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Abstract: The ability to classify asphalt surfaces is an important goal for the selection of 

suitable non-variant targets as pseudo-invariant targets during the calibration/validation of 

remotely-sensed images. In addition, the possibility to recognize different types of asphalt 

surfaces on the images can help optimize road network management. This paper presents a 

multi-resolution study to improve asphalt surface differentiation using field spectroradiometric 

data, laboratory analysis and remote sensing imagery. Multispectral Infrared and Visible 

Imaging Spectrometer (MIVIS) airborne data and multispectral images, such as Quickbird 

and Ikonos, were used. From scatter plots obtained by field data using λ = 460 and 740 nm, 

referring to MIVIS Bands 2 and 16 and Quickbird and Ikonos Bands 1 and 4, pixels 

corresponding to asphalt covering were identified, and the slope of their interpolation lines, 

assumed as asphalt lines, was calculated. These slopes, used as threshold values in the 

Spectral Angle Mapper (SAM) classifier, obtained an overall accuracy of 95% for Ikonos, 

98% for Quickbird and 93% for MIVIS. Laboratory investigations confirm the existence of 

the asphalt line also for new asphalts, too. 
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1. Introduction 

Knowledge of asphalt spectral characteristics plays an important role in several applications, such 

as imagery calibration and validation, land cover analysis and civil engineering. The application use of 

spectrally non-variant targets, such as asphalts, facilitates the atmospheric correction of satellite 

imagery [1–3]. These pseudo-invariant targets can be used for image calibration and validation, but 

uncertainties about their classification may yield erroneous results. Hence, the ability to classify these 

surfaces, according to their chemical-physical components, alterations and level of bitumen coverage, 

may be essential for endmember selection. Due to their geometrical and spectral characteristics, paved 

surfaces are easily recognizable in images and often represent fundamental targets for multi-temporal 

analysis [4] and urban land cover studies [5]. Moreover, asphalt classification by remote sensing could 

be a useful approach to optimize road network management. This is mainly due to the need to apply 

the newest, least time-consuming technologies to analyze large areas to maintain safety standards and 

to provide knowledge on road age and distress. Recent studies [6–9] show a growing interest in remote 

and proximal sensing applications for road network monitoring and management.  

High spatial and spectral resolution sensors yield information on the chemical and physical material 

properties of asphalted surfaces. AVIRIS hyperspectral images [10,11], CASI [12], HyperSpecTIR [13], 

Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) [14,15] and sensors with high 

spatial resolution, such as Ikonos [16,17] and Worldview/Quickbird [5], have been successfully used 

to map different urban surfaces. Moreover, a multi-resolution approach has been used to compare how 

different sensors (MIVIS, ALI, Hyperion, Landsat ETM+ and Ikonos) detect man-made materials  

in asphalts [18]. 

Most asphalt classification studies aim to identify relationships between spectral data and the state 

of paved surfaces. Field and laboratory spectroradiometrical measurements could be successfully 

integrated with images and with other methods, such as the Automatic Road Analyzer (ARAN). In 

fact, the reflectance difference between 830 and 490 nm was used to seek a correlation between the 

Pavement Condition Index (PCI) and spectral data [19]. 

As asphalt is a mixture of bitumen and aggregates (rocky components), an analysis of spectral 

signatures distinguishes different kinds of paved surfaces. In the wavelength range of 350 to 2500 nm, 

the radiometric response of fresher asphalts is dominated by bitumen, which absorbs the incident solar 

radiation. Aggregate composition and dimension only marginally influence the spectral behavior. 

Asphalt surfaces lose bitumen over time and through degradation, thus increasing reflectance values. 

Oxidation processes and the exposure of the inert components modify the spectral signature of fresh 

asphalts. Iron oxide absorption peaks at 520, 670 and 870 nm typically occur, while the loss of oily 

compounds causes hydrocarbon characteristic peaks to disappear [20]. The absorption bands of 

hydrocarbons, particularly evident in ―new‖ asphalt surfaces, affects at 1750 nm and after 2100 nm 

with a significant doublet at 2310 and 2350 nm. In addition, in ―old‖ asphalts, there is a significant 

slope change in spectral signature between 2100–2200 nm and 2250–2300 nm, due to the influence of 

silicate minerals outcropping versus hydrocarbon absorption [21]. Another significant change of slope 

is noted in the visible (Vis) region, mainly due to the loss of the degree of coverage of bitumen-coated 

mineral aggregates [15]. 
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This paper analyzes field and laboratory data with the goal of differentiating asphalted surfaces. 

