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Hyperspectral Remote Sensing

Eyal Ben Dor, Tim Malthus, Antonio Plaza, and Daniel Schlapfer

8.1
Introduction

Hyperspectral Remote Sensing (HRS) and Imaging Spectroscopy (IS), are two
technologies that can provide detailed spectral information from every pixel
in an image. Whereas HRS refers mostly to remote sensing (from a distance),
the emerging IS technology covers all spatial-spectral domains, from micro-
scopic to macroscopic. IS capability is an innovative development of the
charge-coupled device (CCD), which was invented by the two 2009 Nobel
prize in Physics winners Willard Boyle and George Smith from Bell Labora-
tories in 1969. They provided the first assembly capable of generating digital
images. In 1972 A. Goetz realized that it was possible to use the CCD for spec-
tral applications and after developing the first portable spectrometer together
with significant improvements in the area array assembly, a combined spa-
tial and spectral capability was designed and successfully operated from orbit
(LANDSAT program). In general, HRS/IS is a technology that provides spa-
tial and spectral information simultaneously, improving our understanding
of the remote environment. It enables accurate identification of both targets
and phenomena as the spectral information is presented on a spatial rather
than point (pixel) basis. HRS/IS technology is well accepted in remote sens-
ing as a tool for many applications, such as in geology, ecology, geomorphol-
ogy, limnology, pedology, atmospheric and forensic sciences, especially for
cases in which other remote sensing means have failed or are incapable of ob-
taining additional information. Although innovative approaches have been
developed over the past 10 years, the power of HRS/IS technology remains
unknown to many potential end-users, such as decision makers, farmers, en-
vironmental watchers in both the private and governmental sectors, city plan-
ners, stock holders and others. This is mainly because the use of HRS/IS sen-
sors still relies on the relatively high cost of its final products and on the need
for professional manpower to operate the instrument and process the data.
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8 Hyperspectral Remote Sensing

In February 2010 the company ASD celebrated its 20th anniversary with key
people in the HRS field (Goetz, 2010). The consensus there was that HRS/IS
technology is still far from reaching its potential, with significant growth still
ahead. Nonetheless, today, in addition to the growing number of scientific
papers and conferences focusing on this technology, the HRS/IS discipline is
very active: commercial sensors are being built and sold, orbital sensors are in
advanced planning stages, people are becoming more educated on the topic,
national and international funds are being directed toward studying and us-
ing this technology, and interest from the private sector is on the rise. The
aim of this chapter is to provide the reader with a comprehensive overview of
this promising technology from historical to operational perspectives by the
recognized experts in the field.

8.2
Definition

HRS is an advanced tool that provides high spatial/spectral resolution data
from a distance, with the aim of providing near-laboratory-quality radiance
(and subsequent related information) for each picture element (pixel) from
a distance. This information enables the identification of targets based on
the spectral behavior of the material in question (mainly absorption features
of chromophores—see further on). This approach has been found to be very
useful in many terrestrial, atmospheric and marine applications (Clark and
Roush, 1984; Goetz and Wellman, 1984; Gao and Goetz, 1990; Dekker et al.,
2001; Asner and Vitousek, 2005). The classical definition for HRS given by
Goetz and his colleagues in 1985 Goetz et al. (1985) remains valid today:
"The acquisition of images in hundreds of contiguous registered spectral bands such
that for each pixel a radiant spectrum can be derived." This definition covers all
spectral regions [i.e. VIS (visible), NIR (near infrared), SWIR (shortwave in-
frared), MWIR (midwave infrared) and LWIR (longwave infrared)], all spatial
domains and platforms (microscopic to macroscopic; ground, air and space
platforms) and all targets (solid, liquid and gas). Although not mentioned in
Goetz’s definition, not only are a "high number of bands" needed for this tech-
nology, but also high spectral resolution, i.e., a narrow bandwidth (FWHM),
and an appropriately large sampling interval across the spectrum. The ac-
cepted bandwidth for HRS technology was set to approx. 10 nm 25 years ago
(Goetz, 1987). However, today, narrower bandwidths are available and de-
sirable in order to broaden HRS’s capability. The former spectral resolution
of 10nm was proposed mainly for the first HRS application (geology); new
issues, such as assessing vegetation fluorescence, are now, requiring band-
widths of less than 1 nm (Guanter et al., 2006; Grace et al., 2007).. The idea
is to collect near-laboratory-quality radiation from a far distance and apply
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8.2 Definition

spectral-based analytical tools to interpret the data. Using this approach, HRS
provides information in addition to the traditional cognitive remote sensing
mapping and increases our ability to sense Earth remotely. HRS can thus be
defined as "spatial spectrometry from afar'* which adopts spectral routines, mod-
els and methodology and merges them with spatial information. Whereas in
the laboratory, conditions are constant, optimal and well-controlled, in the
acquisition of high-quality spectral data in airborne/spaceborne cases, sig-
nificant interference is encountered, such as the short dwell time of data ac-
quisition over a given pixel, and hence a lower SNR, atmospheric attenua-
tion of gases and aerosols and the uncontrolled illumination conditions of the
source and objects. This makes HRS a very challenging technology that in-
volves many disciplines, including: atmospheric science, electro-optical engi-
neering, aviation, computer science, statistics and applied mathematics and
more. The major aim of HRS is to extract physical information from raw HRS
data across the spectrum (radiance) which can be easily converted to describe
inherent properties of the targets in question, such as reflectance and emis-
sivity. Under laboratory conditions, the spectral information across the VIS—
NIR-SWIR-MWIR-LWIR spectral regions can be quantitatively analyzed for
all Earth materials, natural and artificial, such as vegetation, water, gases, ar-
tificial material, soils and rocks, with many already available in spectral li-
braries. It was shown that if a HRS sensor with high SNR is used, an an-
alytical spectral approach can be incorporated to yield new products never
before sensed by other remote sensing means (Clark et al., 1990; Krtiger et al.,
1998). The high spectral resolution of HRS technology combined with tem-
poral coverage enables better recognition of targets, a quantitative analysis of
phenomena and extracting information.

Allocating spectral information temporally in a spatial domain provides a
new dimension that neither the traditional point spectroscopy nor air photog-
raphy can provide separately. HRS can thus be described as an "expert" Geo-
graphic Information System (GIS) in which surface layers are built on a pixel-
by-pixel basis rather than a selected group of points with direct and indirect
chemical and physical information. Spatial recognition of the phenomenon
in question is better performed in the HRS domain than by traditional GIS
technique. HRS consists of many points (actually the number of pixels in the
image) that are used to generate thematic layers, whereas in GIS, only a few
points are used for this purpose. Figure 8.1 shows the concept of the HRS tech-
nology, where every pixel is characterized by a complete spectrum of ground
targets (and their mixtures) that can be quantitatively analyzed within the
spatial view. The capability of acquiring quantitative information from many
points on the ground at almost the same time provides another innovative as-
pect of HRS technology: it freezes time for all spatial pixels at almost the same
point, subsequently permitting adequate temporal analysis. HRS technology

421


Raj Bridgelall
Highlight


422

© 00 N o O

11
12
13
14
15
16
17
18
19
20
21
22
23

8 Hyperspectral Remote Sensing

is thus a promising tool that adds many new aspects to the existing mapping
technology and improves our capability to remote-sense materials from far
distances.

EACH PIXEL EXHIBITS A
CONTINUOUS SPECTRUM

¢

IMAGES ACQUIRED SIMULTANEOUSLY
IN MANY NARROW, REGISTERED
SPECTRAL BANDS

BRIGHTNESS —=

WAVELENGTH —=

Fig. 8.1 The concept of HRS/IS: Each pixel element has a continuous
spectrum that is used to analyze the surface and atmosphere

8.3
Development and History

A. Goetz, initially working at NASA-JPL is considered a mentor and pio-
neer scientist in HRS technology together with his colleague Gregg Van from
NASA JPL. In 2009, Goetz published a paper in a special issue of Remote Sens-
ing of Environment (Goetz, 2009) that was dedicated, upon his retirement, to
honoring his activity in this field (MacDonald et al., 2009). The paper reviewed
the history of HRS’s development since 1970 from Goetz’s personal viewpoint
entitled: Three decades of hyperspectroscopy remote sensing of the Earth: a personal
view. It was the first paper to summarize the efforts and difficulties involved
in establishing this technology in the US. Generally speaking, HRS technology
was driven by geologists and geophysicists who realized that the Earth’s sur-
face mineralogy consists of significant and unique spectral fingerprints across
the SWIR and MWR, LWIR spectral regions (later, the VIS-NIR spectral region
was also explored). This knowledge was gained from comprehensive work
with laboratory spectrometers and was followed by a physical explanation of
the reflectance spectral response of minerals in rocks and soil. Workers such
as Hunt and Salisbury (1970, 1971); Hunt et al. (1971a,b); Clark (1999) and oth-
ers, who created the first collations of available soil and rock spectral libraries,
provided the justification to continue developing HRS technology. Not only
was Earth material studied spectrally using this new-found knowledge, but
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8.3 Development and History

also the outer reaches of the planet showed remarkable information based on
these libraries (e.g., Clark et al. (2005)).

HRS capability leans heavily on the invention of the CCD assembly in 1969
(Smith, 2001) which provided the first step toward digital imaging. These and
further achievements acted as a precursor to establishing a real image spec-
trometer that would rely on the commercial hybrid focal plane array that was
available at that time (in 1979): the first sensor of this kind was used in the
shuttle mission SMIRR (shuttle multispectral IR radiometer) in 1981, provid-
ing promising results. Based on this success, Goetz and Vane (in 1983) sub-
mitted a proposal to NASA to build an airborne HRS sensor (airborne imag-
ing spectrometer-AlS) which was sensitive to capturing mineral information
across the SWIR region (Goetz, 2009). The 2D detector arrays consisting of
HgCdTe detectors (32 x 32 elements) which enabled, for the first time, gen-
erating images at wavelength greater than 1.1 ym. The array detector did
not need a scan and provided sufficient improvement in the SNR to suit air-
borne applications. The AIS was a rather large instrument, and was flown
onboard a C-130 aircraft. It had two versions, with two modes being used
in each: the "tree mode" from 0.9-2.1 mm and the "rock mode" from 1.2-2.4
mm. The Instantaneous Field of View (IFOV) of the AlS-1 was 1.91mrad and
of the AIS-2, 2.05mrad; the ground IFOV (GIFOV) (from 6km) was 11.4m
and 12.3m, respectively, and the FOV was 3.7° and 7.3°, respectively. The im-
age swath was 365m for AIS-1 and 787 m for AlS-2, with a spectral sampling
interval of 9.3nm and 10.6 nm, respectively. The AIS-1 was flown from 1982
to 1985 and the AIS-2, a later version with spectral coverage of 0.8 to 2.4mm
and 64—pixel width (Vane and Goetz, 1988) was flown shortly thereafter, in
1986. In those days, methods to account for atmospheric attenuation were not
available; nonetheless, by simple approximation, the sensor and the HRS con-
cept were able to show that minerals can be identified and spatially mapped
over an arid-environment terrain. The proceedings of a conference that sum-
marized the activity and first results of the AIS missions were published by
NASA in 1985 and 1986 (Van 1986). There, Goetz tells the following story:
while processing the AIS data of an overpass over cuprite in Nevada, an un-
known spectrum was encountered. At that time, spectral libraries of mineral
and rock material had not yet been developed, and the unknown spectrum
could not be recognized. In addition to this difficulty, misinterpretation of
the rock in question by X-ray analysis led to a dead end. It was only when
Dr. Rowan reran the X-ray analysis of the unknown rock that the material
was discovered to be boundogtonite. This finding was then confirmed by
a laboratory spectral measurement, which scientifically closed the case and
proved that the HRS technology was able to detect the mineral boundogtonite
from afar. Aside from this first and significant proof of the sensor’s capability,
the boundogtonite story had another important impact on the future devel-
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8 Hyperspectral Remote Sensing

opment of HRS/IS technology: boundogtonite may be s associated with gold,
and the media at the time (mostly the TV stations) went on the air with the
breaking news that "a new methodology to trace gold from the air domain
has been discovered by NASA scientists." (In retrospect, this incident proved
to be highly detrimental to HRS in the long run.) Soon after, in 1984, Dr. Vane
submitted another proposal to NASA to build AVIRIS (Airborne Visible and
Infrared Imaging Spectrometer). Approval of this proposal was based mainly
on the success of AIS and more likely than not on the boundogtonite story.
The first developed AVIRIS lasted three years (1984-1987), with its first flight
taking place in 1987. Although being a relatively low—quality SNR instru-
ment (compared to today’s HRS/IS sensors and especially to the current up-
graded AVIRIS sensor), the first AVIRIS demonstrated excellent performance
relative to the AlS. The sensor covered the entire VIS-NIR-SWIR region with
224 bands (around 10-nm width), with 20 m GIFOV and around 10 x 10 km
swath. It was a whiskbroom sensor with a SNR of around 100 carried onboard
an ER-2 aircraft from 20 km altitude. Since then, the AVIRIS sensor has under-
gone upgrades and today, the instrument is significantly different from the
one first operated in 1987. The major differences are its SNR (100 in 1987 rel-
ative to> 1000 today), spectral coverage (400-2500 nm vs 350-2500 nm today)
and spatial resolution (20 m vs. 2 m today). The instrument can fly on different
platforms at lower altitudes and has opened up new capabilities for potential
users in many applications. Even today, with many new HRS sensors having
become available worldwide, both commercially and nationally, the AVIRIS
sensor is still considered to be the best HSR sensor ever manufactured (Goetz,
2009). This is due in large part to careful maintenance and upgrade of the sen-
sor over the years by NASA JPL personnel, led by Dr. R. Green, and to the
growing interest of the US HRS community in using the data and in continu-
ing to show remarkable results and to develop new applications. The AVIRIS
program has established an active HRS community in the US that has rapidly
matured. Based on this capability and success, other sensors have been devel-
oped and built over the past two decades worldwide. The next section details
this evolution. To sum up this section, it can be concluded that the AVIRIS
program was a significant precursor and driving force for HRS technology as
a whole and one must appreciate the efforts made by NASA to that end.
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8.4
HRS Sensors

8.4.1
General

The growing number of researchers in the HRS community can be seen by
their attendance at the yearly proceedings of the AVIRIS Workshop Series,
organized by JPL since 1985 (starting with AlS, and today with HySPRI-see
later) and other workshops organized by international groups such as: WHIS-
Pers and EARSel SIG IS. In 1993, a special issue of Remote Sensing of Environ-
ment was published, dedicated to HRS technology in general and to AVIRIS
in particular (Vane, 1993). This broadened the horizon for many potential
users who still had not heard about HRS technology, ensuring that the activ-
ity would continue. Today, new HRS programs are up and running at NASA,
such as the M3 project in collaboration with the Indian Space Agency to study
the moon’s surface, along with preparations to place a combined optical and
thermal hyperspectral sensor in orbit (the HyspIRI project, Knox et al. (2010)).
In addition to the AIS and AVIRIS missions, NASA also successfully oper-
ated a thermal hyperspectral mission known as TIMS (Thermal Infrared Mul-
tispectral Scanner) in ca. 1980-1983 (Kahle and Goetz, 1983), and also collabo-
rated on other HRS initiatives in North America. The TIMS and then later, the
ASTER spacecraft sensors showed the thermal region’s promising capability
for obtaining mineral-based information. Apparently, the TIR HRS capability
due to it costs and performance was set aside, and it has only recently be-
gun to garner new attention, in new space initiatives (HyspIRI) and in new
airborne sensors (e.g., TASI-600 and MASI600 from ITRES, Hyper—-Com from
TELOPS, SEBASS from Aerospace Corporation, and Owl from Speclim). In
parallel to the US’s national HRS activity, a commercial HRS sensor was de-
veloped in ca. 1980. The Geophysical & Environmental Research Corporation
(GER) of Millbrook, NY developed the first commercial HRS system which
acquired 576 channels across 0.4 to 2.5 ym in 1981, first described by Chiu and
Collins (1978). After the GER HRS came a 63—-channel sensor (GERIS-63) that
was operated from around 1986 to 1990: this was a whiskbroom sensor that
consisted of 63 bands (15-45 nm bandwidth) across the VIS-NIR-SWIR region
with a 90° FOV (Ben-Dor et al., 1994). The sensor was flown over several ar-
eas worldwide and demonstrated the significant potential of the HRS concept.
Although premature at that time, GER then began to offer commercial HRS
services. However, it appears that the market was not yet educated enough
and the very few scientists that were exposed to this technology at the time
could not support the GER activity. Thus, the GER initiative was ahead of its
time by about two decades, and it reestablished its commercial activity in 2000.
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8 Hyperspectral Remote Sensing

The GER sensor was brought to Europe in May and June 1989 for demonstra-
tion purposes and a campaign organized by several European users (known
as EISAC-89) was conducted. The results of this mission were impressive and
pushed the European community to learn more about this technology (ltten,
2007). At around the time of the first AIS mission (1981), the Canadians had
also developed an imaging device known as FLI (fluorescence line imager).
In the mid 1980s, Canada Monitec Ltd. developed and used a limited pushb-
room scanner, the FLIZPMI, with 228 channels across 430 to 805 nm (Borstad
et al., 1985; Gower and Borstad, 1989). This sensor was also brought to the
EISAC-89 campaign and in 1991, the first EARSeL. Advances in Remote Sens-
ing issue (Volume 1, Number 1, February 1991), which was dedicated to HRS,
provided the outcomes of this campaign, demonstrating that atmospheric at-
tenuation, calibration and validation were the major issues that needed to be
tackled. Itis interesting to note that most of the authors were satisfied with the
results but their demand for more data was blocked by an inability to access
data and sensors until DLR entered the scene. DLR’s interest in HRS began in
around 1986 when they announced plans for ROSIS (a pushbroom instrument
offering 115 bands between 430 and 850 nm) which only became operational
in 1992 and was continuously upgraded until 2003 (Holzwarth et al., 2003;
Doerffer et al., 1989; Kunkel et al., 1991). In 1996, DLR owned and operated
the DAIS 7915 (GER) sensor (see further on) and then operated the HyMAP
(hyperspectral mapping) in several campaigns in Europe and Africa. They
recently own the HySpeX sensor, together with GFZ in Germany (2012) that
will enable freedom and comfort to operate HSR sensor with out leaning on a
third party. Both bodies (DLR and GFZ) together with other German groups
initiated, in 2007, a new and ambiguous initiative to place high—quality HRS
sensor in orbit, termed EnMap (see further on).

