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Introduction

Detailed and accurate information about the road network is the foundation for

comprehensive management and planning of transportation infrastructure and

assets. Quality standards for the required data have evolved considerably over

the last decades as traffic and applications have become more demanding, and

include a wide range of variables such as road centerline and geometry,

pavement type, and road surface conditions. Remote sensing has the potential to

provide detailed road mapping and may offer more up-to-date and economical

methods to improve common practice transportation network observations

(Jensen and Cowen 1999, Usher 2000). However, remote sensing of road

infrastructure faces several challenges. Given the three-dimensional land surface

structure, roads are the “bottom layer” that can be covered or shadowed by

surrounding surfaces such as trees, buildings, or cars (Figure 1). The road

surface structure and geometry are mixed and result in a spectrally indistinct
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response with a high amount of spatial variability. Within urban areas, where the

road network is particularly dense, these factors become even more complex.

The abundance and three-dimensional structure of artificial materials such as

roofs, transportation surfaces, vegetation, bare soil, and other cover types result

in a spatial and spectral heterogeneity that far exceeds natural and quasi-natural

environments (Figure 1), making urban remote sensing image analysis a

challenging process.  In fact, the discrimination and mapping of road surfaces

has to consider the full complex spectral characteristics of urban materials and

land cover types.

Figure 1: Illustrated examples of challenges in remote sensing of the road transportation network.
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Recent developments in remote sensing technology have provided a variety of

potential avenues for generic and systematic research on these problems. These

investigations can help one determine capabilities and limitations in remote

sensing of road infrastructure and hopefully overcome the known challenges..

One of the innovative concepts involves ground spectrometry (from ground

measurements) and hyperspectral remote sensing (from airplane or satellite

sensors). These sensors sample the earth surface in a large number of narrow

spectral bands over a continuous range. Such detailed measurements allow for

precise investigations and understanding of chemical and physical material

properties as well as surface geometry that are reflected in distinct spectral

characteristics (Goetz et al.1985). Imaging spectrometry has been increasingly

explored to support the application of remote sensing for earth observation

purposes, i.e. for detailed spectroscopic analysis of natural targets such as

vegetation and minerals (Roberts et al. 1998, Clark 1999, van der Meer and de

Jong 2001). Despite these advantages, the knowledge about spectral

characteristics of man-made surface types is quite weak and little research has

focused on the spectrometry of urban materials and road surfaces (e.g. Ben Dor

et al. 2001). In fact, the lack of a general understanding of urban spectral

properties is one of the major limiting factors in detailed remote sensing of these

environments and of transportation infrastructure. There is inadequate

understanding about the spectral characteristics of road surfaces (of varying

type, age and condition) and how these targets differ spectrally from other urban

materials and land cover types. The capabilities and limitations of common
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multispectral sensor systems are unclear, as are the most suitable sensor

configurations for mapping the road network in urban areas. If these questions

are answered then the role of remote sensing technology in road infrastructure

mapping can be better understood.

A research program initiated by the US Department of Transportation focuses on

these research questions and explores the potential of remote sensing in

transportation. As a result, a “National Consortium on Remote Sensing in

Transportation” (NCRST Infrastructure 2002) has been established at the

Department of Geography, University of California Santa Barbara. One of the

research objectives is to utilize imaging spectrometry and hyperspectral remote

sensing in mapping urban road infrastructure. An important element in this

research is the development of a comprehensive regional spectral library of

urban materials and road surfaces. Urban spectral libraries were developed

using a handheld spectrometer in the field and from high-resolution remotely

sensed data (Airborne Visible/Infrared Imaging Spectrometer). The spectral

libraries and field observations provide a comprehensive database for spectral

studies using principles of imaging spectrometry on the scale of individual

materials (ground spectrometry) and land cover types (hyperspectral remote

sensing).

Data and Methods
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This study focuses on the urban area of Santa Barbara and Goleta, California

that is characterized by a versatile mix of urban land cover types and surface

materials including various categories of roofs and different road types and

conditions. The hyperspectral remote sensing data from NASA-JPL’s Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) were acquired on June 9th, 2000.

