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GLOSSARY  
 
CDOT  Colorado Department of Transportation 
 
CU  University of Colorado 
 
DG  DigitalGlobe 
 
DN  Digital Number 
 
IRI   International Roughness Index 
 
MPO  Municipal Planning Office 
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EXECUTIVE SUMMARY 
 
Following the Colorado floods of 2013, we implemented a study to determine whether 
changes in the landscape could be detected from remotely sensed satellite imagery. We 
concluded that flooding effects, in terms of infrastructure damage and water movement 
patterns, could indeed be seen in these images. 
 
We also conducted an investigation to examine the characteristics of pavement 
photographs. Photographs of good and poor pavement were collected and digitally 
analyzed. There is a clear difference between the statistical distributions of the pixel 
brightness values for the good and poor pavement photographs. The spatial resolution 
of these photographs was then downsampled to the resolution of WorldView-2’s 
panchromatic band and the images were corrupted with noise. The same type of 
analysis was performed on these images and similar results were obtained. These 
results suggest that pavement surface quality can be automatically obtained from 
images alone, that is, without in situ surveillance methods. 
 
We continued the experiment which involved texture filtering of satellite images to 
assess road surface quality. Previously, we only observed extreme cases of “good” and 
“poor” pavement condition. However, this time we observed the intermediate “fair” 
condition as well. Our results suggest that as highway pavement degrades, its 
appearance becomes brighter and more varied. Since these characteristics are 
detectable in satellite imagery, we believe that a pavement condition classification 
scheme can be developed. 
 
The results of these analyses are presented in this report.
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I — TECHNICAL STATUS 
 

Part 1:  Road Disruption in the Colorado Flood from Satellite Imagery 
 
The 2013 Colorado floods were a natural disaster occurring in the U.S. state of Colorado. 
During the week starting on September 8, a slow-moving cold front stalled over Colorado, 
clashing with warm humid monsoonal air from the south. This resulted in heavy rain and 
catastrophic flooding along Colorado's Front Range from Colorado Springs north to Fort Collins. 
The situation intensified on September 11 and 12. Boulder County was worst hit, with 9.08 
inches (231 mm) recorded September 12 and up to 17 inches (430 mm) of rain recorded by 
September 15, which is comparable to Boulder County's average annual precipitation of 20.7 
inches (525 mm). 

At least eight deaths have been reported by the Colorado Office of Emergency Management, 
with two more missing and presumed dead and hundreds remaining unaccounted for. More 
than 11,000 have been evacuated. The town of Lyons in Boulder County was isolated by the 
flooding of St. Vrain Creek. Several earth dams along the Front Range burst or were over-
topped. On September 12, Boulder Creek was reported to have exceeded a flow rate of 5,000 
cubic feet (140 m3) of water per second. Boulder Creek regularly flows around 150–200 cubic 
feet (4.2–5.7 m3) per second. This caused serious damage to buildings along the creek and the 
creek path such as Boulder High School.  As of late September 13, according to the Office of 
Emergency Management, there were 172 people unaccounted for and at least three dead in 
flood areas of Boulder County. By September 14, the death toll had reached five and more than 
500 were unaccounted for, but not necessarily considered missing. The flood resulted in many 
bridges and road sections being washed out (Fig. 1) and entire towns being stranded due to 
lack of road access. 

 
Fig. 1: A bridge collapse on a business access road at Highway 287 and Dillon Road  

In Lafayette causes three cars to fall into the creek on Sept. 13. 

 
High-resolution (~2 m) satellite images clearly show these disruptions when comparing an 
image before the flood (Fig. 2) and after the flood (Fig. 3). 

