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Purpose of this Document 
 

This document describes the kinds of phenomena, both fundamental (e.g. color) and emergent (e.g. long, 
linear, patterns due to rutting), which will be important to be able to sense for understanding and 
evaluating the conditions of unpaved roads. The resulting descriptions of useful phenomena will be used 
in specifying the sensor(s), as well as in the choice of image processing algorithms. The design of the 
system is based, first, on the physics of the sensing process. 

In addition, this document serves to define precisely the definitions of terms that will be used throughout 
the rest of this program to describe image characteristics that will serve as discriminants of road distress.  

Motivation 
 

Unpaved road condition can be assessed visually; the texture, color, shapes, surface imperfections, and 
other characteristics allow us to identify and classify various problems with the road.  What can be 
measured is produced by the interaction of light with the road surface. These are the phenomena that are 
important.  These fundamental phenomena combine to form textures, patterns, and other features that we 
would recognize as a “distress”. In this document, we will be discussing both the fundamaental physics-
based phenomena (e.g. spectral reflectance), as well as the emergent features (e.g. texture) that result from 
variations in those phenomena. 

This process of measuring and extracting information from the images needs to be performed 
automatically. The observable phenomena are the data with which we have to work, and these must be 
understood in order to choose the best system/algorithm combinations. This process of sensing, and then 
making sense of the images automatically, is termed “machine vision” [24, pp. 3]. 

The problem of reconstructing the characteristics of a scene from imperfect and/or incomplete 
measurements is usually referred to as an “inverse” problem. Machine vision falls into this category. 
Because there are many possible reconstructions from any set of partial measurements, this is a difficult 
problem. Although a human 2-year-old can, for example, count all the animals in a picture, this is 
extremely problematic for a computer. The same is true for unpaved road conditions; while a person can 

http://www.mtri.org/unpaved�
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almost instantly recognize and characterize, say, corrugations in a road surface, getting a computer to do 
this is not a solved problem, and will be imperfect. 

Machine vision has been improving gradually; over the last 15 years, we have seen an impressive gain in 
automatically measuring and understanding images. The figure below[24, pp 20] is an attempt to show 
how various operations in machine vision are related to our problem of sensing certain physical 
characteristics of the surface.  

 

The blocks with the red dots indicate those parts of the road-characterization process that are influenced 
by the combination of phenomena and surface features. In our application, the problem becomes one of 
determining the important observable features, measuring them, and converting those measurements to 
information about the road condition. This later process will be considered in a subsequent task, but it is 
important to keep the goal in mind when considering the types of phenomena that we can sense, and the 
types that we want to sense to be able to solve the problem. 

The process begins with the (much easier) forward model, by understanding how the incident (sun)light 
interacts with the surface, then enters the optics, where it is altered, and finally strikes the sensor, where 
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some part of it is measured. The resulting images will have characteristics unique to the types of 
distresses we want to measure; color, texture, contrast, long-range patterns, etc.  

The remainder of this document will detail the kinds of image characteristics (both fundamental and 
emergent) which are important to sense, to be able to identify distresses. 

The Surface Characteristics 
 

The road surface is all that we can measure in the optical spectrum; the subsurface structure may affect 
the surface, but we cannot sense it directly. There are a variety of observable characteristics which can be 
used to extract distresses from optical images. 

Color 
While roads themselves may be many colors, depending on the material content and the conditions, the 
spectral characteristics of the surface may change when a distress is present.  Before we consider the 
particular spectral changes of interest, some background on color content is introduced. 

Background 
Human color perception is based on the incidence of visible light (with wavelengths in the 400 to 700 nm 
range) upon the retina. Since there are three types of color photoreceptors in the retina, each with a 
different spectral response curve, all colors can be completely described by three numbers. In 1931, the 
Commission Internationale de l’Eclairage (CIE) adopted standard curves for the color photo-receptor 
cone cells of a hypothetical standard observer, and defined the CIE XYZ tristimulus values, where all 
visible colors can be represented using only positive values of X, Y  and Z. Since the creation of the CIE 
XYZ, other color spaces have been established to specify, create and visualize color information. The 
RGB (red-green-blue) color space, as used by graphic displays, can be visualized as a cube with red, 
green and blue axes. Different applications (e.g. printing) have different needs which can be handled 
better using different color spaces (in the case of printing, the CYMK). We will be considering only RGB 
in this discussion, since this is the most common one for camera images. 