Regarding the level of the bitumen coverage, by analyzing multispectral and hyperspectral images, 

these data may be correlated with field/lab data and a standardized methodology for asphalted surface 

differentiation successfully may be achieved. 

2. Materials and Methods 

2.1. Study Area 

The study area is located in central Italy, where different images and field spectra were acquired. 

Highways, secondary roads and parking lots were the object of study. Airports, too, were included, 

particularly in view of the need for asphalt areas with similar alteration conditions and level of bitumen 

coverage, not to mention big enough to be recognized in images. 

Hyperspectral and multispectral images were acquired in Central Italy during the period 2007–2010 

as follows: MIVIS images of Caserta (MV1), Napoli (North) (MV2) and Guidonia (MV3); Quickbird 

images of Pratica di Mare (Q1), Sabaudia (Q2) and Follonica (Q3) and, finally, Ikonos imagery of 

Fiumicino (I1), Acilia (I2) and Napoli (East) (I3) (Table 1). MIVIS imagery was acquired during the 

2009 and 2010 field campaigns relevant to the National Operative Program (PON) 2007–2013  

(―Security for the Development of Southern Italy‖ mission). 

Table 1. Geographic location of study areas: Caserta (MV1), Napoli (North) (MV2) and 

Guidonia (MV3); Quickbird images of Pratica di Mare (Q1), Sabaudia (Q2) and Follonica 

(Q3) and, finally, Ikonos imagery of Fiumicino (I1), Acilia (I2) and Napoli (East) (I3) 

MIVIS, Multispectral Infrared and Visible Imaging Spectrometer.  

 

Data Location Imagery 

MIVIS 

Caserta MV1 

Naples (North) MV2 

Guidonia MV3 

Quickbird 

Pratica Di Mare Q1 

Sabaudia Q2 

Follonica Q3 

Ikonos 

Fiumicino I1 

Acilia I2 

Naples (East) I3 

2.2. Field Data 

To analyze the main features of paved surfaces that could be derived by images, during field 

surveys, descriptive data and spectra of asphalt surfaces were acquired. Spectral signatures with 

different bitumen coverage levels were selected in main roads and parking lots. The surfaces analyzed 

during the field surveys were aged from 1 to 5 years old, with different conditions and distress. The 

newest pavements were observed in only a few locations. 
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Spectroradiometrical data were acquired using a Fieldspec 3 (A.S.D., Boulder-Colorado) that 

measures the light intensity in a wavelength range between 350 and 2500 nm, through an optical fiber 

bundle that collects the reflected radiation with a 25° conical field of view. The spectroradiometer was 

set at reflectance mode, and a Spectralon panel (high-density fluoropolymer), assumed as a Lambertian 

surface, was used as the white reference. The radiometer was positioned at 67 cm to the target to  

cover a measured area of about 700 cm
2
. For each target, representative spectra were calculated, 

averaging 10 spectral signatures (the result of 10 acquisition cycles). Using the procedure of [15], 

principal features, such as color, particle size, grain morphology and the percentage of inert substance 

covered by bitumen, were analyzed in addition to asphalt spectra. About 500 different targets were 

acquired and integrated into a spectral library and GEO database.  

The percentages and dimensions of aggregates can vary considerably; thus, dissimilar surface 

characteristics and radiometric responses are possible. For the dimensional analysis of aggregates, 

ANAS (Azienda Nazionale Autonoma delle Strade (Italian National Roads Department)) Technical 

Notes (2009) were followed. For granulometric analysis, [22] was considered, taking into account only 

classes between coarse gravel (32–16 mm) and very fine sand (0.125–0.062 mm). For grain roundness 

analysis, a comparative chart [23], commonly used in sedimentological analysis, was adopted. For 

aggregate lithology, only 4 kinds of useless aggregate, such as carbonate, silicate and recycled material 

(material derived from crushing man-made structures), were considered. Finally, asphalt colors were 

evaluated using the Munsell (M) gray scale (10 classes) [24]. 

To validate asphalt field characteristics, digital photos were acquired with a Nikon Coolpix S560. 

To guarantee comparability pictures, a 40 cm × 40 cm reference ruler (consisting of 5 cm of white and 

black color reference stripes) was used (Figure 1). 

