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ABSTRACT 
 
The objective of this study is to characterize the quality of road conditions in a semi-automated manner using 
hyperspectral imagery.  High resolution aerial photography collected simultaneously and limited ground 
photography in the study area serve as surrogate ground truthing used to collect training and validation points.  A 
variety of classification methods are employed.  These methods range from those that measure spectral shape to 
those that measure similarity in brightness, and hybrids that combine the two.  In addition, Classification and 
Regression Tree (CART) algorithms are used.  The CART algorithms produce the best results, with classification 
accuracies of approximately 68%.  Classification methods that incorporate brightness are next best (~50% 
accuracies), while spectral shape based methods perform poorly (~38%).  The mediocre results are attributed to the 
extremely similar spectral characteristics of the mapped materials, all of which are some variation of asphalt.  
Cracks in roads comprise only a tiny fraction of pixels they reside within, making their detection difficult.  The 
incorporation of texture based measures in CART analysis in future research may improve results. 
 
 

INTRODUCTION 
 
 It is estimated that each Californian pays an average of $558 every year in vehicle maintenance and repair costs 
due to driving on substandard roads.  For the entire state, this totals $12 billion per year.   While California is rated 
as having the worst roads in the country, the problem exists nationwide.  The use of hyperspectral imagery may 
provide a cost-effective way to monitor the condition of roads on a regular basis, allowing prioritization of road 
improvements and rapid response to time sensitive conditions such as potholes.  In June, 2004, hyperspectral 
imagery and high resolution aerial photographs were collected over Valencia in southern California for the purpose 
of road condition assessment.  The hyperspectral data is from  the HyperSpecTIR instrument, which collects data in 
227 spectral bands spanning the VNIR and SWIR ranges, and in this case has a spatial resolution of 2 meters. 
 
Objective 
 The objective of this study is to utilize hyperspectral data to accurately classify road conditions and identify 
potholes in a semi-automated manner.  The high resolution aerial photography is used to assist in verifying road 
conditions and the location of potholes.  The results of this study could be used to take another step towards the 
                                                 
* Current information: Systems Engineer, Santa Barbara Infrared, Inc., 30 South Calle Cesar Chavez, Suite D, Santa 
Barbara, CA  93103, jlaveigne@sbir.com 
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utilization of hyperspectral imagery by state and local governments to improve road conditions and reduce cost 
incurred by motorists. 
 

DATA 
 
 Two types of data were used for this study.  The first is hyperspectral imagery, used for the spectral detection of 
various road conditions.  The second is high resolution aerial photography, used to supplement available ground 
truth photos for selecting training pixels.  These training pixels are then used as the basis for mapping road quality in 
the hyperspectral imagery.  Data from both instruments were collected simultaneously from the same aircraft on 
May 5, 2004 over Valencia, California.  Valencia is approximately 40 miles northwest of downtown Los Angeles.  
Data collection focused on major thoroughfares in the area: Magic Mountain Parkway and San Fernando Road. 
 
Hyperspectral Imagery 

The HyperSpecTIR (HST) instrument used in this study is constructed and operated by SpecTIR Corporation.  
HST consists of two boresighted spectrometers collecting 227 contiguous, non-overlapping bands covering the 
reflective spectral range from 0.45-2.45um.  Band spacings and widths vary from about 12 nanometers in the visible 
and near infrared (VNIR) spectrometer to 8 nanometers in the short-wave infrared (SWIR) spectrometer.  The 
instrument has a 1 milliradian instantaneous field of view (IFOV), equating to 1 meter ground sampling distance 
(GSD) per kilometer above ground level (AGL).  HST uses a two-dimensional focal plane, in which one dimension 
of 256 pixels is used for spatial data and the other dimension of 256 pixels is used for spectral data.  Note that 
because of spectrometer overlap and pixels reserved for collecting bright and dark calibration data, the final dataset 
consists of 227 spectral bands.  HST is operated as a line scanner, resulting in a swath that is 256 pixels wide by n 
pixels long, where n depends upon the scan width.  The resulting flightline is therefore a series of “bricks,” with a 
nominal amount of overlap between each brick.  Differential GPS and inertial navigation system (INS) data are 
recorded to provide information for subsequent georeferencing.  HST utilizes beam steering optics technology to 
control mirror motion in order to cancel out any distortions caused by the pitch, roll, and yaw of the platform.  This 
technology allows HST to fly at low altitudes (normally very turbulent) in order to collect high spatial resolution 
data and ensure that there are no gaps in the data resulting from platform motion.  To date, HST has collected 
imagery with spatial resolutions as high as 0.5 meters. 

