UNIVERSITY OF TWENTE.

INFRARED SPECTROSCOPY ON MINERALS AND ROCKS CHRIS HECKER (ITC)

JULY 2013

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

INTRO: CHRIS HECKER

CV

- B.Sc. Earth Sciences (1996)
- M.Sc. Earth Sciences (1999)
- University of Basel, Switzerland
- PhD Thermal RS (2012) ITC
- Lecturer Geologic Remote Sensing (70%)
- Researcher Geologic Remote Sensing (30%)
- Areas of interest:
 - Geologic RS
 - Thermal RS
 - Imaging Spectrometry
- Email: c.a.hecker@utwente.nl

INTRO UT-ITC (IN A NUTSHELL)

Mission:

development and transfer of knowledge in geo-information science and earth observation

- Academic level: PhD/MSc/Master/Postgraduate Diploma
- Target group:

young and mid-career professionals, and scientists from developing and emerging countries, increasingly professionals from industrialised countries

 Framework international development cooperation

OUTLINE OF LECTURE

SWIR vs TIR

- Emissivity spectra of Minerals and Rocks
- Ground-based setups
 - Laboratory
 - Field
- Mapping methods
- Case study: TIR+PLSR

THERMAL INFRARED

ONE OF THE TOOLS IN THE MODERN EARTH SCIENTIST'S TOOLBOX

FUNDAMENTAL VIBRATIONAL FREQUENCIES

- The bonds in a molecule or crystal lattice are like springs with attached weights: the whole system can vibrate
- Different types of vibration possible
- Each have different Energy levels
- Combination of absorption features can be diagnostic
- Examples:
 - AI-OH, 2.20 μm
 - Mg-OH, 2.3 μm
 - Ca-CO₃, 2.32-2.35 µm

■ Si-O, ~ 9-10 µm

UNIVERSITY OF TWENTE.

Stretching

Asymetric Stretching

Bending

WHY EMISSIVITY SPECTRA?

- VIS-SWIR features in minerals with:
 - Iron
 - Hydroxyl / water
 - Sulfates
 - Carbonates
 - Phosphates
- No SWIR features for non OH-bearing Silicates => TIR emissivity spectra needed

Rule of Thumb:

- VNIR/SWIR shows alteration products
- TIR shows differences in rock composition

OUTLINE OF LECTURE

- SWIR vs TIR
- Emissivity spectra of Minerals and Rocks
- Ground-based setups
 - Laboratory
 - Field
- Mapping methods
- Case study: TIR+PLSR

TYPICAL MINERAL SPECTRA

- Reststrahlen feature
 - Strong reflection peak / emission minimum due to fast change in refractive index and center of strong absorption band.
- Causes emissivity low
- Shape is diagnostic for silicates and other minerals
- Christiansen frequency
 - Wavelengths where refractive index is close to unity => little scattering
 - If not in absorption band, causes high transmission and low reflectance
 - Visible as emissivity maxima in spectra

TYPICAL MINERAL SPECTRA (CONT'D)

- Mineral (transmission) spectra showing:
 - Christiansen features (up arrows)
 - Reststrahlen features (down arrows)
 - Positions shift to longer wavelengths with decreasing Si-O₄ tetrahedra polymerization.

TYPICAL ROCK SPECTRA

- Rock spectra usually more complex than mineral spectra
- Rock spectra combine features of their main mineralogy
- Acidic rocks show reststrahlenband at lower wavelength than basic rocks
- Change in emissivity minimum can be used for mapping igneous rocks of variable SiO2 content

• Source: Sabins (1997) UNIVERSITY OF TWENTE.

TYPICAL ROCK SPECTRA (CONT'D)

- Multi-band thermal systems can help distinguish different rock types and compositions
- Vertical lines and numbers indicate 6 bands of the Thermal Infrared Multispectral Scanner (TIMS)

TYPICAL ROCK SPECTRA (CONT'D)

What can we do with it in rock / soil mapping?

- Christiansen frequency
 - Exact position not diagnostic in mixtures
 - Generally high emissivity around 7.5 μ m (and 12 μ m) useful in T ϵ S.
- Reststrahlen feature
 - General position / shape can give hint in multispectral mapping (e.g., silica%).
 - "Deciphering" of reststrahlen feature used for quantitative analysis in spectroscopy (e.g., PLSR or unmix)
 - Reststrahlen feature of rocks are great for practicing field spectroscopy (before attempting e.g., plants)

TYPICAL ROCK SPECTRA (CONT'D)

- Spectral contrast of rocks much higher than in soils or vegetation
- Example of DHR spectra from ASTER speclib

UNIVERSITY OF TWENTE.

Source: Hecker et al (2013) Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing, in "Thermal Infrared Remote Sensing", Springer.

OUTLINE OF LECTURE

- SWIR vs TIR
- Emissivity spectra of Minerals and Rocks
- Ground-based setups
 - Laboratory
 - Field
- Mapping methods
- Case study: TIR+PLSR

THE SPEC LAB FAMILY PORTRAIT

TYPICAL LAB SPECTROMETER WITH DIFFUSE REFLECTANCE (DRIFT) SETUP UNIVERSITY OF TWENTE.

