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Abstract 
We report that the cosine of the angle 6 (spectral angle) can 
be utilized as a metric for measuring distances in feature space 
for multispectral image classification and clustering. Due to 
the invariant nature of the cosine of the angle 8 to the linearly 
scaled variations, when two spectra are exactly linearly scaled 
variations of one another by distance r, the cosine of the angle 
B becomes zero while spectral distance is scaled by r. The fact 
that the cosine of the angle B becomes zero when two spectra 
are exactly linearly scaled variations of one another implies 
that if we only have spectral patterns that are exactly linearly 
scaled variations of one another, then we will not be able to 
define distances between pairs of signatures for classification 
and clustering. For this reason, the cosine of the angle has 
never been considered before as a metric for multispectral 
image classification. According to our study, however, the fact 
that spectra of the same type of surface objects are approx- 
imately linearly scaled variations of one another due to the 
atmospheric and topographic effects allows the spectml angle 
to be used as a metric for measuring "angular distances" in 
feature space. Our test results indicate that the new spectral 
angle classifier is robust and provides better results than do 
the existing major image classifiers. The spectral angle 
classifiers do not require the data to be normally dishibuted, 
and they are insensitive to data variance and the size of the 
training data set. A major diffrence between the spectral angle 
classifier and conventional classifiers (ISODATA, minimum 
distance, maximum likelihood, decision trees, neural nets, etc.) 
is that the spectral angle classifier rests on the spectral shape 
pattern, i.e., the "identity" of the spectral pattern, while 
conventional classifiers rest on the statistical distribution 
pattern. Even though it is true for all the classifiers, especially 
when the spectral angle classifiers are used, the analyst's 
ability to relate field information to spectral characteristics 
and spectral shape patterns of different land-coverlland-use 
types is an important factor for acquiring accurate and 
adequate mapping results. We believe that the spectral angle 
classifier can potentially be one of the most accurate classifiers 
and a valuable tool for land-coverlland-use mapping using 
remotely sensed multispectml image data. 

Introduction 
The fundamental premise of the remote sensing of land cover1 
land use is that every surface object has its own unique pattern 
of reflected, emitted, and absorbed radiation across the spectral 

bands (Parker and Wolff, 1965, cited from Campbell, 1996), 
and the same types of surface objects show similar spectral 
response patterns. For multispectral image data, spectral pat- 
terns of surface objects are presented as a list of N (number of 
bands) real-number components. These patterns can then be 
viewed as vectors in N-dimensional space and each pattern cor- 
responds to a point in feature space. In such metric space, 
"similarity" is measured as the distance between two points. 
Two spectral patterns (signatures) that represent like objects 
are expected to be very close to each other in feature space (Pao, 
1989). Based on this simple assumption, patterns are classified 
in accordance with the class membership of the nearest proto- 
type or cluster center using the distance concept. For instance, 
the ISODATA and minimum-distance classifiers use the straight 
Euclidean distance as a metric for calculating distance. The 
maximum-likelihood, Mahalanobis distance, and fuzzy classi- 
fiers use transformed or weighted distances. The decision trees 
and artificial neural network classifiers classify patterns in 
accordance with whether they are on one side or another of a 
hypersurface or of a set of hyperplanes. For these classifiers, the 
Euclidean distance is the conceptual foundation, and the "sim- 
ilarity" is related to "distance" in feature space. It is interesting 
to note that, in remote sensing of natural resources and land- 
coverlland-use mapping, while our primary concern is the 
"identity" of the spectral shape pattern, we have adopted pat- 
tern recognition algorithms that are insensitive to the pattern of 
spectral shapes. As discussed in Sohn et al. (1999), the Euclid- 
ean distance, including transformed and weighted forms such 
as Mahalanobis and likelihood distances, is inherently insen- 
sitive to the shapes of the spectral pattern, and the cosine of the 
angle 0 (spectral angle) provides a better definition of "similar- 
ity" due to its invariant nature to the linearly scaled variations. 

Currently, the cosine of the angle Bhas been utilized only 
for the testing of spectral similarity between the endmembers 
and image pixels (Spectral Angle Mapper of ENVI) or for spec- 
tral pattern matching between spectral clusters and reference 
classes (Sohn et al., 1999). Through our experiments, we found 
the fact that spectral response patterns of the same type of sur- 
face objects are approximately linearly scaled variations of one 
another due to the atmospheric and topographic variations 
makes it possible to use the spectral angle as a metric for mea- 
suring "angular distances" for classification and clustering of 
multispectral image data. 

In this paper we implement new spectral angle classifiers: 
the supervised spectral angle classifier ( s s ~ c )  and unsuper- 
viseds~ectral angle classifier (WAC). The spectral angle classi- 
fiers classify the image pixels based on the minimum "angular 
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distance" rule. The  SAC performs supervised classification 
using provided reference (training) signatures. The u s ~ c  per- 
forms unsupervised classification based on the minimum spec- 
tral angul&distance rule using the Iterative self-organizing 
Data Analvsis Techniaue (ISODATA~. The angular distances are 
measured;n degrees instead of radians. TGS is because 
degrees that range from zero to 90 give a better sense of spectral 
similarities or dissimilarities between the vectors in feature 
space compared to the radians that range from zero to .rr12. 
When a pair of patterns shows the exact same shape or pattern 
or when they are exactly linearly scaled variations of one 
another, the angle would be zero degrees. For the pattern pair 
that shows completely different spectral patterns (shape), the 
maximum possible measurement is 90 degrees. The new clas- 
sifiers were tested using Landsat 5 Thematic Mapper (TM) data. 
The spectral angle classifiers are written in C by the authors 
and compiled and run in PC DOS environment. 