The flightline used for this study focused on San Fernando Road.  This flightline spans approximately 4.8km 
with 21 swaths, each swath being 0.42km wide. One swath in this flightline has been corrupted, so was not included 
in the analysis.  The data were converted to reflectance by SpecTIR using a proprietary MODTRAN based 
technique. 
 
Aerial Photography 
 The aerial photography for this study was collected at the same time from the same platform (Cessna 206) as 
the hyperspectral imagery.  The camera used is a medium format camera using a Zeiss 50mm lens mounted in a 
Leica gimbal ring mount.  Ultraviolet and infrared restricting filters are used to generate a true color image.  The 
camera is controlled by a TrackAir survey type flight management system, and data is collected on a Kodak K3 Blue 
Series chip (4000 x 4000 pixels), processed out to a 48 megabyte RGB file.  For this study, the aircraft was flown at 
2500 feet above ground level at 100 knots, producing 1 foot ground sampling distances.  Frames were captured with 
30% forward overlap at five second intervals. 
 

METHODS 
 
 The methods described here were used to extract the road network from the hyperspectral imagery and to 
classify them by road condition.  Unless otherwise noted, all methods are implemented within Research Systems’ 
ENVITM image processing software. 
 
Rule Generator 
 The Rule Generator is a tool that utilizes classification and regression tree (CART) algorithms to generate a set 
of rules that, when applied to an image, result in a classified product.  Rule Generator is an ENVI plug-in written by 
the author that makes use of the freeware CART algorithms Quick, Unbiased and Efficient Statistical Tree (QUEST) 
(Loh and Shih, 1997), and Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE) (Kim 
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and Loh, 2001). Interested parties may download Rule Generator for free from the RSI User-Contributed Library at 
http://www.rsinc.com/codebank/index.asp.  QUEST and CRUISE may be downloaded separately from 
http://www.stat.wisc.edu/~loh/loh.html. 
 The classification and regression tree (CART) approach is an automated way of determining statistical 
relationships between a number of independent variables given a set of dependent data.  This approach has been 
used for a number of years in many disciplines, and is now seeing increasing use in remote sensing.  In the remote 
sensing case, the independent variables could include continuous data such as spectral bands, elevation, slope, 
vegetation indices, and so on.  Independent variables may also include categorical data such as classifications.  
Dependent variables are the training data.  A series of regression analyses are performed between the independent 
and dependent variables to create a set of rules.  These rules are in the form of a decision tree, where each node is 
some condition such as “band x is less than or equal to y.”  The leaf nodes represent the final classes that the pixels 
will be assigned to. 
 The CART approach has been most commonly applied to multispectral classification, although hyperspectral 
applications have shown promise (Smith et al, 2004).  When many independent variables are used (such as the many 
bands of a hyperspectral dataset), CART tends to select a subset of bands that provide the greatest ability to separate 
the input classes.  This study uses this band subset to compare with other methods and to perform further 
classification. 
 As mentioned above, CART has the ability to incorporate ancillary data sets as independent variables. For road 
extraction purposes, available road vector databases available from the state or county could be used to more 
accurately extract roads while reducing confusion with roofs and parking lots.  Since no ancillary data were 
available for this study, though, this approach was not undertaken. 
 
BandMax 
 BandMax is an ENVI tool that produces a subset of spectral bands that optimizes the separability of a target 
spectrum from background spectra through the use of spectral contrast measures.  Therefore, BandMax is used in 
this study to determine the optimal bands to distinguish road types from each other. 
 