Based on the growing interest of the EU scientific community in HRS tech-
nology, especially after the successful EISAC-89 campaign, it was obvious that
AVIRIS, the most advanced sensor at that time, would be brought to Europe
for a large campaign. AVIRIS was deployed in the Mac—Europe campaign in
1991 (Clever, 1999) onboard the NASA ER-2 aircraft, and covered test sites
in Germany, The Netherlands, France, Iceland, Italy, England, Spain, Austria,
see Itten et al. (1992). The success of the campaigns on the one hand, and the
complexity and cost involved in bringing AVIRIS (or any other HRS sensor)
on the other, were the driving forces for a new initiative in Europe to be inde-
pendent in term of sensors, data availability, research capacity and experience.
This led to the purchase of HRS sensors by several bodies in Europe: in Ger-
many (CASI, by the Free University of Berlin and DAIS 7915 by DLR) and in
Italy (MIVIS by CNR). In addition, plans were made for the development of
more general sensors for the benefit of all EC members and were established
via the ESA PRODEX project APEX (ltten et al., 2008), and by some limited
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commercial activities. The DAIS-7915 was a GER whiskbroom instrument
characterized by 72 channels across the VIS-NIR-SWIR region and 7 bands
in the TIR region (3.0-12.6 ym). It had a 26° FOV and GIFOV between 5 and
20 m. This instrument was offered in 1996 as a large-scale facility instrument
to European researchers, and served as a test-bed in a large number of inter-
national flight campaigns. Although it was not the ideal sensor in terms of
SNR and operational capabilities, the DAIS 7915 was operated by DLR until
2002 when it could no longer satisfy the higher SNRs being requested by the
community. The experience gained from the DAIS 7915 campaigns was very
valuable in terms of opening up the HRS field to more users, developing in-
dependent operational and maintenance capabilities, educating the younger
generation and opening fruitful discussions among emerging HRS commu-
nity members in Europe. Italy’s activity in HRS technology began in 1994 with
the purchase and operation of the MIVIS system, a Daedalus whiskbroom sen-
sor, by the CNR. The MIVIS is a passive scanning and imaging instrument that
is composed of four spectrometers which simultaneously record reflected and
emitted radiation. It has 102 spectral bands from the VNIR to the TIR spectral
range and the wavelength ranges between 0.43 and 12.7 ym, with an IFOV of
2mrad and a digitized FOV of 71.1°. The band position was selected to meet
research needs that were already known at that time for environmental remote
sensing, such as agronomy, archeology, botany, geology, hydrology, oceanog-
raphy, pedology, urban planning, atmospheric sciences, and more. The CNR
under the LARA project has flown the instrument very intensively since 1994
onboard a CASA 212 aircraft, acquiring data mostly over Italy but also in co-
operation with other nations, such as Germany, France and the US (Bianci
etal., 1996).

In Canada, a new airborne VIS-NIR sensor was developed in 1989 by ITRES
(Alberta, Canada), known as CASI (compact airborne spectrographic imager).
The sensor was a pushbroom programmed sensor aimed at monitoring vege-
tation and water bodies. ITRES provided data-acquisition as well as process-
ing services and also sold a few instruments to individuals who operated the
system and then developed measurement protocols for a limited market (the
Free University of Berlin in 1996). In 1996, ITRES developed a research instru-
ment for Canadian Center for Remote Sensing (CCRS) known as SFSI (short-
wave infrared full spectrum imager), and recently (2010), they developed an
instrument for the TIR region (8-11.5 mm) named TASI-600 and an instrument
for the MIR region (3-5 mm) named MASI-600 with 64 channels (55 nm band-
width). The CASI offers several modes, between 512 bands (spectral modes)
and 20 preselected bands (spatial modes), with intermediate numbers of spec-
tral bands and pixels being programmable. The spectral range is between 400
and 1000 nm with a FOV of 29.6° and a GFOV of 2.1 mrad. The SFSI provides
120 bands (115 used in practice) across the 1219 to 2445nm spectral region.
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8 Hyperspectral Remote Sensing

The FOV is 9.4° and across-track pixels’ IFOV is 0.33mrad. The TASI-600 is
a pushbroom thermal imager with 64/32 spectral channels ranging from 8 to
11.5nm with 600 pixels across track. The FOV is 38° and the IFOV is 0.49 mrad.
The MASI-600 has 64 bands across 3 to 5 mm with 32 nm bandwidth and a
FOV of 40° and IFOV of 1.2mrad. ITRES provides to the community also the
SASI sensor operates across the SWIR region (950-2450nm) with 100 spectral
bands at 15nm sampling interval and 400 FOV. The National research Council
of Canada modify the SASI sensor to have 160 spectral channels covering the
850 nm to 2500 nm spectral range and 380 FOV.

8.4.2
Current HRS Sensors in Europe

Another HRS company, the Finnish Specim-Spectral Imaging Ltd., has gone
quite a long way and can be considered an important benchmark in the HRS
arena. From 1995, when the company was founded, they were able to sig-
nificantly reduce the cost of HRS sensors, making them available to many
more users. Two airborne sensors, AISA-Eagle and AISA-Hawk for the VIS-
NIR and SWIR regions, respectively, were developed, using the PGP (prism-
grating-prism) concept invented by Specim in the 1990s. The PGP design en-
ables the construction of a small low-cost spectrometer that is suitable for
industrial and research purposes in the wavelength range of 320 to 2700 nm.
Its small size and ease of maintenance and operation, along with the ability
to mount the sensor onboard small platform, have made the Specim sensor
accessible to many users who could not otherwise afford to enter the expen-
sive HRS field. According to Specim, in 2010 more than 70 instruments had
been sold worldwide, reflecting the growing interest in this technology in gen-
eral and in low—cost capability in particular. This revolution has enabled user
independence in terms of data acquisition and operation while providing a
breakthrough in HRS strategy in Europe: no longer does one need to count on
joint campaigns; the user can plan the mission and the flight, and process the
data for his/her particular needs at a relatively low cost. Although the SNR
and data performance of the new IS was not at the level of AVIRIS or HYyMAP,
the Specim products enabled enlarging HRS capabilities in mission planning,
simulation, flight operation, data acquisition, archiving, corrections, calibra-
tion and education. Riding on their success, Specim announced, in 2009, that
‘contracts for a total value of €1.4 M’ had been signed with governmental in-
stitutions and private remote sensing companies in Germany, Malaysia, Brazil
and China.

Recent achievements in HRS technology are due, to a certain extent,
on the fact that more companies are building and manufacturing small-
size HRS sensors for ground and air applications (e.g., HeadWall Photon-
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ics: http://www.headwallphotonics.com/). Whereas the VIS-NIR sensor
is much easier to build, as it is based on available and reliable detectors, the
SWIR region is still more problematic.

Two more activities in Europe can be considered milestones in HRS tech-
nology: the first is INTA Spain’s activity in HRS and the second is the Norwe-
gian company Norsk Elektro Optikk (NEO), which manufactured a new HRS
sensor. In 2001, INTA (Instituto Nacional de Tecnica Aeroespacil) Spain en-
tered the HRS era by first exploring the field and then running a joint venture
with Argon ST (a company resulting from a merger between Daedalus Enter-
prises and S.T. Research Corporation) in 1998, conducting their first campaign
in ca. 2003 in Southern Spain. The follow-up campaigns demonstrated the
HRS concept’s promise and in 2005, the AHS was purchased by INTA: it was
first operated in Spain and then in other European countries as well. The AHS
consisted of 63 bands across the VIS-NIR-SWIR region and 7 bands in the TIR
region with a FOV of 90° and IFOV of 2.5 mrad, corresponding to a ground-
sampling distance (GSD) of 2 to 7 m. This sensor was flown onboard a CASA
212 aircraft and operated by personal from INTA. The sensor has been op-
erational in Spain and Europe (via ESA (European Space Agency) and VITO
(Vlaams Instituut Voor Technologisch Onderzoek)

) since 2005 and remains in good condition. The system is well maintained
and undergoes a yearly check-up at Argon ST laboratories. Experience gained
over the years, along with mechanical upgrading (both electronic and optical),
ensure that the sensor will stay operational for a long time.

In ca. 1995, NEO developed a small IS satellite sensor (HISS - Hyperspectral
Imager for Small Satellites) for ESA, covering the spectral range from 400 nm
to 2500 nm. As ESA did not have any immediate plans for launching such an
instrument at the time, the experience gained from the HISS was used to de-
velop a hyperspectral camera for airborne applications-the ASI. The first pro-
totype was built in 1998-99. In 2001, a collaboration with the Norwegian De-
fense Research Establishment (FFI) was initiated which is still continue today.
In the framework of this cooperation, the ASI (Applied Spectral Imaging) cam-
era participated in a multinational military measurement campaign in France
in 2002. An upgraded version of the instrument was flown in 2003 and 2004 in
different multinational military field trials. In 2004, airborne HRS data were
also acquired for several local civilian research institutions. The cooperation
with these institutions was continued in 2005 when a further upgraded ver-
sion of the instrument was flown successfully, including a HRS camera mod-
ule covering the SWIR region (900-1700 nm), in addition to the VIS and NIR
region (400-1000nm). All of these research activities led to the development
of a line of hyperspectral cameras (HySpex) which are well suited for a wide
variety of applications in both the civilian and military domains. Main char-
acteristics of the sensor are coverage of the entire range (400-2500 nm) with
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8 Hyperspectral Remote Sensing

more than 400 bands with 3.7 and 6.25nm band width two different sensors
(the VNIR 640 and SWIR 320). The sensor underwent several experiments in
Europe with proven success but has not yet aggressively entered the commer-
cial remote sensing arena.

Beside the AVIRIS sensor, today the HyYMAP sensor has become available:
this is a commercially designed and operated system that was based on the
Probe-1 sensor (operated in ca. 1998 by Applied Signal and Image Technology
(ASIT) USA). Several campaigns in the US demonstrated the promising com-
mercial capability of HRS technology (Kruse et al., 2000). Integrated Spectron-
ics Australia designed and operated the HyMAP sensor for rapid and efficient
wide-area imaging for mineral mapping and environmental monitoring. The
sensor can be defined as a high SNR instrument with high spectral resolution,
ease of use, a modular design concept, calibrated spectroradiometry, proven
in-field operation and heavy load capacity. It is a whiskbroom sensor with
100 to 200 bands (usually 126) across the 450 to 2450 nm spectral region with
bandwidths ranging from 10 to 20nm. The SNR is in the range of 500:1 with
2 to 10 m spatial resolution. It is characterized by a 60° to 70° swath width
and furnished with an onboard radiometric and spectral calibration assembly.
In 1999, a group shoot using the HYMAP sensor was conducted in the US. A
report by Kruse et al. (2000) declared the sensor to be the best available at the
time. Since then, the HyMAP sensor has been operated worldwide, provid-
ing high-quality HRS data to its end-users and opening up a new era in HRS
data quality. It has been operated in Europe, Australia, the US and Africa in
specific campaigns and through Hy Vista activity, which provides end-to-end
solutions for the potential customer. HyMAP can thus also be considered a
benchmark in HRS technology, which was reached in ca. 1999 by Probe-1 and
then afterwards by HyMAP sensors. The problem with HyMAP is that the
sensor is limited and is operated only byHyVista, and hence its use is strongly
dependent on their schedule and availability. Moreover, the cost of the data is
still prohibitive for the daily-use capability that is desired from HRS technol-
ogy. It can be concluded that there is still a significant gap between high SNR
and low cost/easy operation in sensors: ideally, this gap might be bridged by
fusing the AISA and HyMAP characteristics that are based on two different
technologies: push broom and whisk broom respectively. As more and more
companies undertake moving HRS technology forward, we believe that in the
near future such a fusion will be possible and we will see more low-cost, high-
quality data and more applications emerging from this capability.

The above provides only the milestone stages in HRS technology over the
years. Several of the sensors and activities may not have been mentioned. The
reader is therefore directed to a comprehensive description of all HRS sen-
sors until 2008 made by Prof. Gomez from George Mason University in the
US, and to a summary of all remote sensing organizations worldwide and all
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8.4 HRS Sensors

institutes, private sectors and abbreviations commonly used with this tech-
nology at:www.tau.ac.il/ rslweb/pdf/HyperspectrallmagingSystems.pdf . A
historical list of HRS sensors compiled by Michael Schaepman is available
from http://www.geo.unizh.ch/~schaep/research/apex/is\_list.html

8.4.3
Satellite HRS Sensors

Among the airborne HRS benchmarks mentioned earlier, orbital HRS activity
has contributed greatly to the blossoming HRS activity. The first initiative to
place an HRS sensor in orbit took place in the early 1990s when a group of
scientists chaired by Goetz started work on the NASA HRS mission HIRIS.
This was part of NASA’s High Resolution Imaging Spectrometer Earth Obser-
vation System program. The idea was to place an AVIRIS-like sensor in orbit
with a full range between 0.4 and 2.5 ym and a spatial resolution of 30 m. A
report that provides the capacity of this sensor, including its technical and ap-
plication characteristics, was issued in several copies Goetz (1987). This report
was the first document that showed the intention to go into space with HRS.
The HIRIS mission was terminated, apparently due to the Challenger space
shuttle disaster which significantly changed the space programs at NASA.
The scientists, however, agreed that using HRS in orbit is an important task
that needs to be addressed Nieke et al. (1997). A report by Hlao and Wong
(2000) submitted to the US Air Force in 2000 assessed the technology as still
premature and still lagging behind other remote sensing technologies such as
air photography. The next benchmark in orbital HRS was Hyperion, part of
the NASA New Millennium Program (NMP). The Hyperion instrument was
built by TRW Inc. (Northrop Grumman Space Technology) using focal planes
and associated electronics remaining from the Lewis spacecraft, a product of
the NASA Small Satellite Technology Initiative (SSTI) mission that fell in 1997.
The integration of Hyperion took less than 12 months from Lewis’s spare parts
and was sent into orbit onboard the EO-1 spacecraft. The mission, planned for
3 years, is still operational today with a healthy sensor and data, although the
SNR is poor. The instrument covers the VIS-NIR-SWIR region from 422%,nm
to 2395 nm with two detectors and 244 bands of 10 nm bandwidth. The ground
coverage FOV provided a 7.5 km swath and 30 m GSD. The first datasets cost
around 2500 USD and had a lower SNR than originally planned. Nonetheless,
over the years, and despite its low quality, the instrument has brought new ca-
pability to sensing the globe by temporal HRS coverage, justifying the effort
to place a better HRS sensor in space. As of the summer of 2009, Hyperion
data are free of charge, which has opened up a new era for potential users.
In ca. 2001, the CHRIS (compact high-resolution imaging spectrometer) sen-
sor was launched into orbit onboard the PROBA bus. It was developed by the
Sira Electro Optic group and supported by the European Space Agency (ESA).
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8 Hyperspectral Remote Sensing

The CHRIS sensor is a high spatial resolution hyperspectral spectrometer (18
m at nadir) with a FOV resulting in 14 km swath. One of its most important
characteristics is the possibility of observing every ground pixel at the same
time, in five different viewing geometry sets (nadir, +/ — 55° and +/ — 36°).
It is sensitive to the VIS-NIR region (410-1059 nm) and the number of bands is
programmable, with up to 63 spectral bands. Although limited in its spectral
region, the instrument provides a first view of the Bi Directional Reflectance
Distribution Function (BRDF) effects for vegetation and water applications,
and it is robust as it is still operating today. The “early” spaceborne planning
missions in both the US and Europe comprised, among others, the follow-
ing projects: IRIS, HIRIS (NASA), GEROS (GER, US), HERO (CSA), PRISM,
Spectra (all ESA), SIMSA and SAND. Although most of these initiatives were
not further funded and are not active today, they demonstrated governmen-
tal agencies’ interest in investing in this technology, albeit with a fearful and
cautious attitude. Other orbital sensors, such as MODIS, MERIS and ASTER,
can also be considered part of the HRS activities in space, but in terms of both
spatial (MODIS and MERIS) and spectral (ASTER) resolution, these sensors
and projects still lag behind the ideal HRS sensor that we would like to see in
orbit with high spectral (more than 100 narrow bands) and spatial (less than
30 m) resolutions. It is important to mention, however, that a new initiative
to study the moon and Mars using HRS technology is currently active under
a collaboration between NASA and ISA (India), within which the M3 mission
to the moon has recently provided remarkable results by mapping a thin layer
of water on the moon’s surface (Pieters et al., 2009b,a). In addition, missions
to Mars, such as CRISM (Compact Reconnaissance Imaging Spectrometer for
Mars) show that it is now understood that HRS technology can provide re-
markable information about materials and objects remotely.