 

http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Colorado
http://en.wikipedia.org/wiki/Cold_front
http://en.wikipedia.org/wiki/Front_Range
http://en.wikipedia.org/wiki/Colorado_Springs,_Colorado
http://en.wikipedia.org/wiki/Fort_Collins,_Colorado
http://en.wikipedia.org/wiki/Boulder_County,_Colorado
http://en.wikipedia.org/wiki/Lyons,_Colorado
http://en.wikipedia.org/wiki/Boulder_Creek_(Colorado)
http://en.wikipedia.org/wiki/Boulder_High_School
http://en.wikipedia.org/wiki/Office_of_Emergency_Management
http://en.wikipedia.org/wiki/Office_of_Emergency_Management
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Fig. 2: Before the flood 

 

 
Fig. 3: After the flood 

 
It can clearly be seen here that the highway in the middle of the image was washed out in the 
lower half by the flood. Water has completely erased the road surface and the reflectivity now 
merely indicates the presence of water.  
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Fig. 4: Before the flood 

 

 
Fig. 5: After the flood 

 
In Figs. 4 and 5, one can see the destruction of a highway bridge as the river rerouted its path 
and flooded many regions downstream of the bridge. This was one of the more destructive 
effects of the flood which resulted in permanent rerouting of the river and the need for new 
bridges to be built or an effort be made to return the river to its original course. It is this type of 
destruction that led to scenes like that in Fig. 1. Again, these two high-resolution satellite images 
clearly depict the damage caused and suggest solutions that need to be considered. 
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A change detection study of two satellite images from this period demonstrated the very marked 
changes from non-flooded (Fig. 6) to flooded conditions (Fig. 7). 
 

 
Fig. 6: Before the flood 

 

 
Fig. 7: After the flood 

 
These images cover part of the western side of Longmont, Colorado where east-west Colorado 
State Highway 119 intersects with north-south U.S. Route 287. 
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Due to the computational complexity of classifying these large high-resolution images, smaller 
image segments were selected and analyzed for surface changes due to flooding.  One such 
image segment is shown in Fig. 8 before the flood and in Fig. 9 after the flood. 
 

 
Fig. 8: Before the flood 

 

 
Fig. 9: After the flood 

 
Here, flooding is again readily apparent in the muddy water that now connects the two central 
lakes and has expanded their boundaries. The other lake in right hand side of the image has 
also changed to muddy water. Using Change Vector Analysis (CVA), the changes between 
these last two images were classified. In this algorithm, the changes are resolved in 2D vector 
space to normalize the changes. Using image reflectances to compensate for solar illumination, 
the CVA analysis was carried out between Fig. 8 and Fig. 9. The results are shown here in Fig. 
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10, where changed areas are marked by specific colors. The legend to these changes is also 
given in the figure. In most cases, the changes are to water but in some soil areas, the 
immediate response to being soaked was a rapid response to vegetation. This is typical of 
Colorado where the generally dry soil transitions quickly to vegetation when water is applied 
particularly in large amounts. 
 

 
 
 
 
 

 
 
 

 
Fig. 10: The “before” satellite image with colors marking the “after” changes 

 
There is, however, asphalt (parking lot) that does not change and remains asphalt.   
 
Summary of Part 1 
 
Satellite imagery clearly shows the destruction of road infrastructure (roadbeds, bridges, 
unpaved roads) that are caused by episodic flooding such as what occurred in the Boulder 
County flood of September 2013. It can be used to help guide recovery efforts by clearly 
showing surface conditions after a flood has occurred. Satellite images can also help us to 
understand the surface condition changes post flood as the flood waters recede. Automated 
techniques can be employed to quantify surface changes and guide the use of these satellite 
images for both planning, evaluation, disaster management and recovery efforts. 
 
 

Part 2: Statistical Analysis of Pavement Imagery 
 
As an extension of our study of road surface imagery, we began a parallel study to better 
understand the ability of a satellite image to detect changes in road surface conditions in the 
presence of noise. To evaluate this aspect of our image analysis, photographs of parking lots 
differing in pavement surface quality were collected with a mobile phone digital camera. These 
photographs were then downsampled to a lower resolution consistent with the satellite image 
resolution and corrupted with noise consistent with estimates of the noise in the satellite 
imagery.  In this way, we hope to simulate imagery from DigitalGlobe’s WorldView-2 spacecraft.  
The statistical characteristics of both the original mobile phone photographs and the simulated 

Red: veg2wat 

Blue: soil2wat  

Green: veg2veg 

Magenta: soil2soil 

Cyan: wat2wat 

Sea green: roof2roof 

Yellow: asph2asph 
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satellite images were computed and examined. The purpose of this investigation was to 
reinforce the idea that information regarding pavement surface quality could indeed be obtained 
through satellite remote sensing. 

