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Abstract—This paper reviews progress in hyperspectral remote
sensing (HRS) in China, focusing on the past three decades. China
has made great achievements since starting in this promising field
in the early 1980s. A series of advanced hyperspectral imaging sys-
tems ranging from ground to airborne and satellite platforms have
been designed, built, and operated. These include the field imaging
spectrometer system (FISS), the Modular Airborne Imaging Spec-
trometer (MAIS), and the Chang’E-I Interferometer Spectrometer
(IIM). In addition to developing sensors, Chinese scientists have
proposed various novel image processing techniques. Applications
of hyperspectral imaging in China have been also performed in-
cluding mineral exploration in the QilianMountains and oil explo-
ration in Xinjiang province. To promote the development of HRS,
many generic and professional software tools have been developed.
These tools such as the Hyperspectral Image Processing and Anal-
ysis System (HIPAS) incorporate a number of special algorithms
and features designed to take advantage of the wealth of informa-
tion contained in HRS data, allowing them to meet the demands of
both common users and researchers in the scientific community.

Index Terms—Hyperspectral remote sensing, imaging spectrom-
etry, remote sensing technology, remote sensing applications.

I. INTRODUCTION

H YPERSPECTRAL imaging, also known as imaging
spectrometry or imaging spectroscopy, has become

established as a critical technique for Earth observation since it
was first proposed by A.F.H. Goetz in the 1980s [1]. Imaging
spectroscopy began a revolution in remote sensing by com-
bining traditional two-dimensional imaging remote sensing
technology and spectroscopy [1]–[3], allowing for the syn-
chronous acquisition of both images and spectra of objects.
Hyperspectral images contain a wealth of geo- and radio-
metric information as well as abundance spectral information
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for narrow spectral bands (typically about ) from the
ultraviolet and visible to shortwave infrared for each pixel.
Hyperspectral remote sensing (HRS) has greatly improved our
ability to qualitatively and quantitatively sense the Earth and
outer space and has therefore attracted growing interest from
researchers worldwide. HRS has been used successfully in
various applications including agriculture, forestry monitoring,
food security, natural resources surveying, vegetation observa-
tion, and geological mapping.
Hyperspectral data are obtained from ground, airborne, or

spaceborne measurements, such as by the Airborne Visible/In-
frared Imaging Spectrometer (AVIRIS) and the EO-1 Hyperion
(both launched by NASA). They generally consist of tens to
hundreds of contiguous spectral bands with narrow bandwidths
of typically about . The special characteristics of hy-
perspectral datasets make HRS of the Earth and outer space
an appealing but challenging prospect. Much pioneering work
in the HRS community has focused on developing new algo-
rithms, models, and tools for data processing. These techniques
greatly facilitate the understanding and quantitative analysis of
HRS and have been employed in various applications, such as
target detection [4], precise classification [5], and quantitative
retrieval [6].
China, as one of the pioneers in HRS technology develop-

ment, has made great achievements since the 1980s. To meet
the increasing demand for fast and precise surveying and map-
ping of natural resources on a large scale, many outstanding hy-
perspectral sensors have been designed and launched in China
(particularly on aircraft) with the support of various national
major projects. Some of them, such as the Modular Airborne
Imaging Spectrometer (MAIS), the Pushbroom Hyperspectral
Imager (PHI), and the Operational Modular Imaging Spectrom-
eter (OMIS-I and OMIS-II), played important roles in cooper-
ative projects between China and the USA, France, Australia,
Japan, and Malaysia during the 1990s. As a result, these sen-
sors are well known worldwide and opened opportunities for
high-tech international cooperation in this field in China. The
development and improvement of the MAIS, in particular, has
been reported internationally, including in the “Chevron Hyper-
spectral Brochure and White Paper” (http://www-old.cstars.uc-
davis.edu/projects/chevronwhitepaper/). To make use of these
excellent hyperspectral instruments, a number of advanced tech-
niques and software for hyperspectral imaging processing have
also been developed in China and have aided national goals such
as resource exploration.
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Fig. 1. Number of projects supported by the NSFC from 1990 to 2011 (data
taken from http://www.nsfc.gov.cn/Portal0/default152.htm).

High-performance hyperspectral sensors with high signal to
noise ratio (SNR), fine spectral resolution, and wide spectral
ranges and swathes have been designed in China since the
early 2000s. During this period, spaceborne imaging spec-
trometers such as the Chinese Moderate-Resolution Imaging
Spectroradiometer (CMODIS) have been developed, launched,
and operated. These kinds of sensors provide new insights
into various aspects of the Earth on a large scale, but they
also bring new challenges for analysis because of the massive
amounts and complexity of the obtained hyperspectral data [7].
To overcome the ‘dimensionality curse’ of hyperspectral data,
various image processing techniques have been investigated
for specific applications in China. All these novel sensors and
techniques have been used in many applications that are related
to geoscience.
Over the last 30 years, the rapid development of HRS and re-

lated technologies has been greatly aided by increased attention
from the Chinese government, as evidenced by the increasing
number of projects closely related to HRS supported by the
National Natural Science Foundation of China (NSFC) from
1990 to 2011 (see Fig. 1). As a result, an increasing number
of researchers have started work on HRS and its applications.
Fig. 2 shows the statistics of high-quality papers related to HRS
published by Chinese researchers and scientists from 1995 to
September 2012. The original data are from the Web of Science
(http://wokinfo.com/). The yearly growing trend of papers pub-
lished is obvious from Fig. 2.
This paper describes the progress in HRS in China, with a

particular focus on the past three decades. Much outstanding
work in this field has been conducted by Chinese scientists,
and it is difficult to cover all of it. As a result, only work se-
lected from high-quality journals, conferences, books, mono-
graphs, and websites is reviewed here. This paper is organized
as follows. Section II presents advances in imaging spectrome-
ters on ground, airborne, and spaceborne platforms. Section III
introduces hyperspectral imagery processing techniques, and
Section IV presents selected typical applications of hyperspec-
tral imaging. Finally, software and generic tools developed for
hyperspectral data are described in Section V. The conclusion
and prospects for future work are given in Section VI.

Fig. 2. High-quality papers related to HRS written by Chinese scientists from
1995 to September 2012 (data taken from Web of Science).

II. ADVANCES IN IMAGING SPECTROMETERS

Widespread use of hyperspectral imaging technologies ulti-
mately depends on the development of more technically ad-
vanced hyperspectral sensors to ensure the availability of high-
quality imaging data. Since the beginning of the 1980s, with ad-
vances in hyperspectral imaging mechanisms and related tech-
nologies such as optical imaging and diffraction technology,
China has successfully installed many imaging spectrometers
on ground, airborne, and spaceborne platforms. Most of these
sensors are listed in Table I. The most representative ones are
described here in detail. The ground-based, airborne, and space-
borne sensors described in this paper are in most cases imaging
spectrometers. These differ from “point-record” remote sensing
instruments such as the distinguished Analytical Spectral De-
vices (ASD) FieldSpec Pro FR.