EnMAP (Environmental Mapping and Analysis Program) is a German hy-
perspectral satellite mission providing high-quality hyperspectral image data
on atimely and frequent basis. Its main objective is to investigate a wide range
of ecosystem parameters encompassing agriculture, forestry, soil and geolog-
ical environments, coastal zones and inland waters. This will significantly
increase our understanding of coupled biospheric and exospheric processes,
thereby enabling the management and guaranteed sustainability of our vi-
tal resources. Launch of the EnMAP satellite is envisaged for 2015 (updates
in 2012). The basic working principle is that of a pushbroom sensor, which
covers a swath (across-track) width of 30 km, with a GSD of 30 x 30 m. The
second dimension is given by the along-track movement and corresponds to
about 4.4 ms exposure time. This leads to a detector frame rate of 230 Hz,
which is a performance-driving parameter for the detectors, as well as for the
instrument control unit and the mass memory. HySPIRI is a new NASA ini-
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8.5 Potential and Applications

tiative to place a HRS sensor in orbit and is aimed at complementing EnMAP,
as its data acquisition covering the globe periodically.

It is important to mention that other national agencies are aiming to place
HRS sensor in orbit as well. A good example is PRISMA of the Italy’s space
agency. PRISMA is a pushbroom sensor with swath of 30-60 km, GSD of 20—
30m (2.5-5m PAN) with a spectral range of 0.4-2.5um. The satellite launch
was foreseen by the end of 2013, but it seems that some delay is encountered
and the new lunch date is unknown.

To keep everyone up to date and oriented on the efforts being made in HRS
pace activities, a volunteer group was founded in November of 2007 by Dr.
A. Held and Dr. K. Staenz named ISIS (International Satellite Imaging Spec-
trometry, http://www.isiswg.org). The ISIS group provides a forum for tech-
nical and programming discussions and consultation among national space
agencies, research institutions and other spaceborne HRS/I1S data providers.
The main goals of the group are to share information on current and future
spaceborne IS (“hyperspectral’”) missions, and to seek opportunities for new
international partnerships to the benefit of the global user community. The
initial “ISIS Working Group” was established following the realization that
there were a large number of countries planning IS ("hyperspectral’) satellite
missions with little mutual understanding or coordination. Meetings of the
working group have been held in Hawaii (IGARSS 2007), Boston (IGARSS
2008), Tel Aviv (EARSeL 2009), Hawaii (IGARSS 2010), and Ottawa (IGARSS
2011). The technical presentations by the ISIS group have garnered interest
from space agencies and governmental and industrial sectors in this promis-
ing technology. An excellent review on current and planned civilian space hy-
perspectral sensor for Earth observation is given by Buckingham and Staenz
(2008).

8.5
Potential and Applications

Merging of spectral and spatial information, as is done within HRS technol-
ogy, provides an innovative way of studying many spatial phenomena at var-
ious resolutions. If the data are of high quality, they allow near-laboratory
level spectral sensing of targets from afar. Thus, the information and knowl-
edge gathered in the laboratory domain can be used to process the HRS data
on a pixel-by-pixel basis. The "spheres"” that can feasibly be assessed by HRS
technology are: atmosphere, pedosphere, lithosphere, biosphere, hydrosphere
and cryosphere. Different methods of analyzing the spectral information in
the HRS data are known, the basic one consisting of comparing the pixel spec-
trum with a set of spectra taken from a well-known spectral library. This al-
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8 Hyperspectral Remote Sensing

lows the user to identify specific substances, such as minerals, chlorophyll,
dissolved organics, atmospheric constituents, and specific environmental con-
taminants, before moving ahead with other more sophisticated approaches.
The emergence of hyperspectral imaging moved general remote sensing ap-
plications from the area of basic landscape classification into the realm of full
spectral quantification and analysis. The same type of spectroscopy applica-
tions which have been utilized for decades by chemists and astronomers are
now accessible through both NADIR and oblique viewing applications. The
spectral information enables the detection of indirect processes, such as con-
taminant release, based on changes in spectral reflectance of the vegetation or
leaves. The potential thus lies in the spectral recognition of targets using their
spectral signature as a footprint and on the spectral analysis of specific absorp-
tion features that enable a quantitative assessment of the matter in question.
Although many applications remain to be developed, within the last decade,
significant advances have been made in the development of applications us-
ing hyperspectral data, mainly due to the extensive availability of today’s air-
borne sensors. Whereas a decade ago, only a few sensors were available and
used in the occasional campaign, today, many small and user-friendly HRS
sensors that can operate on any light aircraft are available. Hydrology, disas-
ter management, urban mapping, atmospheric study, geology, forestry, snow
and ice, soil, environment, ecology, agriculture, fisheries and oceans and na-
tional security are only a few of the applications for HRS technology today.
In 2001, van der Meer and De Jong published a book with several innovative
applications for that time (van der Meer and Jong, 2001). Since then, new ap-
plications have emerged and the potential of HRS has been discussed and an-
alyzed by many authors at conferences, in proceedings papers and full-length
publications. In a recent paper, Staenz (2009) provides his present and future
notes on HRS, which very accurately summarize the technology up to today.
In the following, we paraphrase and sharpen Staenz’s points. It is clear from
the numerous studies which have been carried out that HRS technology has
significantly advanced the use of remote sensing in different applications (e.g.,
AVIRIS 2007). In particular, the ability to extract quantitative information has
made HRS a unique remote sensing tool. For example, this technology has
been used by the mining industry for exploration of natural resources, such as
the identification and mapping of the abundance of specific minerals. HRS is
also recognized as a tool to successfully carry out ecosystem monitoring, espe-
cially the mapping of changes due to human activity and climate variability.
This technology also plays an important role in the monitoring of coastal and
inland waters. Other capabilities include the forecasting of natural hazards,
such as mapping the variability of soil properties which can be linked to land-
slide events and monitoring environmental disturbances, such as resource ex-
ploitation, forest fires, insect damage and slope instability in combination with
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8.5 Potential and Applications

heavy rainfall. As already mentioned, HRS can be used to assess quantitative
information about the atmosphere such as water vapor content, aerosol load,
methane, carbon dioxide and oxygen content. HRS can also be used to map
snow parameters, which are important in characterizing a snow pack and its
effect on water runoff. Moreover, the technology has shown potential for use
in national security, e.g., in surveillance and target identification, verification
of treaty compliance (e.g., Kyoto Accord on Greenhouse Gas Emission), and
disaster preparedness and monitoring (Staenz, 2009). Some recent examples
show both the quantitative and exclusive power of HRS technology in: de-
tection of soil contamination (e.g.Kempter and Sommer (2003)), soil salinity
(e.g., Ben-Dor et al. (2002)), species of vegetation (e.g., Ustin et al. (2008)),
atmospheric EM imissions of methane (Noomem et al., 2005), Detection of
ammonium (Gersman et al., 2008), asphalt condition (Herold. et al., 2008),
water quality (Dekker et al., 2001) and urban mapping (Ben—-Dor, 2001). Many
other applications can be found in the literature and still others are in the R&D
phase in the emerging HRS community. Nonetheless, although promising,
one should remember that HRS technology still suffers from some difficulties
and limitations. For example, the large amount of data produced by the HRS
sensors hinders this technology’s usefulness for geometry analysis or for vi-
sual cognition (e.g., building structures and roads) and one has to weight the
added value promised by the technology for one’s applications. There are
other remote sensing tools and the user should consult with an expert before
using HRS technology. Since the emergence of HRS, many technical difficul-
ties have been overcome in areas such as sensor development, data handling,
aviation and positioning, and data processing and mining. However, there
are several main issues today which require solutions to move this technol-
ogy toward more frequent operational use. These include: a lack of reliable
data sources with a high SNR are required to retrieve the desired informa-
tion and temporal coverage of the region of interest; although analytical tools
are now readily available, there is a lack of robust automated procedures to
process data quickly with a minimum of user intervention; the lack of opera-
tional products is obviously due to the fact that most efforts to date have been
devoted to the scientific development of HRS; interactions with other HRS
communities have not yet developed-there are many applications, methods
and know-how in the laboratory-based HRS disciplines, but no valid con-
nection between the communities; systems that can archive and handle large
amounts of data and openly share the information with the public are still
lacking; only a thin layer of the surface can be sensed; there is no standard-
ization for data quality or quality indicators; not much valid experience exists
in merging HRS data with that of other sensors (e.g., LIDAR, SAR); many sen-
sors have emerged in the market but their exact operational mechanism is
unknown, biasing an accurate assessment; thermal HRS sensors are just start-
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8 Hyperspectral Remote Sensing

ing to emerge (whereas point thermal spectrometers are existing ; Christensen
et al. (2000)); oblique view and ground-based HRS measurements have not
yet been developed: the cost of deriving the information product is too high,
since the analysis of HRS data is currently too labor-intensive (not yet auto-
mated); it is not yet recognized by potential users as a routine vehicle such
as, for example, air photography; not too many experts in this technology
are available. Several authors have summarized this technology’s potential
to learn from history, such as Itten (2007); Schaepman et al. (2009) and Staenz
(2009).

It is anticipated that HRS technology will catch up when new high-quality
sensors are placed in orbit and the data become available to all (preferably
in reflectance values), when the air photography industry uses the HRS data
commercially, and when new sensors that are inexpensive and easy to use
are developed along with inexpensive aviation (such as UnmAnned Vehicled
UAV).

8.6
Sensor Principles

Imaging spectrometers typically use a 2D matrix array (e.g., a Charge Cou-
ple Device (CCD) or Focal Plane Array (FPA) )that produces a 3D data cube
(spatial dimensions and a third spectral axis). These data cubes are built in
a progressive manner by (1) sequentially recording one full spatial image af-
ter another, each at a different wavelength, or (2) sequentially recording one
narrow image (1 pixel wide, multiple pixels long) swath after another with
the corresponding spectral signature for each pixel in the swath. Some com-
mon techniques used in airborne or spaceborne applications are depicted in
Figure8.2. The first two approaches shown are basic ones, used to generate
images such as those used in LANDSAT (Figure 8.2a) and SPOT (Figure 8.2b).
They show the concept of measuring reflected radiation in a discrete detector
orin aline array.

Multichannel sensors such as LANDSAT TM are optical mechanical sys-
tem un which discrete, fixed detector elements are scanned across the target
perpendicular to the flight path by a mirror and these detector convert the
reflected solar photons from each pixel in the scene into an electronic signal
. The detector elements are placed behind filters that pass broad portion of
the spectrum. One approaches to increase the residence time of a detector in
the UFQV is to use line arrays of detector elements (Figure 8.5b. This type of
sensor is presented by the French satellite sensor SPOT.

There are limitations and trade-offs associated with the use of multiple line
arrays, each with its own spectral band-pass filter. If all of the arrays are
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placed in the focal plane of the telescope, then the same ground locations are
not imaged simultaneously in each spectral band. If a beam-splitter is used to
facilitate simultaneous data acquisition, the signal is reduced by 50 % or more
for each additional spectral band acquired in a given spectral region. Further-
more, instrument complexity increases substantially if more than 6 to 10 spec-
tral bands are desired. Two other approaches to IS are shown in Figure 8.2c,
8.2d. The line array approach (also known as whiskbroom configuration) and
the area array approach (also known as pushbroom configuration). The line
array approach is analogous to the scanner approach (Figure 8.2b), except that
the light from a pixel is passed into a spectrometer where it is dispersed and
focused onto a line array. Thus, each pixel is simultaneously sensed in as many
spectral bands as there are detector elements in the line array. For high spatial
resolution imaging of ground IFOVs of 10m to 30 m, this concept is suitable
only for an airborne sensor that flies slowly enough so that the integration
time of the detector array is a small fraction of the integration time. Because
of the high velaocities of spacecraft, an imaging spectrometer designed for the
Earth’s orbit requires the use of two distinguished area arrays of the detector
in the focal plane of the spectrometer (Figure 8.2d), thereby obviating the need
for an optical scanning mechanism (pushbroom configuration).

Area arrays of up to 800x800 elements of silicon were developed for wide-
field and planetary camera. However the stat of infrared array development
for wavelength beyond 1.1mm is not so advance. Line array are available in
several materials up to few hindered detector elements in length. Two of the
most attractive materials are mercury-cadmium-telluride (HgCdTe) and in-
dium antimonite (InSb). InSb array of 512 elements having very high quantum
efficiency and detector with similar element-to-element responsibility have
developed. The InSb arrays respond to wavelengths from 0.7-5.2 mm. A com-
prehensive description of both push broom and whisk broom technologies
with advantageous and disadvantageous can be found in Sellar and Boreman
(2005).

The key to HRS/IS is the detector array. Line arrays of silicon, sensitive
to radiation at wavelengths of 035 to 1.1 um, are available commercially in
dimensions of up to 5,000 elements in length. The state of IR array develop-
ment for wavelengths beyond 1.1 um is not yet advanced. Two of the most
attractive materials are mercury cadmium telluride (HgCdTe) and indium an-
timonite (InSb).
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Fig. 8.2 Four approaches to sensors for multispectral imaging: (a)
multispectral imaging with discrete detectors (LANDSAT type); (b)
multispectral imaging with line arrays (SPOT type); (c) imaging spec-
troscopy with line arrays (AVIRIS type, whiskbroom); (d) imaging spec-
troscopy with area array (AISA type, pushbroom).

8.7
Planning of an HRS Mission

In this section, we describe the planning of a mission for an airborne cam-
paign: we do not cover the possible activities involved for a spaceborne mis-
sion. Planning a mission is a task that requires significant preparation and
knowledge of the advantages and disadvantages of the technology. The idea
behind using HRS is to get an advanced thematic map as the final product
which no other technology can provide. In the planner’s mind, the major
step toward achieving the main perquisite of a thematic map is to generate a
reflectance or emission image from the raw data. First, a scientific (or appli-
cable) question has to be asked, such as: Where can saline soil spots be found
over a large area? For such a mission, the user has to determine whether
there exists spectral information on the topic which is being covered by the
current HRS sensor. This investigation might consist of self-examination or a
literature search of both the area in question and the advantageous of using
HRS (many times HRS is an overkill technology for answering simple the-
matic questions) . Once this investigation is done, the question is: What are
the exact spectral regions that are important for the phenomenon in question
and what pixel size is needed? In addition, the question of what SNR values
will enable such detection should be raised. Having this information in hand,
the next step is to search for the instrument. Sometimes a particular instru-
ment is available and there is no other choice. In this case, the first spectral
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investigation stage should focus on the available HRS sensor and its spectral
performances (configuration, resolution, SNR ect.) infrastructure. It is recom-
mended that the spectral information on the thematic question be checked at
the sensor-configuration stage. In some sensors, especially pushbroom ones,
it is possible to program the spectral configuration using a new arrangement
of the CCD assembly. In this respect, it is important that the flight altitude be
taken into consideration (for both pixel size and integration time) along with
aircraft speed. Most sensors have tables listing these components and the user
can use them to plan the mission frame. As within this issue the user can con-
figure the bands with different Full Width Half Max (FWHM) and positions, it
should be remembered that combined with spatial resolution, this might affect
the SNIR. When selecting the sensor, it is important to obtain (if this is the first
use) a sample cube to learn about the sensor’s performance. It is also good to
consult with other people who have used this equipment. Getting information
on when and where the last radiometric calibration was performed as well as
obtaining information about the sensor stability and uncertainties is very im-
portant. It is better if the calibration file of the sensor is provided but if not,
the HRS owner should be asked for the last calibration date and its temporal
performances. Quality Assurance (QA) of the sensor’s radiance must be done
in order to assure a smooth step to the next stage namely atmospheric correc-
tion. Methods and tools to inspect these parameters were developed under
EUFAR JRA2 initiative and recently also by Brook and Ben Dor 2011. The area
in question is generally covered by 30% overlap between the lines. This has
to be carefully planned in advance taking into consideration the swath of the
sensor and other aircraft information (e.g. stability, length on the air, speed
and altitude preferences, navigation systems). A preference for flying toward
or against the direction of the Sun’s azimuth needs to be decided upon, and it
is recommended that the Google Earth interface be used to allocate the flight
lines and to provide a table for each line with starting and ending points for all
flight lines. One also needs to check if the GPS (Ground Positioning System)
INS (Inertial Navigation System) system is available and configure the system
to be able to ultimately allocate this information in a readable and synchro-
nized form.

A list of go/no go items should be established. For instance, a forecast for
the weather should be on hand 24 h in advance, with updates every 3 h. If pos-
sible, a representative should be sent to the area in question to report on cloud
coverage close to acquisition time. In our experience, one should be aware of
the fact that a 1/2 cover over the area in question will turn into almost 100 %
coverage of the flight lines that appeared to be free of clouds. Moreover, prob-
lems that may emerge at the airport need to be taken into consideration, such
as: the GPS system is not functioning or the altitude obtained from air con-
trol is different from that which was planned. The go/no go checklist should
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8 Hyperspectral Remote Sensing

be used for these issues as needed. Each go/no go list is individual, and one
should be established for every mission.

The aircrew members (operators, navigator and pilot) must be briefed be-
fore and debriefed after the mission. A logbook document should be prepared
for the aircrew members (pilot and operator) with every flight line reported
by them. It is important to plan a dark current acquisition before and after
each line acquisition. Acquisition of a vicarious calibration site (in the area of
interest or on the way to this area) in question should also be planned for, that
is well prepared and documented in advance. Radio contact with the aircrew
should be obtained at a working frequency before, during and after the over-
pass. A ground team should be prepared and sent to the area in question for
the following issues: (1) calibrating the sensor’s radiance and examining its
performance (Brook and Ben-Dor, 2011), (2) validating the atmospheric correc-
tion procedure and (3) collecting information that will be useful further on for
thematic mapping (e.g., chlorophyll concentration in the leaves). The ground
team should be prepared according to a standard protocol and it should be
assured that they are furnished with the necessary equipment (such as video
and still cameras, field spectrometer, maps, Sun photometer and GPS). Af-
ter data acquisition, the data should be immediately backed up and quality-
control checks run to determine data reliability. Afterwards, the pilot logbook,
ground documentation and any other material that evolved during the mis-
sion should be collected.