Image Data Collection 

Photographs of two different parking lots were collected for this study. The first parking lot was 
located in the University of Colorado – Boulder campus south of Colorado Avenue between the 
Duane Physics & Astrophysics and Benson Earth Sciences buildings. The pavement of this lot 
had a dark and smooth appearance with no signs of wear and tear. If it were surveyed by 
CDOT, it would likely receive a condition rating of “good”. The second parking lot was located in 
the East Aurora neighborhood of Boulder on the northwest corner of 29th Street and Bixby Lane 
directly north of the Spanish Towers apartment building. The pavement of this lot had a 
speckled and rough appearance. It was also marked with numerous distresses such as 
cracking, potholes, and worn out sealant. If it were surveyed by CDOT, it would likely receive a 
condition rating of “poor”. The stark contrast between these two parking lots would make for an 
interesting analysis. 

It was previously believed that direct sunlight on cloudless days was necessary to illuminate the 
pavement properly. Photographs of these parking lots were thus initially collected on sunny 
days. However, preliminary analysis revealed that direct sunlight brought about uneven 
illumination of the pavement. The photographs were reshot on cloudy days and illumination of 
the pavement became more uniform. Therefore, pictures from cloudy days were used in this 
study instead. 

Pavement Images 

The two parking lot images used in this study are shown here in Fig. 11. 

  
Fig. 11: Parking lot images, good pavement on the left and poor pavement on the right 

Notice the relatively smooth appearance of the good pavement compared to the speckled and 
distressed appearance of the poor pavement. 

Satellite Image Synthesis 

The greyscale images of the parking lot pavement were manipulated to imitate imagery from 
WV-2. The first step was to reduce their spatial resolution to match the ~50 cm resolution of 
WV-2. The spatial resolution of the mobile phone photographs was determined to be 500 times 
greater than that of the satellite. Thus, the parking lot images were downsampled by this factor, 
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resulting in new greyscale images with a size of 7×5 pixels. 

The next step was to add noise to these 7×5 images representative of the noise characteristics 
of the WV-2 sensor. The WV-2 images provided by DigitalGlobe have 11-bit digital number (DN) 
values. Brighter landscapes have higher DN values and darker landscapes have lower DN 
values. Experiments conducted by scientists at DigitalGlobe have determined that the noise 
variance associated with DN is linearly proportional to DN itself. To measure the sensor’s noise, 
the WV-2 radiometer was pointed at a cloudless scene of free space between the Moon and the 
Earth. The DN values in the two-dimensional image of this scene are constant in the horizontal 
direction but continuously varying in the vertical direction. Sample image chips were collected 
along the horizontal direction at different vertical positions. The DN variances and DN means of 
each chip were obtained and plotted against each other. The results of one trial are shown in 
Fig. 12 below. 

 
Fig. 12: WV-2 DN Variance vs. DN Count. 

The 7×5 greyscale images of the parking lots were corrupted by artificial noise equivalent to that 
of the WV-2 sensor.  The “clean” 8-bit greyscale values in the pixels of a given image were 
multiplied by 23 to simulate 11-bit DNs.  The noise variances were calculated for each pixel.  A 
Gaussian random number generator was used to produce noise values at every pixel with zero 
mean and a standard deviation of the noise distribution.  The resulting noise values were added 
to the mock DNs to create “noisy” DNs.  The “noisy” DNs were divided by 23 to simulate 
corrupted 8-bit greyscale values, which will henceforth be referred to as DN values. The 8-bit 
greyscale images constructed from these artificially corrupted pixels finally represent the desired 
mock WV-2 imagery.                     
       

Occurrence-Based Texture Filtering 

We used occurrence-based texture filters to bring out the character of each image. In such a 
procedure, a rectangular subsection of an image, called the sliding window, is selected and 
passed over the entire image. The texture statistics are computed in each sliding window, which 
have odd dimensions to ensure that the resulting texture statistic can be located at the central 
pixel. Texture statistics are calculated as the sliding window is passed over the image until all 
pixel locations have a texture value. The occurrence-based texture parameters are: 
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 Data range =            –             

 Mean =   = ∑                 

 Variance =    =                  

 Entropy = -∑                   

 Skewness =                     

Here, i and j represent the horizontal and vertical indices of the image pixels contained within 
the sliding window.  The term I(i, j) is the image brightness at the pixel location (i, j) and the term 
p(i, j) is the probability mass function of the I(i, j) value. 