Figure 1. The 40 cm × 40 cm reference ruler. 

 
  

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight



Remote Sens. 2014, 6 2769 

 

 

Considering different field light conditions, the white normalization tool on the digital camera was 

used to obtain comparable pictures. This camera setting ensures a more accurate ground reference.  

As the bitumen film on an asphalt surface significantly influences the radiometric response, 5 classes 

of ―bitumen percentage‖ (from 0%–20% to 80%–100%) were defined, readapting [25] sedimentological 

microscopic analysis, to describe this presence over the aggregate surface. All information collected 

in the field was integrated in a GEO database, whereby the large amount of data could be 

handled efficiently. 

2.3. Laboratory Data 

Most papers on asphalt characteristics studies underline the necessity for laboratory tests. Similar to 

a laser scanner [26] or digital imaging processing [27,28], used respectively for texture characteristics 

and sample strain evaluation, spectroradiometrical laboratory measurements can be computed to 

analyze asphalt physical properties for remote sensing applications. 

It was not possible to recognize in images and, consequently, to obtain samples of new/fresh 

asphalts from the studied areas. Thus, new lab samples were made according to ANAS technical 

specifications. Hence, it was possible to investigate the relationship between wavelengths of 460 nm 

and 740 nm, as well as the existence of the asphalt line. 

As stated, bitumen presence on asphalt surfaces is directly correlated to removal processes and 

permits some differentiations to be made. Asphalt samples, related to hot mixed asphalt (HMA), were 

prepared in the laboratory, and spectroradiometer measurements were performed. Each sample 

compound had known physical characteristics, including saturated surface dried particle density  

(EN 1097-6 (g/cm
3
)), water absorption (%) (EN 1097-6) and aggregate and mixture grading (%). 

For this experiment, different samples were used. Generally, asphalt surfaces are composed of 

silicate materials, such as basalts. Thus, leucititic tephrite aggregates were used, to evaluate differences 

in the relationship between spectral signatures. Three mixtures (S1, S2 and S3) of a binder and a top 

layer of a paved surface were performed by melting different percentages of dense sand (0–5 cm), fine 

dense gravel (2–6.3 cm), dense gravel (5–11 cm) and filler. For each of these compositions different 

percentages of bitumen were added. Some 46 asphalt samples to be compacted according to the 

Marshall method and ANAS requirements (Figure 2) were obtained. For all samples, bitumen content 

ranged between 3.9% and 6.5%. 

Spectroradiometric measurements were carried out on compacted samples under controlled 

laboratory conditions. Spectral signatures were acquired using the Spectralon panel as the white 

reference and a 50 watt Pro-Lamp as a light source. Each measurement was performed with 50 

integration cycles to minimize the light oscillations, while, to minimize the scattering effects due to 

sample roughness, spectra were collected, rotating each sample by 90°, and the mean value  

was computed. 
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Figure 2. Mixtures grading curve of hot mixed asphalts (HMAs) correlating with 

(Azienda Nazionale Autonoma delle Strade (Italian National Roads Department)) 

standard requirements. 

 

2.4. Remotely-Sensed Data 

MIVIS images were acquired at a flight altitude of 1500 m above sea level corresponding  

to a 3 m × 3 m ground pixel size. Images, taken in the summer in Central Italy were composed  

of 3 distinct runs of variable length, from 5 to 30 km. 

MIVIS is an airborne modular instrument consisting of 4 spectrometers. These simultaneously 

measure the radiation from the Earth’s surface in the visible (20 bands between 430 and 830 nm), near 

(8 bands between 1150 and 1550 nm), medium (64 bands between 2000 and 2500 nm) spectra and the 

thermal infrareds (10 bands between 8200 and 12,700 nm) for a totality of 102 bands. It is 

characterized by an IFOV (instantaneous field of view) of 2 mrad and an FOV (field of view) of 71°. 

To enlarge the study of remotely-sensed images with a lower spectral resolution, Quickbird and 

Ikonos multispectral data were considered. Quickbird and Ikonos sensors are composed of 4 bands in 

the visible and near infrared range (blue, green, red and NIR) and a panchromatic band (450–900 nm). 

The spatial resolutions of images are, respectively, 2.8 m/4.0 m in multispectral mode and 0.7 m/1.0 m 

in panchromatic mode at nadir. 