Spectral Angle and Spectral Distance 
In two-dimensional feature space defined by bands xand y, two 
spectral signatures that represent two different surface objects 
can be represented as vectors v, and v, (Figure 1). Then the 
spectral distance (Euclidean distance) is the length of the line 
segment d connecting the end points of the two vectors v, and 
v,. The spectral angle eis the angle between the two vectors v, 
and v2: i.e., 

If we linearly scale the length of vectors v, and v, by dis- 
tance r, the spectral distance will be scaled by r. On the other 
hand the cosine of the angle Bbetween the two vectors vl and v, 
remains the same. Because of this invariant nature of the 
cosine of the angle eto the linearly scaled variations, it becomes 
sensitive to the shape of the spectral patterns. Sohn et al. 
(1999) tested the sensitivity of the cosine of the angle eto the 
spectral pattern using known field spectra of soil and sage- 
brush. Refer to Sohn et al. (1999) for further discussions on the 
sensitivity of the cosine of the angle 8 to the spectral pattern. 

When a pair of patterns is exactly linearly scaled variations of 
one another, the angle e will be zero degrees; this implies that, 
if we have spectral patterns that are exactly linearly scaled vari- 
ations of one another, then we will not be able to define dis- 
tances between pairs of signatures in feature space for class- 
ification and clustering. For this reason, the cosine of the angle 
e has never been considered as a metric for measuring dis- 
tances in feature space for multispectral image classifications 
and clustering. 

In reality, however, the spectra of the same type of surface 
objects are approximately linearly scaled variations of one 
another due to the atmospheric and topographic variations. So 
the actual vectors in feature space will fall slightly above or 
below the linearly scaled vectors. But the changes in the cosine 
of the angle 6 caused by these variations remain very small 
(Sohn et al., 1999). We found that this characteristic of multi- 
spectral satellite image data-that the spectra of the same type 
of surface objects are approximatelylinearly scaled variations 
of one another due to the atmospheric and topographic ef- 
fects-allows the spectral angle to be used as ametric for mea- 
suring "angular distances" between patterns in feature space 
for classification and clustering of multispectral satellite image 
data. --.- 

The spectral angle classifiers we present in this study rest 
on the spectral "angular distances," while the conventional 
classifiers-ISODATA, minimum distance, maximum likeli- 
hood, Mahalanobis distance, artificial neural network, decision 
trees, and fuzzy-rest on the spectral distance concept. When 
the spectral distance concept is used, pixels that are close 
together in feature space will be classified together into the 
same class based on the statistical distribution pattern. The 
maximum-likelihood classifier, which is known as one of the 
most accurate classifiers, can be quite diagnostic in distinguish- 
ing surface objects if applied to image data that are normally 
distributed and include distinctive land-coverlland-use fea- 
tures with well-defined variances in each spectral band. There- 
fore, when the maximum-likelihood classifier is tested using 
simulated data or laboratorylfield spectra collected in con- 
trolled environments, the classification results will always be 
very accurate. The laboratory data tend to have well-defined 
variances in each spectral band and do not include noise 

t 

X 

Figure 1. Spectral angle and spectral distance. Repoduced 
from Sohn et a/. (1999). 

caused by atrnosphkic and topographic effects. In reality, 
multispectral satellite image data rarely show normal distribu- 
tions and include noise caused by atmospheric and topo- 
graphic effect; so often the data do not include well-defined 
variances in each band for each land-coverlland-use class. As a 
result, when the maximum-likelihood classifier is applied to 
multispectral satellite image data that do not show normal dis- 
tribution and do not have well-defined variances in each band 
due to the atmospheric and topographic effects, we often get 
unreliable classification results. 

When a spectral angle classifier based on "angular dis- 
tances" is used, image pixels that have similar shape patterns 
will be classified together into the same cluster or information 
class. For example, consider the three spectra in Figure 2. All 
three spectra are from the TM image data of the study area. The 
spectrum A is the mean spectrum of the water training class; B 
is a known pixel from a pond in a golf course; and C is the mean 
spectrum of one of the urbanldeveloped training classes, 
which represents a mixture of asphalt and concrete along the 
main street in downtown Clarion. Note that band 6 is the ther- 
mal band. Even with visual examination, spectra A and B can 
be identified as water due to their unique spectral shape pattern: 
generally low reflectance across the spectral bands with almost 
complete absorption in the water absorption bands 5 and 7. 
Only water will show this type of spectral pattern. On the other 
hand, spectrum C shows significantly increased reflectance in 
the near-infrared (band 4) and water absorption bands 5 and 7. 
Band 6 indicates the relative surface temperature. Note that 
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Figure 2. Spectra of a known pixel, and mean spectra of 
water and urban/developed training classes. The maximum- 
likelihood classifier classified the known pixel B, which is 
water, as  urban/developed. The spectral angle classifier 
classified the pixel B as  water. 

both water spectra A and B have lower DN values in band 6 com- 
pared to asphalt and concrete in the downtown area. 
According to the classification results, pixel B is classified as 
urbanldeveloped by the maximum-likelihood classifier. The 
relatively large variances (variances and covariances) of the 
urban/developed training classes and in image data are a major 
cause of this misclassification. Pixel B is classified as water bv 
the supervised spectral angle classifier. This example clearli 
shows the behaviors of two different classifiers: the supervised 
spectral angle classifier and the maximum-likelihood classi- 
fier. Refer to Sohn et al. (1999) for further discussion. 