The AVIRIS sensor records 224 spectral bands with a bandwidth of ~ 10 nm

each, covering a spectral range from 350 to 2500 nm. The data set was acquired

at a spatial resolution of approximately 4 meters, comparable to current high-

resolution space-borne sensor systems like IKONOS. The data meet the

generally proposed spatial resolution standard of less than 5 m for detailed urban

area mapping (Welch 1982, Jensen and Cowen 1999), and the high spectral

resolution lends itself well to comparative land cover mapping. The data were

intensely processed by the Jet Propulsion Laboratory (JPL) in Pasadena and the

University of California, Santa Barbara (UCSB) for motion compensation and

reduction of geometric distortions. The AVIRIS data were processed to apparent

surface reflectance using a modified Modtran radiative transfer model (Green et

al. 1993; Roberts et al. 1997) and adjusted using a ground reflectance target

(Clark et al. 1993). The development of the AVIRIS urban spectral library was

based on a comprehensive training dataset from ground observations and

mapping that was developed for land cover classification mapping purposes (see

Herold et al. 2003). The spectral library includes 26 different cover types and

contains 956 individual spectra.
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Ground spectra were acquired with an Analytical Spectral Devices (ASD) Full

Range spectrometer. The spectrometer samples a spectral range of 350-2500

nm at a sampling interval of about 2 nm. Spectra were measured between May

23 and June 5, 2001 from a height of about 1 meter with a field of view of 22°

(0.39 m at a height of 1 m). Ground spectra were acquired in sets of five for each

field target. Four to six sets of spectra were bracketed by measurements of a

Spectralon (Labsphere, North Sutton, NH) reflectance standard. Spectra were

inspected for quality, and suspect observations were discarded. Each urban

surface spectrum was divided by its appropriate standard spectrum to create a

reflectance spectrum. The entire Santa Barbara urban ASD spectral library

consists of nearly 6000 individual reflectance spectra, representing 147 unique

materials and surface types.

Table 1: Examples of different materials and land cover in the two urban spectral libraries. Each

target is linked to a diagram that contains two example spectra and the spectral

name/identification that is used in the spectral libraries.

Raj Bridgelall
Highlight



7

Example spectra from both libraries are described and linked in Table 1. The

spectra represent the complex characteristics and variability of urban surface

types, including built-up materials (e.g. various roof types and road materials)

and non-built up surface types (e.g. green vegetation, non-photosynthetic

vegetation and bare soil). The different materials and land cover types are

organized in a land cover classification system . Given the general research

objectives, the ASD spectral library has a strong focus on road surfaces and

specific roof types (e.g. composite shingle roofs). The AVIRIS library represents

a larger range and variability of land cover classes but with less detailed

descriptions of the specific surface characteristics. This fact is represented by the

examples shown in Table 1. They indicate a larger variability within each class

Land cover type ASD urban spectral library AVIRIS urban spectral library

Roofs/Buildings

Wood shingle roof
Tan composite shingle roof
Tar roof
Red tile roof
Red gravel roof
Grey tile roof

Wood shingle roof
Dark-gray composite shingle roof
Tar roof
Red tile roof
Grey gravel roof
Light-gray asphalt roof
Brown metal roof

Transportation
surfaces

Asphalt road
Concrete road
Gravel road
Parking lot

Asphalt road
Concrete road
Gravel road
Parking lot
Railroad tracks

Non-built up
and other urban
surfaces

Green vegetation
Non-photosynthetic vegetation
Bare soil

Green vegetation
Non-photosynthetic vegetation
Bare soil
Swimming pool
Green tennis court
Red sport field tartan
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and a more “noisy” spectrum in AVIRIS spectra due to minor residuals of

atmospheric distortions, especially for low reflectance targets. The spectral

libraries are available for research purposes (please contact the authors).

