Nevada where
some early work (Abrams et al., 1977) on spectroscopy laid the
foundation for the definition of the Landsat, ASTER and subse-
quently hyperspectral sensors. The literature on hyperspectral
remote sensing is dominated by the study of (low and high sulfida-
tion) epithermal gold systems (Crosta et al., 1998; Kruse et al., 2006;
Chen et al., 2007; Rowan et al., 2000; Gersman et al., 2008; Bedini
et al., 2009; van der Meer, 2006b)  most of which use techniques for
alteration mineral to study the mineral prospectivity of fossilized
systems. A cascaded approach using ASTER data for regional alter-
ation mapping and local follow-up by Hyperion for target selection
was presented as a tool for mineral exploration (Bishop et al., 2011).
More recently, active hydrothermal systems have been investi-
gating in the context of geothermal energy resources (Vaughan
et al., 2005; Yang et al., 2000, 2001; Kratt et al., 2010; Hellman
and Ramsey, 2004). Fig. 8 shows mineral maps for key alteration

minerals in Rodalquilar.

There are fewer studies on other deposit types although most
common deposit types have been characterized and analyzed
with hyperspectral data including: Carlin-type systems based on
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Fig. 6. The occurrence of mineral deposits and alteration styles related to
ource:  Sillitoe (1996); Sillitoe (2010); Modified after unpublished data from Anne 

yperspectral field measurements using ASTER (Rockwell and
ofstra, 2008), Archean lode (Bierwirth et al., 2002), skarns

Windeler, 1993), Calcic skarn (Kozak et al., 2004; Rowan and Mars,
003; Bedini, 2009), and volcanogenic massive sulfide ore (VMS)
eposits (Berger et al., 2003). The emphasis of these papers is on
apping surface mineralogy and using these mineral as vectors

o ore. An interesting application is the use of spectroscopy to aid
n sulfidesulfide ore grading in VMS  deposits (Gallie et al., 2002).
lthough some of the early studies on absorption feature position

n relation to Tschermak substitution (Duke, 1994) showed that
hemical composition of micas and chlorites can be related to sub-

le wavelength shifts related to compositional changes in Na versus

 and Al versus Mg.  Very little has been done with this in terms of
apping. Recently (Duke and Lewis, 2010) this work progressed

n the direction of assessing the metamorphic grade of rocks but

High sulphidation epithermal
Low sulphidation epithermal
Porphyry: Cu, Cu-Au
Carlin-type
Volcanogenic massive sulphide
Archean Lode Gold
Calcic skarn
Retrograde skarn
Magnesium skarn 

0.4 0.6 0.8 1.0

ig. 7. Summary of the main deposit types in relation to areas in the spectrum (indicat
inerals.
arine volcanism in granite related setting and porphyry copper systems.
son and personal communication of Phoebe Hauff.

mapping of these subtle spectral shifts has not been demonstrated.
There are some papers that link spectroscopy to mineral chemistry
to reconstruct fluid pathways (van Ruitenbeek et al., 2005, 2006),
several researchers have used the carbonate absorption feature to
map  calcite- dolomite mineralogy (Gaffey, 1986; van der Meer,
1996) and dolomitization patterns (Windeler and Lyon, 1991).
Earth analogues of hydrothermal systems have been demonstrated
to be proxies for understanding the surface mineralogy of the planet
Mars. Several researchers have suggested that hydrothermal sys-
tems exist on Mars, but, that these are formed under much lower
average surface temperatures than comparable geological settings

on Earth (Farmer, 1996). More recent studies revealed the pres-
ence of sulfates (Wang et al., 2006; Mangold et al., 2008; Aubrey
et al., 2006), hydrated silicates (Mustard et al., 2008; Ehlmann et al.,
2009) and phyllosilicates (Loizeau et al., 2007) on Mars supporting

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.5

ed by the bars) where absorption occurs related to the presence of key alteration
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Fig. 8. Mineral maps for key alteration minerals in Rodalquilar mapped

he idea of hydrothermal processes on Mars although sulfates could
lso be evaporitic in nature.