Spectral Angle Mapper 
 The Spectral Angle Mapper (SAM) algorithm is an automated method for comparing one spectrum to another. 
For example, the spectrum at each pixel in an image may be compared one at a time to some reference spectrum, 
such as a mineral in a spectral library.  The SAM algorithm determines the similarity between two spectra by 
calculating the “spectral angle” between them, treating each spectrum as a vector in space with dimensionality equal 
to the number of bands (Kruse et al., 1993).  One advantage of this technique is that it is relatively insensitive to 
illumination conditions, such as those resulting from topography and cross-track illumination. Because these 
illumination variations do not always occur equally to every band, it is not a complete solution. 
 Each pixel in the resultant SAM image is assigned a value representing its spectral angle relative to the 
reference spectrum. The smaller the value, the smaller the angle, and the closer the match between the target and 
reference spectra. Therefore, darker pixels on a SAM image indicate increasing similarity between the image 
spectrum and the reference spectrum. Because only the smallest angles are likely to actually be the target material, a 
threshold is used to provide an image with better contrast. That is, every pixel whose value exceeds a set threshold 
will be displayed as white instead of some varying shade of gray. This allows easy discrimination of pixels with 
good matches. 
 
Supervised Minimum Distance Classification 
 The Minimum Distance classifier calculates the Euclidean distance between each pixel’s spectrum and the mean 
spectrum for each training group.  The class with the minimum distance is assigned to the pixel (Richards, 1999).  
Whereas the Spectral Angle Mapper classifier is relatively insensitive to the overall albedo difference between target 
and reference spectra, the Minimum Distance classifier is highly sensitive to this albedo difference.  Results from 
these methods will provide a useful indicator for the importance of albedo in mapping road conditions. 
 
Spectral Similarity Mapper 
 The Spectral Similarity Mapper (SSM) is a custom ENVI plug-in written in the IDL programming language by 
the author.  It is derived from the Spectral Similarity Scale described by Sweet et al (2000).  SSM calculates two 
numbers for each pixel.  The first is the Euclidean distance between the pixel’s spectrum and the reference spectrum.  
The second is a correlation value, which measures the similarity in shape between the pixel’s spectrum and 
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reference spectrum, much like SAM does.  The Spectral Similarity Value (SSV) is derived from these two values by 
(Sweet et al, 2000): 
 

 22 r̂dSSV e +=  (EQ 1) 
 
where de represent the Euclidean distance measure and r represents the correlation measure. 
 Therefore, SSM is a hybrid approach combining elements of both the SAM and Minimum Distance classifier 
methods described above into a single measure. 
 
VIS2 and SWIR Ratios 
 Previous work by Herold et al (2004) suggest that spectral ratios at different locations in the spectrum could 
map road condition.  The VIS2 ratio (830nm/490nm) relates to the relative increasing brightness of worn asphalt, 
and the increasing spectral concavity of worn asphalt in this region due to iron oxide absorptions.  The SWIR ratio 
(2120nm/2340nm) decreases with increasing road age and deterioration primarily due to reduced hydrocarbon 
absorption in this spectral region. 
 

EXPERIMENT 
 

The experiment involved creating a discrete classification of the roads within the hyperspectral imagery that 
would depict the varying level of surface conditions.  A discrete classification rather than continuous “surface 
quality” layer was selected due to the lack of a priori knowledge of the spectral characteristics of a “good” road 
versus a “bad” road. 

 
Pre-Processing 

The first step in creating this classified product 
was devising a classification scheme.  Because the 
spatial resolution of the hyperspectral data was not 
fine enough for the literal observation of potholes, 
cracking, and other road condition indicators, the 
aerial photography was used for a visual survey of 
the existing road conditions.  In addition to the 
aerial photography, select locations within the 
study area were visited and photographed by an 
assistant (Figure 1).  Together, the aerial and 
ground photography led to an initial breakout of 
the following classes: Road (excellent, medium, 
and worn), Cracked Road (light, medium, and 
severe), and Patch. 