New Multispectral lmage Classifiers 
The new spectral angle classifiers are implemented based on 
the following assumptions: 

A fundamental premise of the remote sensing of land-cover/ 
land-use is that every surface object has its own unique pattern 
of reflected, emitted, and absorbed radiation across the spectral 
bands, and that the same type of surface objects show similar 
spectral response patterns (Campbell, 1996); 
Spectral similarity between two spectra can be measured in 
terms of the shape of spectral pattern using "angular distances" 
(Sohn et al., 19991; and 
The fact that spectra of the same type of surface objects are 
approximately linearly scaled variations of one another due to 
atmospheric and topographic effects allows the spectral angle 
to be used as a metric for measuring "angular distances" in 
feature space for classification and clustering. 

Supewlsed Spectral Angle Classliier (SSAC) 
Given a set of reference signatures collected fiom an image with 
m bands, the SSAC classification consists of the following 
steps: 

Step 1: Find the spectral angle Bier between a pixel i in the image 
and every reference class r: 

spectrum r, m is the number of bands, xiskis the pixel value in 
band k, and pr,k is the mean pixel value of reference class r in 
band k. 

Step 2: Assign each pixel to the reference class r that has the 
smallest spectral angular distance between pixel i and 
reference class r. For each pixel i = 1 to n, find the refer- 
ence class r such that B i ,  is the minimum for all r. 

Unsupervised Spectral Angle ClassHier (USAC) 
The USAC performs an unsupervised classification based on the 
minimum spectral angular distance rule using the Iterative 
Self-organizing Data Analysis Technique (ISODATA). On the 
first iteration, using the user specified number of clusters (n), 
the classifier randomly chooses n pixels in the image to be used 
as arbitrary means of n clusters, and calculates the cosine of the 
angles between each pixel in the image and the randomly cho- 
sen n cluster means. Based on the minimum angular distance 
rule, each pixel is assigned to one of the n clusters. After each 
iteration, a new mean of each cluster is calculated. Then the 
cosines of the angles between the new cluster means and each 
pixel are calculated and each pixel is reassigned to one of the 
clusters based on the minimum spectral angular distance rule. 
The iteration continues until the number of pixels remaining in 
the same clusters reaches the user specified convergence 
threshold. The following are the steps of the  SAC - 
classification: 

Step 1: Select n random pixels in the image that will be used as 
arbitrary means of n clusters. For pixel i = 1 to n, pck = 
xi,k where xi,k is one of the n pixels that was randomly 
selected to be an arbitrary cluster mean. 

Step 2: Find the spectral angle el,, between every pixel i in the 
image and every cluster mean pc using the equation 

Step 3: For each pixel i = 1 to n, find the cluster c such that Bin= 
is minimum for all c. 

Step 4: Recalculate the cluster means: 

where ~ c , +  is the cluster mean value for cluster c in band k, Nc is 
the number of pixels in cluster c, and ~ ~ , k , ~  is the pixel value in 
band k for pixel i in cluster c. 

Step 5: Repeat Steps 2 and 3 until the iteration reaches the user 
specified convergence threshold. For each pixel, check 
if it is reassigned to the same cluster as before: if in the 
[ j  - 11th iteration x1,k + ~ ~ , k , ~  , and in the jth iteration 
x, ,k  + x,,kSc, and c = c', then the convergence level f 
increases by 1IN. 

Step 6: Iff > p [where p is the specified convergence threshold], 
then the classification is complete. If not, repeat Step 5. 

m 

Test of the Classifiers 
2 2 , k  2 P?,k Study Area and Image Data 
k=1 k=1 The study area covers approximately 150 km2, which corres- 

ponds to the 1:24,000-scale U.S. Geological Survey (USGS) top- 
where e,, is the spectral angle between pixel i and a reference ographic quadrangle map of Clarion, Pennsylvania (Plate 1). 

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING December ZOO2 1273 



. 
I 
I 

I 

I 
I 

-- 
2 0 4 

Plate 1. Landsat 5 Thematic Mapper image of Clarion, 
Pennsylvania (RGB: 4 3 2). 

