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ABSTRACT: 
 
This paper presents an information technology (IT) data processing approach that will provide cost-effective methods to 
operationally process and exploit spectral information on board a remote sensing satellite in real time.  This IT data processing 
approach focuses on the development of a method to process and exploit, on board, huge amounts of spectral data without the need 
to have an expert spectral analyst in the loop.  Special attention is paid to spectral libraries and novel uses of exemplar spectra.  
Exemplar spectra are single spectra, derived from a set of individual spectral signature measurements that capture the spectral 
essence of a class or subclass of materials.  These involve techniques that are beyond the forefront of current hyperspectral research.  
Open Database Connectivity (ODBC) and JDBC (not an acronym) technology are used in the ground segment to provide cross-
DataBase Management System (DBMS) connectivity to a wide range of SQL databases and other tabular data sources such as 
spreadsheets.  In cooperation with other organizations that have spectral libraries, an open standard for the development of a 
prototype Internet-based, spectral information management architecture (SIMA) will be proposed.  The prototype to be built will 
contain "canned" statistical and visualization routines.  The final version of the database will be searchable by key words, etc., using 
hypertext-type software to extract desired information.  It is envision that these tools will be developed with a client-server 
architecture knowing that these algorithms may be computationally intensive.  We expect to use a COTS computational software 
language such as Matlab or IDL to code the statistical and visualization routines.  The exact algorithm adopted will be decided upon 
during definition of a User Model that will assist in defining how the database will be designed.  We will build upon the prototype 
data search and analysis engine developed at GMU/CEOSR.  This WWW-enabled, Java front-end user-friendly engine will take full 
advantage of freely available or widely available commercial software and low-cost hardware architecture.  For the ground segment, 
we will allow for the development of novel human-interfaced search implementations with efficient data mining, hierarchical data 
models making full use of extensible markup language (XML) technology.  CEOSR has demonstrated this IT approach through the 
successful relationship between GMU and NASA's Global Change Data center that houses both the EOSDIS Goddard Distributed 
Active Archive Center (DAAC) and the TRMM Science Data Information System (TSDIS).  
 

1. INTRODUCTION 

1.1 Overview 

Hyperspectral imaging (HSI) is proving to be one of the most 
powerful remote sensing techniques available.  The cost of this 
approach is the generation of huge datasets that require fairly 
sophisticated computational techniques to exploit.  The purpose 
of this paper is to show that these computational difficulties can 
be somewhat mitigated by using techniques from other areas in 
information technology.  First, the paper introduces the concept 
of real-time systems to familiarize the reader with this area.  
Second is a discussion on the potential application of hardware 
clustering as a methodology to increase overall system 
performance and throughput.  Included is a brief overview of 
the software libraries that can be used to perform parallel 
processing within such a hardware cluster.  Third is an 
overview of spectral libraries and exemplar spectra.  Effective 
utilization of these two system components is critical to the 
computationally intensive pixel unmixing and classification 
algorithms.  Following this introduction is a discussion about 
the proposed Spectral Information Management Architecture 
(SIMA), which is proposed as a technique for organizing and 
structuring spectral information.  
 

1.2 Hyperspectral Introduction 

It is possible using hyperspectral sensors and appropriate data 
analysis techniques to remotely sense the composition of 
objects within a scene.  There is a tremendous power in this 
simple statement.  Let’s look at how this works: Imaging 
spectrometers collect a very large number of wavelength 
channels simultaneously.  Hyperspectral imaging spectrometers 
collect on the order of hundred of wavelengths per each spatial 
pixel.  For example, the CASI 2 sensor collects 288 bands of 
data for each pixel imaged.  This differs significantly from 
multispectral systems, which collect on the order of ten bands 
per pixel.  For example, the Landsat Thematic Mapper sensor 
collected three bands in the visible, one in the near infrared, 
two in the mid infrared, and one in the thermal infrared only.   
 
Another way to distinguish hyperspectral from multispectral 
data is the spectral resolution or channel size.  Hyperspectral 
sensors have very small wavebands when compared to their 
multispectral cousins.  For example, the Landsat Thematic 
Mapper channels vary in size from 100 nm in the visible blue 
channel to 270 nm in the mid infrared channel.  This varies 
considerably from a hyperspectral sensor, such as CASI 2, 
which has 288 channels with a spectral resolution of 2.2 nm full 
width at half maximum (FWHM) at 650 nm wavelength. 
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By having so many small wavebands over such a large portion 
of the electromagnetic spectrum, it is possible to use 
hyperspectral data to determine the unique spectral signature of 
remotely sensed objects.  Hyperspectral data is typically shown 
in a three-dimensional cube.  Two dimensions are for the 
spatial data and the third is for all the spectral band 
measurements.  Data is captured in frames of pixels, the size of 
which is set by the sensors altitude and angular aperture.   
 