In general and to sum up the above: A mission has to be leaded by a senior
person who is responsible to coagulate the end user needs, the ground team
work, the airborne crew activity and the processing stages done by experts.
He is responsible to interview the end user and understand the question at
hand, he responsible to allocate a sensor for the mission and meet with the
sensor owner and operator ahead of the mission and arrange a field campaign
by a ground team. Other responsibilities such as arranging logistics and brief-
ing of all teams as well as backing up the information just after the mission end
i.e. at the airport are also part of his duties and are very important. A checklist
and documents on every stage are available in many bodies (e.g. DLR, TAU)
but in general it can be developed by any group by gathering information
from main HSR leading bodies (DLR, NASA, INTA).

8.7.1
Spectrally—Based Information

A A sensed matter interact with electromagnetic (EM) radiation where pho-
tons are absorbed or emitted via several processes. On the Earth’s surface
(solid and liquid) and in its atmosphere (gasses and aerosols), the interaction
across the VIS-NIR-SWIR-TIR regions is sensed by HRS means to give addi-
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Fig. 8.3 A data processing chain, as used at RSL-TAU (Remote Sens-
ing Laboratory at Tel Aviv University) with the AISA—-Dual sensor. Note
that at three stages, quality assurance is crucial: the raw data (includ-
ing radiance), the atmospheric correction stage (reflectance and emit-
tance) and the thematic mapping stage.

tional spectral information relative to the common multiband sensors . The
spectral response of the EM interaction with matter can be displayed as radi-
ance, reflectance, transmittance or emittance, depending on the measurement
technique and on the illumination source used. Where interactions occur, a
spectrum shape can be used as a footprint to assess and identify the matter
in question. Variations in the position of local minima (or maxima, termed
"peaks") and baseline slope and shape are the main indicators used to de-
rive quantitative information on the sensed material. The substance (chemi-
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8 Hyperspectral Remote Sensing

cal or physical) that significantly affects the shape and nature of the target’s
spectrum is termed "chromophore”. A chromophore that is active in energy
absorbance (e.g., chlorophyll molecule in vegetation) or emission (e.g., fluo-
rescence) at a discrete wavelength is termed a "chemical chromophore". A
chromophore that governs the spectrum’s shape [such as the slope and albedo
(e.g., particle size, refraction index)] is termed "physical chromophore". Often,
the spectral signals related to a given chromophore overlap with the signals
of other chromophores, thereby hindering the assessment of a specific chro-
mophore. The spectrum of a given sample, which is the result of all chro-
mophores’ interactions, can be used to analyze and identify the matter if a
spectral-based method for that end spectrum is used. Fourier , and other spec-
tral tools (e.g., Wavelet Transforms, Principle Component Analysis) that are
usually applied to laboratory spectra can be excellent tools for application to
HRS data provided the data are of good quality. A comprehensive review of
chemical and physical chromophores in soils and rocks, as an example, can be
found in Irons et al. (1989); Ben—Dor et al. (1999); Clark (1999); Malley et al.
(2004); McBratney and Rossel (2006). A compilation table that provides the
chromophores of known Earth targets in all spheres is given in Table 8.1. The
table, which covers all spectral regions (VIS, NIR, SWIR and TIR), may be of
interest for HRS technology from field, air and space levels.

The chemical chromophores in the VIS-NIR-SWIR regions refer to two ba-
sic chemical mechanisms: (1) overtones and combination modes in the NIR-
SWIR region that emerge from the fundamental vibrations in the TIR regions
and (2) electron processes in the VIS region which are in most cases crystal-
field and charge-transfer effects. The physical chromophores in this region
refer mostly to particle size distribution and to refraction indices of the mat-
ter in question. The electronic processes are typically affected by the presence
of transition metals, such as iron, and although smeared, they can be used
as a diagnostic feature for iron minerals (around 0.80-0.90 um, crystal field
and around 0.60-0.70 um, charge transfer). Accordingly, all features in the
VIS-NIR-SWIR-TIR spectral regions have a clearly identifiable physical ba-
sis. In solid—fluid Earth materials, three major chemical chromophores can be
roughly categorized as follows: (1) minerals (mostly clay, iron oxide, primary
minerals-feldspar, Si, insoluble salt, and hard-to-dissolve substances such as
carbonates, phosphates, etc.), (2) organic matter (living and decomposing),
and (3) water (solid, liquid, and gas phases). In gaseous Earth materials, the
two main chemical chromophores are: (1) gas molecules and (2) aerosols of
minerals, organic matter and ice.

Figure 8.2 presents a summary of possible chromophores in soils and rocks
(from Ben-Dor et al. (1999)). Basically the (passive) EM sources for HRS are
the Sun and Earth’s radiation (Sun: VIS-NIR-SWIR, Sun and Earth: TIR). As-
suming that in a photon pack emitted from a given source (E; Es for Sun, Eg
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Tab. 8.1 A summary of possible chromophores in all spheres of interest for our planet by re-
mote sensing using the spectral.
350-1000 VIS-NIR nm

Sphere Pedo- Litho- Bio- Hydro- Cryo- Atmo-

sphere sphere sphere sphere sphere sphere
Abs- Fe, Ni+ Chloro- +
Electronic phyll+
Scattering-  Particle Particle Leaf Particle Particle Mie,
Particles size, size, Structure size, size, Raleigh
Emission - Fluorescence
Abs- OH- 3d H,0O H,O 07, H20,
Overtones O3

100-2500 nm SWIR

Sphere Pedo- Litho- Bio- Hydro- Cryo- Atmo-

sphere sphere sphere sphere sphere sphere
Abs-
Electronic
Scattering-  Albedo- Albedo- Leaf Particle Mie
Particles Particle particle structure

size size
Emission-
Electronic
Abs- OH,C-H, + + H,0 H,0 H,0,
Overtones  N-HT CO,, Oy,
Combi- CH3
nation
modes

3000-12500 nm MIR-TIR

Sphere Pedo- Litho- Bio- Hydro- Cryo- Atmo-

sphere sphere sphere sphere sphere sphere
Abs-
Electronic
Scattering-
Particles
Emission- Temp Temp Temp Temp Temp
Electronics
ABS Emissivity,  Emissivity,  Emissivity Emissivity ~ Emissivity  SOg4
Funda- SI-O, AI-O,  SI-0, AlI-O, C=0 H,, OM
mentals Fe-O Fe-O

+: some other causes for the spectral mechanism visualization

1 for Earth), some may be absorbed (E,), reflected (E,) or transmitted (E¢)(at a
2 given wavelength and incident angle). The energy balance (in term of fluxes)
3 on a given sense target for every sphere (atmosphere, geosphere and hydro-
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Fig. 8.4 Compilation of chromophores in soil and rocks: VIS-NIR
electronic processes and overtones, SWIR overtones and combination
modes, taken from Ben—Dor et al. (1999).

1 sphere) can be written (for every wavelength) as follows:

E=Et+Ea+Er,

- Strong
1
1 f ! ! Intensity E - Weak
1= Very Weak

(8.1)

2 where E = Eg + Eg If we assume that we know the source energy (Eg), divid-

3 ing Eq.(8.1) by E gives:

l=74+a+p,

(8.2)

4 where T (transmittance), « (absorptance), p (reflectance) are coefficients of Er,
Ea, ER, respectively describing each process’s magnitude, and each can range
6 from 0 to 1. In some cases, the Sun emits photons (Es) that pass through the
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atmosphere and hit the ground. Across the spectral range where the atmo-
sphere is (semi) transparent to the photons (known as atmospheric window,
or the atmosphere attenuation are modeled),0 < T < 1. Atmospheric correc-
tion techniques estimate this coefficient , in order to obtain the correct fluxes
hitting the ground surface. The Earth’s solid surface is considered opaque, so
7 = 0. In this condition Eq. (8.2) becomes:

l=a+p. (8.3)

Figure 8.5 provides a schematic view of two mediums for remote sensing, the
atmosphere and the geosphere, as related to the above coefficients.

This schematic illustration shows an ideal condition where a Lambertian
reflectance is dominant with no adjacency effects. This is to illustrate the basic
parameters that are sensed by the remote sensing sensor. It should be pointed
out that if surface water is being sensed addition interactions of the water with
the sun photons is taking place as shown in Figure 8.5.

As seen , the irradiance flux on the water surface can be reflected back to the
sensor, penetrate in to the water body, absorbed by the water body, heat the
sea surface and reflected back to the water, atmosphere and then to the sensor.
The energy balance is as follow:

E = Etw + Eaw + (Erw + Erss) - (8.4)

Etww is the energy transferred in the water body, Eay is the energy absorbed in
the water body, E is the energy reflected back from the water surface and
Erss is the energy reflected back from the sea surface. Dividing Eq. (8.4) by the
total energy provides the above coefficients:

1= 1w+ aw+pw+ pPss- (8.5)

In case the water are clean and 7 is known (depending on the water depth,
wd) 1 > pss > 0. If the water are dirt, pss = 0 and tw — 0 then we get similar
expression as in Eq. (8.1):

1=aw+pw. (8.6)

There is also an intermediate condition where all coefficients are greater then
0 that tends to be rather complicated for solving the sensor radiance for each
coefficient.

Again, these description and illustration are schematic and does not take
into account BRDF effects, specular reflectance and adjacency effects.

Generally, for solid surface we are trying to recover p, termed spectral
albedo or simply "reflectance”, to account for « (absorbtance) which has a
meaningful physical explanation. The same applies to the atmosphere but
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8 Hyperspectral Remote Sensing

then we use T (transmittance) to assess «. For water surface more coefficients
are encountered that as discussed previously makes the sensing more com-
plicated depending on the water conditions (ty). Doing so spectrally can
discriminate between the chemical compound being in the atmosphere, geo-
sphere and hydrosphere. Assessing the atmospheric interaction in region t
is the main procedure used to generate p and analyze it for thematic map-
ping in the atmospheric correction technique procedure-see further on). The
E can be calculated (or measured) according to Planck’s displacement law of a
black body entity (depending on its temperature). This calculation shows that
the radiant frequencies are different using the Sun (VIS-NIR-SWIR) or Earth
(TIR) and thus demonstrates separate HRS approaches using the Sun (mostly
done) and the Earth (just emerging) as radiation sources. When the Sun serves
as the radiant source, the reflectance p of the surface is used as a diagnostic pa-
rameter to map the environment. When the Earth serves as the radiant source,
the emissivity (¢) and the temperature (T) are used as diagnostic parameters.
These parameters can be derived from the acquired radiances using several
methods to remove atmospheric attenuation [mostly 7, and then after separat-
ing between T and € (in the TIR region) or extracting p (in the VIS-NIR-SWIR
region)]. The reflectance and emissivity are inherent properties of the sensed
matter that do not change with external conditions (e.g., illumination or en-
vironmental conditions) and hence are used as diagnostic parameters. They
both provide, if high spectral resolution is used, spectral information about
the chromophores within the matter being studied.

According to Kirchhoff’s law, the absorptivity of a perfect black body mate-
rial is equal to its emissivity (in equilibrium) and thus reflectance has a strong
relation to emissivity across the spectral region studied, i.e., e = 1 —p. In
atmospheric windows where T # 0 across the VIS-NIR-SWIR-MWIR and
LWIR region, HRS can be performed even not across a classical atmospheric
window using atmospheric correction techniques (see later) as shown in Fig-
ure8.6. Whereas the LWIR (8-12 um) is sufficient for remote sensing of the
Earth (if the temperature is known), as is the VIS-NIR-SWIR region, the
MWIR (3-5um) region is more problematic for HRS remote sensing of the
Earth, as both Sun and Earth Planck functions provide low radiation in their
natural position (Sun 6000°K, Earth 300°K ) and overlap across this region.
Hence the MWIR region across 3 to 5 um is usuable for hot (Earth) targets
that enable the dominant photons to be above the Sun’s background across
this region. It should be noted that p and « are important parameters for
assessing the Earth’s surface composition, but if they are known in advance
(e.g., ground targets with known p), T can be extracted at specific wavelengths
and hence can provide information about the atmospheric constituents (gases
and aerosols). In other words. HRS can be also a tool to quantitatively study
the atmosphere.
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Fig. 8.5 Schematic views of two and three mediums (atmosphere and
geosphere (left panel) and atmosphere, hydrosphere, geosphere (sea
surface) (right panel) respectively).where Eg. (8.3) holds in each medi-
ums. In Figure 8.3a the absorbance of sun radiation (Es) was indirectly
observed by transmittance and reflectance. In the atmosphere, the
reflectance (p) is 0 and absorbance («) is obtained via transmittance
(7). In the geosphere, transmittance () is 0 and absorption(«) is
obtained via reflectance (p). In Figure 8B the interaction in the atmo-
sphere is identical to Figure 8.3a. In the water body medium, transmit-
tance of the water ( w) determine the contribution of the sea surface
reflectance ( ss) well as the water surface reflectance (w ) and all are
responsible for water absorbance (w). See text for more explanation.

Whereas in the VIS region, only limited information on terrestrial systems
is available, important information about many of the Earth’s materials can
be extracted from the NIR-SWIR region. This is because in the VIS region,
the electronic processes responsible for broad spectral features are dominant,
whereas in the NIR-SWIR region, overtone and combination modes of fun-
damental vibrations responsible for noticeable spectral features are dominant.
Many of the Earth’s materials show significant spectral absorption in the NIR-
SWIR region, which serves as a unique fingerprint for mineral identification
(Huntand Salisbury, 1970, 1971; Hunt et al., 1971a,b). In addition, atmospheric
gases, such as oxygen, water vapor, carbon dioxide and methane, produce
specific absorption features in the VIS-NIR-SWIR regions (Goetz 1991). Ly-
ing in the narrow band’s width (usually <10 nm) that HRS is capable of gener-
ating, are spatial qualitative and quantitative indicators for ecologists, land
managers, pedologists, geologists, limnologists, atmospheric scientists and
engineers, for which the selection of appropriate methods is dependent on
the particular management objectives and the characteristics of the indicators.
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Fig. 8.6 The atmospheric transmittance windows for HRS activity.
When the atmosphere is not completely opaque, photons still reach
the ground. Also defined are the regions for HRS.

In general the above mentioned spectral information is part of the radiance
at sensor, amongst other factors (such as sun angle, viewing angle, terrain re-
lief, atmosphere attenuation ect). To extract the spectral information that are
considered inherent properties of the sensed matter a special data analyses
stages must be applied such as: data quality inspection, atmospheric correc-
tion and data mining. These issues are discussed in the following section.

8.8
Data Analysis

8.8.1
General

Data-processing is performed following a chain procedure (an example of
such a procedure, used at the Remote Sensing Laboratory at Tel Aviv Uni-
versity, is given in Figure 8.3). The procedure starts with quality assessment
(and assurance, QA) of the raw data and data preprocessing to obtain reli-
able radiance information and later, a final product (thematic maps). For each
stage, quality indicators (QI) are used for the QA. These two quality steps were
developed through the EUFAR FP7 project (EU project # 227159) and can be
adapted to the user’s needs. Then the data should undergo atmospheric cor-
rection to yield reliable reflectance (or emittance) data (using QI for this stage).
The cube is then transferred to the "thematic processing” stage in which back-
ground knowledge (supervised classification) or absence of information (un-
supervised classification) are used.
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8.8.2
Atmospheric Correction

As already stated in previous sections, the goal of HRS techniques is to pro-
vide accurate measurements of surface inherent properties from at-sensor ra-
diance acquired with HRS instruments. As most of the HRS sensors are op-
erating today across the VIS-NIR-SWIR region, the reflectance value (i.e., the
spectral albedo) is the most useful parameter. The current section is thus deal-
ing with atmosphere correction of the VIS NIR SWIR region only. The results
are either directional surface reflectance quantities or the spectral albedo val-
ues (Nicodemus et al., 1977) (note: we use the term “reflectance” hereafter as
a generic term of a relation between reflected and incoming radiative flux, see
Eq.8.2). This radiometric conversion of the measured radiance to reflectance
is referred to as “atmospheric correction” already in early remote sensing liter-
ature (Dozier and Frew, 1981). Note that the term “correction” is appropriate
as long as data are adjusted to match a given ground reference by empirical
methods. However, it may be misleading for methods relying on physical ra-
diative transfer models. The term “atmospheric compensation” would be a more
appropriate description in this case, as the atmospheric effects are compen-
sated in from correctly calibrated imagery, however it has not yet been widely
established. In a first section, empirical normalization methods are summa-
rized which allow for fast and efficient atmospheric correction, whereas model
based methods are given in the subsequent sections.