A. Ground-Based Imaging Spectrometers

To meet the increasing demands for field measurements,
many research groups and universities in China have begun
to design operational ground-based imaging spectrometers
over the past decade. Some pioneering research groups have
reported on the prototypes of field-portable hyperspectral
imagers. These include institutions of the Chinese Academy
of Sciences (CAS), such as the Institute of Remote Sensing
Applications (IRSA), the Shanghai Institute of Technical
Physics (SITP), and the Anhui Institute of Optics and Fine
Mechanics (AIOFM). In addition, the University of Science
and Technology of China, Beihang University, Beijing Institute
of Technology, and Nanjing Center of China Geological Survey
have made significant contributions to the development of such
devices.
Among these ground-based instruments is a novel Field

Imaging Spectrometer System (FISS) developed by IRSA,
CAS, in 2008. The FISS is considered to be the first sensor for
field imaging spectrometry developed in China. Table II lists the
main technical parameters of the FISS. The FISS [8], [9], which
was built with a two-dimensional cooled-array charge-coupled
device (CCD) camera, was specially designed for ground or
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TABLE I
OVERVIEW OF HYPERSPECTRAL IMAGERS IN CHINA

elevated car-mounted remote sensing. Although the FISS is
based on concepts of the Pushbroom Hyperspectral Imager
(PHI) [10], the new system is distinguished from the PHI and
other hyperspectral push-broom sensors in its acquisition of
a second spatial dimension. Instead of moving forward, the
sensor uses a scan mirror within a certain angle and record rate
driven by a stepper motor assembled in the FISS. Fig. 3 shows
a schematic of the FISS, indicating the key imaging processes
from reflected radiance (incoming photons) to digital images.
Using a 464 344 CCD chip, the FISS measures incoming
radiation in 344 contiguous spectral channels in the 437–902
nm wavelength range with a spectral resolution of better than 5
nm. It creates images of 464 pixels for a line of targets with a
nominal instantaneous field of view (IFOV) of mrad.
The FISS can be used both in the laboratory under artificial

light and under natural field conditions. It can be mounted onto a
ground-based multi-use platform or an elevated car, as shown in
Fig. 4. The IRSA, CAS, was granted an invention patent for the
FISS in 2010 (“A Field Imaging Spectrometer System,” patent
No. ZL201010130916.0).
Since its creation, the FISS has been rigorously tested and

spectrally, geometrically, and radiometrically calibrated in the
laboratory. Primary research [8], [9] on the FISS indicates
that it is a potentially powerful tool for ground-based remote
sensing. This was further confirmed by initial applications [8],
[11], [12], including crop-weed discrimination, milk identifi-
cation, and biochemical and biophysical parameter estimation

Fig. 3. Schematic of the FISS.

TABLE II
MAIN TECHNICAL PARAMETERS OF THE FISS

of vegetation by researchers of the IRSA, CAS. More recently,
Huang et al. proposed a system-setting-based radiometric
calibration (RC) model for the FISS [13]. This may improve its
radiometric calibration efficiency greatly, and thus promote its
wider use in quantitative applications.

B. Airborne Hyperspectral Devices

Since 1991, when the modular airborne imaging spectrom-
eter (MAIS) was successfully tested in Darwin, Australia, China
has initiated the development of aero-imaging spectrometry. It
has become an important member of the international aviation
hyperspectral remote sensing society, launching many distin-
guished airborne hyperspectral sensors with increased bands,
spectral resolution, and SNRs, such as the PHI and OMIS series.
Recently, because of the demand for emergency precise moni-
toring of natural disasters and high-quality remotely sensed im-
ages that incorporate geometrical, radiometrical, and spectral
information, new hyperspectral imaging systems have been as-
sembled and designed in China.
1) Modular Airborne Imaging Spectrometer (MAIS): The

MAIS instrument was designed, built, and operated by SITP of
the CAS. The instrument is the first real imaging spectrometer
in China. It features 71 spectral channels with a spectral cov-
erage from 0.44 m to 11.8 m. The MAIS consists of a tilted
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Fig. 4. The FISS at work: (left) situated on a ground-based multi-use platform and (right) mounted on an elevated car.

Fig. 5. The MAIS sensor and its optical system.

TABLE III
BASIC TECHNICAL SPECIFICATIONS OF THE MAIS

45-degree rotation mirror optical scanning unit and three spec-
trometer modules for different spectral ranges. The main optical
system of the MAIS is shown in Fig. 5, and its basic technical
specifications are listed in Table III.
During the period September–October 1991, the MAIS was

installed on a Citation S/II aircraft of the CAS and flown suc-
cessfully in a joint Sino-Australian remote sensing campaign
near Darwin and at several other test sites in western Australia.
In addition, the MAIS has also been widely used for geological
and environmental surveys in China.
2) OperationalModular Imaging Spectrometer (OMIS): The

OMIS developed by SITP of the CAS has two modes, OMIS-I
and OMIS-II. It is based on the MAIS and hence retains some
of its features, such as modular restrictions. The two operating
modes feature different technical performances, as shown in
Table IV. Fig. 6 shows theOMIS-I sensor. Apart from spectrom-
eters, a high-quality difference GPSwas assembled in the OMIS
system to yield a positioning accuracy of better than 10 m.

3) Pushbroom Hyperspectral Imager (PHI): Pushbroom hy-
perspectral imaging is an excellent method to acquire imaging
spectral data using focal plane technology. As shown in Fig. 7,
the fore-optics collects lights reflected from the ground. The
length and width of the entrance slit affect the spectral resolu-
tion and swath. The incoming electromagnetic radiation will be
separated into distinct angles. The spectrum of a single ground
pixel is dispersed and focused at different locations in one di-
mension of the detector array. The number of pixels is equal to
the number of ground cells for a given swath. The motion of the
aircraft provides the scan along-track direction. The inverse of
the line frequency is therefore equal to the pixel dwell time.
The PHI collects spectral images using a grating. There are

two kinds of diffraction grating used in the design of the PHI:
reflective and transmission. Specifications of the three kinds of
PHI are listed in Table V.
4) Unmanned Aerial Vehicle (UAV)-Based Hyperspectral

Imaging System: A UAV-based hyperspectral imaging system
was integrated with an unmanned helicopter GC-201 and a
self-developed aerial imaging spectrometer. This system can
cover the full spectral range, providing data from multispectral
sensors, digital cameras, and GPS. Fig. 8 shows a sketch of
the new UAV-based hyperspectral imaging system, which
was developed in China with the support of a special project
for environmental monitoring and protection. Compared to
traditional hyperspectral payloads on manned aircraft or satel-
lites, the main advantages of the UAV-based hyperspectral
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Fig. 6. The OMIS-I sensor and schematic.

Fig. 7. The PHI sensor on the “King Air” aircraft and its imaging principle.