We’ve already seen the major benefit of hyperspectral imaging, 
the determination of target composition.  Next, we discuss 
some of the challenges associated with these techniques.  The 
first challenge is the huge volume of data generated by these 
types of sensors.  The complexity of dataset analysis and 
distribution is much greater here than in multispectral 
applications.  This isn’t so much of a constraint for airborne 
imaging spectrometers, where data can be hand carried off the 
platform.  The second challenge is huge volume of data 
redundancy within these datasets.  Much of the additional data 
doesn’t add to the inherent information that can be extracted 
from the hyperspectral dataset.  There are two forms of 
redundancy possible in these datasets: spatial and spectral.  In 
spectral redundancy, information from one band may be fully 
or partly predicted from other bands within the dataset.  
Generation of correlation matrices based on the data from each 
band can help identify where the redundancy is lurking.  The 
so-called Hughes effect comes into play here (Hughes, 1968).  
This effect states that the number of training pixels must grow 
to ensure reliable estimates from supervised data classifier 
algorithms.   As the number of features increases, the classifier 
accuracy will also increase to a certain point.  After this point, 
the performance of the classifications actually begins to 
decrease.  
 

2. REAL-TIME SYSTEMS 

2.1 Introduction 

Real-time systems are utilized in applications that required a 
deterministic performance.  Example applications include 
automated target recognition, navigation, networking, medical, 
and control systems.  In all of these examples, the key is to 
have the system’s hardware and software perform the required 
work within the defined timeframe.  For example, a ship’s 
navigation system that cannot keep up with positional updates 
from multiple concurrent sensor feeds is a hazard.  Real-time 
operating systems and services provide system designers with 
the ability to predetermine minimal acceptable Quality-of-
Service (QoS) metrics for the system.  Based on these metrics, 
the hardware and software of the system must be designed to 
meet the stated mission performance requirements. 
 
As the examples above illustrate, real-time systems are 
typically utilized in mission critical environments.  In these 
applications, failure of the system could lead to immediate and 
irreversible lose of property or even life.  A mission critical 
remote sensing system must provide high availability 
performance.  This constraint requires the system to perform 
consistently and reliably during its normal operations.  A 
corollary to high availability is fault tolerance.  This is the 
ability of the system to detect and react to internal and external 
errors in a controlled fashion.  For example, a fault tolerant 
system may be able to select between two redundant input 
streams to utilize the “best” data for a signal-processing 
algorithm.  This system may automatically switch from an 

input channel with too many communications errors to a more 
reliable channel.   
2.2 Performance Monitoring and Fault Localization 

 High-availability, fault tolerant systems will typically employ 
redundant hardware to attempt to minimize any system-wide 
single points of failure.  The system may be able to 
automatically detect and react to system failures utilizing the 
concepts of performance monitoring and fault localization.   
 
Performance monitoring techniques analyse the inputs and 
outputs from the components within the system and track the 
progress of data through the system.  The goal is to determine if 
the data produced at a given component of the system differs 
significantly from the expected result.  A component is given a 
particular input, and the output of the processing is compared to 
the expected result, or signature.  The performance monitoring 
software may determine that a component is working sub-
optimally.  In this case, the system would be directed to switch 
to another, redundant component.  Performance monitoring is 
typically done by checking error rates and other metrics against 
a table of thresholds.  When the threshold for a particular 
component is exceeded, the performance monitoring software 
will signal that a change is required. 
 
Fault localization differs from performance monitoring.  Here, 
known patterns, or signatures, are injected into the system and 
the results are compared to the expected.  If the fault 
localization code isolates a problem component, the system will 
notify the operator and/or force a switch to another component.   
Typically, a full system will be comprised of a variety of 
components with different performance requirements.  Near 
real-time performance is often suitable for display systems.  In 
this case, since there is an inherit delay as a human operator 
sees and interprets the display, some slight variations in 
processing performance can be tolerated.  Another component 
in our hypothetical system could have no real-time constraints.  
For example, in some applications, the software that interprets 
user inputs need not have real-time performance constraints.  In 
this case, the software would be “event driven” and react to 
user inputs when they occur.  On the other hand, such 
system/operator interactions may need to be real-time, in the 
case of a system that must react to a user selection within a 
predetermined timeframe after the operator initiates an action. 
 