Data range gives an indicator of how far apart the lowest and highest brightness values of the 
window are. The mean is the average brightness of the window while the variance indicates 
how far the majority of the values lie with respect to the mean. Entropy is a measure of the 
statistical randomness in the window. Skewness indicates the degree of asymmetry of the 
spread in the probability density function. 

Application to the Full Resolution Images 

These texture filters were initially applied to the full digital images shown here in Fig. 11.  
Looking first at the digital numbers before applying the texture filters, we find that even here 
there are some marked differences between the good and poor parking lot surfaces. 

 
Fig. 13: Histogram of DN values for both surfaces. 

Note the dramatic difference between the poor histogram with its wide spread in values versus 
the good histogram which has a much more limited range of values. 

The histograms from the mean filter (not shown) look very similar to the DN histograms. The 
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good mean histogram also has a narrow distribution and the poor mean histogram also has a 
wide distribution. The variance (not shown) reveals a very high histogram for the good image at 
the lower values suggesting a relatively uniform response for the smallest scales. The poor 
pavement surface has a slightly wider range but also falls off exponentially as the bins get 
higher. Turning to entropy, we find in Fig. 14 that the good pixels overall have lower values than 
the poor pixels, which stand out at the highest bins. This is again consistent with the poor 
surfaces linking to high entropies and the good surfaces corresponding to low entropies. 

 
Fig. 14: Image entropy Histogram 

The means and standard deviations of all the histograms are presented here in Table 1 for the 
original resolution images. 

 Good Mean Good STD Poor Mean Poor STD 

Digital Number 152.3 9.8 159.7 29.0 

Data Range 16.1 8.5 42.8 20.8 

Mean 151.3 15.1 158.6 28.2 

Variance 30.6 42.3 222.3 241.0 

Entropy 1.9 0.3 2.1 0.2 
Table 1: Image Histogram Properties (full resolution) 

 

Synthetic Satellite Image Analysis 

The next step was to follow the procedure outlined above to downsample the digital images to 
the satellite resolution and then add noise representative of the WV-2 satellite images. The 
downsampled images are presented here in Fig. 15 again with the good image on the left and 
the poor surface image on the right. 
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Fig. 15: Synthetic WV2 images of good pavement (left) and poor pavement (right) 

The subsampled images are only 7X5 pixels but they do match the WV2 50 cm resolution.  
What results are clearly blurred versions of the originals in Fig. 11 but as the analysis will show 
they retain a lot of the basic texture information of the original images.  Recall also that noise 
has been added to each image that will distort the final images even more. 

To compute the occurrence-based texture filters we had to move to a 3X3 sliding window, which 
results in only 15 pixels for the computation of the texture filters. This is far too few to compute 
histograms as we did earlier but fortunately there were 24 images per surface condition rather 
than a single high-resolution image. Thus, we can use these repeat images to compute the 
histograms. 
 

The DN histogram is presented here in Fig. 16 using the same labels as in the previous 
histograms. 

 
Fig. 16: Histograms of synthetic satellite image DNs. 

 

While the spread of the good histogram is much greater than that in Fig. 13, it is again located in 
the center of the DN range at numbers very close to those in Fig. 13.  Qualitatively, the Fig. 13 
and 16 are very similar.   
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Once again, the mean histograms of the lower resolution histograms (not shown) look very 
similar to the histograms of the DN values, like what was seen in the higher resolution example. 
The variance (not shown) is also very similar between these two different resolutions. Finally, 
the entropy histograms of Fig. 17 look similar to the same entropy plot for the high-resolution 
images in Fig. 14.  Again, the poor pavement histogram has very high peaks at the largest bins 
while the good surface histogram peaks spread out over a much larger range and have overall 
lower values. 

 
Fig. 17: Histograms of synthetic image entropies. 