Training points were then collected by a single 
individual through literal exploitation of the aerial 
and ground photography, then locating the 
corresponding position in the hyperspectral data.   
The data were not georeferenced for this study, so 
training points were transferred from the aerial 
photography to the hyperspectral image by relative positioning relative to common features such as parked cars, 
painted road lines, etc.  Because both image sources were collected simultaneously, this method is quite accurate. 

Because of the spatially discontinuous nature of damaged asphalt, training points were selected pixel by pixel, 
rather than as lines or regions.  This limited the total number of training points selected.  In addition, the imagery 
was collected with no a priori knowledge of road conditions, resulting in there being only limited areas of damaged 
road surface to train on.  Once training point selection was completed, the mean spectrum of each category was 
compared with the other category mean spectra to determine its spectral separability.  Because the classes being 
selected for this study are all very similar, some of the selected classes were determined not to be separable.  Those 
classes determined not to be separable were combined.  Finally, the training points were split into training and 

Figure 1 – Example of a ground photo used to assist in locating 
damaged roads in the aerial imagery. 
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validation sub-groups by stratified random sampling.  Figure 2 shows hyperspectral and aerial photograph chips for 
each class. 
 One of the objectives of this study is to determine whether any particular subset of spectral bands produces 
more accurate results than using all the spectral bands.  Band subsets were selected in several ways.  The first way 
was to feed QUEST and CRUISE the training points and have them determine the optimal subset of bands needed to 
classify the data.  These algorithms go one step further and provide specific relationships between these bands to 
produce a classified image, but in this case we are only interested in which bands are selected.  Another method to 
select a band subset was BandMax.  BandMax produces a plot showing the significance values of each band for 
separating a target spectrum from a background spectrum or spectra.  For this study, each training category was 
input as a target spectrum with the remaining classes comprising the background spectra.  The resulting significance 
vectors were then summed in order to identify which bands were most significant in differentiating the targets from 
the background.  Finally, a random subset of 20 bands was selected to test whether the “smart” ways of choosing 
band subsets were really all that smart. 
 
Classification 
 The training points were then used as input to 
the classification methods described previously.  The 
SAM, Minimum Distance, and SSM classifiers were 
each run successively using all spectral bands (minus 
those in atmospheric absorption bands), and spectral 
band subsets determined by QUEST, CRUISE, 
BandMax, and randomly.  Classifications resulting 
from QUEST and CRUISE may only be produced by 
the band subset that they themselves select.  Figures 
3 and 4 show the band subsets used for BandMax, 
QUEST, and CRUISE.  Figure 5 shows the spectral 
library generated by calculating the mean spectrum 
for each set of training pixels. 
 A road mask was used so that the resulting 
classification image only reflected results for roads, 
with every other pixel being set to Unclassified.  The road mask was generated through a combination of spectral 
and spatial means.  SAM was used to generate rule images for the Excellent Road and Worn Road classes.  Road 
centerlines were then digitized manually on the hyperspectral imagery.  ENVI’s Decision Tree Classifier was then 
used to create a mask that passed those pixels that had a SAM value indicating a close match to either Excellent or 
Worn Road, and occurred within 8 pixels of a road centerline.  Using the spatial measure was necessary to prevent 
the inclusion of parking lots and some roof types that are spectrally very similar to roads. 
 The accuracy of the classified products were then assessed by building confusion matrices that use the 
validation points.   A comparison of classification results for the different methods are shown in Figure 6.   
 
Comparison with VIS2 and SWIR Ratios 
 VIS2 and SWIR ratios were calculated as described in Herold et al (2004).  These results are compared with the 
classification results derived here by performing a linear regression on the ratio values at each validation point 
location versus each validation pixels’ class value.  For VIS2, high values should correlate with our Cracked Road 
class.  For SWIR, high values should correlate with our Excellent Road class. 
 