Road Surface Color 
Road surfaces come in many colors, and it is unlikely that absolute color will be a strong characteristic of 
any particular distress. However, color contrast changes can be characteristic of surface changes. These 
changes from one area to another may be normal, or may result from distresses. In either case, we need to 
be able to characterize the color changes in a consistent way. Later, we will decide whether particular 
changes are associated with particular distresses. 

We have collected sample images of various road surfaces. To be able to compare colors quantitatively, 
we placed a gray-card (of known color content) in the scene; the images, regardless of the lighting, can 
then be corrected to compare colors, as needed. The images below show how lighting and camera effects 
can change the measured color in a scene (see Figures 1 and 2). 
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Figure 1: Example of how lighting and camera effects can change the measured color of a scene. 

Note that the identical gray-cards in the scenes above in Figure 1 appear to be different colors. This is 
probably due to camera white-balance errors due to lighting differences. If we were using uncorrected 
(absolute) color as a metric, we might be led to believe the scene on the left had a “bluer” surface than it 
actually does; some color correction would be needed to compare the spectra of these two images. A 
corrected version is shown below in Figure 2, in which the grays are equalized. It can be seen that the 
surface is much more yellow than blue, once corrected. 

 

 

Figure 2: Example images with the grays equalized; this reveals that the surface on the left is much 
more yellow than it originally appeared in the digital image. 

This correction is needed during evaluation, to determine how much lighting affects color changes (e.g., if 
a cloud obscures the sun during a measurement, what is that effect, versus a “real” surface color change). 
If lighting/color effects are important in determining certain distresses, then the design of the sensor 
system must include a way of characterizing the lighting, as well imaging the surface.  
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Texture 
While color is a purely single-pixel property of images, texture involves a spatial extent; a single pixel has 
no texture. If texture is defined in the frequency domain, the texture of some particular location in the 
image is characterized by the frequency content in a neighborhood.  

The texture is itself produced by some spatial change in color or contrast that has a characteristic spatial 
extent. It is important that we be able to sense all textures of interest (which comes down to a spatial 
resolution requirement).  In our case, the road surface will have a number of textures, some of which will 
be characteristic of roads in good condition, and some of which will be characteristic of a damaged 
surface. The key here is in being able to measure, abstract, and associate various textures with various 
road states. 

Numerous approaches for the representation of textured images have been proposed, ranging from the 
means and variances of a filter bank output [7, 13], wavelet coefficients [20], wave-packets [14], fractal 
dimension [2], or parameters of an explicit Markov random field model [3, 18]. Comparative studies on 
this subject can be found in [6,19,20].  Gabor filters  are often used for texture analysis and have been 
shown to exhibit excellent discrimination properties over a broad range of textures [12, 13, 25]. These 
will be evaluated in a later task, but an example of segmentation using a Gabor filter is shown below in 
Figure 3. 

 
Figure 3: An example of segmentation using a Gabor filter. 
 
As with many filtering operations, the filter bank used must be tuned to the texture being extracted.  The 
local (small area) surface texture may change when a distress is present. That is, the texture of a surface 
which is losing (or has lost), for example, its coarse material will indicate damage, and filters would be 
designed for this. 
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Textures of Interest 
The presence of aggregate as part of the road surface will produce a characteristic texture. This texture 
will change based on the size of the aggregate and its composition. Loose aggregate is expected to contain 
much coarser material, and thus have a different characteristic texture than a packed surface. 

As road surfaces lose material, it is expected that the texture will change; the differential textures from 
one section of road to another can be used to differentiate the surface condition. Whether these changes 
reflect damage, or impending damage, will be determined once measurements commence. 

Since the current requirements on surface features specify that certain distresses need to be measured to 
an accuracy of 1-2 inches (see the requirements definition report at 
http://geodjango.mtri.org/unpaved/media/doc/deliverable_Del1-
A_RequirementsDocument_MichiganTechUnpavedRoadsr1.pdf), the sensor itself must be capable of 
sensing at least half that spatial resolution; this is the Nyquist-Shannon sampling criterion[23]. This 
sampling should include texture. 

Patterns 
Related to textures are what we will term “patterns”. These tend to be repetitive combinations of textures 
that can be either long-range, or local, and are characteristic of road surface features. 

Long-range spatial patterns may characterize certain distresses. For example, corrugations are 
characterized by repetitive contrast changes across the road surface, while rutting is characterized by 
longitudinal (along the direction of travel) edges in the image. Both, however, are linear features that 
emerge from contrast changes due to material variations . Other such patterns include ovals (characteristic 
of potholes). 