TABLE IV
SPECIFICATIONS OF THE OMIS

imaging system are its increased flexibility, cost-effectiveness,
and low weight, which make it useful for performing frequent
monitoring of agriculture, forestry, and water resources. In
particular, the UAV-based remote sensing system may have
unique advantages in natural disaster monitoring, detection, and
assessment by providing high spatial, spectral, and temporal
resolution images. UAV-based remote sensing systems are
rapidly moving into the mainstream of the research field and
are therefore an appealing research topic.
To accelerate the development of hyperspectral imaging tech-

niques, advanced airborne imaging spectrometers such as the
CASI, SASI, and TASI, which cover the full spectral range, have
also been introduced from the Canadian company ITRES. These

sensors have been modified and assembled into a comprehen-
sive hyperspectral imaging acquisition and processing system
by the CNNC, Beijing Research Institute of Uranium Geology.

C. Spaceborne Hyperspectral Imagers

In 2000, the Hyperion imaging spectrometer aboard the
EO-1 mission of the NASA New Millennium Program started
the era of hyperspectral remote sensing of the Earth from space.
The Hyperion sensor provides 220 contiguous spectral bands
that cover a wide spectral range (400–2500 nm) with a narrow
spectral resolution (10 nm). Hyperion, the first real spaceborne
imaging spectrometer, has achieved acceptable performance
and initiated hyperspectral remote sensing applications at a
global scale [14]. Keeping up with the international pace,
China has also developed and launched a series of spaceborne
hyperspectral imagers during the past three decades. These
sensors were specifically designed for various purposes with
different technical parameters.
1) SZ-3 CMODIS: CMODIS is a Chinese Moderate Res-

olution Imaging Spectroradiometer aboard the Shenzhou-3
(SZ-3) Spaceship of the China National Space Agency (CNSA)
launched in March 2002. CMODIS, like MODIS launched by
NASA in 1999, provides a total of 34 spectral bands covering
the 0.4–12.5 m spectral region [15]. The main specifications
of CMODIS are given in Table VI.
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TABLE V
SPECIFICATIONS OF THE PHI

Fig. 8. The UAV-based hyperspectral imaging system.

TABLE VI
MAIN SPECIFICATIONS OF THE CMODIS

CMODIS was designed mainly for remote sensing of ocean
or water color from Earth orbit. However, other applications in
vegetation observation, geological surveying, land use/cover
mapping, and change detection have also been reported. The
results indicate that the CMODIS can provide an effective and
reliable data source for remote sensing applications. Fig. 9
shows a hyperspectral image of the Yangtze River obtained by
CMODIS. In the image, Dongting and Poyang lakes can be
clearly seen attached to the Yangtze River.
2) Chang’E-1 IIM: Chang’E-1, an unmanned spacecraft de-

signed for lunar exploration, was launched on 24 Oct. 2007 as
China’s first lunar mission under the support of China’s Lunar
Exploration Program (CLEP). To achieve its science goals,
Chang’E-1 carried eight sets of scientific instruments. The
Sagnac-based Interferometer Spectrometer (IIM), which used
an interference pattern to acquire a spectrum, was developed
to retrieve the chemical and mineral composition of the lunar
surface. The IIM is a hyperspectral imager that covered nearly
84% of the moon surface from 70 N to 70 S using 32 spectral
bands within the wavelength range of 480–960 nm. The basic
imaging principle of the IIM was introduced by Wu et al.

Fig. 9. CMODIS hyperspectral image of the Yangtze River: standard false
color in the order of Red: band 21(853 nm), Green: band 15 (693 nm) and
Blue: band 8 (553 nm).

[16], as shown in Fig. 10. Its main technical characteristics are
described in Table VII.
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Fig. 10. Schematic of The IIM (left) and the IIM sensor (right) [16].

TABLE VII
MAIN TECHNICAL CHARACTERISTICS OF THE IIM

The Chang’E-1 IIM ended its mission on 1 March 2009.
During its 495-day life-span, a large number of lunar hyper-
spectral data were collected. Using the IIM data, Wu et al.
presented global high-spatial-resolution maps of lunar iron and
titanium contents, which agreed closely with the results derived
from the Clementine ultraviolet-visible (UVVIS) data [16].
3) FY-3 MERSI: Following the meteorological FengYun-1

(FY-1) series and FY-2 series, FY-3A, the second generation
of Chinese polar-orbit meteorological satellites, was launched
on 27 May 2008. One difference between the previous FY
series and the FY-3A is that the latter carried 11 scientific
instruments, which allowed it to obtain multi/hyper-spectral,
three-dimensional, quantitative environmental parameters on
the land, ocean, and atmosphere in all weather conditions from
a near-polar, sun-synchronous orbit at a nominal altitude of
836 km. Among the sensors aboard FY-3A, the Medium-Res-
olution Spectral Imager (MERSI), which features 20 spectral
channels from the visible/infrared (0.4–2.1 m divided by 19
channels) to thermal infrared (10–12.5 m), is considered a
milestone satellite sensor from China. Its distinguished capa-
bilities include gapless global observation and high radiometric
performance with two internal calibrator systems. Table VIII
lists the basic technical indices of FY-3A/MERSI. Because
of MERSI’s global observation abilities, it can be used to
investigate global climate change and achieve objectives such
as color remote sensing for algae bloom monitoring and coastal
suspended sediment mapping.

TABLE VIII
BASIC TECHNICAL INDICES OF FY-3A/MERSI

Fig. 11. The HJ-1A HSI sensor.

4) HJ-1A HSI: The HJ-1A is a member of the Chinese
HJ-1 small satellite constellation (HJ-1A/1B). It was success-
fully launched on 6 Sept. 2008 for environment and disaster
monitoring and forecasting. The HJ-1A is equipped with a
CCD camera and a Hyper-Spectral Imager (HSI). The HSI
acquires surface features in 115 contiguous spectral bands in
the 450–950 nm wavelength range with a spectral resolution of
about 5 nm. The HSI can achieve a wider swath than the EO-1
Hyperion (50 km), but it has a smaller ground instantaneous
field of view (100 m). Fig. 11 shows the HJ-1A HSI sensor.
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5) Other Hyperspectral Imagers: An advanced hyperspec-
tral imager jointly developed by two institutions from CAS, in-
cluding the Changchun Institute of Optics, Fine Mechanics and
Physics (CIOMP) and SITP, was launched on 29 Sept. 2011
onboard China’s first target vehicle Tiangong-1 (TG-1). Up to
now, the instrument has operated more than 6000 hours in its
orbit and obtained a number of hyperspectral images that have
been successfully applied in environmental monitoring of the
Earth (http://www.cmse.gov.cn/news/show.php?itemid=2555).
These applications demonstrate that the TG-1 HSI has achieved
high performance levels in spatial, spectral, and SNR.
Now, China is also cooperating with Germany on the Car-

bonSat Constellation Programme, which aims to develop a
small constellation of satellites to measure methane and carbon
dioxide levels in the atmosphere.