3. Data Computation 

3.1. Field Data Computation 

In the 350–2500 nm wavelength range, asphalt reflectance is generally very low and dominated by 

the presence of bitumen, which almost totally absorbs the incident solar radiation. It is only after aging 

and degradation processes, causing the loss of the bitumen component and the outcropping of 

aggregate, that the reflectance values slightly increase and the absorption peaks related to 

mineralogical characteristics of outcropping aggregate fragments appear. Therefore, asphalt color can 

be used to identify variations from quality requirements [21–29]. 
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About 40 spectra for each Munsell grey-scale class were considered, except for the first 3 color 

classes, where the number of targets, in studied areas, decreases significantly (M3 (25), M2 (18) and  

M1 (9)). This was mainly due to the difficulty of identifying newer paved areas. Generally, classes 

with low values of the bitumen percentage correspond to the last Munsell color class (M8 and M9), 

despite high values of bitumen corresponding to low Munsell color classes (M1 and M2). According  

to [19], this observation implies that paved surface alteration is closely related to the decrease of 

bitumen on the aggregate surface and, consequently, to colorimetric changes. To assess bitumen coverage 

levels between paved surfaces in remotely-sensed images, field asphalt spectra were analyzed. The 

analysis of field spectral data of asphalt, free of damage and distress in the Vis and NIR range, showed 

that reflectance values at λ = 460 nm and λ = 740 nm can be used to describe differences in asphalt 

surfaces. Considering reflectance values at these two wavelengths, the differences among asphalts was 

evident: new road surfaces, dominated by hydrocarbon absorptions, have reflectance values lower than 

older surfaces, in turn dominated by mineral signals. Considering that the change of slope in the Vis 

spectral region could be matched to the bitumen removal processes (Figure 3a), the reflectance values  

at λ = 460 nm and λ = 740 nm were represented in a scatter plot. The reflectance values of asphalt 

pixels group together as an asphalt macro-class, showing a linear distribution (|y = αx + b|) that can be 

assumed to be an ―asphalt line‖. To facilitate imagery classification processes, Munsell color classes 

were grouped into 4 main clusters (asphalt sub-classes), each composed of 2 color classes, as follows: 

Class 1: 1 < M < 2; Class 2: 3 < M < 4; Class 3: 5 < M < 6; and Class 4: 7 < M < 8 (Figure 3b). 

Classes 9 and 10 were not present or significant (ex. painted asphalts) in the studied areas. 

Field spectra collected in each study area were used to compute the slope coefficients (α) and b 

coefficients of the equation for each area. The slopes of these asphalt lines showed values between 0.6 

and 0.8 and b terms close to zero; the R-squared of these regression lines is always greater than 0.9. 

Figure 3. (a) Relationship between λ = 460 nm λ = 740 nm reflectance values obtained 

during field surveys; (b) asphalt sub-classes spectra and asphalt line (ex. MV2). 

 

(a) 

  

Raj Bridgelall
Highlight



Remote Sens. 2014, 6 2772 

 

 

Figure 3. Cont. 

 

(b) 

3.2. Laboratory Data Computation 

To investigate whether the relationship between reflectance values at 460 nm and 740 nm could be 

assessed, laboratory spectral measurements were made on 46 specially prepared bituminous mixtures 

of new asphalt samples. These can be referred to as Class 1 < M < 2. Samples were prepared taking 

into account technical specifications for the road management of the investigated districts. 

As stated, the newest asphalts were investigated in the laboratory. Due to their rapid alteration 

and/or bitumen removal, their presence in the field is limited. These analyses were then computed to 

ensure the linear regression validity for this kind of very new (fresh) asphalts. 

These kinds of targets were melted homogenously and not subjected to weather or superficial 

degradation. The analysis of spectra confirm, as for field data, that reflectance values and the slopes of 

spectral signatures in the Vis region decrease as the bitumen content increases. This suggests the 

retrieval of bitumen percentage. By calculating the spectral signature standard deviation, the largest 

differences in bitumen content can be pointed to. In Figure 4a substantial variation in bitumen percentage 

by dry weight of aggregate is highlighted by the distant among the curves (e.g.,  

ΔS1-1a–d = 1.94%). For low delta values, too, in mixtures ΔS1-2a–d (1.38) and ΔS1-3a–d (1.46), the 

spectral signatures are separable; however, the negative bitumen percentage that is detectable with 

spectral measurements cannot be established.  