Empirical Reflectance Normalization

All empirical atmospheric correction methods have in common that a-priori
knowledge about the surface spectral albedo is put in relation to the imagery
in order to find factors for a normalization of the atmospheric effect (Smith
et al., 1987). Hereafter, a collection of methods is compiled which is suited
for systems of unsecured calibration state and/or if fast results are required.
These methods may be applied on uncalibrated image data, i.e., directly on
the digital numbers DN;. The flat field approach uses a spectrally flat spec-
trum from within the image for normalization to calculate a flat field (quasi-)
reflectance pg such that:

DN,
P = DNy’

8.7)

where DNg is the (uncalibrated) digital number signal at the sensor and
D Ng¢ is the signal of a selected spectrum. This normalization may result in
reflectance values above 100 % as the selected flat field reflectance is usually
below 100 %. The known/bright target approach uses the known (or assumed) re-
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8 Hyperspectral Remote Sensing

flectance py, of one typically bright target in the image such that the whole (cal-
ibrated) image data may be normalized by the at-sensor measurement DN,
at the target by the transformation:

DN

(8.8)

A variation of the bright target approach is the "Quick Atmospheric Correction'-
method (QUAC), see Bernstein et al. (2008): instead of taking one pixel as a
reference, the relation of a generic expected average reflectance to the average
signal in the image is taken as reference for correction of the full image.

The empirical line correction uses a combination between dark and bright tar-
gets in a scene. If two or more objects are known, a linear function is derived
for each spectral band between measured signal and reflectance. The linear fit
is done between the known reflectances p; and the respective measurements
DN;, such that a slope Ap/ADN of the function p(DN) with a typical offset
for dark objects DNgqrk can be found. This function is then used for normal-
ization of all spectra of the image using the equation:

P = (DNS - DNdark) : (8.9)

_ap
ADN "’

The empirical line works satisfactorily well for flat terrain and small FOV
imagery, but is at its limit in mountainous areas and if repeatable corrections
are required for an image series.

At-Sensor Radiance Description

Other than the empirical correction methods, the physical atmospheric cor-
rection of imaging spectroscopy data relies on an appropriate description of
the at-sensor radiance from known parameters. In imaging spectroscopy, the
at-sensor radiance is composed of three major components comprising the
direct reflected and the backscattered radiance from the surface and the at-
mosphere. The thermal emission may be neglected for the wavelength range
up to 2500 nm as long as the temperature of the surface is below 350 K. Thus,
the at-sensor radiance Ls may be in a good approximation described as a sum
of the direct ground reflected radiance L g, the so-called adjacency radiance
Lg,agj» and the atmospheric radiance Latm:

Ls = I—g,dir + Lg,adj + Latm - (8-10)

We now use p as the in-field hemispherical-directional reflectance factor (also
denoted as HDRFmeas), padj as the large-scale spectral albedo of the sur-
face, and s as the spherical albedo of the atmosphere. The terms in equation
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8.10 may then be written in a good approximation for the direct component
Lg.dir = % - Eg - p - Tu, the adjacency radiance Lg.q; = % - Eg * Padj * Tu,adj » and
the atmospheric radiance Lagm = %Eo -s. The term Eq is the top of atmosphere
irradiance and Eg is the total irradiance (solar flux) on a ground surface ele-
ment, which may be written as Eg = Eq1q c0S ¢ + Egjf - Vsky + Eter. The latter
depends on the local solar incidence angle ¢ and includes the total diffuse irra-
diance Egjf, scaled by the fraction of the visible sky (skyview factor V) and
the terrain irradiance Ewr. The parameter 74 is the downward atmospheric
transmittance; 7y and T 54; are the upward transmittances of the atmosphere
for the direct and the adjacency radiative paths, respectively.

A different formulation of the at-sensor radiance is derived, if the adjacency
term is written using the back-reflected radiance from the ground coupled by
the single scattering albedo s of the atmosphere (compare (Tanré et al., 1979)).
Here, all ground reflected radiance is summarized in the term Lgto. This
results in the relation:

Ls = Lg,tot + Latm = tu - Eg o + Latm . (8.11)

7+ (1= pagj - S)
where the parameters are as described for Eg. 8.10. Such formulations of
the at-sensor radiance are the basis for the atmospheric correction task.

Radiative Transfer-Based Atmospheric Correction

Radiative transfer codes (RTCs) such as MODTRAN®-5 (Berk et al., 2002) or
6S-V (Vermote et al., 2006) are well suited for forward simulation of the at-
sensor signal from given boundary conditions. However, they are not built
for the task of inversion for surface reflectance properties from radiometric
images. For this purpose, atmospheric correction software is required. Ex-
amples of such software are ATCOR (Richter and Schlapfer, 2002), HAATCH
(Qu et al., 2001) FLAASH (Cooley et al., 2002), TAFKAA (Gao et al., 2000),
or ACORN (Green, 2001). Such software allows an efficient inversion of the
calibrated imagery on the basis of set of equations bellow. By inversion and re-
formulation of Eq. (8.10), the surface reflectance may be retrieved by the equa-
tion:

7T - d2 ‘ (Ls - Lg,adj - Latm)

P = ‘
ty - (td - Eg cos ¢ + Egif - Vsky + Eter)

(8.12)

The components of this equation are to be derived from:
= physical model of a radiative transfer code: Latm, Egif, - g, Tu

= boundary conditions of terrain: incidence angle ¢, sky view factor Vyy,
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= astronomical data: the average extraterrestrial solar constant Eg and the
dependency on the relative Earth-Sun distance described by parameter
d, and

= iteration of atmospheric correction: Ly oq; and terrain irradiance Exer.

As all of the parameters except Eq and d vary per pixel, it is not efficiently
feasible to calculate the radiative transfer directly for each pixel. Precalculated
look-up tables (LUTs) are normally employed. These LUTs are interpolated
with the pixel properties to find the applicable parameters for the correction.

A different approach is to perform the atmospheric compensation in the
“apparent reflectance” domain after dividing the at-sensor radiance by the
ground solar irradiance, propagated to the at-sensor level Eq s:

7Td2Ls 7Td2|_atm NdZLad]
=—, =————— andp,gqj= ———
Ps EO,s Patm EO,s Padj EO,s

(8.13)

These terms are typically used over flat ground, introducing a total trans-
mittance term Tyt = T4Tu, Which relates the at-sensor reflectance to the ground
reflectance. The inversion of Eq. (8.11) for reflectance results in:

(ps — patm) (1 — Padj * 5)
o= . (8.14)
Ttot

If the adjacency reflectance is further assumed to be the same as the pixel
reflectance (i.e., pagj = p), the equation is reduced to:

(Ps - Patm)
= . 8.15
Ttot + (Ps — Patm) - S ( )

This is a basic atmospheric correction equation which may be used in simple
atmospheric correction programs or for fast inversion of a radiative transfer
code. Note that working in the reflectance domain is critical for airborne in-
struments as this approximation relies on accurate knowledge of the radiance
at sensor level. An additional modeling step is required to infer the at-sensor
radiance level Eq s from the data.

Process of Complete Atmospheric Correction

A complete atmospheric correction as implemented in atmospheric correction
routines follows these steps:

e create a LUT, containing the parameters of the above equations in re-
lation to the parameters at a fixed number of data points (covering the
expected range),
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= calculate skyview factor, height, and incidence angle from DEM (Digital
Elevation Model), using the solar zenith and azimuth angles,

= derive atmospheric parameters from imagery (i.e., water vapor and
aerosol load of the atmosphere),

= make fixed preselections (e.g., flight altitude and aerosol model),

= invert the LUT, i.e., derive the parameters by multilinear interpolation
for each pixel,

« use Eq. 7 or Eqg. 10 to perform the atmospheric correction, and

= perform an iteration of the above steps for adjacency correction and for
the calculation of the terrain irradiance.

Some variations of this procedure exist, as the parameterization of the prob-
lem may differ and the LUT may be pre-calculated or calculated for each
scene directly while correcting the data. An ideal high level standard proce-
dure combines geometric and atmospheric processing (Schlapfer and Richter,
2002). Linked parameters are the viewing angle per pixel, the absolute dis-
tance from the aircraft to each pixel location, or the relative airmass between
sensor and pixel. Furthermore, other DEM related parameters, such as height,
slope or aspect are required for radiometric correction algorithms and can only
be used if the image is brought to the same geometry as the DEM. The de-
pendencies within the atmospheric correction part lead to iterative reflectance
retrieval steps, specifically for adjacency correction purposes. The final step
of the processing should be a correction of the reflectance anisotropy (i.e., a
BRDF correction). Some details regarding crucial correction steps are given
hereafter.

Atmospheric parameter retrieval

Imaging spectrometers offer the inherent capability for automatic retrieval
of the radiometrically critical parameters atmospheric water vapor content
and aerosol load (optical thickness). For the atmospheric water vapor, the
940/1130 nm water vapor absorption bands are typically used for the retrieval
of columnar water vapor over land on a per-pixel basis (Schlapfer et al., 1998).
The aerosol optical thickness is normally calculated using the dark dense veg-
etation approach (DDV, Kaufman and Tanré (1996)), interpolating the aerosol
load to areas not covered by vegetation. These two methods allow for a mostly
autonomous atmospheric correction of imaging spectrometry data.

Adjacency correction

The correction of the atmospheric adjacency effect is of high relevance, espe-
cially for limnological applications (Tanré et al., 1987) . The effect is significant
in a horizontal range from 100m up to 1.5km starting at flight altitudes of
1000m above ground and higher. Thus, each pixel has to be corrected with
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8 Hyperspectral Remote Sensing

respect to the average reflectance of the adjacent areas. This can be done in an
efficient way by the definition of a spatial convolution function which takes
a distance-weighted average of the adjacent area in the image to calculate an
adjacency weighting factor. The corresponding radiance has to be simulated
in the radiative transfer code as indirect ground reflected radiance according
to the aforementioned parameterization.

Shadow correction

Cast shadows, cloud shadows and shadows from building are often present
in imaging spectroscopy data. They receive mostly diffuse irradiance which
is sufficient to provide enough signal for data analysis with state of the art
sensor systems. Correction approaches try to classify the shadowed areas first
and then apply a separate correction model to these parts of the image such
that shadows are removed in optimal situations (Adler-Golden et al., 2002;
Richter and Muller, 2005). The correction model takes into account the diffuse
nature of the irradiance in the cast shadow areas and needs to consider the
skyview factors correctly for an accurate correction.

BRDF correction

The derivation of spectral albedo (i.e. the bi-hemispherical reflectance BHR)
from directional reflectance values is the task of BRDF correction. The oper-
ational correction of BRDF effects in images is not yet solved satisfactorily
progress has been made on this issue (Feingersh et al., 2010) . The correc-
tion of the BRDF-effects may be performed if the BRDF properties of the
observed target(s) and the (diffuse) irradiance distribution is known. For
operational use, an anisotropy factor needs to be calculated for each pixel,
which accounts for the relation between measured hemispherical-directional
reflectance (HDRFess and the spectral albedo (bi-hemispherical reflectance,
BHR; also known as 'white sky albedo’). The anisotropy factor has to be inferred
from an appropriate BRDF-model or from measurements. The finally calcu-
lated spectral albedo product is a quantity which may be easily compared in
multitemporal analysis and which may be used for unbiased object classifica-
tion.

8.8.3
Atmosphere Information Retrieval from HRS Data

Based on the relatively high spectral resolution obtain by the HRS sensors,
one can use the specific absorption features of atmospheric gases (natural or
contaminated) and evaluate their column content on a pixel-by-pixel basis.
This may provide an innovative way of mapping the gases’ spatial distribu-
tion and of spotting new quantitative information on the atmospheric con-
ditions at very high spatial resolution. The gases that are active across the
VIS-NIR-SWIR-MWIR spectra are divided into two sectors: 1) a major sec-
tor in which the spectral response of the gases is well detected (high fraction
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and strong absorption) and 2) a minor sector in which the spectral response is
low and difficult to assess due to the low fraction of the gases and relatively
weak absorption features. The major gas group is composed of Oy, H,O and
CO,, whereas the minor gas group consists of Oz, N,O, CO, CHj3 (in the VIS-
NIR-SWIR) and SO, and NO, (in the TIR). Table 8.7 provides the absorption
features of the above gas components across the VNIR-SWIR-TIR spectral re-
gion along with the atmospheric windows. The advantage of assessing the
above gases on a pixel-by-pixel basis is significant. It can help accurately ex-
tract surface reflectance by estimating the gases’ absorption (and hence their
atmospheric transmission) on a pixel-by-pixel column basis. Consequently,
calculating water vapor directly from the image (first demonstrated by Gao
and Goetz (1995)) is now a very common way of achieving high performance
of atmospheric correction methods. Whereas H,O is considered to be a non—
uniformly spatially distributed gas, other major gases, i.e., CO, and O,, are
known to be well mixed-hence their use as indicators to assess atmospheric
phenomena that might affect the spatial distribution of the gas in question.
For example, over rough terrain, if spatial changes are encountered using a
well-mixed gas, this might indicate different elevations as the column pixel
volume over high terrain consists of less molecules than that over low terrains
for a particular gas. Based on this, Ben-Dor and Kruse (1996) and later,Green
(2001) showed that it is possible to construct a DEM structure of the studied
area solely from the HRS radiance information and the CO, peak. Further-
more, as O, is also a well-mixed gas, it can be used to estimate, on a pixel-
by-pixel basis, the Mie scattering effect across the VIS-NIR region and hence
can be used to better extract the surface reflectance, assuming that the scat-
tering is not a spatially homogeneous phenomenon. Using one absorption
peak of the H,O at 1.38 um, Gao et al. (1993) showed that a non-visible cirrus
cloud can be detected and mapped based on the high scattering properties of
the ice particles within the cloud volume. Ben Dor (1994) suggested taking
precautions in using these absorption peaks over high terrain and bright tar-
gets and in another paper (Ben-Dor et al., 1994), suggested that the O, peak
be used to map the cirrus cloud distribution in the VNIR region (0.760 xm).
Based on this idea, Schlapfer et al. (2006) was able to quantitatively assess a
smoke plume over a fire area using the scattering effect on the O, absorption
peak. Alakian et al. (2008) developed a method to retrieve the microphysical
and optical properties in aerosol plumes (L—APOM) in the VIS region as well.
Recently, Chudnovsky et al. (2009) mapped a dust plume over the Bodele De-
pression in northern Chad using Hyperion data and the SWIR region. Another
innovative study that shows the applicability of HRS in the atmosphere was
performed by Roberts et al. (2010). They showed that if high SNR data are
available, it is also possible to detect the distribution of minor gases. Using
AVIRIS 2006 data over a marine (dark) environment, they were able to detect,
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on a pixel-by—pixel basis, the emission of methane over the Coal Oil Point
(COP) marine seep fields, offshore of Santa Barbara, California, and the La
Brea Tar Pits in Los Angeles, California. In the TIR region, there are several
examples of the detection of plumes of toxic gases based on the fundamental
vibration peak across the atmospheric windows between 2.5 and 16 pm. Using
SO, emission in the TIR region at 8.58 and 8.82 ym, Shimoni et al. (2007) were
able to spot shade on a plume emitted over an industry refinery zone with
additional information extracted from the VIS region. Figure8.7 provides a
summary for the absorption positions of all the above mentioned gases across
the VIS-NIR-SWIR-TIR spectral region. In summary, it can be concluded that
HRS technology is not only capable of deriving surface information, it also has
the proven capability to extract quantitative information on atmosphere con-
stituents in an innovative way that none of the current remote sensing means

can provide.
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Fig. 8.7 The absorption position of all gases across the VIS-NIR—
SWIR-TIR region .

8.8.4
Mapping Methods and Approaches

Over the last few years, many techniques for mapping and processing of HRS
data have been developed (Schaepman et al., 2009). The special characteris-
tics of hyperspectral datasets pose different processing problems, which must
be tackled under specific mathematical formulations, such as classification
(Landgrebe, 2003; Richards and Jia, 2006) or spectral unmixing (Adams et al.,
1986). These problems also require specific dedicated processing software and
hardware platforms(Plaza and Chang, 2007).
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In previous studies (Plaza et al., 2009), available techniques were divided
into full-pixel and mixed-pixel techniques, where each pixel vector defines a
spectral signature or fingerprint that uniquely characterizes the underlying
materials at each site in a scene. Mostly based on previous efforts in mul-
tispectral imaging, full-pixel techniques assume that each pixel vector mea-
sures the response of one single underlying material (Schaepman et al., 2009).
Often, however, this is not a realistic assumption. If the spatial resolution of
the sensor is not good enough to separate different pure signature classes at
the macroscopic level, these can jointly occupy a single pixel, and the result-
ing spectral signature will be a composite of the individual pure spectra, of-
ten called endmembers in hyperspectral terminology (Boardman et al., 1995).
Mixed pixels can also result when distinct materials are combined into a ho-
mogeneous or intimate mixture, which occurs independently of the spatial
resolution of the sensor. To address these issues, many spectral unmixing ap-
proaches have been developed under the assumption that each pixel vector
measures the response of multiple underlying materials (Kruse, 1988; Keshava
and Mustard, 2002).

Spectral unmixing has been an alluring goal for exploitation, from the ear-
liest days of hyperspectral imaging (Goetz et al., 1985) until today. Regard-
less of the spatial resolution, the spectral signatures collected in natural envi-
ronments are invariably a mixture of the signatures of the various materials
found within the spatial extent of the ground instantaneous field view of the
imaging instrument (Adams et al., 1986). In this case, the measured spec-
trum may be decomposed into a combination of pure spectral signatures of
soil and vegetation, weighted by areal coefficients that indicate the propor-
tion of each macroscopically pure signature in the mixed pixel (Keshava and
Mustard, 2002). The availability of hyperspectral imagers with a number of
spectral bands exceeding the number of spectral mixture components (Green
et al., 1998) has allowed casting the unmixing problem in terms of an over
determined system of equations in which, given a set of pure spectral signa-
tures (called endmembers), the actual unmixing to determine apparent pixel
abundance fractions can be defined in terms of a numerical inversion pro-
cess (Harsanyi and Chang, 1994; Bateson and Curtiss, 1996; Plaza et al., 2004;
Berman et al., 2004; Chang et al., 2006; Rogge et al., 2006; Wang and Chang,
2006; Zaer and Gader, 2008).