Both spectral libraries were used to analyze the spectral properties of urban

materials and road surfaces of different type, age and conditions. The spectral

analysis included an evaluation of separability between these different surface

types and an assessment of suitable spectral bands in separating them. Only a

brief description of the methods is given here, for more detailed information of the

spectral analysis methods, image classification, and accuracy assessment see

Herold et al. (2003). The processing was performed using the public domain

program “MultiSpec.” This program was designed for processing and analyzing

high dimensional and hyperspectral remote sensing data sets (Landgrebe and

Biehl 2001). The primary method used is the Bhattacharyya distance (B-

distance). This measure calculates the statistical distance between two Gaussian

distributions (Kailath 1967) and incorporates both first and second order

statistics. The B-distance is widely used for spectral separability analysis and

band prioritization to focus an application on a set of most suitable spectral

bands (Chang et al. 1999). The AVIRIS data were classified using a Maximum

Likelihood classification algorithm. The classification resulted in a land cover map

that considered several types of roads, e.g. with asphalt, concrete, and gravel

surfaces, and parking lots.
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Figure 2: Subset of the road network from the land cover classification. The background image is

the NDVI.

Mapping of road types and road centerlines

A subset of the road network from the land cover classification is presented in

Figure 2. The map shows the roads and how they were classified from the

AVIRIS data. Areas in red and light blue indicate road pixels that were classified

correctly. Areas in other colors represent road pixels that were misclassified into

non-road categories, indicating distinct inaccuracies in the classification.  The

road classification accuracies are presented in Table 2. The accuracy

assessment was based on a random cluster sampling with 100 individual
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reference points for each class (Herold et al. 2003). The accuracy is lowest for

asphalt roads (about 70 %), with improvements for concrete roads (about 80%)

and highest for gravel roads (about 90 %).

Table 2: Classification accuracies for different road types (Note: The producer accuracy gives a

general measure of classification performance. The user accuracy describes the “overmapping”

of the class, e.g. the lower the user accuracy the more the class appears in areas of other land

cover types).

The different sources of error are clearly highlighted in Figure 2 and reflect the

challenges that were discussed in the introduction. The road surfaces that are

mapped as bare soil represent construction areas. The appearance of roof and

vegetation pixels within the road areas shows the significant confusion between

those classes, particularly for dark and shadowed road. Some of these errors are

related to the spatial resolution. Major roads are mapped more accurately than

minor residential roads and the edges of major roads seem to be more likely

classified as roofs; a typical mixed pixel problem. However, some of the

inaccuracies are of spectral nature and will be investigated in more detail with the

ASD ground spectral library.

Road type Producer accuracy User accuracy
Light asphalt (new) 89 % 64 %
Dark asphalt (old) 55 % 85 %

Concrete 71 % 95 %
Gravel 83 % 100 %
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Figure 3: Spectra of typical road and roof materials from the Santa Barbara ASD urban spectral

library, Note: The small-scale variations at ~950 nm are an artifact of the field spectrometer and

represent the area of transition/overlap between the sensor materials. Other sensor induced

spectral variations relate to the “noisy” signal in the SWIR II region above 2300 nm. These

artifacts are present in all spectra and appear strongly in low reflectance targets. The major water

vapor absorption bands are interpolated. Note the different scales in the y-axis.

Figure 3 presents the spectra of typical road and roof materials. They show a

general spectral shape of increasing reflectance towards longer wavelengths with

a reflectance peak in the SWIR. Concrete and gravel roads have the highest

reflectance; parking lots have the lowest over the entire spectral range. The road

material spectra contain absorption features in the SWIR that can be related to

their mineral and hydrocarbon components. Red tile roofs and wood shingle

roofs show distinct spectral signatures compared to the other materials. Both roof

types show a significant reflectance increase in the NIR and SWIR region. Tar,

gray tile and composite shingle materials show the lowest reflectance that is fairly

constant over the whole spectral range with only minor absorption features in the
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SWIR. They have a spectral signature similar to asphalt roads, partly due to the