The study area is located at the southern edge of the Allegheny 
Plateau of northwestern Pennsylvania. The Clarion River and 
Mill Creek corridors lie within the unglaciated Allegheny Pla- 
teau Physiographic Province. This region displays relatively 
flat to gently rolling plateaus dissected by deep, V-shaped 
stream valleys. Elevations on plateaus generally range from 460 
to 490 meters above sea level, and stream valley floors range 
from 330 to 400 meters in elevation (Davis, 1887; Zarichanksky 
et al., 1964). Original forest types before European settlement 
in the study area included white pine, hemlock-beech, and 
beech-maple (Hough and Forbes, 1943). Hemlock-dominated 
forests of the region were heavily exploited for lumber and bark 
for tanning during the late 1800s and early 1900s, greatly 
diminishing their abundance (Whitney, 1990; Abrams and Ruf- 
fner, 1995). Between 1890 and 1920, the old growth and par- 
tially cut forests were almost completely clear-cut (Marquis, 
1975). The second-growth forests after the initial clear cut are 
now 80 to 100 years old. After harvest, many hemlock stands, 
particularly on upland sites, were converted to stands of early 
successional Northern Allegheny hardwoods dominated by red 
maple, oak, and black cherry (Whitney, 1990). Regular timber 
harvesting since the initial clear cut left the forests in the region 
with even-aged groups: 30 to 40 years, 50 to 60 years, and 70 to 
80 years old. Silvicultural practices that perpetuate dominance 
of valuable hardwoods, especially black cherry, and intense 
browsing by white-tailed deer continue to limit the develop- 
ment of late successional hemlock dominated forests in much of 
the region (Hough, 1965; Whitney, 1990; Rooney and Dress, 
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1997). Today, in the study area, hemlock dominated forests are 
found only on the slopes in mesic coves and in stream valleys. 

Extraction of fossil fuels such as coal, oil, and natural gas is 
an important industry in the Clarion River and Mill Creek cor- 
ridors, including the study area. Bituminous coal production, 
the primary industry of the region, is centered in the southern 
portion of Clarion (Zarichanksky et al., 1964). Deep mining coal 
production prevailed in the region from the 1870s until World 
War II (Davis, 1887; Miller, 1949). At present, strip mining is the 
predominant recovery method used in the region [Puglio, 
1983). Areas denuded by strip mining are apparent south of 
Interstate Highway 80 in the study area (Plate 1). 

Image data used for the tests is a subset of the Landsat 5 TM 
scene, Path 17  and Row 31, taken on 26 August 1996. The scene 
has shifted 30 percent southward from the center of Path 17, 
Row 31 to place the Clarion area at the center of the scene. The 
entire scene was georectified using seven 1:24,000-scale USGS 
topographic maps that were evenly distributed. Out of 27 identi- 
fied control points, seven were used for registering the image 
scene to the Universal Transverse Mercator (UTM) coordinate 
system. For georectification, the nearest-neighbor resampling 
method was used to minimize the distortion in spectral integ- 
rity. The root-mean-square [RMS) error was 0.98 pixel. The sub- 
set that covers the Clarion area was created using the georefer- 
enced image scene. The image was not converted to reflectance 
and not corrected for atmospheric effects because analyses do 
not involve inter-scene comparisons. 

Supervised Classification 
To test the performance of the supervised spectral angle classi- 
fier (SSAC), a set of reference signatures was provided to the 
SSAC, maximum-likelihood, Mahalanobis distance, and mini- 
mum-distance (Euclidean distance) classifiers, and the classi- 
fication results were compared. All seven TM bands were used 
for collecting training (reference) signatures and for classifica- 
tion. A total of 23 reference signatures were collected to repre- 
sent 14 major land-uselland-cover categories in the study area: 
waterbody, urbanldeveloped, shrub, managed grass (golf 
courses and pastures), dense grass (hay fields), sparse grass 
(strip-mined areas), drylsenesced grass, Allegheny hardwood I 
(30 to 40 years), Allegheny hardwood I1 (50 to 60 years), Alle- 
gheny hardwood I11 (70 to 80 years), hemlock-dominated forest, 
mixed conifer plantation (red pine mixed with Norway 
spruce), pine plantation (red pine), and mixed forest [white 
pine and hardwood). In the study area, tree canopy structure 
starts to develop from the age of 40 to 50 years andis fully devel- 
oped around the age of 70 to 80 years. Allegheny hardwoods of 
30 to 40 years exhibit even, closed, and relatively smooth cano- 
pies. Fully developed canopy structures are found in Allegheny 
hardwoods, hemlock-dominated, and mixed forests of 70 to 80 
years old. Hemlock-dominated forests are found along the 
steep slopes of stream valleys. These physiological and distri- 
butional characteristics of different forest types made spectral 
identification of various forest types and collecting training sig- 
natures relatively easy. In the study area, planted grasses that 
grow in strip-mined areas usually show about 50 to 60 percent 
ground cover. Some planted grasses in the study area grow tall 
but become senesced starting in early August. Grasses in hay- 
fields show almost a 100 percent ground cover but display a 
lack of vigor compared to the managed grasses in golf courses 
and pastures. Accordingly, grasses are grouped into four differ- 
ent categories: sparse grass, dense grass, managed grass, and 
drylsenesced grass. To collect reference signatures, the Clarion 
area road network layer registered to the UTM projection was 
overlaid on the 1996 study area TM image and the reference 
sites identified in the field were located on the image. Then the 
signatures were collected from the image. 