A summary of the means and standard deviations are presented here in Table 2. 

 Good Mean Good STD Poor Mean Poor STD 

Data Range 14.2 4.9 34.9 12.3 

Mean 154.1 5.3 152.2 9.3 

Variance 23.6 16.0 148.8 104.4 

Entropy 2.0 0.2 2.1 0.1 
Table 2: Image histogram properties for synthetic WV-2 images 

It is encouraging that the histograms of both the high-resolution images and the subsampled 
plus noise synthetic WV-2 satellite images behave similarly. This result suggests that indeed it 
should be possible to clearly discriminate between poor and good pavement surfaces using 
simple texture analyses on satellite imagery. 

 

Summary and Conclusions for Part 2 

The ultimate goal of this investigation was to demonstrate that pavement surface quality could 
be assessed from images of the pavement itself, even at the spatial resolution of WV-2 satellite 
images. Although it may seem obvious when approached qualitatively, the results of this study 
serve as evidence that the concept can be implemented quantitatively. There are clear 
differences in the way that the statistical information of the good and poor pavement 
photographs is distributed. These statistics verify that good pavement appears uniform when 
compared to poor pavement, which appears more varied. These differences are not only 
present at the comparatively high-resolution photographs, but also at the lower resolution and 
noisier synthetic satellite images. 
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Future Work in this Area 

If this investigation were to hypothetically continue, there is some room for improvement.  One 
possibility would be to survey a wider variety of pavement conditions. For example, instead of 
just examining extremely good and extremely poor pavement, more intermediate quality 
pavement could be examined. If the statistics of this fair quality lie in between that of the good 
and poor, then that would strengthen the results of this study even further. Also, some better 
photograph capturing techniques could be used. Although the mobile phone camera has been 
quite reliable, it was difficult to keep steadily pointed towards nadir at a constant height. And 
since it was only held a few feet above the ground, its field of view was not very wide. In order to 
match the resolution of the WorldView-2 satellite sensor, the pictures needed to be scaled down 
by a large factor, which caused a drastic reduction in pixel samples. Perhaps an apparatus 
could be built to hold the camera steady at a higher height in future surveys to mitigate these 
issues. Nonetheless, this investigation has been fruitful overall and the results will undoubtedly 
aid us as we continue to assess the feasibility of using remote sensing techniques to study 
pavement surface quality. 

 

Part 3: Using high-resolution satellite data to assess road surface conditions 
 
Most of the first year of this project was wasted in trying to find direct relationships between the 
satellite image data and the in situ measured parameters of International Roughness Index 
(IRI), rutting and cracking (fatigue, etc.). We were not able to find any statistically significant 
relationships with these 3 variables. We later learned several things: 

a.  We learned that there are serious statistical limitations to the in situ data that contributed to 
our inability of using the satellite DN values to properly estimate any of these parameters.  We 
were eventually able to use visual analysis of the satellite imagery to come up with an estimate 
of cracking only. 

b.  We also learned that the in situ data are generally processed by manually leading to a 
greater noise level in terms of both mislocation and in the estimate of the value. 

c.  Finally we learned that these in situ parameters are all combined to come up with a rating of 
Good, Fair, and Poor (CDOT has 2 levels of Poor) road surface conditions and that the 
decisions to repave a road surface are made based on these broad categories and not on a 
specific value of IRI, rutting or cracking. 

We decided to focus our efforts on using the high-resolution satellite data to estimate the Good, 
Fair, and Poor conditions of the road surfaces.  We primarily used CDOT highways since they 
assess their road condition every year to update their ratings and make repaving decisions.  We 
decided that the best way to take full advantage of the high-resolution satellite imagery was to 
carry out a texture analysis of the satellite images to see if we can find correspondence with the 
Good, Fair and Poor conditions of the CDOT highways. 

In Quarterly Progress Report #4, we presented the results of a study in which we applied texture 
filters to satellite images of just good and poor highways. We extended this analysis to see if it 
would be possible to estimate fair road surface conditions from the WV-2 panchromatic satellite 
imagery as well.  While doing so, we had to recognize that in addition to the pavement 
properties themselves, there are several other factors, which can affect the digital number 
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values. They include, but are not limited to, solar incidence angle, satellite viewing angle, and 
atmospheric phenomena like clouds. To control for these factors, we made sure that all the 
roads that we examined were part of the same image set. That way, the only variations in the 
digital numbers would be from just the pavement properties. 
 