Figure 5 – Spectral library containing average spectrum for each 
class. 
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Figure 2 – Image chips from HyperSpecTIR (left) and aerial photography (right) showing representative samples of the classes 
that were trained on.  Red pixels in the HST image chips represent a portion of the pixels used for training. 
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Figure 3 – Plot showing summed BandMax significance       Figure 4 – Plot showing spectral band subsets as determined by 
Values. Shaded area indicates bands that were selected            QUEST and CRUISE. 
For the BandMax spectral band subset. 
   

 
RESULTS 

 
 The results of the accuracy assessment for the Minimum Distance classifier are shown in Table 1.  Using all the 
spectral bands produced slightly more accurate results than other band subsets.  All “smart” band subsets produced 
substantially more accurate results than the random band subset. 
 The results of the accuracy assessment for the Spectral Angle Mapper classifier are shown in Table 2.  SAM 
produced the lowest overall accuracy of any classification method (~40%), with the best results being from the 
QUEST and CRUISE band subsets.  All band subsets except for BandMax produced results better than a random 
subset. 
 The results of the accuracy assessment for the Spectral Similarity Mapper classifier are shown in Table 3.  SSM 
produced accuracies similar to Minimum Distance, with the highest accuracy (54%) coming from all spectral bands.  
Interestingly, the accuracy resulting from a random selection of bands (50%) is nearly as good as using all bands, 
and is slightly better than results from all the “smart” band subset methods. 
 The results of the accuracy assessment for the QUEST and CRUISE algorithms are shown in Table 4.  These 
CART-like methods produced the most accurate results of all the methods (61% and 68% respectively).  Note that 
because of the nature of these algorithms, they could only be run on the spectral band subset that they select as part  
of the processing. 
 Figure 7 shows results for the VIS2 and SWIR ratio compared to a false color composite image.  Figures 8 
shows the linear regression performed between the VIS2 ratio and classification values.  Figure 9 shows the same 
for the SWIR ratio.  The correlation in each case is poor, suggesting no solid relationship.  However, the trend of the 
fitted line to the SWIR ratio data does have the expected trend of lower SWIR ratio values for decreasing road 
condition.  No trend is evident in the VIS2 ratio data. 
 
 

DISCUSSION 
 
       Examination of the confusion matrices and accuracy assessments demonstrates the challenge of accurately 
mapping road surface conditions.  The best results by a significant margin were those produced by the CART 
algorithm CRUISE.  Following CRUISE came QUEST, then Minimum Distance and SSM (tied), and finally SAM.  
This ranking clearly indicates that albedo and not just spectral shape is a key indicator to road surface conditions. 
        The best performing classifiers (QUEST and CRUISE) used only about 15% of the available spectral bands 
(not including bands in atmospheric absorption regions).  These bands were spread across the entire spectral region, 
indicating that there is no single key region that is particularly well suited for road quality mapping.  However, when 
the band subsets that QUEST and CRUISE used were then used in the other classifiers, the results were not nearly as 
accurate, and were generally lower than when all bands were used in these classifiers.  Because the produced 
decision trees from QUEST and CRUISE use specific data values as thresholds, the robustness of the technique is 
limited.  Data from other areas would have to be atmospherically corrected, and the quality of the radiometric 
calibration becomes crucial. 
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Figure 6 – Images showing classification results for the different methods used.  First row, left to right: false color composite, all 
bands, random bands.  Second row, left to right: QUEST bands, CRUISE bands, random bands.  a.) Minimum Distance, b.) 
Spectral Angle Mapper, c.) Spectral Similarity Mapper, d.) CART algorithms (center: QUEST, right: CRUISE). 
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Figure 7 – Images showing ratio results for a portion of the study area (left: false color composite, center: VIS2 ratio, right: 
SWIR ratio).  Observe that diffuse shadowing in the upper left portion of the VIS2 ratio makes the road appear to be more 
damaged than it actually is. 
 