There are some studies on the use of hyperspectral remote sens-
ng for lithologic mapping in Arctic conditions (Harris et al., 2005),
n a granitic terrain (Rivard et al., 2009), in an ophiolite sequence
Roy et al., 2009) and in peridotites (the Ronda peridotite, SE Spain)
Chabrillat et al., 2000; Launeau et al., 2004).

Hyperspectral remote sensing is also frequently used to study
ine tailings (Choe et al., 2008; Shang et al., 2009; Riaza and Muller,

010; Richter et al., 2008; Mars and Crowley, 2003). Most studies
ocus on acid-generating minerals in tailings such as pyrite and

ap  the spatial distribution of the oxidation product (e.g., jarosite,
errihydrite, goethite/hematite) as an indicator of environmental
ollution level. These studies focus primarily on mapping of surface
ineralogy and largely neglect aspects of environmental quality,

spects of health and the link of surface leaching to element mobil-
ty and transportation in groundwater. There are few studies that
ombine hyperspectral maps with aspects of health with the excep-
ion of a study that mapped asbestos minerals occurring in dust
orm that could be blown by wind and form a threat to human
ealth (Swayze et al., 2009).

There are few attempts to link hyperspectral remote sensing to
he oil & gas industry. Most of these relate to studying (detection
nd characterization through surface mineral mapping) oil seeps
Horig et al., 2001; Kuhn et al., 2004) and gas seeps (van der Meer
t al., 2002; van der Werff et al., 2006) and to mapping oil sands and
stimating the total bitumen content of these sands (Lyder et al.,
010).
Most of the above studies use airborne hyperspectral data
ets where AVIRIS and HyMAP are the most frequently used
nstruments. Kruse (Kruse et al., 2003) used Hyperion spaceborne
yperspectral data and compared it to AVIRIS data and concluded
 HyMAP (from top to bottom): jarosite, kaolinite, illite, alunite, chlorite.

that “spaceborne hyperspectral sensors can produce useful min-
eralogic information, but also indicate that signal-to-noise ratio
(SNR) improvements are required for future spaceborne sensors to
allow the same level of mapping that is currently possible from
airborne sensors such as AVIRIS”. Some research supports this
statement including work on the comparison of the use of Advanced
Land Imager (ALI), ASTER, and Hyperion data for mineral mapping
(Hubbard et al., 2003) and work on the use of Hyperion data for
mapping hydrothermal alteration (Gersman et al., 2008). Recently,
Hyperion was used to produce stratigraphic classification products
through a processing chain that included smile correction resulting
in an updated geologic map for the Dana Geology National Park in
Jordan (Dadon et al., 2011).

An interesting development of hyperspectral technology is drill
core imaging and wall rock imaging. The first published study on
hyperspectral drill core analysis dates back to 1996 and used the
PIMA spectrometer (Kruse, 1996). Presently there are several drill
core imaging facilities that provide scanned hyperspectral data on
drill core. Although these become more and more readily used by
the mining industry to determine metal grades and separate ore
from waste, there are few scientific publications on this technique
(Gallie et al., 2002; Bolin and Moon, 2003; Brown et al., 2008). A
logical extension to this is terrestrial hyperspectral sensing which
allows to image wall rock and outcrops. Again this is an application
of hyperspectral remote sensing that is very promising as it (1) fills a
gap between field point-based measurements and image data and
(2) it allows to measure vertical faces that are not easily imaged
from an airborne platform, however on which few publications

exist (Ragona et al., 2006).

Although this review concentrates on geologic remote sensing
applications on Earth it is noteworthy to mention that hyperspec-
tral observations have led to scientific breakthroughs in mapping
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nd understanding surface composition in planetary geology. In
ecent years, several studies using CRISM and OMEGA data have
hed new light on the geology of Mars. Occurrences of phyllosili-
ates indicate that hydrothermal processes and/or weathering have
cted on the Martian surface. Several types of phyllosilicate min-
rals have been positively identified on Mars using VNIR imaging
pectroscopy (Bibring et al., 2005; Poulet et al., 2005). Fe, Mg  and
l-smectites (nontronite, saponite, and montmorillonite) are most
bundant, minor occurrences of kaolinite, rich chlorites (Fe-rich
hamosite and Mg  chlorites) and illite/muscovites have also been
eported. Presence of phyllosilicates is generally restricted to rocks
f Noachian age though some have been detected in rocks of early
esperian age. Phyllosilicate deposits have mainly been found in