The roads that were examined in this study are located around Colorado Springs. They are 
segments of highway stretches 21B, 115A, and 24A (Fig. 18). They have been rated by CDOT 
as having conditions of good, fair, and poor respectively.  The remotely sensed images were 
collected by WorldView-2 last year around Thanksgiving. The aforementioned highways are 
shown below. 

 
Fig. 18: From left to right, 21B, 115A, and 24A 

 
We selected Regions of Interest (ROIs) from these images to study. We were a bit more 
meticulous than before regarding which parts of the roads were selected. We avoided objects 
that obviously weren’t part of the roads like vehicles and shadows. Another test case that we 
previously worked on showed that the paint lines throw off the statistics. So by avoiding the 
paint and other non-road surface image elements only the pavement was looked at. The 
pictures below show the ROIs laid over the roads (Fig. 19). 
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Fig. 19: From left to right: 21B, 115A, and 24A ROIs 

 
We extracted the digital numbers contained within the pixels underneath the ROIs.  We also 
applied the occurrence-based texture filters to these images and extracted data from those 
same pixels. There were about 1600-1800 data points for each road segment, so we just 
randomly selected 1500 from each segment. We plotted the data from each texture parameter 
as histogram shown below (Fig 20). 
 

a.  
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b.  
 

c.  
 

d.  
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e.  
Fig. 20: Histograms of (a) DN, (b) data range, (c) mean, (d) variance, (e) and entropy 

 
The tables below show the means and standard deviations of the histograms above. 

 

 Good Fair Poor 

DN 214.3 307.7 377.7 

DN Data Range 13.3 16.1 38.7 

DN Mean 214.5 307.8 378.3 

DN Variance 18.7 31.5 174.0 

DN Entropy 1.9 2.0 2.1 

Table 3: Means of histograms 
 

 Good Fair Poor 

DN 5.2 10.3 29.5 

DN Data Range 3.5 6.2 15.6 

DN Mean 3.1 8.8 26.4 

DN Variance 10.7 27.6 145.7 

DN Entropy 0.2 0.2 0.1 

Table 4: Standard Deviations of histograms 
 
Once again, the results suggest that as a road’s condition worsens, its appearance becomes 
more heterogeneous. But these results are even stronger than what we had before.  In the 
previous analyses, we were only comparing good and poor. But here, we have the intermediate 
fair condition.  In every single one of the texture parameters, the fair data lies between the good 
and the poor, which is what should happen.  Hence we believe we should be able to detect and 
define Good, Fair and Poor road surface conditions based on WV high-resolution satellite 
imagery.  The next step will be to work with CDOT to develop some test cases where the 
satellite imagery can be used to determine conditions that are then confirmed by in situ 
sampling and CD field analyses. 
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Future Plans 
 
The results from this study strongly suggest that the most promising way to determine pavement 
surface conditions through remote sensing methods is to analyze the texture characteristics of 
the satellite images. We will continue to improve this technique so that we can understand how 
the statistics of good, fair, and poor surfaces are distributed. We hope to figure out a way to 
control for factors such as solar incidence angle, satellite viewing angle, and atmospheric 
conditions. By doing so, the only elements that contribute to the appearance (i.e. DN values) of 
the pavement surface in the satellite images would involve the pavement alone. 
 
Because features in the roads such as vehicles, shadows, paint lines, etc. can introduce 
unwanted variations in the texture filtered images, the regions of interest had to be manually 
selected in order to avoid them. This is a tedious process that we would like to avoid. We will try 
to develop a process that can perform this task automatically. 
 
We intend to eventually test out this technique in coordination with CDOT. While CDOT 
performs its annual surveys, we shall try to assess the pavement condition of several highways 
through our remote sensing methods. If our results match those of CDOT, then that would be a 
major sign of success for this project. 
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II — BUSINESS STATUS 
 
Please see Appendix. 