fact that they are composed of similar generic materials. The spectral similarity

between these targets is emphasized by the spectral separability measurements

(B-distance) derived from the ASD ground spectra. Figure 4 shows that the

lowest separability values of nearly all investigated urban materials appear

between specific types of roofs and roads. These spectral similarities are generic

material properties and are responsible for the inaccuracies in the land cover

classification (Figure 2). In fact, the spectral confusion between individual roofs

and roads is higher than for different road surface types as confirmed by the

classification results. As indicated in Figure 4, concrete roads and to some extent

asphalt roads have fairly high average and low minimum separability. This

indicates a large within class variability and emphasizes the spectral complexity

of transportation surfaces compared to other urban land cover types. In rural

areas where asphalt roads are surrounded by vegetation and natural surfaces,

this problem is certainly less evident, where classification is impeded primarily by

foliage and cloud cover.
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Figure 4: Matrix of B-distance values for minimum and average separability between different

man-made land cover types.

The previous examples have explained the classification errors between road

surfaces and roof types. The other major source of error presented in Figure 2

involves vegetation. In general, vegetation surfaces and roads have a very

different spectral signature and confusion is expected to be minor (Figure 5).

Some of the misclassifications are related to vegetation that is covering the road

surfaces, i.e. a large tree overhanging a road.  This problem is not avoidable

from a remote sensing perspective. However, some of the roads are completely

mapped as vegetation (Figure 2) although they are not completely covered by

vegetation. These areas are covered by vegetation shadow. The spectral

characteristics of these surfaces are shown in Figure 5. The diagram presents a

concrete surface completely shaded by a tree canopy. The canopy scatters and

transmits light downward onto the shaded surface, obscuring the spectral

signature of the urban surface. While demonstrating overall low reflectance, the

1:
Com_sh

2:
Grav_rf

3:
Tar_rf

4:
Gr_tile

5:
Rd_tile

6:
Wd_sh

7:
Asp_rd

8:
Concr

9:
Grav_rd

10:
P_lot

1: Composite shingle 56 19 14 75 61 8 18 106 13

2: Gravel roof 405 36 46 109 189 51 17 88 84

3: Tar roof 190 599 30 69 127 17 20 135 26

4: Gray tile roof 92 178 67 34 32 35 16 61 31

5: Red tile roof 549 581 559 375 84 90 52 147 130

6: Wood shingle roof 315 359 171 172 197 218 31 152 249

7: Asphalt road 244 693 119 99 1331 351 28 68 7

8: Concrete road 687 735 1325 423 1247 977 1151 29 11

9: Gravel road 2533 2514 1733 2460 927 4370 3047 1799 117

10: Parking lot 194 700 98 81 1499 436 194 897 3832

Coding of values:
Bold: Average separability (lower left part of matrix)

Italic: Minimum separability (upper right part of matrix)

Gray background: Average value £ 150 / Minimum value £ 20
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shaded spectrum possesses subtle spectral features typical of vegetated land

cover, including a red edge and water absorption bands, hence creating a

signature that is more characteristic of dark vegetation. Therefore, the effect of

shadow is a problem at all resolutions, and spectra containing shadowed land

cover should be analyzed with specific attention. In terms of road type mapping

this effect can result in severe misclassifications when shaded roads are mapped

as “dark vegetation”.

Figure 5: Spectra of concrete surface, green vegetation and concrete surface shaded by tree

from the Santa Barbara ASD urban spectral library.

These errors, though understood, can have significant impacts on the derivation

of road centerlines. Once roads or specific road types are classified from remote

sensing data, the mapping product might be used to derive road centerlines. This

process has to consider the inaccuracies in the mapping process (gaps in road
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network and overmapped road areas) and the spatial resolution of the remote

sensing system. Based on the mapping result from the AVIRIS data, the process

of centerline extraction is presented in Figure 6. Note that Figure 6(c)

incorporates results of separate processes of linear filtering (to remove non-linear

features such as roofs and other isolated pixels), gap removal, vectorization and

smoothing. The final centerline map still shows areas of inaccuracies in particular

from major gaps in the remote sensing mapping product.