3. HARDWARE CLUSTERING TECHNIQUES 

3.1 Clusters 

It may be feasible to increase the on-board processing power of 
remote sensing satellites by developing clusters of platform-
based computers.  A cluster is a collection of two to hundreds 
or even thousands of interconnected computers used as a 
unified computing resource.  Clusters are used to achieve high 
performance, high availability, or horizontal scaling.  Cluster 
technology can also be used for highly scalable storage or data 
management.  These computing resources could be utilized to 
efficiently process the remotely sensed data before transmission 
to the ground.  Alternatively, the various processors could look 
for different solutions within the same dataset.  For example, a 
processor in the cluster could be dedicated to identify an 
important spectral in a hyperspectral dataset based on user 
tasking.   
 
The clustering technique has been exploited with tremendous 
success on Earth-based problems.  A generic class of clustered 
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computers developed by NASA is the so-called Beowulf class 
(Ridge, et at., 1997).  Computer systems in this class utilize low 
cost hardware and Linux base operating systems, combined 
with mature parallel software libraries such as MPI (Message 
Passing Interface) and PVM (Parallel Virtual Machine) to make 
some of the most powerful computing systems in the world.  
The classic example given to support this approach is “to pull a 
bigger wagon, it is easier to add more oxen than to grow a 
gigantic ox.”    
 
3.2 PC/104 Computers  

A promising area for the space environment is work being done 
at by the Embedded Reasoning Institute (ERI) of Sandia 
National Laboratory in PC/104 Linux Mini-clusters (Williams 
and Armstrong, 2002).  PC/104 is an IEEE standard (IEEE 
P996.1) that describes a single-board computer (SBC).  These 
computers are compliant with industry standardized hardware 
and software of the PC architecture.  Mechanically quite 
different from the PC form factor, PC/104 modules are 
approximately 3.6 X 3.8 inches in size.  A self-stacking bus is 
implemented with pin-and-socket connectors composed of 64- 
and 40- contact male/female headers, which replace the card 
edge connectors used in standard PC hardware.  Virtually 
anything that is available for a standard PC is available in the 
PC/104 form factor.  PC/104 components are designed to be 
stacked together to create a complete embedded solution.   
 
Given the fairly small size and low power consumption of 
PC/104 computers, they may be suitable for the satellite 
environment.  Other small form factor and power consumption 
devices could be explored as alternatives.  These include VME 
(Versa Module Europa) and Compact PCI based systems.  A 
significant benefit of this approach is the availability of robust 
software and operating systems.  These components have been 
significantly utilized on a variety of platforms by thousands of 
users around the world.  Because of this huge diverse 
population, many “lurking” bugs have been exercised from the 
system.    
 
Much of this software is standards based, which helps ensure 
interoperability.  In a clustering environment, for example, the 
MPI libraries are used to share information between the various 
processes of the system.  The official MPI standard defines the 
names, calling sequences, and results of subroutines that can be 
utilized by typically compilers, such as Fortran, C, and C++.   
These subroutines are used to send and receive messages 
designed to push the data out to available processors and to 
share the computational results.  Remote sensing applications 
are well suited for this implementation since they have a high 
degree of data parallelism.    
 
Another benefit is the utilization of open source software, such 
as the Linux operating system.  One of the best methodologies 
found so far for developing consistently high quality software is 
the utilization of code reviews.   In a review, other developers 
review and provide comments on the author’s code.  Open 
source software can be thought of as being continually 
reviewed.  The source code of a computer program is made 
available free of charge to the general public. The rationale for 
this movement is that a larger group of programmers not 
concerned with proprietary ownership or financial gain will 
produce a more useful and bug -free product for everyone to 
use.   Programmers have the ability to read, redistribute and 
modify the source code, forcing an expedient evolution of the 
product. The process of eliminating bugs and improving the 

software happens at a much quicker rate than through the 
traditional development channels of commercial software.   

