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ABSTRACT
Many algorithms have been developed for supervised hyperspectral classification and spectral mixture analysis
predominantly for geological and hydrological applications. Applications within the urban environments are still
rare, although there exists a need for a time- and cost-efficient monitoring. Within the processing, the definition of
representative spectral endmembers is the most time-consuming operation. In order to simplify this procedure,
techniques such as Pixel Purity Index or matching techniques using spectral reference libraries were developed.
However, urban surface materials possess spectral characteristics which prevent the use of standard processing
tools. This is due to their high number combined with an extreme spectral variability caused by age, illumination
and shadowing effects.

In this paper a spectral analysis tool is presented which automatically detects endmember spectra from the urban
environment. It allows a faster processing of the hyperspectral images for urban applications in future. The tool
consists of three major processing steps – spectral classification, post-processing and hyperspectral clustering. For
the classification several Multi-Layer-Perceptrons (Artificial Neural Network) were used, which were trained by
features derived from image spectra of three HyMap scenes. These scenes were necessary to make the tool more
robust against effects resulting from atmospheric correction, image calibration, age of materials or illumination.
Once the networks processed with a sufficient accuracy, the tool can be applied to any hyperspectral data set.

In this study the tool was used to derive endmember spectra from all HyMap scenes. The technique was capable
to extract most representative spectral endmembers automatically minimizing the processing time significantly.
However, it demands a good atmospheric correction and high spatial resolution of the sensor. Thus, the new
approach enhances the exploitation of the information potential of the HyMap data for an area wide identification
of urban surface cover types.
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1 INTRODUCTION
Advanced spectral analysis techniques, such as supervised classification or spectral unmixing, require the definition
of spectral endmembers. This process is very time-consuming especially for hyperspectral data analyses. This is
due to the greater variation of spectral surface characteristics recorded by the high spectral and spatial resolution of
airborne sensors. In practice, there exist three methods for endmember detection - two image-based and one library-
based approach. In the first method, a human operator examines the image and builds a spectral library of materials,
which can be separated by their spectral characteristics. This is time-consuming but also very precise. The second
technique is the Pixel Purity Index [1]. It is an unsupervised technique which extracts automatically the spectrally
purest pixels. It repeatedly projects n-dimensional scatterplots onto a random unit vector and marks the extreme
pixels located at the ends of the unit vector. However, this may not produce as many or as finely separated
endmembers as desired by the user. This is especially true for urban analysis where a great variation of materials
exists. Fig. 1 shows the spectral variation of PVC which is a commonly used roof material. All these spectra
represent pure materials which will be predominantly not detected by the Pixel Purity Index. Additionally, the
material type represented by the extracted spectra has to be determined by an operator.
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Figure 1.  Spectral variations of PVC roofs caused by illumination and age.

The third approach uses a reference library including materials which are assumed to be in the image scene.
However, there exist no standard library for urban surface cover types. The problem is that especially roof materials
are highly variable due to age and pollution as well as illumination effects caused by the roof geometry, different
solar zenith and azimut angles (Fig. 1). Thus, it seems to be impossible to store all variations which would be
required for common use. Furthermore, laboratory measurements are not useful because such spectra may be
significantly different from image spectra.

Based on these considerations the user-based approach has to be preferred. In this paper a spectral analysis tool
is presented which simplifies this procedure. It automatically detects endmember spectra from the urban
environment allowing a faster processing of the hyperspectral image data in future. The tool consists of three major
processing steps – spectral classification, post-processing and hyperspectral clustering. Details about the applied
techniques are described in the Approach (4). For the definition of the classification rules, features derived from
three HyMap were necessary making the tool more robust against effects resulting from atmospheric correction,
image calibration, age of materials or illumination.

2 TEST SITE AND IMAGE DATA
The test site for this investigation is a 2.7 km x 1.7 km north-south transect in the city of Dresden, Germany,
showing a great variety of different urban structures and materials (Fig. 2). The HyMap data were recorded during a
flight campaign carried out by the DLR (Deutsches Zentrum für Luft und Raumfahrt) with a pixel size of 3 m on
August 1st, 2000, at 2 p.m. local summer time. The sensor has 126 bands from 437 to 2485 nm with bandwidths
between 15 and 20 nm. An atmospheric correction was performed based on the ACORN software and a post-
optimizing using the empirical line technique. For the geometric correction, a parametric approach was used
incorporating a digital elevation model (DEM) of Dresden and information about the sensor’s position and
orientation.