(a) (b) (c) (d)

Figure 6: The process of road centerline extraction from land cover classification: (a) AVIRIS

image, (b) Classification of road surfaces (includes some driveways and roofs), (c) Linear filter

applied, gaps removed, and centerlines vectorized and smoothed, (d) Reference centerline map

for comparison.  Principal areas of disagreement are highlighted in (c); some discrepancies arise

because the imagery predates the map. Driveways are easily removed by analysis of connectivity

and length.
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Spectral sensor characteristics

One of the purposes of spectrometry is to identify the most important spectral

bands for discriminating surface materials.  This research aims to identify bands

that best discriminate among urban materials, particularly pavement types. For

such specific land cover classification purposes having 224 bands from a sensor

like AVIRIS provides “too much” spectral information. Mapping accuracy can

actually decrease if too many highly correlated spectral bands are applied for

such purposes (Landgrebe 2000). The question of most suitable bands is

additionally important in assessing spectral capabilities and limitations of

common multispectral satellite remote sensing systems such us IKONOS or

Landsat TM. The spectral sensor characteristics of these earth observation

systems were designed for mapping a variety of surfaces, especially for

acquisition of natural and quasi-natural environments. Considering the unique

spectral characteristics and complexity of urban land cover types, it is assumed

that there are specific limitations in detailed mapping of such an environment

from these sensors. Therefore, it is important to consider the design of specific

sensors, optimized for urban/transportation infrastructure mapping, that could

achieve comparable results at a far lower cost than for a full hyperspectral

system.

The derivation of the most suitable bands was based on the B-distance that

provides a separability score between each land cover class.  The B-distance
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can be used to identify the bands that contribute the most spectral contrast

between the classes. Related investigations of the ASD spectral library and

AVIRIS data have resulted in a set of 14 most suitable bands that allow the

greatest spectral separability of urban land cover classes (these 14 bands were

used to derive the AVIRIS classification result as presented in the previous

section). The derivation of the most suitable bands was based on the B-distance

as a quantitative score of separability to determine individual band combinations

that are most useful in separating urban materials and land cover types. The

analysis was performed for the urban spectral library and AVIRIS. The individual

results were combined resulting in a set of 14 most suitable bands. For more

information on the derivation of most suitable bands for this study see Herold et

al. (2003).
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Figure 7: Most suitable spectral bands for urban mapping derived from the ASD spectral library

and the AVIRIS data compared to spectral signatures of several urban land cover types and the

spectral coverage of LANDSAT TM satellite sensor (gray in the background).

The most suitable bands for urban mapping appear in nearly all parts of the

spectrum with a fair number in the visible region (Figure 7). This supports the

previous observation that narrow spectral bands are important in resolving small-

scale spectral contrast (e.g. color, iron absorption features) among materials and

land cover types in this spectral region. Additional bands appear in the near and

short-wave infrared that represent the larger dynamic range of reflectance values

and specific absorption features in the short-wave infrared. Most of the bands are

located outside or near the edges of the Landsat TM spectral configuration

indicating possible spectral limitations of this and similar sensor systems.

To further investigate this issue, multispectral bands of IKONOS data were

simulated from AVIRIS to allow detailed analysis of sensor limitations in terms of

spectral resolution. This step used sensor specific spectral functions, available

from the data vendor, to convolve AVIRIS data into IKONOS wavelengths.

IKONOS has a similar spatial but significantly lower spectral resolution than the

AVIRIS data. Using land cover classification accuracy as an indicator, the

limitations of IKONOS in mapping the urban environment are shown in Figure 8.