There are several important properties of the patterns that, while not physical phenomena, are key to 
differentiating the damages. These are: 

1. The location of the patterns on the road: lines in the traveled lane will tend to be rutting, while 
lines outside that lane are likely to be berms of displaced material. 

2. The orientation: ruts only form in the direction of travel, while washboarding only forms across 
the direction of travel.  

3. The scale: ruts tend to be on the order of a tire-width, while washboarding tends to be much 
wider. These types of scale-dependent characteristics have been widely used in multiresolution 
techniques such as wavelet analysis [14, 20]. 

There are several common ways of detecting patterns, including successive approximation (where curves 
are recursively divided into smaller lines), Hough Transforms (in which edges “vote” for plausible curve 
fits), and Random Sample Consensus (RANSAC) (in which randomly selected edgles are tested against 
shape hypotheses) [24, pp 224]. An example of detecting a line using RANSAC is shown below in Figure 
4. 

http://geodjango.mtri.org/unpaved/media/doc/deliverable_Del1-A_RequirementsDocument_MichiganTechUnpavedRoadsr1.pdf�
http://geodjango.mtri.org/unpaved/media/doc/deliverable_Del1-A_RequirementsDocument_MichiganTechUnpavedRoadsr1.pdf�
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Samples of some 2-D measurements Best line after pair-wise testing of all possible lines 
Figure 4:  An example of detecting a line using Random Sample Consensus (RANSAC) . 

In the data above, left, the human eye can discern a linear feature, but computer algorithms to isolate that 
feature will have various trade-offs between performance and execution time. RANSAC, for example, is 
more efficient of memory, but can take much longer to run. The choice is problem-dependent, and must 
be determined once data have been gathered. 

Profile 
The profile of the road surface is a 3-dimensional characteristic. That is, it can be described by the 
position on the road surface (both in the travel direction, and side-to-side), and the height at each position.  
This 3-D information is useful in determining not only long-range details, such as loss of crown, but also 
local patterns that may develop.  The mean profile depth may be used in local regions as one metric of 
surface condition.  The change of this from the center to the edge of the road can be used to determine 
crown. 

The problem is one of determining, inexpensively but accurately, this mean profile depth from a series of 
2-D images. This has been an active area of machine vision research for decades[24]. Since our sensor 
will be moving rapidly, and we have no plans to loft a stereoscopic sensor, we will be using a method call 
“structure from motion” [4], which recovers both the scene and the camera motions from a series of static 
images without assuming anything about the cameras, scene content, or correspondence between images.  

One possible method of doing this is to use a set of scale-invariant image features [17], and obtain the 
optimal motion and structure by minimizing the reprojection errors between the observed and predicted 
image points using Levenberg-Marquadt optimization[16]. This method will be evaluated to determine 
the requirements on the sensor to be able to achieve the sampling needed to meet the texture and profile 
requirements.  An example of such a reconstruction is shown below in Figure 5. 
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Figure 5: An example of a 3-D reconstruction for a road surface using structure from motion 
methods. 

This is a view of a 3-D reconstruction of a section of the Freer Road bridge, showing both texture, and a 
large pothole (center right). It is difficult to illustrate in a 2-D format, but detailed depth information can 
be extracted from this reconstruction.  Both road crown and local characteristics can be extracted from 
these types of 3-D features.  

Polarimetric backscatter 
It has been shown that road surface defects have characteristic radar polarizations[15], as well as  
polarimetric signatures in the infrared[9]. It is possible that optical polarization, while weak, may serve as 
a way to detect loss of surface material. This effect is being investigated in the laboratory at this time; 
weather conditions so far have prevented field measurements from being made. Preliminary indications 
are promising.  The picture below shows the laboratory equipment which will be used to collect the 
polarization data. 
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Figure 6:  Example of the camera setup being used in the laboratory to investigate the potential of 
optical polarization in helping to detect loss of surface material. 

The system consists of two cameras observing the same field-of-view through a polarizing beamsplitter. 
Once properly aligned, the two images can be compared on a pixel-by-pixel  basis for difference in 
polarization. 

Summary 
 

The only characteristics that can be sensed optically are surface phenomena. These include color, texture, 
patterns, profile (i.e. 3-D structure), and polarization. The requirements on distress measurements have 
been detailed previously; the phenomena associated with these distresses will need to be determined once 
data become available. This document has described explicitly those phenomena for which we will be 
testing once the sensor is designed and built.  This will inform the sensor selection, which is the focus of 
the next report, Deliverable 4-A, "Candidate and Recommended Remote Sensing Platforms for Unpaved 
Road Condition Assessment." 
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