Additionally, two more HyMap scenes were included in this investigation. The first one covers the same area of
Dresden and the second one the city of Potsdam, Germany. Both scenes were recorded with a pixel size of 6 m in
May 1999.

3 DETERMINATION OF SURFACE COVER TYPES
Urban areas are characterized by a large variety of different surface cover types. Their successful automated
identification requires a systematic analysis of the spectral characteristics of these surface materials. For this
purpose, an inventory of urban surface materials was carried out first. 44 materials were identified and grouped into
seven thematically and spectrally meaningful categories (Table 1). For all these materials, regions of interest (ROIs)
were marked in the HyMap scenes. Altogether, nearly 17000 spectra were stored in a spectral library including
material specific variations and data processing effects for further processing.
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Table 1.  Surface categories and materials used for endmember detection

roof materials tiles (new), tiles (old), concrete, aluminum, zinc, copper, PVC, polyethylene,
glass, plexiglass, bitumen bright/dark/red, tar-paper, schist, vegetation, gravel,
facade, one still unknown material (other)

fully sealed
materials

concrete, asphalt, tartan track, synthetics

partially sealed
materials

cobblestone pavement, concrete, red /dark loose chipping trails

bare ground sand, soil

water river, pond, pool

vegetation deciduous trees, coniferous trees, mixed forest, lawn, meadow, dry grass, field
tilled, field untilled, fallow

shadow falling on vegetation and non-vegetation

4 APPROACH
In this section, the three components of the new endmember detection tool are described represented by a spectral
classification, a post-processing and a hyperspectral clustering. In the first step, significant features for material-
oriented differentiation and a classification module are presented. In the second part, post-processing steps are
described which select reliable objects from the classification result. Finally, spectral endmember variations are
computed from the image scene using the spectra of the detected objects within a hyperspectral cluster analysis.

4.1 Spectral classification

4.1.1 Spectral characteristics
The spectral differentiation between the surface materials requires the definition and calculation of distinct spectral
features. Since this process is difficult and time-consuming, an automatic feature detection program was used which
lists the best features to separate two classes. Altogether, 45 computer-defined feature and 16 user-defined features
were used after several optimization steps. The features can be grouped into four different types:

Depth of absorption bands. This feature represents a wavelength range where the electromagnetic radiation is
highly absorbed by the surface material. The depth can be easily computed using the hull-function over the specific
wavelength range. Typical materials that possess absorption maxima are e.g. aluminum, zinc and iron-based
materials such as tiles or red-concrete. Thus, four different absorption bands of the VNIR wavelength range were
used (840-960 nm , 844-860 nm , 984-1063 nm , 692-872 nm).

Ratios. A ratio enhances the spectral difference between two bands. It is simply calculated by the division of
two bands. In this approach 51 ratios were selected for a better differentiation of all materials.

Mean. This feature represents the mean reflection of several adjacent bands. It allows the differentiation
between darker and brighter materials. Four mean values were selected (430-460 nm, 430-2300 nm, 1500-1700 nm,
2100-2200 nm).

Root Mean Square Error (RMS) of a line regression. Materials such as PVC or sand show linear spectral
reflection characteristics within a number of neighboring bands. This feature can be modeled by a line-regression
leading to low RMS values for these materials. Two different wavelength ranges were used within this approach
(646-1300 nm, 580-800 nm).

4.1.2 Classification module
In the next step, all 61 features were calculated for each spectrum of the library. These features serve as the input
parameter of a classification model. Furthermore, they are used to define the classification rules for an automated
detection of these materials. Various classification techniques were investigated to solve this task, selecting
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artificial neural networks as the most appropriate classifier. A multilayer perceptron (MLP) with one hidden layer
was used for each class allowing a non-linear classification [2].  The number of input nodes varies between 16 and
22. The corresponding features and their number was defined during an iterative optimization of the class
separability. The number of output nodes is 2 deciding between class and other-class. The supervised learning
procedure was performed by a backpropagation algorithm with momentum. The number of hidden nodes and the
learning rate were selected by a comparison of different network configurations.