A standard technique for spectral mixture analysis is linear spectral unmix-
ing (Heinz and Chang, 2001; Plaza et al., 2004), which assumes that the spectra
collected by the spectrometer can be expressed in the form of a linear combina-
tion of end members weighted by their corresponding abundances. It should
be noted that the linear mixture model assumes minimal secondary reflections
and/or multiple scattering effects in the data-collection procedure, and hence
the measured spectra can be expressed as a linear combination of the spec-
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Fig. 8.8 Linear (left panel) versus nonlinear (right panel) mixture mod-
els: single versus multiple scattering. .

tral signatures of materials present in the mixed pixel (see Figure8.8a). Al-
though the linear model has practical advantages, such as ease of implemen-
tation and flexibility in different applications (Chang, 2003), nonlinear spectral
unmixing may best characterize the resultant mixed spectra for certain end
member distributions, such as those in which the endmember components
are randomly distributed throughout the instrument’s FOV (Guilfoyle et al.,
2001). In those cases, the mixed spectra collected by the imaging instrument
are better described by assuming that part of the source radiation is multi-
ply scattered before being collected at the sensor (see Figure 8.8b). In addi-
tion, several machine-learning techniques have been applied to extract rele-
vant information from hyperspectral data during the last decade. Taxonomies
of remote sensing data processing algorithms (including hyperspectral anal-
ysis methods) have been developed in the literature (Richards and Jia, 2006;
Schowengerdt, 1997). It should be noted, however, that most available hyper-
spectral data—processing techniques focus on analyzing the data without in-
corporating information on the spatially adjacent data, i.e., hyperspectral data
are usually not treated as images, but as unordered listings of spectral mea-
surements with no particular spatial arrangement (Rogge et al., 2006). The im-
portance of analyzing spatial and spectral patterns simultaneously has been
identified as a desired goal by many scientists devoted to multidimensional
data analysis.

In certain applications, however, the integration of high spatial and spec-
tral resolution is mandatory to achieve sufficiently accurate mapping and/or
detection results. For instance, urban area mapping requires sufficient spa-
tial resolution to distinguish small spectral classes, such as trees in a park,
or cars on a street (Bruzzone and Marconcini, 2006). Due to the small num-
ber of training samples and the high number of features available in remote
sensing applications, reliable estimation of statistical class parameters is an-
other challenging goal (Foody, 1999). As a result, with a limited training set,
classification accuracy tends to decrease as the number of features increases.
This is known as the Hughes effect (Landgrebe, 2003). High—-dimensional
spaces have been demonstrated to be mostly empty, thus making density es-
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timation even more difficult. One possible approach to handling the high—
dimensional nature of hyperspectral data sets is to consider the geometrical
properties rather than the statistical properties of the classes. The good clas-
sification performance demonstrated by support vector machines (SVMs) us-
ing spectral signatures as input features (Camps-Valls and Bruzzone, 2005)
can be further increased by taking advantage of semi-supervised learning
and contextual information. The latter is performed through a combination
of kernels dedicated to spectral and contextual information, while in the for-
mer the learning is provided with some supervised information in addition
to the wealth of unlabeled data. Among the great many methods proposed
in the literature for such approaches, we focus on the transductive SVM for
semi-supervised learning (Bruzzone L and Marconcini, 2006), or a composite
kernel-based methodology for contextual information integration at the ker-
nel level (Camps—Valls et al., 2006) have shown great success in practice.

As most of the methods reviewed here deal with endmember extraction
and data mining from the reflectance or emittance cubes (an unsupervised ap-
proach), there are methods in which the endmembers are known in advance or
the spectral model to map the pixels has already been developed (supervised
approach). One of the first and most usable endmember-based approaches in
HRS is the SAM (Spectral Angle Mapper, Kruse et al. (1993)) which is based
on the angle calculated between two spectral vectors: the pixel and the se-
lected endmember. Since then, many other spectral-based techniques have
been developed, where most recently, spectral-based models that are gener-
ated in a spectral domain (e.g., PLS or neural network) are implemented on a
pixel-by-pixel basis to the image cube in question. This method enables quan-
titative mapping of selected properties on the Earth’s surface such as infiltra-
tion rate (Ben-Dor et al., 2004) organic matter content (Stevens et al., 2008),
salinity (Ben-Dor et al., 2002) and more.

Finally, although the mapping and classification techniques described
above hold great promise for hyperspectral data processing, they also in-
troduce new computational challenges. With the recent explosion in the
amount and complexity of hyperspectral data, parallel processing and high-
performance computing (HPC) practices have necessarily become require-
ments in many remote sensing missions, especially with the advent of low-
cost systems such as commodity clusters (Plaza and Chang, 2007). On the
other hand, although hyperspectral analysis algorithms map nicely to clus-
ters and networks of workstations, these systems are generally expensive and
difficult to adapt to on-board data processing requirements introduced by
several applications, such as wild land fire tracking, biological threat detec-
tion, monitoring of oil spills and other types of chemical contamination. In
those cases, low-weight and low-power integrated components are essential
to reducing the mission’s payload and obtaining analyzed results quickly
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8 Hyperspectral Remote Sensing

enough for practical use. In this regard, the emergence of specialized hard-
ware devices such as field-programmable gate arrays (FPGAS) has helped in
bridging the gap toward real-time analysis of remotely sensed hyperspectral
data.

8.9
Sensor Calibration

8.9.1
General

In combination, calibration and validation can be regarded as a single pro-
cess that encompasses the entire remote sensing system, from sensor to data
product. The objective of both is to develop a quantitative understanding and
characterization of the measurement system and its biases in both space and
time (National Research Council, 2007). Calibration of hyperspectral sensor
data is a critical activity for a number of reasons. First, we need to have con-
fidence in the reliability of data delivered by such sensors. Second, as many
of the products that we are deriving from hyperspectral data are quantitative,
we need to know that the data from which they are derived are accurate (this
holds for qualitative data as well). We often test the accuracy of remote sens-
ing data products by performing validation of the subsequent datasets; thus
the raw data delivered by sensors must be well calibrated and the products
derived from them also well validated. Calibration and validation (cal/val)
are therefore activities that form an integral component of the efficient use of
any form of Earth Observation (EO) data and in the maintenance of the scien-
tific value of EO data archives. As HRS data are acquired in Digital Number
(DN) values, but for most applications we need radiometric information as
an input to extract reflectance or emissivity values, accurate transfer from one
stage to another is crucial. In this respect, radiometric and spectroscopic as-
surance is required. Radiometric calibration refers to the process of extracting
physical units from the original raw spectroscopic data and of assigning the
channels in the sensors to a meaningful wavelength.

Cal/val is therefore a fundamentally important scientific activity and
should be a continuous component in any remote sensing program, providing
an independent check on the performance of both space-based, airborne and
ground-based hyperspectral sensors and processing algorithms.

In general, one can say that the calibration of EO data is critical if we are
to reliably attribute detected changes observed in data to real environmental
changes occurring at ground level. Without calibration, we are unable to rule
out the influence of other factors, such as instrument error or influences of the
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atmosphere. This problem is exacerbated by the myriad of sensors operated
by multiple countries and organizations. Calibration allows the traceability of
sensor data to the same physical standards and is routinely required as sen-
sors decay throughout their lifetime. Calibration is thus critical if we want to
reliably extract information from measured radiance, compare information ac-
quired from different regions and different times, compare and analyze HRS
observations with measurements provided by other instruments and extract
information from spectral image measurements using physically based com-
puter models.

Validation refers to the independent verification of the physical measure-
ments made by a sensor as well as of the derived geophysical variables. Val-
idation allows for the verification and improvement of the algorithms used
(e.g., for atmospheric correction and vegetation state). To achieve this, conven-
tional, ground-based observations are required using calibrated and traceable
field instrumentation and associated methods. To this end, several indicators
are valid and developed to check the accuracy of the calibration stage and to
provide the user with a reliable feeling about his data set.

The definition of all the common terms used here for cal/val are taken from
the Committee of Earth Observation Satellites (CEOS) as follows:

= Calibration - The process of quantitatively defining the responses of a
system to known, controlled signal inputs

= Validation - The process of assessing, by independent means, the quality
of the data products derived from the system outputs

= Traceability - Property of a measurement result relating the result to a
stated metrological reference (free definition and not necessarily SI) through
an unbroken chain of calibrations of a measuring system or compar-
isons, each contributing to the stated measurement uncertainty

= Uncertainty - Parameter that characterizes the dispersion of the quantity
values that are being attributed to a measured mean, based on the infor-
mation used

= Vicarious calibration - Vicarious calibration refers to techniques that make
use of natural or artificial sites on the surface of the Earth for post cali-
bration of air borne or space borne sensors

8.9.2
Calibration for HSR Sensor

Calibration translates electrical output DN values (voltages or counts) to reli-
able physical-based units (radiometric information) by determining the trans-
fer functions and coefficients necessary to convert a sensor reading. The coeffi-
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cients are extracted throughout a careful measurement stage in the laboratory
using well-calibrated facilities and traceable standards. There are a number of
components ensuring a thorough calibration approach. Radiometric and spec-
tral responses need to be accurately monitored through the lifetime of a sensor
to monitor changes in response as it ages over time. In the case of spaceborne
hyperspectral sensors, both pre-launch and post (on-orbit) launch calibration
is undertaken, either directly or using vicarious targets-on-orbit and vicarious
calibration enable taking into account changes in calibration over time (using
the moon’s surface for example Kieffera et al. (2003)). Airborne hyperspectral
sensors have the advantage over spaceborne sensors that they can be removed
from the aircraft and re-subjected to rigorous laboratory calibration tests sim-
ilar to those performed for pre-launch calibration of spaceborne sensors. This
is often performed prior to and after a flying ’season’. The calibration coef-
ficients from each season can also be used to track the sensor’s deterioration
over its years of operation.

Pre-flight calibration
The three key components to pre-launch calibration are radiometric, spectral
and spatial. To achieve radiometric calibration involves the use of a calibrated
integrating sphere whose ideal output is homogeneous and large enough to
illuminate all elements in a sensor array with the same radiance. An abso-
lute radiometric calibration determines the relationship between sensor sig-
nals and radiance for all spectral channels. Varying the output of the integrat-
ing sphere also allows for the study of the linearity between sensor response
and radiance and the assessment of the SNR at radiance levels similar to those
encountered when sensing the Earth’s surface (Gege et al., 2009).

Spectral calibration typically uses a monochromatic to produce a collimated
narrow beam of light that is blocked by transmission filters and is thus tune-
able to different wavelengths. Measurements performed here allow for de-
termination of: spectral response function, center wavelength, spectral smile,
spectral sampling distance, the spectral range of pixels, and spectral resolu-
tion, and to perform a wavelength calibration (Oppelt and Mauser, 2007).

Spatial calibration (geometric) can most accurately be achieved with the
movement of a point light source across the sensor array whose beam is con-
trolled by aslit (Gege et al., 2009). This allows for along-track and across—track
calibration of the sensor array. Measurements performed here allow for the
derivation of: line spread function across track; center coordinates for each
CCD in the array; across—-track sampling distance; pixel instantaneous FOV;
total sensor FOV and the modulation transfer function (the reparability of ad-
jacent targets as a function of distance and contrast, Oppelt and Mauser (2007).

In-flight / In-orbit calibration
This involves the use of in-built calibration sources and/or vicarious calibra-
tion or cross calibration to other satellite sensors. The critical issue at this stage
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is to be able to monitor changes in sensor performance over time (Pearlman
et al., 2003). For example, Hyperion, the first fully spaceborne hyperspectral
sensor, relied on the diffuse reflectance of an in-built Spectralon ™reflectance
surface illuminated by the Sun or a lamp, in calibrations performed once ev-
ery two weeks. The moon and other opportunistic Earth surface targets were
also used to monitor sensor performance over time (Jarecke and Yokoyama,
2000; Pearlman et al., 2003; Ungar et al., 2009). Cross-calibration to data from
the LANDSAT 7 ETM+ sensor was also frequently performed.

EnMAP, the new German-built hyperspectral sensor scheduled for launch
in 2015, will carry for calibration a full aperture diffuser, coupled with an in-
tegrating sphere with various calibration lamps. A shutter mechanism also
allows for dark measurements to be performed. APEX, a joint Belgian-Swiss
airborne sensor development, carries an in—flight characterization facility us-
ing a stabilized lamp coupled with vicarious and cross calibration (Nieke et al.,
2008; Itten et al., 2008).

Vicarious calibration
Vicarious calibration is also used as an in—flight check on sensor performance
(e.g.,Green and Shimada (1997); Green and Pavri (2000); Secker et al. (2001)).
The approach can use homogeneous targets on the land surface (e.g., dry
lake beds, desert sands, ice sheets, water bodies etc.) or artificial targets of
varying brightness if the sensor has sufficient spatial resolution (Brook and
Ben-Dor, 2011). The sites or targets must be well-characterized and ideally,
reflectance should be measured at the ground surface using calibrated spec-
troradiometers simultaneous with sensor overflight. Increasingly sophisti-
cated ground-based instrumentation is being used to provide autonomous
and near-continuous measurement of the characteristics at many of these sites
(e.g.,Brando et al. (2010)). Correction involves either top-down (correction
of "top-of-atmosphere’ sensor data to ground-leaving reflectance using an at-
mospheric correction model) or bottom-up (correction of ground target re-
flectance to top of atmosphere radiance using a radiative transfer model tak-
ing into account atmospheric transmission and absorption e.g., MODTRAN).
Increasingly, a combination of measurements obtained at varying scales and
resolutions (e.g., in situ, airborne and satellite) are being used to provide the
basis for assessment of the on-orbit radiometric and spectral calibration char-
acteristics of spaceborne optical sensors (e.g., Green et al. (2003a)).

The smaller pixel sizes of airborne imagery compared to typical image satel-
lite resolutions, along with targeted deployment, means that artificial vicari-
ous calibration targets can be rapidly deployed in advance of specific airborne
campaigns. Such targets can also help overcome the difficulties of finding suf-
ficient natural homogeneous targets of varying brightness. Smart Vicarious
Calibration (SVC), see Brook and Ben-Dor (2011), uses artificial agricultural
black polyethylene nets of various densities as calibration targets, set up along
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the aircraft’s trajectory. The different-density nets, when combined with other
natural bright targets, can provide full coverage of a sensor’s dynamic range.
The key to the use of any form of vicarious calibration target is the use of
simultaneous field-based measurement of their reflectance properties and po-
sitions; uncertainties are reduced if a number of calibration targets are used, a
large number of reflectance measurements are made of each target, and their
positions are accurately located (Secker et al., 2001).

Vicarious calibration therefore provides an indirect means of quality assur-
ance of remotely sensed data and sensor performance that is independent of
direct calibration methods (use of on—-board radiance sources or panels). This
is important as on-board illumination sources may themselves degrade over
time.

In all calibration efforts, traceability, the process of ensuring measurements,
is related through an unbroken chain of comparisons to standards held by Na-
tional Metrology Institutes (e.g., NIST, PTB and NPL), is the key to allowing
true inter-comparability between different sensors’ raw and product datasets
(Fox, 2004). The chain is implemented via the use of "transfer standards’ that
allow traceability back to official ‘primary’ radiometric standards using inter-
nationally agreed-upon systems of units (SI) and rigorous measurement and
test protocols. Integral to the establishment of traceability is the quantifica-
tion and documentation of associated uncertainties throughout the measure-
ment chain; the fewer the number of steps in the chain the lower the uncer-
tainty. The advantages of maintaining traceability include a common refer-
ence base and quantitative measures of assessing the agreement of results for
different sensors or measurements at different times. However, current trace-
ability guidelines lack guidance on temporal overlap or interval length for the
measurements in the unbroken chain of comparisons (Johnson et al., 2004).

The successful implementation of cal/val activity needs careful planning of
issues such as coordination of activities, selection and establishment of net-
works of sites, the development and deployment of instrumentation to sup-
port measurement campaigns, the adoption of common measurement and
data distribution/availability protocols.