The graph shows the improvements in land cover classification considering

different spectral sensor characteristics. The first, “Top 5 VIS,” assumes 5 narrow

most suitable bands (10 nm bandwidth) in the visible (VIS) and near infrared
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(NIR) region instead of the 4 broad bands of IKONOS. The second setting

(IKONOS + 2 top SWIR bands) assumes the IKONOS bands with two additional

most suitable bands in the short-wave infrared, a region not covered with

IKONOS. Finally, we consider a spectral configuration that uses all 14 most

suitable bands shown in Figure 7.

Figure 8: Improvement in classification accuracy for different spectral configurations compared to

classification based on IKONOS.

The improvements shown in Figure 8 are obvious for nearly all classes,

especially for individual roof and road types. No improvements are found for

classes that were already mapped at very high accuracy with IKONOS, such as

water, vegetation and swimming pools. The figure shows that IKONOS has

limitations in detailed urban mapping due to the broadband character of the

Raj Bridgelall
Highlight



20

spectral bands and the fact that it does not cover the short-wave infrared region.

The improvements are especially evident for different road types, particularly for

asphalt and concrete roads and parking lots. For these targets, user accuracy

increases between 10% and 40% when using the most suitable Top 14 bands,

indicating the great limitation of IKONOS in mapping roads in an urban

environment.

These results suggest that urban areas represent a spectral diversity that far

exceeds that of natural systems, as indicated by previous studies (Green and

Boardman 2000, Ben Dor et al. 2001, Small 2001). Common multispectral sensor

systems have significant limitations for mapping the urban environment

considering different roof materials, road surfaces of variable age and quality,

parking lots, bare soil and urban vegetation. For example, the broad band

channels do not resolve small-scale spectral absorption features in the visible

and SWIR II region that have been described for several built up and some non-

built up cover types. The design of new “optimized” multispectral remote sensors

has to take these issues into consideration to meet the needs for detailed

mapping of urban land cover, road types and road conditions. However, these

findings are true of the Santa Barbara region, and might be different if other

urban areas are considered.

Spectrometry of asphalt surface conditions
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One obvious contribution of imaging spectrometry is the detailed study of surface

properties and their impacts on spectral characteristics. Once distinct spectral

characteristics are identified in the spectral library, they can be explored in

remote sensing mapping applications. Figure 9 investigates the effects of asphalt

surface conditions and age on the spectral signature. The spectra represent the

ASD measurements and show the influence of different degrading processes on

the asphalt surface material (SHRP 1993). Most apparent are the general

increase in brightness, the development of specific absorption features that relate

to the decreasing asphalt content in the aggregate, the oxidation of in place

material (increase in iron absorption features at ~ 520 nm, 670 nm and 870 nm),

and degradation from polished aggregates and raveling.
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Figure 9: Spectral characteristics of asphalt road surface conditions and age from the ASD

spectral library.

Despite the distinct spectral signals in Figure 9, the scaling from ground

measurements to remote sensing data usually decreases the amount of spectral

detail. This is shown in Figure 10. AVIRIS data are generally more noisy due to

atmospheric interference and system noise, especially for low reflectance targets

like asphalt surfaces. Furthermore, data in 4 m spatial resolution don’t

necessarily represent spectrally “pure” asphalt surfaces, e.g. other surface types

that appear near roads can produce spectrally mixed pixels.  However, the

AVIRIS spectra shown in Figure 10 indicate distinct differences among roads

with different age and conditions especially in the visible and short-wave infrared

regions. These differences in reflectance can be represented in specific band

ratios that can be used to map these surface characteristics with AVIRIS. Figure

10 shows the bands used in the ratios in this study. They were derived using a

simple subtraction of the reflectance values; four bands in the visible/near-

infrared region and two bands in the short-wave infrared region.
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Figure 10: AVIRIS spectra of asphalt roads with varying age and conditions.  Spectral

wavelengths used for the band ratios are indicated.

Examples of two ratios are shown in Figure 11. The ratio using the short-wave

infrared represents the age and the effect of raveling (dislodging of aggregate

particles and loss of asphalt binder) of the asphalt surface (SHRP 1993).