Classification results of the supervised spectral angle clas- 
sifier (SSAC, 2a) and maximum-likelihood classifier (2b) are 
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shown in Plate 2. The accuracy assessment was done using the 
mapping results from the S s A c ,  maximum-likelihood, and 
minimum (Euclidean) distance classifiers. Because the Maha- 
lanobis distance classifier produced a mapping result very 
similar to that of the maximum-likelihood classifier, it was not 
included for accuracy assessment. The results of the accuracy 
assessment are in Tables 1A (ssAc), 1B (maximum-likelihood), 
and 1C (minimum distance). For accuracy assessment, 200 
stratified random sample points were generated and compared 
to the field data. Field checking was done mostly in the sum- 
mer of 1999 and another field check was done in November of 
2000. When we could not confirm the 1996 land-uselland- 
cover information or when recent disturbances such as recent 
timber harvesting, new development, rotation of crop, etc. 
were apparent, the sample sites were discarded. A total of 124 
sample points were used for accuracy assessment. The overall 
measured accuracies of the SSAC, maximum-likelihood, and 
Euclidean distance classifiers were 95.2 percent, 70.2 percent, 
and 93.6 percent, respectively, and the kappa values were 
0.947,0.674, and 0.929, respectively. 

In general, the supervised spectral angle classifier and 
minimum-distance classifier generated better classification 
results than did the Mahalanobis distance and maximum-like- 
lihood classifiers did. Both Mahalanobis distance and maxi- 
mum-likelihood classifiers largely over-classified the surface 
features that show a large inter-class spectral variance such as 

in urbanldeveloped, dense grass, pine, mixed conifer planta- 
tion, and Allegheny hardwood 111 classes while under-classify- 
ing the surface features that show a small inter-class variance 
such as in shrub, Allegheny hardwood 11, and mixed forest 
(white pine and hardwood) classes. The classification results of 
the maximum-likelihood and Mahalanobis classifiers are not 
surprising when we consider the fact that both maximum-like- 
lihood and Mahalanobis distance classifiers use class vari- 
ances in each spectral band for calculating distances for 
classification. Both Mahalanobis distance and maximum-like- 
lihood classifiers use parametric rules that require normally 
distributed data and well defined variances for image data and 
each training class, while most image data do not show normal 
distribution, and most of the training classes have high vari- 
ances of pixel values in each band. The maximum-likelihood 
and Mahalanobis distance rules can be quite diagnostic in dis- 
tinguishing different features with image data that show nor- 
mal distribution and have well defined variances in each 
spectral band for each surface object. However, when those 
assumptions are violated, their performances are less than 
desirable. 

Classification accuracy results of the supervised spectral 
angle classifier are presented in Table 1A with the overall accu- 
racy of 95.2 percent. Notice from the table that mixed forest has 
the lowest classification accuracy due to the confusion be- 
tween similar classes of mixed forest (white pine and Alle- 

Plate 2. Supervised classification results. (a) The spectral angle classifier. (b) The maximum-likelihood classifier. 
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TABLE 1A. ERROR MATRIX FOR THE CLASS~FICATION RESULT OF SUPERVISED ANGLE CLASSIFIER (SSAC) 

Classified Land-CoverILand-Use 

Actual Row Omission Accuracy 
Landuse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total Error(%) (%) 

1 9 9 0.0 100.0 
2 9 9 0.0 100.0 
3 14 7.1 92.9 
4 10 0.0 100.0 
5 15 6.7 93.3 
6 5 0.0 100.0 
7 7 0.0 100.0 
8 9 0.0 100.0 
9 13 0.0 100.0 

10 9 0.0 100.0 
11 4 0.0 100.0 
12 4 4 0.0 200.0 
13 1 b 7 14.3 85.7 
14 3 6 9 33.3 65.7 

ColumnTotal 9 9 13 11 14 6 8 9 13 12 4 4 6 6 124 Overall Accuracy 
Commission 118/124 = 95.1% 
Error (%) 0.0 0.0 0.0 9.0 0.0 16.7 12.5 0.0 0.0 25.0 0.0 0.0 0.0 0.0 kappa value = 0.947 

1. Water 2. Urban/Developed 3. Shrub 4. ManagedGrass 5. DenseGrass 6. SparseGrass 7. Allegheny Hardwood I (30-40years) 8. Allegheny 
Hardwood II (50-60years) 9. Allegheny Hardwood III (70-80years) 10. Hemlock 11. Mixed Conifer Plantation 12. Pine Plantation 13. Dry1 
Senesced Grass 14. Mixed Forest (White PinelAllegheny Hardwood). 

TABLE 16. ERROR MATR~X FOR THE CLASSIFICATION RESULT OF MAXIMUM-LIKELIHOOD CLASSIFIER 

Classified Land-Cover/Land-Use 

Actual Row Omission Accuracy 
Landuse 1 2 3 4 5 6 7 8 9 10 11 12 13 14  Total Error(%) (Oh) 

1 3 3 0.0 100.0 
2 5 9 1 15 40.0 60.0 
3 3 3 0.0 100.0 
4 7 7 0.0 100.0 
5 10 4 14 1 1 31 54.8 45.2 
6 4 4 0.0 100.0 
7 7 0.0 100.0 
8 9 0.0 100.0 
9 30 10.0 90.0 

10 14 35.7 64.3 
11 2 0.0 100.0 
12 7 42.9 57.1 
13 I 5 6 16.7 83.3 
14  2 2 2 6 66.7 33.3 

ColurnnTotal 9 9 13 11 14 6 8 9 13 12 4 4 6 6 124 Overall Accuracy 
Commission 871124 = 70.2% 
Error (%) 66.7 0.0 76.9 36.4 0.0 33.3 12.5 0.0 30.8 25.0 50.0 0.0 16.7 66.7 kappa value = 0.674 

1. Water 2. UrbanlDeveloped 3. Shrub 4. ManagedGrass 5. DenseGrass 6. SparseGrass 7. Allegheny Hardwood I (30-40years) 8. Allegheny 
Hardwood II (50-60years) 9. Allegheny Hardwood 111 (70-80years) 10. Hemlock 11. Mixed Conifer Plantation 12. Pine Plantation 13.DryI 
Senesced Grass 14. Mixed Forest (White PinelAllegheny Hardwood). 
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gheny hardwood) and hemlock-dominated forest (hemlock 
and Allegheny hardwood). 