4. SPECTRAL LIBRARIES & EXEMPLAR SPECTRA 

4.1 Spectral Libraries 

In order to effectively exploit hyperspectral data, it is essential 
to determine what materials are being sensed within each pixel.  
Depending on the sensor and the mode of operation, the spatial 
coverage of a given pixel can vary greatly: from an area of less 
than a square meter to a square kilometer or more.  Since each 
material has its own spectral fingerprint, spectral libraries must 
be developed to house the unique spectral signatures of all 
materials that may be in the scene of interest.  Each pixel scene 
generally contains more than one material in the scene.  Hence, 
the pixel composite spectral signature must be unmixed to 
determine the spectra of all the individual material constituants 
in the scene.  Algorithms exist to perform pixel “unmixing” and 
classification operations, which strive to break up a composite 
pixel into its component parts and to define the individual 
materials contained within the composite pixel.  It is possible 
for the spectral signature of a single material within a pixel to 
dominate the spectral characteristics of that pixel.  Generally, 
however, we need to perform unmixing analysis.  
Hyperspectral data “unmixing or demixing” generally means 
detecting and identifying the presence and concentration of one 
or more specific materials in a pixel by the recognition of 
spectral signatures of these materials in the hyperspectral data.  
This is accomplished by determining which of the features of 
the materials are not shared by the other objects in the 
background scene.  The analysis entails the determination of 
the spectral signatures describing the individual constituents or 
“endmembers” of the scene.  The specrum from each pixel can 
then be represented as a weighted sum of endmember 
signatures whose positive coefficients add to one.  The Naval 
Research Laboratory (NRL) has demonstrated a very fast and 
efficient method called the “Filter Vector Algorithm” for 
demixing when endmembers are known (Palmadesso, et al., 
1995 and Bowles, et al., 1995).  They provide an excellent 
overview of sevaral spectral demixing methods.  This filter 
vector method and related techniques are collectively referred 
to as NRL’s Optical Real-Time Adaptive Spectral Identification 
System (ORASIS).  It also serves as an approximate method of 
constructing endmembers directly from the data when there is 
adequate diversity in the data set.  Their method exploits the 
requirement of positive mixing coefficients, which implies that 
all the data points lie inside a simplex (convex hull).  The 
vertices of a hypertriangle that contains the convex hull in n-
dimensional space and is oriented in a way determined by the 
shape of the hull goves an indication of which endmembers are 
involved.  These notions have been used (Boardman, 1995) to 
find approximate endmembers when no a priori knowledge of 
the material constituents of the spectral mixture is available.  
To be effective, these algorithms depend on access to a spectral 
library.  It is critical that the spectral library contain sufficient 
and appropriate samples to assist the unmixing and 
classification algorithms.   
 
4.2 Exemplar Spectra 

Exemplar spectra can be used to increase the performance of 
the unmixing and classification algorithms.  An exemplar 
spectra is a single spectra which is a composite derived from a 
variety of individual spectra.  The goal is to define a single 
spectra, which can be used to describe an entire class of 
materials.  This approach is not unreasonable.  Even under 
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highly controlled laboratory environments, it is standard 
scientific procedure to make and average multiple 
measurements to reduce noise.   Also, spectral libraries 
typically contain spectra made from a variety of instruments 
taken under diverse environmental conditions and following 
different protocols.  Even under practically identical conditions, 
noise and instrument calibration may adversely effect the 
measurements.  To yield a useful representation, the sample 
used to calculate the exemplar spectrum must be adequate in 
number and must be a representative sampling of the parent 
class.  
 
Let’s look at an example of exemplar spectra.  Let’s say the 
desired outcome is to develop a exemplar spectrum of corn, 
which could be used to successfully classify corn anywhere in 
the remotely sensed scene.   The exemplar may be created 
based on a set of different types of corn, taken at a variety of 
times, under different lighting and weather conditions, and with 
different instruments.  
 
There are two typical uses of exemplar spectra.  First, they can 
be used to filter undesired pixels out of the scene.  For instance, 
if the user is interested in looking at the health and distribution 
of evergreen trees, it would be beneficial to filter any pixels 
that are classified as corn using our hypothetical exemplar.  The 
second typical use is to identify areas where further analysis is 
required.  For instance, if the study was worried about moisture 
content in corn plants, the exemplar could be used to determine 
at quick glance if there is any corn plants present in a particular 
scene.  Once the exemplar is used to identify any pixels of 
interest, individual spectra can focus the analysis exclusively 
on these regions.   
 
In either case, the use of the exemplar can greatly enhance the 
performance of the classification algorithm by significantly 
reducing the amount of individual spectra that need to be 
compared.  Since the exemplar is designed to emphasize the 
spectral features associated with the general class of object, the 
amount of number of potential matches the algorithm needs to 
consider is greatly reduced.  
 