As was noted in the field data, in the spectrum, a slope change corresponding to the variation of 

bitumen content occurs. This is also seen in lab spectra: in the Vis region, when the bitumen 

percentage increases, the slope of the spectral signatures decreases, and their shape generally switches 

from a ramp to a flat geometry. This shape variation due to the bitumen presence on the surface has 

already been pointed out [30] and correlated with the early stages of surface alteration [11–15]. 

To investigate the relationship between 460 nm and 740 nm, all spectral signatures were analyzed 

by a scatter plot analysis. The results provide a linear correlation with an R-squared of 0.94 (Figure 5) 

and show that the asphalt line can also be derived for fresh asphalts. 
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Figure 4. Spectra 4 mixtures (S1-1) with a different percent of bitumen by dry weight 

of aggregate. 

 

Figure 5. Relationship between 740 nm and 460 nm. 

 

3.3. Image Classification 

The challenge of this research was to discriminate between different HMA asphalt classes using 

remotely-sensed images. By integrating both laboratory and field data, the asphalt level of the bitumen 

coverage could be better determined and, hence, the different surfaces, too.  

3.3.1. Methodology 

Both hyperspectral (MIVIS) and multispectral (Quickbird and Ikonos) data were analyzed to 

integrate field observations with remote sensing imagery. Before applying image classification procedures, 

a preliminary analysis of single MIVIS bands, corresponding to a spectral range of 400 nm–870 nm, 

was performed. This wavelength range facilitates the comparison between hyperspectral and 
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multispectral imagery. Taking into account the field spectral signatures, scatter plots with MIVIS Bands 2 

(λ = 460 nm) and 16 (λ = 740 nm) were computed. 

Figure 6a shows that pixels corresponding to asphalted surfaces were grouped essentially in a single 

area. This corresponds to the asphalt macro-class previously identified with field data. Thus, it was 

possible to effectively discriminate between different asphalted surfaces within images, even at this 

preliminary step of image pre-processing aimed at ROI detection. In the scatter plot, pixels corresponding 

to vegetated areas and soils were well clustered in different groups (Figure 6a). 

Figure 6. (a) MIVIS scatter plots with Bands 2 (λ = 460 nm) and 16 (λ = 740 nm);  

(b) Quickbird scatter plots obtained with Bands 1 (450–520 nm) and 4 (770–880 nm) 

(the same results were obtained for Ikonos scatter plots). 

 

Scatter plot analysis was also conducted for Quickbird and Ikonos images using Bands 1  

(450 nm–520 nm) and 4 (760 nm–890 nm), which best approximate wavelengths λ = 460 nm and  

λ = 740 nm. It emerged that the cluster of pixels referring to paved surfaces had the same distribution, 

even if their spectral ranges were significantly larger than those for MIVIS (Figure 6b). 

Moreover, taking into account field observations, in image scatter plots, clusters were recognized 

corresponding to the Munsell (M) scale (Class 1: 1 < M < 2; Class 2: 3 < M < 4; Class 3: 5 < M < 6; 

and Class 4: 7 < M < 8) (Figure 7). 

Figure 7. (a) Asphalt sub-classes in MIVIS imagery and (b) in Quickbird imagery. 
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The SAM algorithm was selected to classify asphalt surfaces according to their bitumen removal 

process, given that this is insensitive to illumination and suitable for homogeneous areas. 

Spectral Angle Mapper classification is based on a comparison of the spectral image with a 

reference spectrum (endmembers or spectral libraries) and it evaluates spectra similarity in order to 

accentuate the target characteristics. This method treats both spectra as vectors and calculates the 

spectral angle between them. In fact, SAM attempts to obtain the angles (α) (between 0 and π/2) 

formed between reference and image spectrum Equation (1), treating them as vectors in a space with  

N-dimensionality equal to the number, N, of bands [31]. 

Angles were calculated by applying the following formulation: 

α  
           

             
 (1) 

where: 

 1 is the image spectrum  

 2 is the reference spectrum 

To reduce noise and the computational requirements for subsequent processing [32], a Minimum 

Noise Fraction Transformation (MNF) was applied to the images. The MNF transformation produces 

principal components and normalizes the eigenvalues relative to the variance of the sensor noise 

estimate [33,34]. After a preliminary ROI-selection step, based on field surveys and image interpretation 

in a scatter plot analysis, a Pixel Purity Index (PPI) was computed. PPI locates the purest pixels in the 

ROIs to better identify endmember spectra to be used in the SAM algorithm [31]. The SAM method 

uses the vector direction of spectral signatures, and a threshold value must be selected as a variable to 

perform a classification. The asphalt line angular coefficients, corresponding to each analyzed  

image, were used as the threshold. For both hyperspectral (Figure 8) and multispectral images (Figure 9) 

the same procedure was adopted. 