 
Table 1 – Accuracy assessment for the Minimum Distance classifier. 
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  Patch 8 5 0 2 15 100.00%  5 5 0 1 11 62.50%   
  Excellent Road 0 0 2 4 6 0.00%  3 1 1 5 10 10.00%   
  Cracked Road 0 5 19 6 30 82.61%  0 4 17 4 25 73.91%   
  Worn Road 0 0 2 4 6 25.00%  0 0 5 6 11 37.50%   
  Total 8 10 23 16 57    8 10 23 16 57     
  User's Accuracy 53.33% 0.00% 63.33% 67.67%   54.39%  45.45% 10.00% 68.00% 54.55%   50.88%   

                  

   QUEST Bands  CRUISE Bands   
  Patch 5 5 0 1 11 62.50%  8 5 0 2 15 100.00%   
  Excellent Road 3 0 2 5 10 0.00%  0 0 2 4 6 0.00%   
  Cracked Road 0 5 17 5 27 73.91%  0 5 17 5 27 73.91%   
  Worn Road 0 0 4 5 9 31.25%  0 0 4 5 9 31.25%   
  Total 8 10 23 16 57    8 10 23 16 57     
  User's Accuracy 45.45% 0.00% 62.96% 55.56%   47.37%  53.33% 0.00% 62.96% 55.56%   52.63%   

                  

   Random Bands          
  Patch 8 5 0 2 15 100.00%          
  Excellent Road 0 0 2 4 6 0.00%          
  Cracked Road 0 4 12 8 24 52.17%          
  Worn Road 0 1 9 2 12 12.50%          
  Total 8 10 23 16 57            
  User's Accuracy 53.33% 0.00% 50.00% 16.67%   38.60%          
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Table 2 – Accuracy assessment for the Spectral Angle Mapper classifier. 
 
                               

Spectral Angle Mapper  
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  Patch 1 1 2 4 8 12.50%  1 1 5 6 13 12.50%  
  Excellent Road 0 6 10 5 21 60.00%  1 6 12 5 24 60.00%  
  Cracked Road 1 2 9 1 13 39.13%  1 1 5 1 8 21.74%  
  Worn Road 6 1 2 6 15 37.50%  5 2 1 4 12 25.00%  
  Total 8 10 23 16 57    8 10 23 16 57    
  User's Accuracy 12.50% 28.57% 69.23% 40.00%   38.60%  7.69% 25.00% 62.50% 33.33%   28.07%  
                 
   QUEST Bands  CRUISE Bands  
  Patch 2 1 2 4 9 25.00%  1 1 5 5 12 12.50%  
  Excellent Road 0 7 7 6 20 70.00%  0 8 7 5 20 80.00%  
  Cracked Road 0 1 12 4 17 52.17%  0 0 9 1 10 39.13%  
  Worn Road 6 1 2 2 11 12.50%  7 1 2 5 15 31.25%  
  Total 8 10 23 16 57    8 10 23 16 57    
  User's Accuracy 22.22% 35.00% 70.59% 18.18%   40.35%  8.33% 40.00% 90.00% 33.33%   40.35%  
                 
   Random Bands         
  Patch 1 1 3 4 9 12.50%         
  Excellent Road 0 6 8 6 20 60.00%         
  Cracked Road 1 3 10 5 19 43.48%         
  Worn Road 6 0 2 1 9 6.25%         
  Total 8 10 23 16 57           
  User's Accuracy 11.11% 30.00% 52.63% 11.11%   31.58%         
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Table 3 – Accuracy assessment for the Spectral Similarity Mapper classifier. 
 
                               

Spectral Similarity Mapper  
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  Patch 4 0 1 1 6 50.00%  2 1 3 4 10 25.00%  
  Excellent Road 4 5 0 4 13 50.00%  5 6 1 4 16 60.00%  
  Cracked Road 0 5 18 7 30 78.26%  0 3 12 2 17 52.17%  
  Worn Road 0 0 4 4 8 25.00%  1 0 7 6 14 37.50%  
  Total 8 10 23 16 57    8 10 23 16 57    
  User's Accuracy 66.67% 38.46% 60.00% 50.00%   54.39%  20.00% 37.50% 70.59% 42.86%   45.61%  
                 