4.3 Spectral Information Management Architecture 

The Spectral Information Management Architecture (SIMA) is 
proposed as a plan for overcoming the limits in existing 
spectral libraries.  Existing spectral libraries vary in format 
significantly.  Since there is no community-wide common 
standard for spectral library format definition, sharing data 
from a variety of sources can become quite difficult.  Also, the 
community-wide standard requires appropriate metadata.  
Metadata is a major, hot-topic buzz word in information 
systems these days.  A recent issue of Fortune magazine ran a 
column titled “Without Metadata, Content is Just Bits.”  This 
article (Alsop, 2000) describes the importance of metadata and 
defines it as “Metadata is information about information”.  It 
offers a few examples of what metadata is and points out some 
generic examples of where metadata would be helpful.  The 
most concise definition of metadata is that it is the “data about 
the data.”  Metadata provides supporting information that 
describes some particular aspect of the target data.  What does 
this mean?    
 
Let’s say, for example, we have some data from the result of a 
chemical experiment.  Relevant metadata associated with this 
experiment could include information like who conducted the 
experiment, what equipment was used to measure these results, 

when was the equipment last calibrated and by what 
techniques, and which experiment’s methodology was used.  
One of the keys to any experiment, we all learn in grade school, 
is the concept of repeatability.  A result is considered worthless 
unless someone else following the prescribed methodology can 
produce identical results.  Metadata comes into play as the 
repository for the information about the conditions surrounding 
the target-data:  how was this data collected?  When and where 
was the experiment run?  How many times the experiment was 
ran?  Were all the results consistent and reliable? 
 
Also, the shelf life of data can now be quite long.  We are sure 
folks doing “bucket” sea temperature reading in 1910 would be 
very surprised indeed if they knew that almost a hundred years 
later their measurements were being used for climate analysis.  
Also, this information was collected long before the tools and 
techniques being currently used to analyse it were even created!  
Metadata also comes into play with regard to scientific data 
quality.  In fact, without the associated metadata, the scientific 
target-data can become worthless.  For example, suppose 
analysis is conducted based on observations from a particular 
type of sensor on several satellites.  Now, assume that after the 
fact, it is determined that one sensor on one particular satellite 
was out of calibration and its results are meaningless over a 
certain timeframe.  Without the metadata to identify those 
measurements that came from the questionable sensor, all data 
from that timeframe is suspect. 
 
4.4 XML Methodology 

The recommended methodology for developing a standard 
spectral library exchange format is extensible mark-up 
language, a.k.a. XML.  XML is a World Wide Web Consortium 
(W3C) standard for exchanging structured data.  XML is a 
mark-up language for documents containing structured 
information.  Structured information contains both content 
(words, pictures, etc.) and some indication of what role that 
content plays (for example, content in a section heading has a 
different meaning from content in a footnote, which means 
something different than content in a figure caption or content 
in a database table, etc.)   The tags which are used to mark-up 
the data provide a definition of what role that data plays in the 
domain.  Also, since XML is a W3C standard, it is not a 
proprietary technology.  Many tools exist to assist in the 
generation and parsing of XML documents.  The benefit here is 
that the SIMA isn’t locked into a single vendor’s closed format.  
 
Finally, XML can be considered a meta-mark-up language.  
This means that it allows the user to define syntax to create 
other domain-specific, semantic, structured mark-up languages.     
There are many examples of this being done in practice.  For 
example, the mathML is a mathematical mark-up language 
done in XML, which is designed to document describing 
mathematics as a basis for machine to machine communication.  
Creating such common languages within an XML framework is 
quite easy.  The developers can create an XML Schema or Data 
Type Definition (DTD).  Both of these techniques create a 
standard that other XML documents can be compared against.  
Schemas and DTDs can be used to define the type and format 
of required and optional data and metadata.  Also, XML 
document itself can contain references to other XML 
documents.   This is valuable as a way of creating linkages 
between related objects within the spectral library.  For 
example, an exemplar spectra could contain references to all 
the associate base spectra and to all the related metadata.  This 
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combination would enable the user to not only utilize the 
exemplar, but to also break it into its component parts. 
 

5. CONCLUSIONS  

We have presented an information technology (IT) data 
processing approach that we feel provides cost-effective 
methods to operationally process and exploit spectral 
information on board a remote sensing satellite in real time.  
This IT data processing approach offers a method to process 
and exploit, on board, huge amounts of spectral data without 
the need to have an expert spectral analyst in the loop.  Key 
element of this method is the proposed Spectral Information 
Management Architecture (SIMA), which emphasizes the 
standardization of spectral libraries and the novel useage of 
exemplar spectra in hyperspectral data analysis.  Exemplar 
spectra are single spectra, derived from a set of individual 
spectral signature measurements that capture the spectral 
essence of a class or subclass of materials.  We believe the use 
of exemplar spectra and XML methodology in hyperspectral 
sensing applications will result in real time spectral analysis 
techniques that extend the forefront of current hyperspectral 
research. 
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