III. HYPERSPECTRAL IMAGE PROCESSING TECHNIQUES

As discussed in Section I, hyperspectral images have unique
advantages over traditional multispectral or panchromatic
remotely sensed images. They can detect, identify, and dis-
criminate surface features of interest through the contiguous
spectrum (spectral signature) of each pixel. These advantages
have inspired the development of new techniques for hyper-
spectral data processing. Techniques such as spectral unmixing
or spectral matching may be less effective for single/multi-spec-
tral images resulting from only a few separate spectral bands.
However, hyperspectral images also have disadvantages. These
include the Hughes [17]–[19] and high redundancy [20], [21]
phenomena, and the widespread mixture effect [22], [23]. To
overcome these problems, new analytical processing tech-
niques must be developed. This section reviews the recent
advances in hyperspectral image processing and analysis tech-
niques in China, including spectral matching, feature selection
and extraction, spectral unmixing, data fusion [24]–[28], and
super-resolution reconstruction [29].

A. Spectral Matching

The spectral matching technique is well known in the HRS
community. It uses the contiguous spectral curves extracted
from hyperspectral data to discriminate, identify, or detect
targets of interest. These techniques, which include the spec-
tral angle mapper (SAM), binary coding (BC), and spectral
derivative feature coding (SDFC), have been widely applied to
hyperspectral signature discrimination and data classification.
To improve classification accuracy, researchers have tried
to modify traditional spectral matching techniques over the
past decades. He et al. [30] proposed an improved similarity
measure called the weight SAM that sets a weight in the large
difference spectral range between similar minerals, to further
increase their discriminability. Fang et al. [31] combined the
spectral distance and spectral shape to construct a spectral
similarity scale. Their work was based on the dynamic weight
adjustment method (SDW) and avoided the shortcomings of
the single similarity measure. More recently, interdisciplinary
theories, especially from biology, have also been introduced
to improve spectral matching techniques. For example, Jiao
et al. [32] proposed an artificial biological deoxyribonucleic
acid (DNA) computing-based spectral encoding and matching

algorithm to implement hyperspectral image classification.
The DNA encoding classifier takes the advantages of spectral
signatures and optimizes the matching process while avoiding
interference from spectral diversity. Hence it far outperforms
traditional classification methods [33].

B. Spectral Unmixing

It is well known that remotely sensed images often suffer
serious mixture effects stemming from low spatial resolution,
multiple scattering, and microscopic material mixing [34], [35].
Hyperspectral images are no exception. This discourages pre-
cise quantitative applications of hyperspectral imagery. There-
fore, unmixing is desirable to promote efficient use of hyper-
spectral data. In contrast to multispectral data, hyperspectral
data have unique advantages in the spectral unmixing thanks to
the availability of many narrow, contiguous spectral bands for
each pixel in a scene, which enables the extraction of more, finer
endmembers (spectral signatures). Unmixing aims to accurately
estimate the number of endmembers linked to individual con-
stituent materials present in each pixel [23]. Generally, mixing
models can be divided into two categories: the linear mixing
model (LMM) and the nonlinear mixing model (NMM) [22].
The NMM assumes that interactions between the light scattered
by multiple materials in the scene occur, while the LMM as-
sumes no interactions between materials (i.e., no multiple scat-
tering). According to the concepts, the LMM and NMM can be
expressed as (1) and (2) respectively [36].

(1)

(2)

In (1) and (2), is the mixture reflectance measured by re-
mote sensors, is the endmember reflectance and is the cor-
responding fraction (abundance) within a pixel. is the number
of endmembers for each pixel. denotes the model residual
error resulting from random noise. Actually, it is far from suf-
ficient to describe the NMM using (2) due to that the NMM
usually results in an infinite sequence of powers of products
of reflectance [34]. Here we aim to show the basic conceptual
model of NMM, thus only the second-order mixture effect ,
is considered in (2). Generally, the contributions of non-linear
mixture items decrease with an increasing order. To keep the
physical meanings of parameters in the above equations, the
abundances of endmembers and should be constrained
by (3) and (4).

(3)

(4)
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In general, the NMM is superior to the LMM in most cases
because it describes the actual interactions at the Earth’s sur-
face. Neural networks have been confirmed as an effective
way to extract endmembers using the NMM and associated
abundances in each pixel [37], [38]. Recently, many improved
neural network-based nonlinear unmixing algorithms such
as the fuzzy ARTMAP neural network [39] have also been
reported. Such studies have demonstrated that the improved
methods are far better than conventional artificial neural net-
works and linear algorithms. The NMM can achieve higher
estimation accuracy than the LMM, but it is more complicated.
To resolve the problem, Wu et al. proposed a new hyperspectral
unmixing algorithm based on a kernel orthogonal subspace
projection. The new algorithm was found to outperform the
support vector regression and radial basis function neutral
network methods [40].
Although many researchers have turned their attention to the

NMM and its applications, the LMM still holds an important
role in the hyperspectral unmixing field because it is simple
and effective in most cases. Like the NMM, the main tasks
for linear spectral unmixing include endmember determination
and abundance estimation. Since the method was first devel-
oped, considerable attention has focused on the first key step:
endmember determination. Various algorithms have been devel-
oped, including iterative error analysis (IEA), vertex component
analysis (VCA), the simplex growing algorithm (SGA), and
minimum volume transform (MVT), which are mainly based on
convex geometry characteristics [41]–[44]. Recently, many im-
provements in these algorithms have been made by Chinese re-
searchers. Inspired by the IEA approach, Li et al. developed the
hybrid endmember extraction algorithm (HEEA) [45]. Liu et al.
proposed a newmaximum simplex volume method based on the
Householder transformation (HT) called the MVHT [46]. This
method reduced computational complexity and provided con-
sistent results, and thus outperformed both the VCA and SGA.
Violating the pure-pixel assumption, Chan et al. presented a
minimum-volume enclosing simplex (MVES) formulation for
hyperspectral unmixing [47]. In addition, combinations of ad-
vancedmathematical optimizationmethods and biological theo-
ries for endmember extraction have been widely employed. For
example, particle swarm optimization (PSO) and ant colony op-
timization (ACO) were successfully adopted to determine the
endmembers by Zhang et al. [48], [49].
Hyperspectral imaging provides abundant spatial and spec-

tral information on objects. Spatial information has become in-
creasingly important in hyperspectral unmixing [50]–[52]. The
integration of spectral and spatial information for hyperspectral
unmixing has also been reported [53].
The final objective of hyperspectral unmixing is to estimate

the abundance of each constituent (endmember) using the de-
termined endmembers from each mixed pixel. In addition to the
commonly used least-squares method, some numerical methods
have also been proposed to estimate the proportion of each end-
member in one pixel. These include independent component
analysis (ICA) [54], non-negative matrix factorization (NMF)
[55], and sparse regression-based unmixing [56]. These algo-
rithms have made significant contributions to the abundance in-
version, but they cannot be applied under all conditions because

of certain defects. For example, the constrained ICA (cICA)
experiences stability problems and the NMF is constrained to
non-unique solutions. To overcome the shortcomings of these
algorithms, numerous improvements have been developed in
China, such as the improved-cICA [57], [58], the minimum
volume constrained NMF (MVC-NMF) [59], and the smooth-
ness- and sparseness-constrained NMF [60].
Traditional spectral unmixing techniques cannot obtain the

spatial distribution of different compositions, only their exact
abundances in a pixel. The exact spatial distributions of all the
endmembers in a pixel are vital in precise quantitative hyper-
spectral remote-sensing applications. In 1997, Atkinson first
proposed the concept of sub-pixel positioning. He noted that
it was possible to assign the fractions spatially to “sub-pixels”
[37]. Since then, increasing attention has been paid to a novel
technique termed sub-pixel mapping [61]–[66]. The emerging
technique is an extension of traditional hyperspectral unmixing
and may ultimately overcome the resolution limitation of
hyperspectral images.