hree different forms: (1) As layered phyllosilicate deposits, (2) as
assive Noachian phyllosilicate deposits, and (3) phyllosilicate-

ontaining intracrater fans. Genetic mechanisms for the formation
f these deposits are unknown though several have been proposed
ncluding alteration of volcanic ash, subaerial weathering of basaltic
egolith, subaqueous sedimentation of sorted transported clays
Loizeau et al., 2007) and hydrothermal deposition. In addition, also
ulfates (Gendrin et al., 2005) and olivine/pyroxene (Mustard et al.,
005) have been mapped.

.5. Applications in geology: the TIR range

Emissivity spectroscopy provides information that is synergistic
o spectroscopy in the VNIR-SWIR as several key rock/soil form-
ng minerals (quartz, feldspars, olivines and pyroxenes) that are
pectrally featureless in the VNIR-SWIR have diagnostic absorption
eatures in the TIR range. The TIR (8–14 �m)  and the MIR (3–5 �m)
re areas that have great potential for geologic remote sensing stud-
es, but that have been under-investigated probably due to (1) the
omplexity of the physics (e.g., volume scattering effects in the TIR
nd emissivity and temperature interference in the MIR) and (2)
ack of field/laboratory spectrometers and (airborne/spaceborne)
yperspectral data. In the early 1990s, Mike Abrams showed the
dded value of combined TIR and SWIR observations (Abrams et al.,
991; Hook et al., 1998). From TIR multispectral scanner data Simon
ook and co-authors showed the type of information that could
e revealed (Hook et al., 1992, 1994; Hook and Kahle, 1996). The
ork on TIR spectroscopy of minerals and rocks (Salisbury and
aria, 1992; Salisbury and Walter, 1989; Salisbury et al., 1989) and
id  infrared spectroscopy (Salisbury and Daria, 1994) of John Sal-

sbury and his group has been instrumental to the development
eld of thermal remote sensing. His fundamental work showed
he potential of this region particularly in emissivity measure-

ents and also the complexity of physics. Much of this work has
een collected in the standard library (4000 copies, ∼2000 spectra)
or emissivity spectra: the ASTER spectral library (Baldridge et al.,
009). Recently, a review of TIR emissivity spectra of feldspars was
ublished (Hecker et al., 2010) emphasizing that feldspars are eco-
omically important as industrial minerals and as a vector-to-ore

or mineral deposits.
There are several satellite missions that currently acquire image

ata in the TIR region at varying spatial and temporal resolutions
ncluding ASTER (90 m,  16-day repeat), MODIS (the Moderate Reso-
ution Imaging Spectroradiometer, 1 km,  daily revisit), SEVIRI/MSG
the Spinning Enhanced Visible and Infrared Imager, 3 km,  15 min),
VHRR-3/METOP (the Advanced Very High Resolution Radiometer,
.1 km,  daily revisit). Although these allow deriving land surface
emperature, the spatial and spectral resolutions are too coarse to
ccurately measure emissivity. In addition, there are a number of

issions planned such as NASA’s HyspIRI mission (60 m,  1-week

evisit), SLSTR on ESA’s SENTINEL-3 mission (the Sea and Land Sur-
ace Temperature Radiometer, 500–1 km resolution) and there are
everal airborne instruments that can be deployed including the
h Observation and Geoinformation 14 (2012) 112–128 123

AHS (the airborne hyperspectral scanner), ITRES Sasi-600, Specim
AISA Owl, and SEBASS (the Spatially Enhanced Broadband Array
Spectrograph System).

Use of TIR data for geologic mapping has focused on data from
SEBASS (Vaughan et al., 2003, 2005; Kirkland et al., 2002). In addi-
tion, there are several studies on TIR mineral mapping on Mars
using the Thermal Emission Spectrometer (TES) on the Mars Global
Surveyor mission (Christensen et al., 2001; Bandfield, 2002).