The maximum-likelihood classifier shows the lowest over- 
all accuracy of 70.2 percent as presented in Table 1B. The error 
matrix shows that the urban/deveIoped, dense grass, hemlock, 
pine plantation, and mixed forest classes have very low classi- 
fication accuracy. The mixed forest class shows the lowest 
accuracy of 33.3 percent. Notice that even most of the classes 
that show high user's accuracies exhibit high producer's (com- 
mission) errors that range from 12.5 percent to 76.9 percent. 

The mapping result of the minimum-distance classifier 
shows much higher overall accuracy of 93.5 percent compared 
to that of the maximum-likelihood classifier (70.2 percent). 
According to the measured accuracy, even though it shows 

generally high user's accuracy for most of the classes, the hem- 
lock and mixed conifer plantation classes show very high pro- 
ducer's errors of 33.3 percent and 50.0 percent respectively. 

Unsupervised ClassHicatlon 
The performance of the unsupervised spectral angle classifier 
(uSAC) was compared to that of the ERDAS Imagine ISODATA 
classifier, which is based on the Euclidean distance. We gener- 
ated 100 and 200 spectral clusters using the USAC and ISODATA 
classifiers. Comparing, discriminating, and identifying the sub- 
tle differences in spectral patterns among a large number of 
spectral clusters (100 or more) through visual examination and 
assigning them into information classes will be extremely dif- 
ficult. To avoid the inconsistency involved in visual interpreta- 
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TABLE 1C.  ERROR MATRIX FOR THE CLASSIFICATION RESULT OF EUCLIDEAN-DISTANCE (MINIMUM-DISTANCE) CLASSIFIER 

Classified Land-Cover/Land-Use 

Actual Row Omission Accuracy 
LandUse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total Error(%) (%) 

- 

Column Total 9 9 13 11 14 6 8 9 13 1 2  4 4 6 6 124 Overall Accuracy 
Commission 116/124 = 93.5% 
Error (5%) 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 0.0 33.3 50.0 0.0 0.0 16.7 kappa value = 0.929 

1. Water 2. Urban/Developed 3. Shrub 4. ManagedGrass 5. DenseGrass 6. SparseGrass 7. Allegheny Hardwood I (30-40years) 8. Allegheny 
Hardwood I1 (50-60years) 9. Allegheny Hardwood III (70-80years) 10. Hemlock 11. Mixed Conifer Plantation 12. Pine Plantation 13. Dry1 
Senesced Grass 14. Mixed Forest (White PineiAllegheny Hardwood). 

tions, we adopted the spectral pattern matching method 
presented by Sohn et al. (1999). 

To assign generated spectral clusters to information 
classes, first, we calculated the cosine of the angle @between 
the spectral clusters and each of the provided reference signa- 
tures. Then based on the minimum spectral angle rule, each 
spectral cluster was assigned to one of the information classes. 
For assigning spectral clusters to information classes, the same 
set of reference (training) signatures that were used for testing 
supervised classifiers was used. The same sample points used 
for testing the accuracies of the supervised classifiers were 
used for accuracy assessment. The results of the accuracy 
assessment are in  Tables 2A (ISODATA, 100 clusters), 2B (USAC, 
100 clusters), 2C (ISODATA, 200 clusters), and 2D (USAC, 200 
clusters). 

With 100 generated clusters, the USAC classifier showed a 
slightly better mapping result (87.1 percent of overall accuracy 
with kappa value 0.858) than did the ISODATA classifier (86.3 
percent of overall accuracy with kappa value 0.849). The results 
of the accuracy assessment are in  Tables 2A and 2B. According 
to the measured accuracy, both ISODATA and USAC classifiers 
display a similar pattern of accuracy for each land-coverlland- 
use class. For both classifiers, with only 100 spectral clusters 
generated, hemlock shows the lowest accuracy (52.6 percent 
and 55.0 percent, respectively), and mixed conifer plantation 
and pine plantation classes were not separated from hemlock 
at  all. 