C. Data Fusion and Super-Resolution Reconstruction

Hyperspectral imaging is often subject to low spatial reso-
lution constraints. For example, the Chinese HJ-1A HSI has a
ground resolution of about 100 m. To enhance the spatial res-
olution of airborne/satellite hyperspectral data, data fusion and
super-resolution reconstruction techniques are of critical impor-
tance. Fusion of hyperspectral and multispectral images has be-
come a hot topic. The aim is to incorporate the fine spatial con-
text of multispectral images into hyperspectral images. Because
of the special characteristics of hyperspectral images, conven-
tional fusion methods such as the PCA-based fusion algorithm
cannot be applied to hyperspectral image fusion directly. In-
stead, the wavelet-based fusion algorithm works well, as con-
firmed by Zhang et al. [67]. Another effective fusion strategy
is based on hyperspectral unmixing [28]. Gu et al. proposed
such a method to enhance the spatial resolution of hyperspec-
tral images using spectral unmixing and super-resolution map-
ping techniques [68]. This type of method can perfectly fuse
both spatial and spectral information. More important, the spec-
tral unmixing-based algorithm is independent of the a priori in-
formation associated with the original data. Recently, a simi-
larity-measure-based variational method was proposed by Shi
et al.; this method completes the hyperspectral image fusion
process [69] by transforming the problem into one of optimiza-
tion using the variational model. It was shown to achieve good
fusion results.
Super-resolution reconstruction is another important strategy

to improve the ground resolution of hyperspectral imaging by
data processing methods [70]. However, it is a challenging
method. Until now, little research on super-resolution recon-
struction of hyperspectral imaging has been reported in China.

D. Feature Selection and Extraction

Hyperspectral sensors image objects of interest in hundreds
of narrow bands that form the spectral feature space of hyper-
spectral data. However, the original spectral features often con-
tain high redundancy. The high-dimensional nature and strong
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spectral correlation of hyperspectral data pose critical limita-
tions in target discrimination and image classification. Not all
bands from a hyperspectral image make the same contributions
in applications. To overcome the dimensionality curse of hyper-
spectral data, it is desirable to reduce the original spectral feature
space via feature selection and extraction [71], [72].
Over the past few decades, several research groups have

sought to find an effective technique to construct a new feature
space of lower dimensionality that retains the necessary infor-
mation for specific applications. Zhao et al. [73] proposed a
band-subset technology to improve the classification accuracy
of hyperspectral imagery. Huang et al. [74] also worked on
a new feature weighting method for band selection with a
pairwise separability criterion and matrix coefficient analysis.
Additionally, computational intelligence methods that rely on
biological models (e.g., DNA, artificial immune systems, and
neural networks) have been widely used for feature extraction
and data analysis [75], [76]. Experimental results suggest that
the computational intelligence method can yield better results
than traditional algorithms for hyperspectral remote sensing
imagery. However, these methods often require additional
user-defined parameters to simulate the biological inversion
process. This is a key factor that must be resolved in further
work. In recent years, kernel methods, which mainly involve
support vector machines (SVMs), kernel Fisher discrimi-
nant analysis, and a series of related kernel transformation
techniques, have demonstrated excellent performance in hy-
perspectral data processing [77]–[79]. The properties of kernel
methods make them well-suited to tackle the problem of infor-
mation extraction because they can cope with large input spaces
efficiently, thus avoiding the well-known Hughes phenomenon.
Three commonly used kernel functions including polynomial
kernel function, Gaussian kernel function and sigmoid kernel
function are described as follows [80].
Polynomial kernel function:

(5)

Gaussian kernel function:

(6)

Sigmoid kernel function:

(7)

where a, b, c, and d are user-defined parameters. and are
training or test samples, in (6) is the standard deviation of the
Gaussian function.
Recently, increased attention has turned to the use of im-

ages with both high spatial and spectral resolution [77]. Such
data provide detailed structural and spectral information,
which make them more suitable for information extraction. In
principle, feature extraction should use both the spectral infor-
mation and the spatial relationship between pixels. Huang and
Zhang [81], [82] proposed a spectral-spatial vector stacking
method that included the pixel shape index (PSI) and gray
level co-occurrence matrix (GLCM). Both of these indices
exploit the structural and shape information in the images

Fig. 12. Distribution of the main HRS application domains in China.

to complement the spectral feature space. In addition, the
object-oriented approach is another effective way to extract
subspace features. This method takes the spatial and contextual
information into account for segmentation. The basic idea of
object-based analysis (OBA) is to group spatially adjacent
pixels into spectrally homogeneous objects and then classify
each object as a minimum processing unit. The first and critical
step of OBA is to accurately extract various objects in a scene
by segmentation methods. To accomplish the goal, the com-
mercial software eCognition developed by Definiens Imaging
has incorporated an advanced segmentation approach termed
Fractal Net Evolution (FNE) [83]. When performing FNE, a
merge criterion for two adjacent objects is considered based on
(8).

(8)

where is the user-defined weight for spectral information, and
and are respectively the spectral and spatial

heterogeneities, and is the overall merging criterion. Because
of the effectiveness of OBA, many researchers have begun to
use it in HRS data extraction [83]–[85].

IV. TYPICAL APPLICATIONS OF HYPERSPECTRAL IMAGING

The applications of HRS meet Chinese demands for resource
exploration, environment monitoring, and land utilization. For
historical reasons, economic and technological development
in China was not regular until the 1980s. Since that time,
the economy has grown rapidly and exploration of mineral
resources is vital. This need provided initial development op-
portunities for HRS. After successful applications in resource
exploration, HRS was also used in agriculture and forestry,
which are two of the most important industries for any country.
Rapid economic growth has had negative effects on the en-

vironment. HRS has been used to monitor the environment, in-
cluding water and atmospheric pollution and the effects of urban
heat islands. China also experiences frequent natural disasters,
and HRS has been widely used in disaster monitoring. Research
on the biochemical parameters of vegetation using HRS has also
been performed in China. Fig. 12 shows the main applications
of HRS in China. According to Fig. 12, agriculture and forestry
account for 30% of total HRS usage, making these the most im-
portant research topics related to HRS applications in China.
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Fig. 13. Gold Exploration by FIMS in Xinjiang Province, China.

In the following section, some typical applications of HRS are
discussed.