   QUEST Bands  CRUISE Bands  
  Patch 4 0 1 1 6 50.00%  1 1 4 3 9 12.50%  
  Excellent Road 4 5 0 4 13 50.00%  5 6 1 5 17 60.00%  
  Cracked Road 0 1 16 9 26 69.57%  0 3 13 4 20 56.52%  
  Worn Road 0 4 6 2 12 12.50%  2 0 5 4 11 25.00%  
  Total 8 10 23 16 57    8 10 23 16 57    
  User's Accuracy 66.67% 38.46% 61.54% 16.67%   47.37%  11.11% 35.29% 65.00% 36.36%   42.11%  
                 
   Random Bands         
  Patch 3 1 1 1 6 37.50%         
  Excellent Road 5 5 0 5 15 50.00%         
  Cracked Road 0 3 19 8 30 82.61%         
  Worn Road 0 1 3 2 6 12.50%         
  Total 8 10 23 16 57           
  User's Accuracy 50.00% 33.33% 63.33% 33.33%   50.88%         
                               
 
 
Table 4 – Accuracy assessment for the the CART classifiers. 
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  Patch 6 1 0 1 8 75.00%  8 2 0 3 13 100.00%  
  Excellent Road 2 5 1 5 13 50.00%  0 7 1 2 10 70.00%  
  Cracked Road 0 3 16 2 21 69.57%  0 1 19 6 26 82.61%  
  Worn Road 0 1 6 8 15 50.00%  0 0 3 5 8 31.25%  
  Total 8 10 23 16 57    8 10 23 16 57    
  User's Accuracy 75.00% 38.46% 76.19% 53.33%   61.40%  61.54% 70.00% 73.08% 62.50%   68.42%  
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Figure 8 – Chart showing correlation between VIS2 ratio             Figure 9 – Chart showing correlation between SWIR ratio 
and classified results.                                                                        and classified results. 
 
 In terms of robustness, the Minimum Distance and Spectral Similarity Mapper routines perform equally well, 
even though their accuracies are not much better than 50%.  Because these methods do not use threshold values, 
they are less sensitive to calibration issues. 
 The relatively low classification accuracies are not very surprising, considering the nature of the features being 
mapped.  Like vegetation, another notoriously difficult material to map, all of our classes are comprised of the same 
basic components.  In this case, it’s asphalt.  While properties of asphalt may vary regionally depending on the 
mixtures and types of components (tar, gravel, sand, etc.), the asphalt within our study area is not likely to vary 
much.  The spectral library (Figure 5) shows that Worn Road and Cracked Road are extremely similar.  This is 
logical, considering that cracks are likely to occur more often in worn roads than fresh roads.  The faces of the 
cracks themselves and the material filling them (if any), which together comprise a tiny fraction of an HST pixel, are 
solely responsible for any spectral differentiation.  As can be seen in the classified images (Figure 6), it is evident 
that the abundance of Cracked Road is overestimated while Worn Road is underestimated.  Considering the subtle 
spectral differentiation between these classes, especially since the cracks may be filled or not filled, a better 
approach may be to incorporate a texture layer to observe the more mottled nature of cracked pavement.  Higher 
spatial resolution in the hyperspectral imagery would also improve results, even though this would lessen the value 
of hyperspectral imagery relative to aerial photography. 
 There was essentially little to no correlation between these classified products and road quality measures found 
in the literature.  The VIS2 and SWIR ratio products also were not very successful in identifying damaged roads, 
though, and seem to be highly affected by any shadowing.  Even diffuse shadowing severely affected the ratio 
results, making these areas appear to be more highly damaged than they actually were. 
 
 

CONCLUSIONS 
 

 This study had only modest success at mapping road quality with hyperspectral imagery.  This success is 
tempered by the fact that detailed training needed to be performed using high spatial resolution aerial photography.  
Considering the extremely variable nature of these road classes, it is unlikely that the derived spectral library could 
be applied to a different area with much success. 
 One solid conclusion, though, is that any method used to map road quality with spectral data must include some 
measure of albedo in addition to spectral shape.  The CART-like algorithms used here proved to be superior to other 
methods, though their robustness is limited.  The addition of a texture measure (easily included in CART analysis 
along with spectral data) may improve results. 
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