Confusion matrices were computed to retrieve the overall accuracy and the  

kappa-coefficient [35,36]. The overall accuracy and the kappa-coefficient (κ) measure the accuracy of 

the classification. The overall accuracy is computed by dividing the total number of correctly classified 

pixels by the total number of reference pixels [37]. The kappa-coefficient (κ) is calculated by 

Equation (2):  

 
(2) 

where P0 is the proportion of units where there is agreement with the ground-truth and Pc is the 

proportion of units that would be expected to agree by chance [38,39]. If there is complete agreement 

with the ground-truth, then κ = 1, while no agreement is related to κ ≤ 0. 

3.3.2. Classification 

To extrapolate the linear equation corresponding to the asphalt line, spectral signatures 

corresponding to each pixel were extracted from the images. These were exported as an ASCII file and 

processed to extrapolate reflectance values corresponding to selected bands. 
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Figure 8. (a) Guidonia Airport-MIVIS (about 2 × 2.5 km); (b) urban area of Caserta-MIVIS 

(about 1 × 1.2 km). (UMT-WGS 84 zone 33N). 

 

Figure 9. (a) Leonardo Da Vinci Airport-Ikonos (about 1 × 1.9 km); (b) Pratica di Mare 

airport-Quickbird (about 1.9 × 1.5 km). (UMT-WGS 84 zone 33N). 
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For MIVIS images, the angular coefficients (α) of asphalt lines ranged from 0.64 and 0.86, while 

for Ikonos and Quickbird (Table 2), these values varied from 0.63 to 0.85. As field data, the b 

coefficients were about 0 for all the asphalt lines. 

Table 2. Asphalt line angular coefficients. 

Data 

Imagery 

MIVIS Quickbird Ikonos 

MV1 MV2 MV3 Q1 Q2 Q3 I1 I2 I3 

α 0.64 0.65 0.86 0.85 0.63 0.79 0.75 0.63 0.74 

R
2
 0.97 0.94 0.97 0.94 0.91 0.95 0.93 0.95 0.97 

All 4 asphalt sub-classes were well represented in the images, such as for densely urbanized or rural 

areas and airports. These classes were then used in the supervised classification procedures applied to 

the images. The Spectral Angle Mapper classifier was applied to each image; angular coefficients of 

asphalt line, corresponding to each analyzed image, were used as the threshold value. 

Figure 8a presents the MIVIS classification of Guidonia airport and the surrounding urban. 

A commercial area near Caserta City is shown in Figure 8b.  

In both figures, the new parking lot with a lower level of the bitumen coverage, corresponding to 

Class 2: 3 < M < 4, is green. New roads are red (Class 1: 1 < M < 2), and parking lots with the lowest 

bitumen coverage are yellow; Class 3: 5 < M < 6 is blue and corresponds to a landing strip. 

Figure 9 shows that the classification of satellite images here, too, are the landing strips composed 

of Class 3 (5 < M < 6; blue). 

In Pratica di Mare airport (Figure 9b) Class 2 (3 < M < 4; green) can be identified in a secondary 

landing strip. Class 1 (1 < M < 2; red) appears only in a limited number of areas, even though in  

Figure 9a, a new asphalt spread can be observed in a secondary landing strip. Parking lots are usually 

areas with a low degree of bitumen coverage or aged asphalt Class 4 (7 < M < 8; yellow) (e.g., plane 

parking lots of the Pratica di Mare airport). 

4. Results and Discussion 

Based on the same criteria used to select ROIs for the SAM classification, the validation ROI 

dataset was created to access the classification accuracy for each image. Confusion matrices were used 

to retrieve overall accuracy and the kappa-coefficient. 

The classifications obtained for the 3 MIVIS images present an overall accuracy (OA) between 

90.5% and 93.4% and a κ-coefficient (κ) between 0.87 and 0.91. Classification results obtained for 

satellite images present an accuracy between 93.7% and 98.1% (0.92 < κ < 0.97) for Quickbird data 

and between 90.8% and 95.0% for Ikonos (0.88 < κ < 0.92). These are reported in Table 3. 