A. Mineral and Energy Resource Exploration

The first great achievement of HRS in China was in gold
exploration in the 1980s in Xinjiang Province (Fig. 13). This
research was based on a shortwave Fine-split Infrared Multi-
spectral Scanner called FIMS [86], which, featuring 12 spectral
bands within shortwave infrared wavelength range from 2.0 to
2.5 m, is the first model of high spectral resolution imaging
system developed by SITP, CAS. Tong et al. discovered some
potential gold deposits areas, which were validated by a field
survey, by modeling the gold spectral absorption index [87].
With the growth of mineral and energy exploration ap-

plications in HRS in recent decades, a series of new results
has emerged from aerospace, aviation, ground, and core hy-
perspectral data [88]–[94]. Bi et al. used Hyperion data for
the ZhongYang Mountains in East Kunlun, Qinghai-Tibet
Plateau, to map altered minerals [95]. We also conducted an
international cooperation with Australia to successfully extract
uranium deposit information usingMAIS data in the Pine Creek
area of Australian in the 1990s as shown in Fig. 14. The uranium
deposit information (The yellow color in Fig. 14) represents
the uranium deposit extracted by using the Spectral Absorption
Index of wavelength 2.114–2.147 m and 2.336–2.367 m
from MAIS data showed a high consistency with validation
results by both field survey and mineral geological map of Pine
Creek. Liu et al. applied the CASI/SASI hyperspectral imaging
system in uranium exploration. Good results were achieved
in the extraction of alteration mineral information related to
uranium mineralization on a large scale in the Keping region
[96]. From June 2005 to June 2006, a study of oil and gas
exploration was performed in Qinghai province, China, using
Hyperion data [97].
China has also made progress in mineral exploration of the

lunar surface using space hyperspectral data. Wu et al. showed

Fig. 14. Pine Creek Uranium mine investigation by MAIS data. The yellow
color represents the uranium deposit extracted by using the Spectral Absorption
Index with data in wavelength 2.114–2.147 m and 2.336–2.367 m.

the global distribution of compounds and minerals such as iron
monoxide, titanium dioxide, orthopyroxene, clinopyroxene,
olivine, and even plagioclase feldspar using data from the
Chang’E-1 Interference Imaging Spectrometer [98], [99].
Although much progress has been made in HRS prospecting,

China has not fully resolved the problem of meeting needs
for rapid and deep mineral prospecting. This is a worldwide
problem. Therefore we put forward a plan called the Spectral
Crust project [100] which aims to combine imaging spectrom-
etry, 3D visualization, data fusion, data assimilation, geology
modeling, and other related technologies (e.g., geophysical and
geochemical exploration) to map mineral and energy resources
ranging from the Earth’s surface to 1 km depth in China. The
objective of the Chinese Spectral Crust project is very similar
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Fig. 15. Fine classification of vegetable-growing regions with PHI hyperspec-
tral data.

to the Australia’s “The Glass Earth” proposed in 1999, which
focuses on making “transparent” the top 1000 m of the Earth’s
crust [101]. Remote sensing of alteration minerals and the
development of an integrated aerospace, aerial, surficial, and
below-ground core-based stereo detection system is also a
priority of this project.

B. Agriculture and Forestry Applications

HRS applications in agriculture and forestry have developed
quickly in recent decades [102]–[104]. Using hyperspectral
data to monitor agricultural disasters can save time and money.
Using PHI hyperspectral images, Yang et al. built a spectral
information sounding and detection model of crop disease to
identify wheat with stripe rust [105]. Tian et al. simplified
the model of winter wheat drought by putting forward the
notion of apparent thermal inertia (ATI) to replace real thermal
inertia (RTI), which was previously widely used [106]. Other
diverse studies of water content and stresses such as stripe rust
have been reported by Liu et al. [107], [108] and Wang et al.
[109]. Crop growth monitoring has made it possible to forecast
production. Using a novel spectral index, Liu et al. improved
winter wheat yield prediction [110]. The technology of fine
classification in agriculture has matured greatly (Fig. 15).
Hyperspectral imaging has enabled the identification of tree

species based on their contiguous spectra. One classic example
is the experimental identification of six conifer species by Gong
et al. [111]. Hyperspectral remote sensing has great potential for
the accurate retrieval of forest biochemical parameters. Com-
bining the geometrical-optical model 4-Scale and the modified
leaf optical model PROSPECT, Zhang et al. estimated the leaf
chlorophyll content from CASI imagery. They then estimated
forest canopy reflectance using the measured leaf reflectance
and transmittance spectra [112]. Zhao et al. proposed the nor-
malization difference thermal index (NDTI) to monitor forest

fires based on MODIS infrared radiation data. This approach
was shown to be at least twice as fast as the fire monitoring al-
gorithm model [113].

C. Environment Monitoring

The environmental problems caused by human activities have
aroused widespread concern. Mine monitoring is one example
of an environmental application of HRS. Gan et al. used Hy-
perion data to detect pollutants from the Dexing copper mine
in Jiangxi Province [114]. Zhang et al. successfully employed
a vegetation inferiority index (VII) and water absorption disre-
lated index (WDI) to monitor the vegetation and environment
in the mining area [115]. However, the most serious and wide-
spread environmental problems involve water and atmospheric
pollution and the effects of urban heat islands, caused by rapid
economic development and urbanization.
1) Water Resources Monitoring: In recent years, the govern-

ment of China has devoted much energy to monitoring polluted
water (lakes and rivers). Yan et al. established an empirical in-
version model for chlorophyll and suspended substances using
Hyperion satellite-borne hyperspectral remote sensor data and
data from 25 synchronous water sampling points [116]. This
model was found to have high enough precision to allow mon-
itoring of the water quality of Taihu Lake. Zhou et al. obtained
an optimized multi-spectral combination that is closely related
to chlorophyll concentration but little influenced by suspended
material [117]. This method effectively retrieved the chloro-
phyll-a concentration in highly turbid, hyper-eutrophic inland
waters. Sun et al. used hyperspectral data to estimate the chloro-
phyll-a in Lake Taihu. They found the SVM algorithm to be
robust for remotely estimating chlorophyll-a in inland turbid
lake waters [118]. For the next generation of water color hyper-
spectral sensors, Shen et al. performed Level-1 requirements in
different spectra that could capture the spectral curve of inland
water and also avoid band wastage for data storing and memory
[119]. To design a robust hyperspectral remote sensing-based
water resources monitoring system in China, we put efforts to
the research on related key technologies using hyperspectral im-
ages in 2006. This was systematically introduced by Hu et al.
[120]. On this basis, suspended matter concentrations of Meil-
iang Bay of Taihu Lake were estimated using the CHRIS data
by Li as presented in Fig. 16 [121].
2) Air Quality Assessment: Hyperspectral remote sensing

plays an important role in detection of greenhouse gases
(e.g., CO, CH4, and CO2), pollutants (e.g., NO2, SO2, and
HCHO), clouds, and aerosols. To detect these compounds,
some hyperspectral satellite detectors have been launched,
such as SCIAMACHY, AIRS, GOSAT, and MODIS. In China,
research on the inversion of atmospheric trace constituents
with hyperspectral data began only a few years ago. With
the improvement of living standards, more attention is being
paid to pollution and greenhouse gases [122], [123]. Jiang et
al. researched long-term SO2 concentrations using the Ozone
Monitoring Instrument (OMI) and found that they had an
imbalanced spatial distribution, with the highest level in central
East China [124] (Fig. 17). Wang et al. observed the spatial and
temporal variations in CO2 over China using SCIAMACHY
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Fig. 16. Distribution of the suspended matter concentration Meiliang Bay of Taihu Lake. Left: LANDSAT TM image of Taihu Lake; Right: suspended matter
estimation result of Meiliang Bay by CHRIS data.