Recently paved roads appear with low change in reflectance (green and yellow

colors) and the ratio increases with older and more worn asphalt. The ratio of the

VIS/NIR bands represents a different spatial pattern, with newly paved roads not

separating as well. Important low value areas appear at intersections due to the

accumulation of tire material and oil. Most roads indicate intermediate age and

decent surface conditions. In general, high ratio values characterize highly
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oxidized surfaces with polished surfaces and raveling effects, and therefore

represent old roads in poor conditions.

Figure 11: Two band ratios from the AVIRIS showing the age/condition of road asphalt surfaces.

The results presented in Figure 11 are qualitative and somewhat experimental

but show the potential of remote sensing in mapping specific types of asphalt

surface conditions. There are, however, some general limitations. With these

data, it is only possible to determine gross age and condition of pavement.

Transportation professionals are usually more interested in pavement quality

(e.g. rutting, cracking), but these are sub-meter phenomena and are not

detectable in hyperspectral imagery of this resolution. Although cracking and

patching tend to be spatially concentrated and therefore potentially detectable in
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4 m imagery, the research shows that there is too much variability among

pavement aggregates to be able to isolate cracked and patched areas with any

certainty. Therefore, it is important to further investigate these issues with data in

higher spatial resolution and appropriate quantitative ground observations of

pavement conditions.

Conclusions

Imaging spectrometry provides interesting and innovative avenues for exploring

the capabilities and limitations of remote sensing in surveying transportation

infrastructure. This study focuses on mapping road infrastructure within urban

areas that are known to be particularly complicated given the spatial and spectral

characteristics of these environments. To explore the role of remote sensing in

transportation the investigations focused on methods of imaging spectrometry for

a sophisticated understanding of the spectral properties of road surfaces and

urban land cover types, their separability and mapping accuracy. This study was

based on principles of imaging spectrometry using an ASD ground spectral

library and high-resolution hyperspectral AVIRIS data acquired in the Santa

Barbara, CA urban area. The analyses provide comprehensive information about

the spectral characteristics of urban materials and road surfaces of different type,

age and condition. Findings show that problems in spectral classification of road

surfaces are related to generic spectral similarities among specific roof and

asphalt road materials. Further errors appear for vegetation covering the road
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surface and a vegetation shadowing effect imposing a dark vegetation spectrum

onto the road surface. Accordingly, road detection and centerline extraction from

AVIRIS data are only somewhat successful in urban areas. The success in road

delineation might be improved by using additional contextual information from

object-oriented image classification (Blaschke and Strobl 2001), especially since

the spectral separability of different road surface materials is fairly high. The

hyperspectral approach to road mapping in rural areas should be simpler and

more successful, because pavement signatures are less prone to confusion with

those of surrounding materials. Rural areas are not well suited to field-based

mapping technologies and a remote sensing solution would be valuable in these

areas. This research project was not designed to examine rural areas, but this

area has great potential for future efforts.

This research has provided some interesting results on the effect of asphalt

condition and age on the spectral characteristics of road surfaces. It is possible

to describe general pavement age and specific surface defects, such as raveling,

and estimate their spatial characteristics from AVIRIS. Other common pavement

quality parameters (e.g. rutting, cracking), however, were found to be

undetectable at spatial sensor resolutions of 4 m.

Ultimately, the success of remote sensing in transportation will depend largely on

economics. The focus on imaging spectrometry, particularly using full

hyperspectral systems like AVIRIS (currently an experimental sensor), can be
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criticized as being overly complex and too expensive for most agencies. In

regard to this issue, this research aimed to generalize the problem to the

multispectral level, while addressing the science of material discrimination at the

more rigorous 224-band hyperspectral level. Currently, common multispectral

satellite systems show significant spectral limitations in mapping road

infrastructure within the urban environment. The location of their spectral bands

and their broadband character are insufficient to resolve the distinct spectral

characteristics of urban materials and land cover types. This research shows that

there is a potential future for a multispectral sensor designed for use in urban and

pavement mapping that would allow successful urban mapping at a large scale

and an affordable price.
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