LABORATORY – SAMPLE CONSIDERATIONS

-Designed for small powder samples -Sampling spot and space too small for most geologic samples

LABORATORY – GEOMETRY CONSIDERATIONS

Transmission

Bi-dir refl

Ш.

Quantitative comparison with RS data: DHR or Emission only

Emission: careful temperature control of sample needed

LABORATORY – GEOMETRY CONSIDERATIONS (CONT'D)

- Same Albite sample
- Measured with DRIFT, DHR, transmission.
- Qualitatively similar
- Quantitatively different (wavelength shifts, relative feature depths ... etc.)

EXTERNAL INTEGRATING SPHERE MEASUREMENT

- Gold integrating sphere
- Double source (SWIR & TIR)
- Double detector (SWIR & TIR)
- Large samples from bottom

EXTERNAL INTEGRATING SPHERE MEASUREMENT (CONT'D)

EXTERNAL INTEGRATING SPHERE MEASUREMENT (CONT'D)

Similar setups at JPL (top left), Geologic Survey Japan (top right) and USGS Reston (bottom center).

Photo credit GSJ: R. Hewson

LABORATORY EMISSIVITY MEASUREMENTS

- Schematics of emissive system at Arizona State University
- Planetary community more into emission lab measurements (avoid uncertainty of Kirchhoff law)

(Schematics: Ruff, 1997)

PITTSBURGH EMISSIVE LAB SPECTROMETER

- Prof. Mike Ramsey (formerly ASU)
- Emission system
 based on ASU but
 further developed
- Low temp (80C) and high furnace for high temp (up to 1200C)
- Measurement of emissivity changes when rocks melt
 UNIVERSITY OF TWENTE.

OUTLINE OF LECTURE

- SWIR vs TIR
- Emissivity spectra of Minerals and Rocks
- Ground-based setups
 - Laboratory
 - Field
- Mapping methods
- Case study: TIR+PLSR

FIELD – INSTRUMENT CONSIDERATIONS

- Weight
- Power consumption
- Temperature stability
- Ruggedness
- Quality of spectra measured
- ...
- Applicability to Earth Science samples (most systems for open path / gases).

FIELD – STARTING POINT 1 - μ -FTIR

Pro:

- Quite light (ca. 7 kg)
- Low power consumption
- Designed with ES in mind (down-looking)
- Ready-to-go system
- Con:
 - Resolution limited
 - Speed of measurement suite
 - Portability OK but not ideal
 - Not rugged
 - Not certified for Europe

Photo source: Richard Bedell, Auex.com

FIELD – STARTING POINT 2 – EMISSION FTIR

Pro:

- High resolution
- Good quality of spectra (high throughput)
- Rugged
- Con:
 - High power consumption
 - Weight!
 - Made for open path emission measurements. Need specific foreoptics

Photo source: C. Oppenheimer

FIELD – CURRENT ITC SOLUTION

UNIVERSITY OF TWENTE. Lesson: make sure you know what you want

FIELD – CURRENT ITC SOLUTION (CONT'D) WITH CUSTOMIZED FOREOPTICS

- MIDAC Illuminator M4401
- Non-hygroscopic
 ZnSe optics
- Heavy duty, sealed cast aluminium housing (ca 15kg)
- IN2 cooled

FIELD IMAGING SPECTROMETER – TELOPS HYPERCAM

- Emissive system
- Imaging FTIR
- Spectral range: 7.7 11.5 µm
- Image pixels: 320 x 256
- Calibration: 2 Blackbodies
- Weight:
- ~30 Kg

AGILENT EXOSCAN 4100

- Diffuse reflectance measurements
- Not quantitatively comparable to emissive systems
- Lightweight: ~3 Kg
- Comparable in use to PXRF

CONSIDERATIONS - LABORATORY

- Decide: speed or absolute emissivity values?
 - Speed: bi-directional (cheap, fast, high SNR)
 - Abs. Emiss: more effort, costs, measurement time
- Abs. Emissivity:
 - Sphere: long measurements, costs (1kEUR per cm diameter)
 - Emission: sample temperature control!

CONSIDERATIONS - FIELD

- TIR field instruments not in ASD-like category
- Decide: 50 kg equipment to field or 50 kg samples to lab?
- Personal take on this question: Bring samples to lab except:
 - Calibration Airborne campaigns
 - Vegetation (?Lichen)
 - Extremely large samples (e.g. entire quarry wall)
 - Undisturbed soils and evaporite crusts (sometimes sample rings possible?)