Fig. 17. Distribution of the average planetary boundary layer SO2 column con-
centration over China during 2005–2008. 1, Shandong; 2, Tianjin; 3, Henan; 4,
Hebei; 5, Shanghai; 6, Shanxi; 7, Jiangsu; 8, Beijing; 9, Liaoning; 10, Anhui;
11, Chongqing; 12, Hubei; 13, Jilin; 14, Heilongjiang; 15, Xizang (Tibet); 16,
Sichuan; 17, Qinghai; 18, Shaanxi; 19, Guizhou; 20, Neimenggu; 21, Ningxia;
22, Gansu; 23, Xinjiang; 24, Hunan; 25, Zhejiang; 26, Yunnan; 27, Jiangxi; 28,
Guangdong; 29, Guangxi; 30, Fujian; 31, Hainan.

Fig. 18. Distribution of the diurnal temperature of the land surface in
Shijiazhuang, China.

satellite data [125]. Their results showed obvious spatial vari-
ations of the CO2 concentration in the whole of China, with
clear seasonal fluctuation during 2003–2005.

Fig. 19. Monitoring of cold energy leaks in Darwin, Australia using TIR wave-
length bands data of MAIS sensor.

To study aerosols, Wang et al. used the vertical and rela-
tive humidity (RH) correcting method to retrieve aerosol optical
thickness (AOT) and the surface-level particulate matter (PM)
concentrations with MODIS data and ground-based measure-
ments [126]. The study showed that MODIS data can be used
to monitor the regional air pollution via the vertical and RH cor-
recting method.
3) Study on Urban Environment: Urban environment has

been seriously impacted by human’s social and economic
activities. With the rapid urbanization of China, the effect of
urban heat islands has increased, which makes the tempera-
ture in cities higher than that in nearby rural areas. Surface
temperature and reflectivity inversion are key challenges for
urban heat island monitoring. In 2008, Xu et al. used airborne
hyperspectral imagery data (OMIS) to model the sensible heat
flux from Shanghai on multiple spatial scales. They suggested
that using much lower spatial resolution, spaceborne image data
is a practical solution for heat flux determination [127]. The
IRSA, CAS performed synchronization trials for hyperspectral
thermal infrared imagery obtained by TASI and field measure-
ments in Shi Jiazhuang, Hebei province, from July to August
2010. As part of this trial, Yang et al. accurately isolated the
surface temperature and emissivity based on TASI data [128]
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Fig. 20. Identification of roof sheet iron using the OMIS-II hyperspectral imagery.

Fig. 21. Vegetation recovery monitoring after a fire using HJ-1A HSI data.

(Fig. 18). Yang et al. also analyzed the influence of spectral
resolution on the precision of the temperature retrieval. They
found that when the spectral resolution is about 0.172 m it
yields the highest estimation accuracy and the research results
may contribute to the development of future thermal infrared
hyperspectral sensors [129]. As well as monitoring urban heat
islands, we were also invited to monitor the urban energy

waste in Darwin city of Australia using the MAIS onboard the
Citation S/II aircraft in the 1990s. The successful experiment
was reported as “Hi-tech check shows energy waste in city” by
Australia News in 1991. Fig. 19 shows the cool objects (red
color) due to cold energy leaking from roofs of air-conditioned
rooms. The cool objects (with lower temperatures compared
with the surroundings) were calculated by performing a band
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Fig. 22. Classification of wetland vegetation by spectral matching technique in Poyang Lake area.

math function using TIR wavelength bands data of MAIS
sensor.
In addition to monitoring of the urban heat island effect,

other typical applications related to urban environment with
HRS have been also carried out over the past decades. These
included the identification of roof sheet iron manufactured by
different corporations surrounding the Beijing Asian Games
village [130]. As shown in Fig. 20, it is hard to tell apart the blue
iron sheets separately from Dalian of China, South Korea and
another Chinese corporation with the visible wavelengths of
OMIS-II hyperspectral imagery. However, they are clearly dis-
tinguished from each other by the convex geometry projection
transform due to taking full advantages of high-dimensional
property of hyperspectral remote sensing.

D. Disaster Monitoring

Hyperspectral imaging can also be used to monitor natural
disasters, such as droughts, floods, fires, snows, earthquakes,
dust storms, and typhoons. The Environment and Disaster Mon-
itoringMicrosatellite HJ-1A has provided hyperspectral data for
early warning, monitoring, assessment, and analysis in natural
disasters [131].
HRS has been widely used in China for pre-disaster early

warning andmonitoring. Cui et al. used the hyperspectral sensor
AIRS to retrieve the amount of water vapor, CO, and CH4 in
the Yushu area, finding that the amount of CO increased before
an earthquake. This knowledge could play an important role in
earthquake prediction [132].

In regard to dynamic disaster monitoring, hyperspectral ap-
plications mainly focus on droughts and soil and marine disas-
ters. Pang et al. used MODIS and meteorological data to estab-
lish a drought monitoring model based on the vegetation supply
water index algorithm (VSWI) [133]. Weng et al. extracted in-
formation on saline soil semi-quantitatively using its spectral
characteristics [134].
In post-disaster assessment and analysis, the advantage of hy-

perspectral methods lies in their rapid assessment of damage.
This was the case for a snow disaster in southern China in 2008.
There, the infrared channels of MODIS were used for surface
temperature inversion and compared to the data of 2007, in order
to assess loss on the third day after the disaster [135]. Further-
more, the HSI data of HJ-1A were used to calculate the leaf area
index and retrieve chlorophyll content for monitoring of forest
regrowth after a fire (Fig. 21) [136].