8.10
Summary and Conclusion

This chapter provides a snapshot of the emerging HRS technology. Although
many aspects of this promising technique are not covered herein, we hope to
have provided the reader with a sense of its potential for the future, as ev-
idenced by past accomplishments. Aside from being a technology that can
provide added value to the remote sensing arena, it is an expansion of the
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spectroscopy discipline that has been significantly developing worldwide for
many years. Very soon, when sensors in air and orbit domains begin to pro-
vide SNR values that are similar to those acquired in the laboratory, all spec-
tral techniques available today will be able to implement the HRS data and
forward the applications in a generation or two. HRS technology is emerging
and the general scientific community use is growing. The number of sensors
is also on the rise and new companies are entering into commercial activities.
The most important step in the processing of HRS data is to obtain accurate
reflectance or emittance information on every pixel in the image; at that point,
a sophisticated analytical approach can be used. This means that aside from
the atmospheric correction method, the data has to be physically reliable and
stable at the sensor level. Mixed pixel analysis and spectral models to ac-
count for specific questions are only a few examples of what this technology
can achieve. The forthcoming HRS sensors in orbit are expected to drive this
technology forward by providing temporal coverage of the globe at low cost
and by showing decision-makers that the technology can add much to other
space missions. The growing sensor-development activity in the market will
also permit a "sensor for all" which will also push the technology forward. As
many limitations still exist, such as the TIR region not being fully covered, the
information only being obtainable from a very thin layer, the time investment,
high cost of data processing and great effort needed to obtain a final product,
investment in this technology is worthwhile. If the above limitations can be
overcome, and other sensors’ capabilities merged with it, then HRS technol-
ogy can be the vehicle to real success, moving from a scientific demonstration
technology to a practical commercial tool for remote sensing of the Earth.
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1 List of Acronyms and Abbreviations

1D
2D
3D
2D-C
2D-P
2D-S
AATS
AC
ADC
AIDA
AlS
AISA
AMS
AMSU
2 A0S
APEX
APM
APS
ARM
ASD
ASI
ASSP
ATCOR
AVIRIS
BC
BCP
BHR
BRDF
BSRN

One-Dimensional

Two-Dimensional

Three-Dimensional

2D Cloud Probe

2D Precipitation Probe

2D Stereo Probe

NASA Ames Airborne Tracking Sunphotometer
Alternating Current

Analogue Digital Converter

Aerosol Interaction And Dynamics In The Atmosphere
Airborne Imaging Spectrometer

Airborne Imaging Spectrometer for different Applications
Aerosol Mass Spectrometer

Advanced Microwave Sounding Unit

Acousto Optical Spectrometer

Airborne Prism Experiment

Aerodynamic Particle Mass Analyzer

Aerodynamic Particle Sizer

Atmospheric Radiation Measurements

Analytical Spectral Device

Airborne Spectral Imager

Axially Scattering Spectrometer Probe

Atmospheric and Topographic Correction

Airborne Visible and Infrared Imaging Spectrometer
Black Carbon

Backscatter Cloud Probe

Bi-Hemisphere Reflection

Bidirectional Reflectance Distribution Function
Baseline Surface Radiation Network
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List of Acronyms and Abbreviations

CASI
CAS
CAS-DPOL
CCD
CCN
CCNC
CCRS
CDP
CEOS
CEP
CFD
CFDC
CFMC
CHRIS
CIN
CIMS
CIp
CIRA
CLH
CMOS
CNR
COSSIR
CPC
CPI
CPSD
CRISM
CSlI
CVi

Compact Airborne Spectrographic Imager

Cloud and Aerosol Spectrometer

Cloud and Aerosol Spectrometer With Depolarization
Charge—-Coupled Device

Cloud Condensation Nuclei

cloud Condensation Nuclei Counter

Canadian Center for Remote Sensing

Cloud Droplet Probe

Committee of Earth Observation Satellites

Cloud Extinction Probe

Computational Fluid Dynamics

Continuous Flow Diffusion Chamber
Continuous Flow Mixing Chamber

Compact High—-Resolution Imaging spectrometer
Cloud Integrating Nephelometer

Chemical lonization Mass Spectrometer

Cloud Imaging Probe

Centro Italiano Ricerche Aerospaziali

Closed Path TDL Hygrometer

Complementary Metal Oxide Semiconductors
Council of National Research

Conical Scanning Millimeter-Wave Imaging Radiometer
Condensation Particle Counter

Cloud Particle Imager

Cloud Particle Spectrometer With Depolarization
Compact Reconnaissance Imaging Spectrometer
Cloud Spectrometer and Impactor

Counterflow Virtual Impactor



DAIS
DDV
DEM
DFG
DGPS
DLR
DMA
DMS
DMT
DN
DOF
DRI
DOF
DSD
EARSeL
EAS
EnMAP
EO
ESA
EUFAR
EWG

List of Acronyms and Abbreviations

Digital Airborne Imaging Spectrometer

Dense Vegetation Approach

Digital Elevation Model

Deutsche Forschungsgemeinschaft

Differential Global Positioning System
Deutsches Zentrum fur Luft— und Raumfahrt
Differential Mobility Analyzer (R: Radial; C: Cylindrical)
Differential Mobility Spectrometer

Droplet Measurement Technologies (Boulder, USA)
Digital Number

Depth Of Field

Desert Research Institute

Depth Of Field

Drop Size Distribution

European Remote Sensing Laboratories
Electrical Aerosol Spectrometer

Environmental Mapping and Analysis Program
Earth Observation EO-1 Earth Orbiter 1
European Space Agency

European Facility for Airborne Research

Expert Working Group
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FHP
FIMS
FINCH
FISH
FLAASH
FLI

FOG
FOV
FPGA
FPA
FSSP
FTS
FWHM
GC-MS
GER
GIFOV
GIS

GPS
GSD
HALO
HDRF
HISS
HIAPER
HOLODEC
HPC
HPD
HRS

List of Acronyms and Abbreviations

Five—Hole Probe

Fast Integrated Mobility Spectrometer

Fast Ice Nucleus Chamber

Fast In Situ Stratospheric Hygrometer

Fast Line—of-sight Atmospheric Analysis of Spectral Hypercubes
Fluorescence Line Imager

Fiber Optic Gyro

Field-Of-View

Field Programmable Gate Array

Focal Plane Array

Forward Scattering Spectrometer Probe

Fourier Transform Spectrometer

Full Width at Half Maximum

Gas Chromatography—Mass Spectrometry
Geophysical and Environmental Research Corporation
Ground IFOV

Geographic Information System

Global Positioning System

Ground-Sampling Distance

High Altitude and Long Range Research Aircraft
Hemisphere Diffuse Reflectance Function

Hyper Image Space Spectrometer

High—performance Instrumented Airborne Platform for Environmental Research

Holographic Detector For Clouds
High Performance Computing
Hybrid Photodetector
Hyperspectral Remote Sensing



HTW
HVPS
HyMAP
IAGOS
IC
ICAO
IDI

IF

IfT
IFOV
ILIDS
ILS
IMU
IN
INAA
INS
INSPECTRO
INTA
IR

IS

ISA
ISIS
ITRES
IwWC
WV
IWP

List of Acronyms and Abbreviations

Harvard Total Water Hygrometer

High Volume Precipitation Spectrometer
Hyperspectral Mapper

In-Service Aircraft for a Global Observing System
lon Chromatography

International Civil Aviation Organization
Isokinetic Diffuser-Type Inlet

Intermediate Frequency

Leibniz Institute for Tropospheric Research
Instantaneous FOV

Interferometric Laser Imaging for Droplet Sizing
Instrument Line Shape

Inertial Measurement Unit

Ice Nuclei

Instrumental Neutron Activation Analysis
Inertial Navigation System
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INfluence of clouds on the SPectral actinic flux in the lower TROposphere

Instituto Nacional de Técnica Aeroespacial Aa
Infrared

Imaging Spectroscopy

International Standard Atmosphere
International Spaceborne Imaging Spectroscopy
Integral Technology for Remote Sensing

Ice Water Content

Integrated Water Vapor

Ice Water Path



LaMP
LANDSAT
LED
LIDAR
LIM
LNA
LO

LTI
LUT
LwC
MAAP
MASI
MARSS
MAS
MASP
MIR
MIVIS
MLS
MODTRAN
MPI
MSL
MSU
MVD
MW
NA
NASA
NCAR
NERC
NEO
NDI
NIR

List of Acronyms and Abbreviations

Laboratoire de Météorologie Physique
Land Satellite

Light-Emitting Diode

Light Detection and Ranging

Leipzig Institute for Meteorology

Low Noise Amplifiers

Local Oscillator

Low Turbulence Inlet

Look Up Table

Liquid Water Content

Multi-Angle Absorption Photometer
Midwave Airborne Spectral Imager
Microwave Airborne Radiometer Scanning System
MODIS Airborne Simulator

Multiangle Aerosol Spectrometer

Mid IR

Multispectral Environment Imaging Sensor
Microwave Limb Sounder

Moderate Resolution Transmission Code
Max-Planck-Institute

Mean Sea Level

Microwave Sounding Unit

Median Volume Diameter

Microwave

Numerical Aperture

National Aeronautics and Space Administration
National Center for Atmospheric Research
Natural Environment Research Council
Norsk Elektro Optikk

Nested Diffuser-Type Inlet

Near IR
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NIST National Institute of Standards and Technology

NMP New Millennium Program

NOAA National Oceanic and Atmospheric Administration

NPOESS | National Polar-Orbiting Operational Environmental Satellite System

NSF National Science Foundation

Nu Nusselt Number

OAP Optical Array Probe

OPC Optical Particle Counter

PALMS Particle Analysis by Laser Mass Spectrometer
PCA Principle Component Analysis

PCASP Passive Cavity Aerosol Spectrometer Probe

PDA Phase Doppler Analyzer

PDA Photodiode Array

PDI Phase Doppler Interferometer

PDPA Phase Doppler Particle Analyzer

PGP Prism-Grating—-Prism

PILS Particle Into Liquid Sampler

PIP Precipitation Imaging Probe

PIXE Particle-Induce X-Ray Emission

PM1 Particulate Matter with Particle Diameter < 1.0 um
PM2.5 Particulate Matter with Particle Diameter < 2.5 um
PMS Particle Measuring Systems Inc.

PMT Photomultiplier Tube

PRISM Processes Research for Imaging Spectrometer Mission
PROBA | Project for On-Board Autonomy

PSA Particle Surface Area

PSAP Particle Soot Absorption Photometer
PSD Particle Size Distribution

PSL Polystyrene Latex Beads

PSM Particle Size Magnifier

PSR Polarimetric Scanning Radiometer

PVM Particle Volume Monitor
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List of Acronyms and Abbreviations

QA

Ql
QUAC
Re
REO
RF

RH
RICO
ROSIS
RSL
RSR
RT
SAR
SDI
SEMS
SFSI
SID
SMART
SMPS

Quiality Assurance

Quality Indicators

Quick Atmospheric Correction

Reynold’s Number

Research Electro-Optics Inc.

Radio Frequency

Relative Humidity

Rain in Cumulus Over the Ocean

Reflective Optics System Imaging Spectrometer
Remote Sensing Laboratory

Relative Spectral Response

Receiver Transmitter

Synthetic Aperture RADAR

Solid Diffuser-Type Inlet

Scanning Electrical Mobility Spectrometer
Short-Wave IR Full Spectrum Imager

Small Ice Detector

Spectral Modular Airborne Radiation sysTem
Scanning Mobility Spectrometer



SMIRR
SNR
SP-2
SPECIM
SSFR
SSMI/S
SST
SSTI
SPOT
STP
STRAP
SVM
SWE
SWIR
TAS
TASI
TAU
TDL
TOA
TOR
TIMS
™

TIR
TWC
UK

uv
UHSAS
UNAM
uTC
VIS
VIPS
VITO
VNIR
VOC
WICC
WMO
XRF

List of Acronyms and Abbreviations

Shuttle Multispectral Infrared Radiometer
Signal-to—-Noise Ratio

Single Particle Soot Photometer

Spectral Imagers

Solar Spectral Flux Radiometer

Special Sensor Microwave Imager/Sounder
Sea Surface Temperature

Small Satellite Technology Initiative

System Probatoire d’Observation de la Terre
Standard Temperature and Pressure
Stabilized Radiometer Platform

Support Vector Machine

Snow Water Equivalent

Short-Wave Infrared

True Air Speed

Thermal Airborne Spectral Imager

Tel Aviv University

Tunable Diode Laser Absorption Spectrometer
Top of Atmosphere

Thermal-Optical Reflectance

Thermal Infrared Multispectral Scanner
Thematic Mapper

Thermal IR

Total Water Content

United Kingdom

Ultraviolet

Ultrahigh Sensitivity Aerosol Spectrometer
Univ. Nac. Autonoma de Mexico

Universal Time Coordinated

Visible

Video Ice Particle Sampler

Flemish Institute for Technological Research
Visible and Near IR

volatile Organic Compounds

Wide Stream Impaction Cloud Water Collector
World Meteorological Organization

X-Ray Fluorescence
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10.1
Glossary

Atmospheric correction Compensation of the atmosphere influences by gases
and aerosols from the radiometric signal at the airborne remote sensing
instrument for retrieval of surface albedo, directional.

Boundary layer Layer of fluid in the immediate vicinity of a bounding surface
(e.g. Earth’s surface or aircraft skin). The aircraft boundary layer can be
turbulent, which leads to strong particle losses on the aircraft skin.

Calibration The process of quantitatively defining the responses of a system
to known, controlled signal inputs.

CFD modeling Computer simulation to solve and analyze problems that in-
volve fluid flows. For this purpose, first the geometry of the body of
interest and a surrounding domain (the fluid) is generated using soft-
ware tools. Afterwards the fluid domain is filled with grid cells and the
boundary conditions at the domain limits are defined. In the actual CFD
simulation, the equations of fluid dynamics (Navier-Stokes) are solved
iteratively.

Ice particle shattering and bouncing During sampling ice particles may im-
pact a cloud probe’s upstream tips or inlet, bounce away or shatter into
small fragments.

Ram heating According to the energy conservation law for compressible flu-
ids, an air flow which is deaccelerated adiabatically experiences a heat-
ing. In analogy to the static pressure of such a flow at zero velocity (ram
pressure) the term ram heating is used for the heating process during
declaration.

Airborne Measurements for Environmental Research. Manfred Wendisch & Jean—-Louis Brenguier
Copyright © 2012 copyright holder, location
ISBN: 3-527-XXXXX-X
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Reynolds number (Re) Dimensionless number that gives a measure of the ra-
tio of inertial forces to viscous forces. A large Re indicates a turbulent
flows, a low Re a laminar one.

Stokes number (Stk) Dimensionless number that gives a measure on how
well particles or droplets can follow the gas flow streamlines, It is de-
fined as the ratio of the stopping distance of a particle to a characteristic
dimension of the obstacle.

Traceability Property of a measurement result relating the result to a stated
metrological reference (free definition and not necessarily Sl) through an
unbroken chain of calibrations of a measuring system or comparisons,
each contributing to the stated measurement uncertainty.

Turbulence intensity (TI) A measure of the strength of turbulence in a flow
system. TI is defined as the ratio of the turbulent velocity fluctuation
to the mean flow velocity and is usually expressed in percent. Laminar
flow is indicated by TI values below 1%.

Uncertainty Parameter that characterizes the dispersion of the quantity val-
ues that are being attributed to a measured mean, based on the informa-
tion used.

Validation The process of assessing, by independent means, the quality of the
data products derived from the system outputs.

Vicarious calibration Vicarious calibration refers to techniques that make use
of natural or artificial sites on the surface of the Earth for the post-launch
calibration of sensors.

Weber number (We) Probability of drop breakup during high-speed sam-
pling.

= monochromatic

= irradiance

= radiance

= actinic flux density
= broadband

= blackbody

= Planck function

* radiometer
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Layer Geopotential Geometric Lapse Rate Temperature  Pressure
Height hg (gpkm)  Height zo (km) 7o (°Cgpkm™1) To (°C) Py (Pa)
0 0.0 0.0 -6.5 +15.0 101,325
1 11.000 11.019 +0.0 -56.5 22,632
2 20.000 20.063 +1.0 -56.5 5,474.9
3 32.000 32.162 +2.8 -44.5 868.02

Tab. 10.1 ISA standard atmosphere properties (base values) in the troposphere and strato-

sphere.

Variable Accuracy
Latitude 1.5kmh~1 (50% CEP)
Longitude 3.1kmh~1 (95% CEP)
Ground Velocity 410ms—1!
Vertical Velocity 0.15ms™ !
(baro—damped)

Pitch and Roll Angles 0.05°

True Heading 0.2°

Tab. 10.2 Accuracy of Unaided Navigation—Grade INS (Honeywell LaserRef2 SM after 6

hours). [ED: Needs ref.]

10.2
Thermodynamic Measurements

10.2.1
Aircraft State Parameters

10.2.2
Static Air Temperature

Radiative Probe

Air temperature may be derived from measurements of the emitted radiance
in the TIR region. It is desirable that the weighting function of the detected
radiation should be confined within a short distance (~10-100m) of the de-
tector. This reduces the sensitivity to changes in aircraft attitude, when the
viewing path of the instrument may be shifted from the horizontal and may,
therefore, view through the vertical temperature gradient of the atmosphere.
Suitable wavelengths for measurement are, therefore, strongly absorbed in
the atmosphere and a typical choice is the 4.25 um absorption band of CO,

(Beaton, 2006).
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10.2 Thermodynamic Measurements
Class Position Gyro Accelerometer Gyro Acceleration
Performance Technology Technology Bias Bias

Military 1nmi/ 24h ESG, RLG Servo < 0.005°/h 30 g
Grade FOG Accelerometer
Navigation 1nmi/h RLG Servo 0.01°/h 50 1g
Grade FOG Accelerometer

Vibrating Beam
Tactical >10nmi / h RLG Servo 1°/h 1mg
Grade FOG Accelerometer

Vibrating Beam

MEMS
AHRS NA MEMS, RLG MEMS 1-10°/h 1mg
FOG, Coriolis

Control NA Coriolis MEMS 10 — 1000°/h 10mg
System

Tab. 10.3 Performance of classes of unaided INS systems.

The brightness temperature, Tg, may be determined by inversion of the
Planck function which describes the radiance exitance, B, (A, T), of a perfect
blackbody, see Eq. (7.20):

h-c 2m-¢2-h \1*
TB‘A-kB'['OQ(A5~BA(A,T>)] ’ (0.1

with the Planck constant h = 6.6262 x 10~3*Js, the Boltzmann constant:
ks = 1.3806 x 1022JK~1, T is the absolute temperature in Kelvin, and A
the wavelength in meter. When the atmospheric path is totally absorbing, and
hence its emissivity is unity, the brightness temperature is equal to the tem-
perature of the air.

A recent implementation of this principle is described by Beaton (2006), see
Figure 10.1. The instrument consists of a filter radiometer, with a pass-band
width of approximately 0.05 um. A rotating chopper wheel allows the detector
to view alternately the atmospheric radiance and the emission from an inter-
nal temperature—controlled black-body target. Measurement of the difference
signal and the blackbody temperature allows the atmospheric brightness tem-
perature to be determined.

