

Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 Mission

J. Pearlman, S. Carman, C. Segal, P. Jarecke, and P. Barry, TRW and W. Browne, NASA GSFC

> IGARSS 2001 JULY 9, 2001

Hyperion Imaging Spectrometer

Hyperion is a push-broom imager

- 220 10nm bands covering 400nm - 2500nm
- 6% absolute rad. accuracy
- Swath width of 7.5 km
- IFOV of 42.4 µradian
- GSD of 30 m
- 12-bit image data
- Orbit is 705km alt (16 day repeat)

EO-1 Sensor Swaths

PERFORMANCE CHARACTERIZATION

A broad range of traditional and non-traditional techniques were used to characterize Hyperion

Desert Sites used for Vicarious Calibration

Lake Frome

RR Valley

Arizaro/Barreal Blanco

Out of this World Calibration

Hyperion image of the moon

Lunar image provides direct-viewing radiometric measurements for calibration without atmospheric effects.

Issues of the lunar model and analysis techniques are being addressed

courtesy of P. Barry & H. Kieffer

Special targets for characterization

Searchlights -California

> Gas Flares -Moomba

Planets -Venus

90 deg Yaw

Hyperion SNR

Hyperion Measured SNR							
550 nm	650 nm	700 nm	1025 nm	1225 nm	1575 nm	2125 nm	
161	144	147	90	110	89	40	

Hyperion Characteristics

Characteristic	Pre-launch Cal	On-orbit Cal	
GSD (m)	29.88	30.38	
Swath (km)	7.5	7.75	
No. of Spectral Channels	220	200 (L1 data)	
VNIR SNR (550-700nm)	144-161	140-190	
SWIR SNR (~1225nm)	110	96	
SWIR SNR (~2125nm)	40	38	
VNIR X-trk Spec. Error	2.8nm@655nm	2.2nm	
SWIR X-trk Spec. Error	0.6nm@1700nm	0.58	
Spatial Co-Reg: VNIR	18% @ Pix #126	*	
Spatial Co-Reg: SWIR	21% @ Pix #131	*	
Abs. Radiometry(1Sigma)	<6%	3.40%	
VNIR MTF @ 630nm	0.22-0.28	0.23-0.27	
SWIR MTF @ 1650nm	0.25-0.27	0.28	
VNIR Bandwidth (nm)	10.19-10.21	*	
SWIR Bandwidth (nm)	10.08-10.09	*	

* Consistent with Pre-Launch Calibration or not measured

APPLICATIONS

Evaluating space-based hyperspectral imaging

Hyperion addresses a broad range of issues and world-wide sites

Hyperion Maps Mt. Fitton Geology

Automatic mineral mapping algorithm creates, in 30 seconds, a quick-look mineral map (left & centre). More precise detail is on right. (Courtesy of CSIRO Australia)

Landsat and EO-1 Images

Temporal Sequence of Hyperion Images Coleambally Irrigation Area

Julian calendar days of 2001

Time Sequence of Corn (Paddock 33B)

Work in Process

•Recent data release

•Atmospheric Correction

•Space-ground data comparisons

Inter-instrument
 comparisons

•Science Validation

Ground Data Teams

Long Term Directions

Backup

Hyperion Subassemblies

Hyperion Electronics Assembly (HEA)

Cryocooler Electronics Assembly (CEA)

Hyperion Sensor Assembly (HSA)

EO-1 Orbit

• EO-1 Spacecraft launched November 21, 2000 from Vandenberg Air Force Base

Extensive Pre-flight Calibration

Lake Frome Calibration Site

Hyperion Spectral Calibration –

atmospheric absorption lines

Hyperion Spectra – red

Atmospheric Reference – black

Diffuse Reflectance of cover – blue

Spectral Calibration – SWIR

Hyperion Spectra – red Atmospheric Reference – black Diffuse Reflectance of cover – blue

Process:

regime

1.) Create Pseudo-Hyperion Spectra from reference: Modtran-3 for atmosphere, and Cary 5 & FTS measurements for diffuse reflectance of the cover 2.) Correlate Spectral Features: band number units of Hyperion max/min correlated with reference wavelength of max/min 3.) Calculate Band to Wavelength map: apply low order polynomial to fit the data over the entire SWIR

MTF Approach

• Calculate cross-track and in-track MTF using a step response and impulse response example

• Results of on-orbit analysis give good agreement with the pre-launch laboratory measurements

Example: Cross-track MTF

- Scene is Port Eglin from Dec 24, 2000. Bridge is the Mid-bay bridge.
 Bridge width is 13.02 meters.
- Bridge angle to the S/C direction is small so every 5th line is used to develop the high resolution bridge image.
- MTF result at Nyquist is between 0.39 to 0.42 while the pre-flight measurement was 0.42.

Hyperion Maps Mt. Fitton Geology

Courtesy of CSIRO, Australia

(2) Hyperion three color image (visible) showing regions of interest

(3) Hyperion surface composition map using SWIR spectra above

VNIR/SWIR Repeatability

- Solar Calibration demonstrates good pixel-topixel repeatability
 - VNIR is highly repeatable <0.05% variation</p>
 - SWIR is repeatable <0.75% variation</p>
- Spectral Calibration indicates stability based on comparisons of Pre-launch and On-Orbit measurements

DATA CHARACTERISTICS

Hyperion Data Flow

Science Data: Level 0 or Level 1 (radiometrically corrected) data products with VNIR and SWIR data frames combined. Includes solar, lunar calibrations, earth images, dark and light calibrations

<u>Metadata:</u> Data about the science data. Information to support higher level processing, e.g., pre-flight characterization data

<u>Ancillary Data:</u> Supporting data derived from spacecraft telemetry during image collection

Hyperion Data - Comments

S

V

Level 1 data: 438-926nm and 892-2406nm Bands 9-57 and 75 - 225; SWIR is West of VNIR and rotated CCW by one pixel