5. Discussion and conclusions

In a personalized view on the development of the field of hyper-
spectral remote sensing one of the founders of geologic remote
sensing, Alexander Goetz (Goetz, 2009), recognized four trends
(and needs) which can be summarized as (1) a need for more accu-
rate measurements where (airborne) hyperspectral data adds to
high spectral resolution coarse footprint sensors like MODIS and
MERIS, (2) a need for education in remote sensing and hyperspec-
tral RS to create awareness of the technique, (3) to need to explore
the advance of sensor technology and computing power to advance
sensor capabilities and (4) a need for a hyperspectral instrument in
orbit. Adding to this a number of issues can be raised.

5.1. Validation issues

The past decades have shown a trend toward higher spectral
resolution (hyperspectral remote sensing) and toward band posi-
tioning on key absorption features (ASTER). Hyperspectral remote
sensing is defined as ‘acquiring images in many, narrow and con-
tiguous spectral bands to reconstruct a full spectrum that can be
compared directly to field or laboratory spectra’. Herein lies both
the strength as well as the weakness of the technique. The strength
of the availability of hundreds of spectral bands is that it (1) allows
mimicking reflectance or radiance spectra acquired in the field,
(2) allows cross comparison to field data, and (3) allows catering
for many different applications. However the weaknesses are (1)
the engineering challenge to acquire such data at sufficient quality
(in terms of SNR, NER), which has been a problem for spaceborne
acquisition, (2) the complexity of the calibration and pre- and post-
processing of the data, (3) the data redundancy due to channel
overlap of adjacent channels in each sensor, and (4) the data redun-
dancy due to acquisition in spectral regions that are of little user
interest. The lack of quantitative end products for the geologic com-
munity from multispectral and hyperspectral data hampers the use
of such data. As opposed to the meteorological sector which uses a
model-based approach whereby through data assimilation param-
eters are estimated based on principles of physics, the geologic
remote sensing community primarily uses empirical approaches
and estimates parameters through correlation. This hampers the
validation and reproducibility of these parameters and makes the
results very site specific implying that there is no single recipe
that is universally applicable. An attempt to develop automatic
procedures leading toward reproducible approaches is the USGS
tetracorder (Clark et al., 2003) expert system rules that describe
which diagnostic spectral features are used in the decision mak-
ing process. However the statement ‘no single analytical technique
can be used to fully deconvolve hyperspectral data in the absence of
ancillary data (Cloutis, 1996)’ is still true and this hampers automat-
ing processing chains and standardized (qualitative or quantitative)
products.

5.2. Bridging the gap between Earth observation science and

Earth science

The geologic remote sensing community has a bias to publish-
ing results in remote sensing journals. If the papers referenced
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n this Article are a representative set of the entire population of
cience output in this field then 40% is published in geosciences
ournals (26% Earth science and 14% geophysics journals) and 60%
s published in remote sensing journals with International Journal of
emote Sensing and Remote sensing of Environment having a ‘market-
hare’ of, 20% and 16%, respectively, of the total. More importantly,
hereas in adjacent fields (e.g., biology and hydrology), there is

 trend toward retrieval of chemical and physical land surface
arameters (i.e., from NVDI to FPAR and biochemicals), the geologic
emote sensing community persistently has focused on lithology,
lteration and surface mineralogy. There is a strong and direct
ink between reflected radiation and mineralogy through quantum
hysical processes that have been duly explored by the community.
owever, it is our firm belief that bridging the gap between Earth
bservation science and Earth science and increasing the visibil-
ty and usefulness of geologic remote sensing products we should
ut more emphasis on retrieving chemical (element, whole rock
eochemistry) and physical (temperature and pressure in relation
o metamorphic processes) variables to complement the lithologic,

ineralogic and structural information. On the contrary, geologic
emote sensing products from both multispectral as well as hyper-
pectral imaging have found their way to the mining industry and
o a lesser extent the oil and gas industry.