After the 44 neural networks were adequately trained, the achieved differentiation of the library spectra was
checked by the calculation of a confusion matrix. The overall accuracy was 90-100% for most materials. However,
some materials could not be clearly separated. Problems remain for the dark categories shadow and water as well as
for vegetation species due to their season-dependent characteristics.

Once the networks processed with a sufficient accuracy, the tool can be used for the spectral classification of the
hyperspectra image data. Each neural network created a classification layer (mask) for its corresponding class.

4.2 Post-processing
Based on the classification result, the most accurate objects have to be determined and selected as endmembers. For
this purpose, several post-processing steps were applied to the results. First, ambiguities in the class decisions were
masked. Second, only objects with a minimum size of 20 pixels are regarded as significant and thus accurate.
Smaller objects may probably include a higher fraction of mixed pixels. For the following analysis, vegetation,
water and shadow classes were excluded since an automatic detection is not possible based on feature information
of different image scenes.

Figure 2.  Grayscale subset of HyMap showing the test site in Dresden (left) and classified larger roof materials (right).

Most of the pixels representing roof materials can be used directly for the calculation of endmember spectra due
to their high accurate identification (Fig. 2). However, roof materials such as bitumen and gravel show confusions
with sealed classes since they consist of similar or identical materials. For the identification of reliable objects,
information about areas of shadow was used which were classified by a MLP trained only with spectral features of
the HyMap 2000 scene. Since buildings are connected with shadow only objects with a minimum distance and
correct orientation towards a shadow segment were selected. This additional constraint reduces the number of
detected objects. However, this is not so important since the darker materials possess only smaller spectral
variations and thus a small number is sufficient.
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Another special processing was applied to asphalt due to the confusion with roof materials such as dark bitumen
and tar-paper. Based on the classification result only straight and long parts of objects were selected as reliable
parts of streets.

4.3 Hyperspectral clustering
In the final processing step, the position of the detected materials is used to compute endmember spectra from the
HyMap scene. For a better computation, these spectra have to be grouped into meaningful categories. Cluster
algorithms can be used to identify important sub-categories in the multidimensional scatter plot of each material. In
this approach, a cluster technique was used which minimizes the number of meaningful subclasses and optimizes
gaussian distributions [3]. The algorithm uses a multivariate test to check the normality of the single subclusters but
also to guide the algorithm in the high dimensional feature space for further cluster splittings. The maximum
number of subclusters was set to 10.

5 RESULTS AND CONCLUSIONS
Within the test site, 35 different materials were detected and separated into 229 spectral endmembers. Fig. 3 shows
some exemplary results of roofing concrete and red loose chipping trails. The spectra of both materials show the
typical shape of the respective material characterized by iron-absorption and additional clay-absorption for the
chipping trails. Besides, they also include a great variation in the albedos enabling a more precise comparison with
image spectra in a final unmixing or classification procedure. Such spectral unmixing techniques which can deal
with an extremly high number of urban endmembers are presented in [4] and [5].

Figure 3.  Detected spectral variations of roofing concrete (left) and red loose chipping trails (right).

In order to proof the transferability of the technique to other image data, additional endmembers from the scenes
of Potsdam and Dresden (1999) were computed. Fig. 3 shows spectra of roofing concrete from Dresden and
Potsdam in comparison.

Figure 4.  Spectral variations of roofing concrete in HyMap data of Dresden 2000 (left) and Potsdam 1999 (right).
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Both spectra groups show similar features. However, there exist some variations in the Potsdam data and the
overall shape of the spectra point to differences in the atmospheric correction. However, the algorithm was capable
to deal with this problem. Thus, typical endmember spectra could be extracted for most roof, partially sealed and
fully sealed materials. Only dark materials such as water and shadow cannot be identified in the images correctly,
since their features depend in particular on the quality of the atmospheric correction. Similar problems arise for
vegetation types because their features are season-dependent. Other dark materials such as roofing bitumen types
and asphalt can only be clearly separated by additional shadow or straightness information. The incorporation of
thermal bands will help to improve the spectral differentiation of all darker materials in the reflective wavelength
range in future [5].  Besides higher emissivity values and their variations, differences in the surface temperature
will help to separate roof materials from ground materials, because they are located at places characterized by
different properties in regard to heating and cooling.
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