Table 3. MIVIS, Quickbird and Ikonos classifications results. 

Data 

Imagery 

MIVIS Quickbird Ikonos 

M1 M2 M3 Q1 Q2 Q3 I1 I2 I3 

OA(%) 91.35 90.48 93.42 97.74 93.71 98.08 95.00 90.83 94.26 

κ 0.88 0.87 0.91 0.97 0.92 0.97 0.93 0.88 0.92 
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In all nine images’ confusion matrices, unclassified pixels are rare and commission errors are about 

5% for Quickbird and 10% for MIVIS and Ikonos. This may be traced to the similar pixel spatial 

resolution. The smaller spectral resolution of Quickbird and Ikonos sensors does not appear to 

influence the accuracy of asphalt classes. Nevertheless, both sensors detect asphalt pavement using the 

asphalt line angular coefficient as the threshold in the Spectral Angle Mapper classifier. 

5. Conclusions  

Recent advances in our knowledge of the spectral behavior of asphalt supports its use as calibration 

and validation targets for imagery atmospheric corrections or for innovative applications in civil 

engineering. As differentiation procedures are particularly challenging, most authors emphasize the 

need to associate supplementary field and laboratory analysis. This paper analyses field and laboratory 

spectral signatures of asphalt to improve its differentiation and correlation with hyperspectral and 

multispectral imagery. The analysis of field spectral signatures shows a significant change of slope in 

the visible and near-infrared region of the spectra. This can be linked to the loss of superficial bitumen. 

Using reflectance values at λ = 460 nm and λ = 740 nm, scatter plots reveal a good grouping of pixels, 

which could be related to an asphalt macro-class. This linearly distributed clustering can be referred to 

an interpolated line assumed as an asphalt line. Referring to the Munsell (M) color chart, four main 

clusters are identified as asphalt sub-classes. Field spectra are used to compute the equation of the 

asphalt line for each area, and the angular coefficients (α) show values from 0.6 to 0.8. The subsistence 

of the asphalt line is also confirmed for laboratory fresh asphalt (R
2
 = 0.94), which can be referred to 

the non-degraded targets. For asphalt line detection on remotely-sensed images, MIVIS Bands 2 and 

16 and Ikonos and Quickbird Bands 1 and 4 are selected considering their best approximation with the 

field and lab wavelength (λ = 460 nm and λ = 740 nm). To identify pixels related to paved surfaces, 

interpolation lines of asphalt are calculated, and their angular coefficients are used as threshold values 

in a SAM algorithm. Asphalt line angular coefficients retrieved from remotely-sensed images reveal 

similar values. Values range from 0.64 and 0.86 for MIVIS imagery and between 0.63 to 0.85 for 

Ikonos and Quickbird. Regarding field data, the b coefficients were about zero for all the asphalt lines. 

This analysis showed that the pixel cluster for paved surfaces had the same distribution in the field, lab 

and remotely-sensed images, even though their spectral and spatial resolutions are different. The 

application of these threshold values in the Spectral Angle Mapper algorithm shows high overall 

accuracies: MIVIS images present values of about 91.8%, which are comparable with those obtained 

for Quickbird (an averaged accuracy of 96.5%) and Ikonos (an averaged accuracy 93.3%). The 

proposed procedure reduces the processing time to retrieve a threshold value to be used in A Spectral 

Angle Mapper classification for asphalt studies. By deriving threshold values from asphalt lines, it is 

possible to avoid the iterative procedures typical of this classification method.  

Classification results showed that both hyperspectral and multispectral imagery can supply local 

government authorities with a tool to locate asphalt pavements that need to be checked for 

maintenance and to improve road monitoring policies or to update the road registry. The detection of 

bitumen removal effects by remote sensing analysis could be an indicator for other phenomena, such 

as friction reduction and bitumen concrete aging. Furthermore, the possibility of differentiating 

asphalts, relating to their spectral variability, may be an important tool to improve their usage in image 
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calibration and validation procedures. Additional laboratory spectral measurements of different asphalt 

pavements (SMA, PMA, macadam, etc.) will be necessary to extend remote sensing analysis. Although 

it is still impossible to substitute in situ inspections to define asphalt distress levels, remote sensing 

techniques can limit time-consuming field surveys. Moreover, new technologies, such as unmanned 

aerial vehicles (UAV) with ad hoc sensors, designed for the same wavelengths used in this paper, can 

be used in effective road monitoring. 
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