.3. Multidisciplinary approaches

Numerous papers deal with the characterization of mineral
eposits and hydrothermal systems by mapping surface alteration
ineralogy. This is an important task, but it is not always evident
hat the added value and new scientific insights are. Very few

tudies in geologic remote sensing are truly multidisciplinary or
nterdisciplinary, although by cross-linking with other disciplines
ew insights are often created. Cross-links that would deserve
ore attention and may  pay off as being scientifically very fruit-

ul are combining geology and health, linking pollution studies
o environmental quality, linking spectral surface mineral maps
o runoff and erosion models and further exploiting the relation
etween geology and biology. An obvious limitation of remote sens-

ng is that it allows only to characterize the Earth’ surface whereas
eologic structures are three-dimensional; subsurface information
s essential. Coupling surface information from remote sensing
magery with subsurface information from geophysical data has
een underexploited by the geologic remote sensing community.
et alone the integration of this three-dimensional information into
roundwater models and pollution models for monitoring disper-
ion. The GIS community and the land use mapping communities
sing remote sensing data have embarked into object-based image
nalysis using not only spectral but also spatial or contextual infor-
ation in images for mapping purposes. Although there is a wealth

f papers in this realm (Blaschke, 2010) and a community that is
apidly maturing this technology is not picked up at large in the
eologic remote sensing community. In general, monitoring capa-
ilities, which are the added value of Earth observation technology,
re seldom used in geologic remote sensing which predominantly
ses single observations in time of (airborne) campaign data, thus,
eglecting the time-domain which would allow studying processes

nstead of making inventories.

.4. Data continuity

The past decade in the field of geologic remote sensing can
e characterized by a gradual change of focus from the “inven-

ory” type of science (mapping, databases, what is where?) to the
nderstanding of processes that play a role in shaping our envi-
onment, predicting their effects in future and providing improved
nformation support for planning and policy making. Over the past
h Observation and Geoinformation 14 (2012) 112–128

decades we have also seen a closing of the gap between the realms
of Earth Observation (satellite observation of the Earth) providing
the monitoring capability and the GIS and modeling worlds pro-
viding geospatial solutions. Thematically over the past decade the
focus on system Earth has shifted from monitoring and forecasting
change to adaptation to change which brings the human compo-
nent and perception into the picture. Alongside, the governance
of space has accelerated over the past years and Earth monitoring
is now conducted in a structured framework of international poli-
cies and governmental initiatives such as the Global Monitoring
for Environment and Security (GMES) programme of the European
Commission and the European Space Agency (ESA), and the Global
Earth Observation System of Systems (GEOSS) initiative. GEOSS
priorities are laid down in so-called societal benefit areas includ-
ing disasters, health, energy, climate, water, weather, ecosystems,
agriculture and biodiversity. Through the themes of disaster and
energy, geologic remote sensing is more visible than ever.

Effective use of geologic remote sensing products relies on data
continuity. In the meteorological and oceanographic sectors this
is secured. However data continuity is not a luxury that we can
rely on. For decades with the Landsat programme there has been
continuity and one can even argue that ASTER was a logical conti-
nuity from Landsat ETM+. However with the ASTER SWIR module
now failed, and ASTER outlived its planned lifetime by 5 years, it
becomes apparent that there will be a gap in observations for the
coming years that may  eventually be filled by HySPIRI although
with a 2020 launch date this is not possible or with the Landsat
continuity mission that NASA is planning. Thus likely the super-
spectral instruments such as the Landsat LDCM or the Sentinel-2
mission should be used by the geologic remote sensing community
to ensure data continuity. Alexander Goetz (Goetz, 2009) argues
for a hyperspectral imager in orbit that can produce data at the
quality and resolution of AVIRIS. Hyperion has been operational
since the year 2000. However it is evident that the quality of
the data and the complexity of the pre-processing hamper wide
usage of this spaceborne hyperspectral resource. ENMAP may  in
future fulfill this role; however, besides passing on numerous chan-
nels to the science community it would also be advantageous to
have dedicated products for specific user communities where the
geologic user community could request validated surface mineral
maps. Thus, for SWIR hyperspectral observations from space there
is a future perspective, for TIR hyperspectral remote sensing from
space, regardless the added value that emissivity would bring there
is no instrument foreseen. Hyperspectral remote sensing has too
much the image of being an ad hoc campaign-type of technique; it
needs to develop a global perspective through global coverage and
dedicated products.
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