OUTLINE OF LECTURE

- SWIR vs TIR
- Emissivity spectra of Minerals and Rocks
- Ground-based setups
 - Laboratory
 - Field
- Mapping methods
- Case study: TIR+PLSR

MAPPING METHODS

- TIR preprocessing fundamentally different (e.g. TεS)
- After reduction to ground leaving radiance, same hyperspectral tools as VNIR-SWIR mineral mapping, e.g.:
 - Linear unmixing
 - Partial Least Squares Regression (PLSR)
 - Mixture Tuned Match Filter (MTMF)
 - Spectral Angle Mapper (SAM)
 - Feature fitting
 - ...
 - etc.

OUTLINE OF LECTURE

- SWIR vs TIR
- Emissivity spectra of Minerals and Rocks
- Ground-based setups
 - Laboratory
 - Field
- Mapping methods
- Case study: TIR+PLSR

CASE STUDY: TIR – PLSR – MINERAL MODES

- Determining quantitative rock compositions (= "mineral modes") on lab and airborne TIR spectra.
- Quartz modes
- Alkali feldspar and plagioclase modes
- Plagioclase compositions

QUANTITATIVE TIR SPECTROSCOPY

LINKING SPECTRA TO MINERALOGY AND MINERAL CHEMISTRY

WHAT IS PLS?

- Regression method
- Links attribute data to spectra
- Decomposes into components similar to Principal Component Analysis
- Good for spectroscopy:
 - Compresses info into a few components
 - Can deal with lots of bands and selects the most important
 - Deals well with correlated attributes (adjacent bands often 99% correlated)

PLSR ON TIR SPECTROSCOPY PREDICTION RESULTS

PLSR ON TIR SPECTROSCOPY PREDICTION RESULTS

Mineral	Ksp	Plg	Qtz	Plgcomp	
Number of LV's used	5	4	2	5	
RMSEP [in %abs]	5.13	8.52	6.90	7.79	
R2	0.81	0.80	0.70	0.59	
slope (of regression line)	0.86	0.82	0.79	0.61	

APPLICATION TO AIRBORNE HYPERSPECTRAL IMAGE DATA

AEROSPACE CORPORATION'S SEBASS SENSOR OVER YERINGTON BATHOLITH, NEVADA

Data courtesy Dr. Dean Riley, Aero.org

c UNIVERSITY OF TWENTE.

Source: http://www.lpi.usra.edu/science/kirkland/Mesa/text.html

YERINGTON FIELD IMPRESSIONS

Yerington Mine (porphyry Cu)

MacArthur Mine (porphyry Cu)

YERINGTON FIELD IMPRESSIONS (CONT'D)

Breccia with Cu-Oxides

Granite w/ Epidote and Hornblende

MODELING FIRST

Adding noise up to 1% (absolute) to emissivity spectra gives OK results

NORMALIZING SPECTRAL CONTRAST

QUANTITATIVE AIRBORNE ANALYSIS

APPLYING PLS MODEL TO AIRBORNE DATA – QTZ CONCENTRATION AS GRAYSCALE IMAGE

SOURCES OF ADDITIONAL INFORMATION: TEXTBOOKS WITH TIR CHAPTERS

- C. Kuenzer und S. Dech (Eds.) Thermal Infrared Remote Sensing: Sensors, Method, Applications (2013)
- Drury (2001): Image Interpretation in Geology (3rd Edition); Chapter 6
- Lillesand & Kiefer (2000): Remote Sensing and Image Interpretation (4th Edition); Chapter 5
- Sabins (1997): Remote Sensing Principles and Interpretation (3rd Edition); Chapter 5
- Abrams et al (2001): Imaging Spectrometry in the Thermal Infrared; in vander Meer & de Jong (2001): Imaging Spectrometry; Chapter 10
- The Remote Sensing Tutorial <u>http://www.fas.org/irp/imint/docs/rst/</u> Section 9
- Gupta (2003): Remote Sensing Geology (2nd Edition); Chapter 9

SOURCES OF ADDITIONAL INFORMATION: ARTICLES AND CHAPTERS MENTIONED IN TEXT

- Hecker et al. (2013) Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing. <u>http://dx.doi.org/10.1007/978-94-007-6639-6_3</u>
- Riley and Hecker (2013) Mineral Mapping with Airborne Hyperspectral Thermal Infrared Remote Sensing at Cuprite, Nevada, USA, <u>http://dx.doi.org/10.1007/978-94-007-6639-6_24</u>
- van der Meer et al. (2012) Multi and hyperspectral geologic remote sensing : a review. <u>http://dx.doi.org/10.1016/j.jag.2011.08.002</u>
- Hecker et al. (2012) Thermal infrared spectroscopy and partial least squares regression to determine mineral modes of granitoid rocks. <u>http://dx.doi.org/10.1029/2011GC004004</u>
- Hecker et al. (2011) Thermal infrared spectrometer for earth science remote sensing applications : instrument modifications and measurement procedures. <u>http://dx.doi.org/10.3390/s111110981</u>
- Hecker et al. (2010) Thermal infrared spectroscopy on feldspars : successes, limitations and their implications for remote sensing. <u>http://dx.doi.org/10.1016/j.earscirev.2010.07.005</u>

QUESTIONS??