When 200 spectral clusters were generated, the overall 
accuracy of the USAC was increased from 87.1 to 93.5 percent, 
while the overall accuracy of the ISODATA classifier remained 

TABLE 2A. ERROR MATRIX FOR THE CLASSIFICATION RESULT OF ISODATA CLASSIFIER ( 1 0 0  SPECTRAL CLUSTERS) 

Classified Land-Cover/Land-Use 
- - -  

Actual Row Omission Accuracy 
LandUse 1 2 3 4 5 6 7 8 9 10 11 12  13 14  Total Error(%) (%) 

1 7 7 0.0 100.0 
2 2 9 11 18.2 81.8 
3 11 11 0.0 100.0 
4 2 11 14  21.4 78.6 
5 14 0.0 100.0 
6 7 14.3 85.7 
7 7 0.0 100.0 
8 11 18.2 81.8 
9 13 0.0 100.0 

10 4 19 47.4 52.6 
11 0 - - 
1 2  0 0 - - 
13 5 5 0.0 100.0 
14 5 5 0.0 100.0 

ColumnTotal 9 9 13 11 14 6 8 9 13 12 4 4 6 6 124 Over& Accuracy 
Commission 1071124 = 86.3% 
Error (%) 22.2 0.0 15.4 0.0 0.0 0.0 12.5 0.0 0.0 20.0 100.0 100.0 0.0 16.7 kappa value = 0.849 

1. Water 2. UrbanIDeveloped 3. Shrub 4. ManagedGrass 5. DenseGrass 6. SparseGrass 7. Allegheny Hardwood I (30-40years) 8. Allegheny 
Hardwood II (50-60years) 9. Allegheny Hardwood 111 (70-80years) 10. Hemlock 11. Mixed Conifer Plantation 12. Pine Plantation 13. Dry1 
Senesced Grass 14. Mixed Forest (White PinelAllegheny Hardwood). 
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TABLE 28. ERROR MATRIX FOR THE CLASSIFICATION RESULT OF UNSUPERVISED SPECTRAL ANGLE CLASSIFIER (100 SPECTRAL CLUSTERS) 

Classified Land-CoverlLand-Use 
- -  

Actual Row Omission Accuracy 
LandUse 1 2 3 4 5 6 7 8 9 10 11 12 13  14 Total Error(%) (%) 

1 8 8 0.0 100.0 
2 1 9  1 11 18.2 81.8 
3 13 1 14 0.0 92.9 
4 10 11 9.1 90.9 
5 14 14 0.0 100.0 
6 6 7 14.3 85.7 
7 6 0.0 100.0 
8 11 18.2 81.8 
9 13 0.0 100.0 

10 4 4 1 20 45.0 55.0 
11 0 0 - - 
12 0 0 - - 
13 4 4 0.0 100.0 
14 5 5 0.0 100.0 

ColumnTotal 9 9 13 11 14 6 8 9 13 12 4 4 6 6 124 Overall Accuracy 
Commission 1081124 = 87.1% 
Error (%I 11.1 0.0 0.0 10.0 0.0 0.0 25.0 0.0 0.0 8.3 100.0 100.0 33.3 16.7 kappa value = 0.858 

1. Water 2. UrbanIDeveloped 3. Shrub 4. ManagedGrass 5. DenseGrass 6. SparseGrass 7. Allegheny Hardwood I (30-40years) 8. Allegheny 
Hardwood II (50-60years) 9. Allegheny Hardwood III (70-80years) 10. Hemlock 11. Mixed Conifer Plantation 12. Pine Plantation 13. Dry1 
Senesced Grass 14. Mixed Forest (White PinelAllegheny Hardwood). 

almost the same (86.3 percent vs. 87.1 percent). For the 
ISODATA classifier, hemlock, urbanldeveloped, Allegheny 
hardwood I, and managed grass show relatively low accuracies 
of 57.9 percent, 75.0 percent, and 77.8 percent, respectively. 
Even with 200 spectral clusters, the ISODATA classifier did not 
separate pine plantation and mixed conifer plantation from 
hemlock. For the mapping result of the U S A ~  classifier, almost 
all of the classes show 100 percent accuracy except for urban/ 
developed, which shows 90 percent accuracy. When 200 spec- 
tral clusters were generated, the accuracy of pine plantation 
improved from zero percent to 57.0 percent. Pine plantation was 
mostly confused with mixed conifer plantation, which is a sim- 
ilar class. 

In this paper we have proposed new spectral angle classifiers 
based on the cosine of the angle e as the metric for measuring 
spectral "angular distances" for classification and clustering of 
multispectral image data. According to our test results with 
Landsat 5 Thematic Mapper data, the new classifiers seem 
robust. A major difference between the spectral angle classifier 
and conventional classifiers [ISODATA, minimum distance, 
maximum likelihood, decision trees, neural nets, etc.) is that 
the spectral angle classifier rests on the spectral shape pattern, 
i.e., the "identity"of the spectral pattern, while conventional 
classifiers rest on the statistical distribution pattern. When 

TABLE 2C. ERROR MATRIX FOR THE CLASSIFICATION RESULT OF ISODATA CLASSIFIER (200 SPECTRAL CLUSTERS) 

Classified Land-CoverILand-Use 

Actual Row Omission Accuracy 
LandUse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total Error(%) (%) 

1 7 7 0.0 100.0 
2 2 9 1 12 25.0 75.0 
3 12 0.0 100.0 
4 11 18.2 81.8 
5 14 0.0 100.0 
6 6 0.0 100.0 
7 9 22.2 77.8 
8 9 0.0 100.0 
9 13 0.0 100.0 

10 3 4 1 19 42.1 57.9 
11 1 1 0.0 100.0 
12 0 0 - - 
13 5 5 0.0 100.0 
14 1 5 6 16.7 83.3 