E. Vegetation Information Extraction

Biochemical parameters are important for research on veg-
etation growth, the carbon cycle, and global climate change.
Research on biochemical parameter inversion of vegetation in
China has received growing attention in recent years. Gross pri-
mary production (GPP) is a critical variable in the global carbon
cycle [137].Wu et al. found a close relationship between chloro-
phyll content and light use efficiency (LUE) in data for wheat
obtained using an ASD (analytical spectral device). They then
achieved remote retrieval of the GPP [138]. Wu next performed
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TABLE IX
HYPERSPECTRAL DATA PROCESSING SYSTEMS AND COUNTRY OF DEVELOPMENT

a series of studies on GPP [139]–[143]. Shen et al. [144]
estimated the aboveground biomass for five major grassland
ecosystems on the Tibetan Plateau using the vegetation index
based on universal pattern decomposition (VIUPD) [145],
which showed the lowest prediction error among eight veg-
etation indices such as NDVI and EVI. The VIUPD first
developed by Zhang et al. is expressed as a linear sum of
the pattern decomposition coefficients and features sensor
independence [146]. Since its development, the new vegetation
index has been assessed and improved using different sensors
to accurately extract vegetation information, thereby better
estimate the NPP or GPP of the terrestrial vegetation [144],
[147], [148]. The chlorophyll content and distribution in leaves
is an important index in estimation of plant nutrition informa-
tion [149], which is an important indicator of vegetation health.
Research on chlorophyll inversion was widely performed in
winter wheat [150], rice [151], [152], and cucumber [153].
The wetland is a sensitive indicator of the global and re-

gional environment and thus its investigations have been also
emphasized in China. In 1997, a cooperation project between
the National Remote Sensing Center of China and the National
Space development Agency of Japan was conducted using the
MAIS and PHI to estimate vegetation biomass of the wetland
in Poyang Lake area, China. Comparisons between vegetation
biomass derived by the HRS technology and the ground truth
yielded a high consistency. Fig. 22 illustrates a precise classifi-
cation result of wetland vegetation in Poyang Lake region.
Due to the increasing demand for land and development,

China’s wetlands are rapidly disappearing. Recently, Niu et al.
reported their research on China’s natural wetlands based on
statistics during the period of 1987–2008 in Nature [154].
Research found that 33% of the country’s natural wetlands
have disappeared since 1987, largely due to land reclamation
that accounts for more than 70%. Therefore, they appealed
that more protection for China’s wetland are urgently needed.

Hyperspectral remote sensing will play a more important role
in this campaign of natural wetlands monitoring and protection.

V. DEVELOPMENT OF SOFTWARE AND TOOLS FOR
HYPERSPECTRAL DATA

The popularity of hyperspectral remote sensing technology
is closely tied to the development of hyperspectral image
processing and analysis software and tools. As a result, special
attention has been paid to designing, developing, and commer-
cializing various generic or professional software and tools
related to hyperspectral imaging across the HRS community.
More than ten commercial hyperspectral data processing sys-
tems have been created worldwide, including ENVI by the
Environment for Visualizing Images, Research System Inc.
Table IX lists most of the systems developed to date.
The table includes two hyperspectral data processing systems

developed in China (HIPAS and ISDPS). These were developed
by IRSA, CAS, and by the China Aero-Geophysical Survey &
Remote Sensing Center for Land and Resources, respectively.
HIPAS (Hyperspectral Image Processing and Analysis System,
see Fig. 23) [155], which was the first Chinese generic hyper-
spectral data processing system programmed in C , can op-
erate in aWindows environment without any strict configuration
requirements. This makes it convenient for both professional re-
searchers and general users. HIPAS can preprocess the original
data obtained by the MAIS, PHI, and OMIS developed in China
and can use popular hyperspectral imaging data from around the
world. The main functions of HIPAS can be divided into seven
modules: data input and output, data preprocessing, conven-
tional image processing, spectral analysis, interactive analysis,
spectral database management, and advanced features. Further-
more, HIPAS features a transplantable environment for new al-
gorithms, which can be added to the system according to need.
A spectral database constructed by FoxPro was also integrated
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Fig. 23. The system interface of HIPAS.

into the HIPAS system. As a result, newly measured spectral
data can be inputted and stored at any time. Since its distribu-
tion, HIPAS has been used in a number of applications including
mineral identification, urban land-use investigation, and vege-
tation and crop classification.
In addition to the HIPAS and ISDPS hyperspectral data pro-

cessing systems listed in the Table IX, many prototype software
and tools have also been designed and developed in China to
meet the increasing demands for hyperspectral data processing
and analysis. These include the Remote-sensing Environmental
Monitoring System (REMS) from IRSA, CAS [156], and WA-
TERS, designed for monitoring of water quality and the envi-
ronment by the Center for Earth Observation and Digital Earth,
Chinese Academy of Sciences (CEODE, CAS). These tools can
be mainly summarized into three categories: hyperspectral data
acquisition system, hyperspectral data preprocessing system,
and hyperspectral information extraction and analysis system.
Fig. 24 presents statistics for HRS software or tool development
since 2006 based on data from the Copyright Protection Center
of China.
In addition, hyperspectral databases have been also empha-

sized for promoting the development of HRS in China during
the last 30 years [157]. A standard remote sensing spectral
database for typical surface features was successfully devel-
oped in 2005 by Beijing Normal University under the support
of the National High Technology Research and Development
Program of China (863 Program). The spectral database in-
tegrates various analytical models and computer simulations
alongside measured spectral data (i.e., remotely sensed images
for typical surface features), environmental factors, and a priori
knowledge. Thus it has contributed greatly to quantitative
remote sensing research in China.

Fig. 24. Software or tools related to HRS developed in China since 2006.

More recently, Zhang et al. presented the concept of the mul-
tidimensional hyperspectral database for rocks and minerals
[158]. This attempts to meet the increasing demands for new
remote sensing spectral databases that can retrieve and analyze
spectral data on multiple spatial and spectral scales for various
purposes. A prototype database is being designed with support
from the National Natural Science Foundation of China.

VI. CONCLUSIONS AND PROSPECTS

Hyperspectral remote sensing of the Earth and deep space
is an appealing topic but also a challenging one. Since the
1980s, great attention has been paid to the development of
hyperspectral imaging in various fields including agriculture,
forestry, urban, natural and ocean environments, geology, and
climate change. As Goetz expressed in his review of three
decades of hyperspectral remote sensing of the Earth [3], the
technique has experienced a long and difficult developmental
process. Thanks to the great attention given by the Chinese
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government and support from many major national programs,
China has made significant achievements in this field during
the past three decades. These range from hyperspectral remote
sensing theories, to imaging mechanisms and sensors, to hyper-
spectral data processing and analysis techniques. The progress
has enhanced the demand for applications in Earth exploration
and environmental monitoring. With rapid advances in HRS
technology and the launch of Chang’E-1 IIM under the China’s
Lunar Exploration Program (CLEP), the demand has been
extended to deep space exploration with HRS, which will aid
in understanding the environment beyond Earth.
This overview of the state of the art in HRS in China over the

last 30 years clearly shows that encouraging achievements have
been made. However, challenges and gaps with other countries
still exist. Future exploration of HRS should focus on the de-
velopment of high-performance hyperspectral remote sensors
that feature high spatial/spectral resolutions and appropriate
SNR levels, as well as investigations of key techniques. These
include hyperspectral data mining, spectral unmixing, spectral
matching, and multi-scale conversion. Another problem is that
few software or tools for hyperspectral imaging have been
successfully commercialized and distributed in China, which
greatly discourages the development of HRS. To our delight,
the Medium- to Long-Term Scientific and Technological
Development Plan (2006–2020) lists the development of a
high-resolution (high spatial, high spectral and high temporal
resolutions) earth observation system as a major project. This
plan will provide a good opportunity to resolve remaining
problems and achieve new heights in the development of HRS
in China.
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