ColumnTotal 9 9 13 11 14 6 8 9 13 12 4 4 6 6 124 Overall Accuracy 
Commission 108/124 = 87.1% 
Error (%) 22.2 0.0 7.7 18.2 0.0 0.0 12.5 0.0 0.0 8.3 75.0 100.0 16.7 16.7 kappa value = 0.857 

1. Water 2. UrbanlDeveloped 3. Shrub 4. ManagedGrass 5. DenseGrass 6. SparseGrass 7. Allegheny Hardwood I (30-40years) 8. Allegheny 
Hardwood 11 (50-60years) 9. Allegheny Hardwood 111 (70-80years) 10. Hemlock 11. Mixed Conifer Plantation 12. Pine Plantation 13. Dry1 
Senesced Grass 14. Mixed Forest (White PinelAllegheny Hardwood). 
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TABLE 2D. ERROR MATRIX FOR THE CLASS~FICATION RESULT OF UNSUPERWSED SPECTRAL ANGLE CLASSIFIER (200 SPECTRAL CLUSTERS) 

Classified Land-Cover/Land-Use 

Actual Row Omission Accuracy 
Landuse 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total Error(%) (%) 

ColumnTotal 9 9 13 11 14 6 8 9 13 12 4 4 6 6 124 Overall Accuracy 
Commission 116/124 = 93.5% 
Error (96) 0.0 0.0 15.4 0.0 0.0 0.0 12.5 0.0 0.0 8.3 75.0 0.0 16.7 0.0 kappa value = 0.929 

1. Water 2. UrbanIDeveloped 3. Shrub 4. ManagedGrass 5. DenseGrass 6. SparseGrass 7. Allegheny Hardwood I (30-40years) 8. Allegheny 
Hardwood I1 (50-60years) 9. Allegheny Hardwood 111 (70-80years) 10. Hemlock 11. Mixed Conifer Plantation 12. Pine Plantation 13. Dry1 
Senesced Grass 14. Mixed Forest (White Pine/Allegheny Hardwood). 

"angular distances" are used, image pixels that have similar 
shape patterns will be classified together into the same cluster 
or information class. When the "distance" concept is used, pix- 
els that are close together in feature space, regardless of the 
shape of the pattern, will be classified together into the same 
class based on the distribution pattern. Because the spectral 
angle classifier utilizes the shape of the pattern for clustering 
and classification of multispectral image data, the analyst's 
ability to relate field information to spectral characteristics and 
spectral shape patterns for different land-cover/land-use types 
is an important factor for acquiring accurate mapping results. 
The results of our experiment clearly suggest that both the 
supervised and unsupervised spectral angle classifiers generate 
more accurate classification results than do other classifiers, 
and that the spectral angle classifier can potentially be one of 
the most accurate classifiers. 

The following is the summary of the test results: 

The cosine of the angle @can be a robust metric for multispedral 
image classification and clustering due to the fact that spectral 
response patterns of the same type of surface objects are approxi- 
mately linearly scaled variations of one another; 
When the same set of reference (training) signatures was pro- 
vided, the supervised spectral angle classifier (ss~cl produced 
the most accurate mapping result with 95.2 percent overall 
measured accuracy followed by the minimum-distance classi- 
fier (93.5 percent) and the maximum-likelihood classifier 
(70.2 percent); 

a For unsupervised classification, when the number of clusters 
generated increased from 100 to 200 clusters, the accuracy of 
the mapping result of the unsupervised spectral angle classifier 
(USAC) increased significantly, while that of the IsoDATA ckwi- 
fier remained almost the same; and 
Despite the popular belief that the maximum-likelihood classi- 
fier is the most accurate classifier, according to our experimen- 
tal results, the maximum-likelihood classifier was the least 
accurate of all. The maximum-likelihood classifier uses a para- 
metric rule that requires data normal distribution and well- 
defined variances for each band in image data and each training 
class. When those assumptions are violated, its performance 
appears less than desirable. This reconfirms that we need to 
pay more attention to the image data characteristics such as 

data normality, data variances, etc., before choosing a classifier 
for image classification. 

The merits of using spectral angle classifiers over other 
classifiers include the following: 

The spectral angle classifiers do not require the data to be nor- 
mally distributed. They are insensitive to data variances and 
to the size of the training data set as well. According to our 
preliminary test results, h e  spectral angle classifier performs 
consistentlv well in different ecoreaions. including biotic com- 
munities semiarid desert areas. " 

" 

The spectral angle classifier is less sensitive to gain fadors 
related to topographic illumination and atmospheric effects as 
suggested by Kruse et al. (1993). As a result, topographic illumi- 
nation effects and atmospheric effects will likely be less prob- 
lematic in multispectral image classifications. This may allow 
reference spectra collected from different scenes and different 
imaging systems to be used for classification of images as long 
as both reference and image snectra are corrected for atmos- 
pheric effects and converted 6 surface reflectance. 
The spectral angle classifier rests on the shape of the spectral 
pattern, while conventional classifiers rest on the statistical 
distribution pattern in feature space. So when the shape of the 
pattern is more important than the statistical distribution pat- 
tern, as in mapping land cover/land use using the multispectral 
satellite image data, the spectral angle classifier is expected to 
perform better classifications. 
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