The instrument housing has an external window that is transparent in the
thermal infra-red. This allows the internal temperature and humidity of the
instrument to be more easily stabilized. The window must be maintained free
of any materials that are strongly absorbing at the detection wavelength. This
includes liquid water which might form a thin film across the window when
the instrument is in liquid-phase clouds or rain.
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Air Inlet
O:‘ﬁ\

RS422

AD590
reference

blackbody /7

TEC
Driver

@ Air
Radiance

uC

VFC Detector
AD can

Chopper

bias

Filter pre-amp

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Inner can A

Electronics Box
Optical Head #
Outer can

Air exhaust
to venturi

Fig. 10.1 A block diagram of the Ophir air temperature radiometer
(Beaton, 2006). The external window is at the right. Behind it is
the chopper wheel, the 4.3 um interference filter, the focusing lens
and then the detector can. Inside the detector can is the HgCdTe
detector, the thermistor to monitor the detector temperature, and
the thermoelectric cooler for the detector. The TEC driver supplies
power to the thermoelectric coolers for the detector and controlled
black body. The entire optical system is kept near the external air
temperature by air circulating between the inner and outer cans of
the optical head.

Liquid- and ice—-phase clouds are both strongly absorbing at the 4.25um
wavelength. The impact of this when making measurements in cloud is that
the absorption within the wings of the pass—-band of the filter is increased
compared to that in clear air. This has the effect of decreasing the effective
viewing path within cloud from ~100m to ~20 m (Beaton, 2006). In princi-
ple, the instrument can be radiometrically calibrated to give an absolute true
air temperature measurement. In practice, however, the stability of such cali-
brations is insufficient and they are normally calibrated against an immersion
temperature sensor using cloud-free in—flight data. Such a calibration will
typically exclude data from periods when the aircraft roll and pitch angles ex-
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10.2 Thermodynamic Measurements

clude certain limits. This ensures the rejection of any data obtained when the
instrument may be viewing up or down the atmospheric vertical gradient of
temperature.

The sample rate of such a radiometric temperature sensor is typically
around 1Hz. At typical flight speeds of 70-100ms~! this means that the
along-track averaging length is comparable with the instrument viewing path
length. Higher-frequency sampling is possible but will increase the noise
level.

Ultrasonic Probe

Ultrasonic thermometry is based on the measurement of the speed of sound
of the air which mainly is a function of temperature. The speed of sound is
derived from the measurement of the transit time of a short sound pulse over
a well known distance. A relative movement of the air with respect to the
emitter of the sound pulse (e.g.wind) will be superimposed on the speed of
sound. Measuring the transit time back and forth along the same path allows
extraction of the speed of sound as well as the wind vector component along
the sound propagation path. This principle is widely used for ground based
measurements of 3D wind and temperature simultaneously. Due to the non-
contact type of measurement a high time resolution is possible, making the
method useful for measurement of temperature fluctuation. But its ability for
absolute temperature measurement is strongly reduced by secondary effects
in sound wave propagation theory based on the assumption that air is an ideal
gas (Cruette et al., 2000). Up to now only a few ultrasonic temperature probes
have been used for airborne measurement, mainly on slow flying aircraft or
helicopters.

10.2.3
Three-Dimensional Wind Vector

Measuring the Flow Vector Using a Five—Hole Probe

Five-hole probes (FHP) do not provide very high temporal resolution (e.g.,
compared to a CTA) but are robust instruments that allow measurements up
to about 100 Hz. The limit of temporal resolution is mainly due to limited
response time of the connected pressure transducers and to due resonance
effects in the connection tubes and in the cavities of the pressure transducers.

The following description mainly addresses FHP that measure (in addition
to the static pressure) only differential pressures Lemonis et al. (2002). In
larger probes (e.g., pressure holes in the aircraft fuselage as applied to the
Space Shuttle or the F-18 High Angle of Attack Research Vehicle) the mea-
surement of the individual, absolute pressures is possible and allows an even
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more accurate determination of the flow angles Weil3 and Leif3ling (2001);
Weil3 (2002). Air flow systems involving more or less than five holes Craw-
ford and Dobosy (1992); Sumner (2000); Pfau et al. (2002) can be treated more
or less like a FHP.

The local wind vector in the aircraft coordinate system is determined from
the dynamic pressure increment Apq and the pressure differences between op-
posite pressure holes in the FHP i.e., the pressure difference in the horizon-
tal plane Apg = p, — p4, and in the vertical plane Ap, = p; — ps, where p;
denotes the individual holes of the FHP, with ps being the central hole (Fig-
ure10.2). The pressure differences Ap, and Apg increase when the angle of
attack « and the sideslip § increase. But the pressure differences also depend
on the airspeed (and therefore on the dynamic pressure increment Apgq and on
the Mach number) and on the air density p (and therefore on the altitude z).
In general this can be expressed by

¢ = F(Apy,Apq,z) where ¢ = a,p, (10.2)

where F denotes a functional relation.

Usually both the influence of the airspeed and the altitude can be considered
by weighting the pressure difference with the dynamic pressure increment.
The most simple assumption is therefore

1 Apy
¢ Kenp Apq '

(10.3)

where the calibration coefficient Kgyp considers any disturbance of the air
stream by the FHP (and also by the entire aircraft fuselage) and local stream
effects directly at the pressure hole.

Actually the most difficult task is now the determination of the dynamic
pressure increment Apq or the total pressure pot since the stagnation point is
usually located somewhere between the holes of the FHP and can therefore
not directly be measured. The approximation of the total pressure by the mea-
sured pressure ps at the central hole of the FHP would lead to a wind vector
measurement that is very sensitive to the aircraft attitude, wind speed and
wind direction Schlienger et al. (2002) and provides only small accuracy.

In the following some more sophisticated methods to estimate the correct
sideslip and angle of attack are introduced Bange (2009). It is understood that
any offset angles a, or B, due to bias in the pressure transducers or asymme-
try of the FHP have to be quantified in a laboratory, a wind tunnel or in flight
tests before. Calibration routines, both for wind-tunnel experiments and flight
manoeuvres can be found in literature Haering (1990); Wérrlein (1990); Haer-
ing (1995); Barrick et al. (1996); Friehe et al. (1996); Khelif et al. (1999); Weil3
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10.2 Thermodynamic Measurements

Fig. 10.2 Schematic illustration of a FHP showing the pressure ports
p1 to ps (head-on perspective, i.e., starboard is on the left side from
this point of view). In the text, po = ps.

et al. (1999); Williams and Marcotte (2000); van den Kroonenberg et al. (2008);
van den Kroonenberg (2009).

Rosemount Method

Providing an additional pressure—difference measurement

APret = Po — P2 (10.4)

between one of the horizontal holes and the central hole (Rosemount method),
the dynamic pressure increment is estimated by

1

The flow angles are determined by (10.3) with Kgyp set to 0.088 for airspeeds
below 0.6 Ma Rosemount (1982). It has to be noted that the Ap,.s refers only to
the horizontal plane i.e., the stagnation point is assumed to be located

somewhere on the connecting line between the two opposite holes #2 and
#4. This presupposes two items: 1) the FHP has to be mounted to the aircraft
in away that « = 0 in the absence of vertical wind (w = 0); 2) the aircraft is not
allowed to perform larger changes in both pitch ® or roll @; i.e., this method
is not suitable for highly dynamic systems.

An improvement requires an additional differential pressure measurement
between the central hole and one of the holes in the vertical plane (#1 or #3),
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1 resulting in two disjunction equations of type (10.3):

1 A
« = Pa_ (10.6)
KFHPa Aprefa + 7 AP

- A
S Pe — (10.7)
KrHpg Aprefp + 5 APp

It is obvious that this method represents no fundamental improvement com-
pared to the usual Rosemount method, since no consistent dynamic pressure
increment can be determined. This is mainly due to the general strategy to use
a Cartesian approach to solve a rotationally symmetric problem.

a b~ w N

Five-Differences Method and Calibration

More accurate results an be achieved using five pressure difference measure-
ments: the difference between the central hole and each of the four remaining
total pressure ports (APg, APy, APg3, APgs), and the difference between the
10 static pressure and the central hole (APys). These measurements are used to
11 determine a total pressure difference

© oo N o))

2 1
Ap = + pozzﬁtpil ST
i=1

1 1
5" (pi - 3.24'01') 2
i=0 j=0

12 which uses the absolute pressures. Since the measurement of the absolute
13 pressures is P; is often not feasible, (10.8) can also be expressed by the pressure
14 differences van den Kroonenberg et al. (2008):

1
Ap = {HS [ (Apo1 + Apoz + Apos + Apos) 2 + (—4Apo1 + Apoz + Apos + Apos) 2
+ (Apor — 4Apo2 + Apos + Aposa) 2 + (Apo1 + Apoz — 4Apos + Apos) 2

05
+ (Apo1 + Apoz + Apoz — 44poa) 2] }
1
+7 (APo1 + Apoz + Apos +Apos) - (10.9)
15 Next step is to calculate the dimensionless pressure coefficients

Kk, = AF’OlA;pApos , (10.10)

Apoz — APos
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10.2 Thermodynamic Measurements

Then, three functions are defined to calculate the airflow angles and the
dimensionless coefficient kq (later needed for the dynamic pressure)

ke kp) (10.12)

with the general calibration polynomial form Bohn and Simon (1975) with
X = a, §,q and typicallym =n = 10

m
fx(ka, kp) = 2

i Xij kﬁ ] . (10.13)

Here, Xj; represents the individual calibration tensors for the angle of attack
ajj (fa), sideslip bjj (fg), and dynamic pressure gjj (fq). Thus, the function
(10.13) contains m x n unknown coefficients X;; that have to be determined via
a system of m x n independent equations (e.g., using a least-square method).
The most accurate method to obtain these equations are measurements in a
calibrated wind tunnel. Combinations of differential pressures with adjusted
X = w, 3, ) can be achieved by varying the air speed and flow angles by turn-
ing the FHP in the wind tunnel. Preferably, the FHP is mounted on the aircraft
(and not be removed between calibration and measurement flight). Of course,
this is only feasible for very small aircraft like UAV and large wind tunnels.
Finally the dynamic pressure q is given by

q = Apos +Ap-kq - (10.14)

In-Flight Calibration

Lenschow Maneuvers

Regardless of where the air flow sensors are located on the aircraft and how
carefully they are calibrated, errors are likely to be present in their measured
outputs. Ground tests are not useful for calculating velocity-related errors.
Wind tunnel tests are difficult and prohibitively expensive for exact simula-
tion of flight conditions. Therefore, in—flight calibrations play an important
role in estimating errors and correcting aircraft measurements.

Because of the airflow distortion ahead of the aircraft, the airflow angles
(attack « and sideslip B) and airspeed U measured at the aircraft nose or the
tip of a nose boom tip may differ considerably from the actual values that
would be measured far away from the aircraft. The airflow distortion affects
not only the sensitivity, but also the zero offset of angle measurements, which,
therefore, must also be determined from in—flight calibrations.
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10 Supplementary Material

Maneuvers used for this purpose involve changes in U and attitude an-
gles. The following list summarizes several maneuvers used on NCAR air-
craft equipped with an inertial navigation system (INS) and the information
that can be obtained from them; examples of these maneuvers are shown in
Figures 10.3 and 10.4 (Lenschow and Spyers—Duran, 1989).

Reverse heading maneuver: Fly at constant altitude and heading (usually in
smooth air above the boundary layer) for several minutes. Then turn 180° by
first turning 90° in one direction, then 270° in the other direction at a constant
rate so the aircraft flies through the same volume of air on its return track.
This maneuver modulates errors in U and §, since they are measured in the
aircraft coordinate system. The INS errors are not modulated, however, since
they are measured in an inertial frame of reference. If the wind along the flight
track is assumed to stay constant during this maneuver, differences in the two
wind components between the two headings can be used to independently
estimate errors in both U and ; U errors are associated with the longitudinal
wind component and p errors with the lateral wind component.

Speed variation maneuver: Fly at constant altitude and heading ¥, and
smoothly vary U from close to stall to close to maximum cruise speed. Since
the lifting force on the aircraft is directly proportional to « and U2, modulating
U also modulates a. For level flight, the vertical aircraft velocity wy, is zero; if
the air velocity w, is small, « = 0. Thus, « can be calibrated in flight by this
technique, provided that 6 is measured accurately. The attitude angle trans-
ducers, in contrast to airflow angle sensors, can be accurately calibrated in the
laboratory.

If U is measured incorrectly, temperature may also be affected. Temperature
recovery factors can also be measured or corrected with this maneuver, since
U variations modulate the measured temperature because of dynamic heating
effects. Any other measurements affected by either U or « variations are also
modulated by this maneuver.

Pitch maneuver: Vary the aircraft elevator angle while holding the heading
constant to obtain a sinusoidal pitching motion with a period of 10 to 20 s
and a maximum rate of ascent and descent of 2.5 to 4 m s~1. This maneuver
modulates wp, U, and, to a lesser extent, «. If any of these variables have sig-
nificant errors, a periodic error in w should be evident. Since the terms do not
have the same phase angle, in practice it is often possible to determine which
of the variables is in error simply by determining the phase of the error in w
and comparing it with the phase of wp, 8, U, and «. This maneuver also can be
used to detect dynamic errors in static pressure or rate-of-climb instruments
by comparing their outputs with the integrated INS vertical acceleration.

Yaw maneuver: Vary the aircraft rudder angle while holding the roll and
altitude constant to obtain a sinusoidal skidding or sideslip motion with a pe-
riod of about 10 s and a maximum amplitude in g of about 2°. This maneuver
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Fig. 10.3 Examples of reverse heading and airspeed maneuvers used
to check the quality of air velocity measurements. The lateral and lon-
gitudinal velocity components are measured with respect to the air-
craft; therefore, the measured wind should change sign, but not ampli-
tude, after the 180° turn, if the wind field remains constant and is mea-
sured without error. An error in airspeed will result in a difference in the
amplitude of only the longitudinal component before and after the turn,
while an error in the sideslip angle will similarly affect only the lateral
component, which simplifies correction procedures. The airspeed ma-
neuver modulates « and 0; if 6 is measured accurately, the error in «

a can be determined by comparing the vertical wind component with
respect to the aircraft (U sin «) with the vertical wind component with
respect to the Earth. In this example, there is little correlation between
the two, so the fluctuations in w are presumed to be due to turbulence
rather than an inaccurate measurement of «. The airspeed maneu-
ver can also be used to estimate airspeed—dependent errors in other
variables and the temperature recovery factor.

1 modulates heading ¢, the longitudinal and lateral aircraft velocity compo-
2 nents up and vp, and B. As with the pitch maneuver, errors in any of these
3 variables cause a periodic variation in the horizontal wind velocity.
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Fig. 10.4 Examples of pitch and yaw maneuvers. The pitch maneuver
is used as an overall check on the accuracy of the w measurement;

in this example, there is little modulation of w during the pitching ma-
neuver, which implies that fluctuations in w are measured accurately.
Similarly, the yaw maneuver is used as an overall check on the lateral
(with respect to the aircraft) component; again there is little modulation
of u and v (in geographic coordinates) by the yawing maneuver.

On the NCAR aircraft, the system performance is judged to be satisfactory
if the w error is less than 10 % of wy, for the pitch maneuver, and vy is less than
10% of U sin g for the yaw maneuver.

Lenschow and Spyers-Duran (1989) estimate that short-term (i.e., not in-
cluding long-term INS drift) velocity errors can be reduced to < 0.3 ms™! by
in—flight calibrations. An alternative technique for estimating the error coeffi-
cients in w, proposed by Khelif et al. (1999) is to iteratively vary the calibration
coefficients of w to minimize the variance of w. This assumes that errors in
the w measurement invariably increase the w variance. An advantage of this
technique is that it can be done on research legs, without the requirement of
dedicated maneuvers in non-turbulent air.
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10.2 Thermodynamic Measurements

Rodi Maneuvers

An alternative approach developed at the University of Wyoming employs
multiple regression analysis of data collected while maneuvering the aircraft
while in a standard rate turn. While turning, the pilot induces sinusoidal
sideslip variations of about 10 second period while maintaining constant al-
titude, resulting in sinusoidal flow angle and airspeed variation along both
the lateral and vertical body axes. The motivation for the turning method is
to induce flow angle changes that result in Earth-vertical speed fluctuations
without large height variations and accelerations, all well within the enve-
lope encountered during normal research operations. Further, in turns, the
coordinate transformation matrix from aircraft body-axis to Earth coordinates
changes rapidly allowing problems with time synchronization of the IMU and
airspeed data can readily identified.

The assumptions in the analysis are: 1) the vertical component of the wind
has zero mean; 2) that the horizontal wind components are steady during the
turn; and 3) that the variability of the wind components is mainly random—
i.e., no systematic spatial variability as would be caused by mountain waves,
for example. The procedure finds constant coefficients and offsets which mini-
mize a cost function expressed as f = W « detrend(M), where W is the vertical
wind component and M is the horizontal wind magnitude. The procedure re-
sults in estimates of the upwash and sidewash factors, and the pitch, roll, and
heading offsets that minimize f, evaluated using the full 3D wind equations in
a non-linear least squares solver (such as Matlab “Isgnonlin™).

The results of this calculation for the period shown in Figures 10.5 and 10.6
are tabulated in Table 10.4. Note that the upwash factor is consistent with the
value estimated from attack-pitch analysis and also from aerodynamic consid-
erations as discussed by Crawford et al. (1996). Figure 10.5 shows the pilot-
induced inputs during the maneuver, and Figure 10.6 is the resulting winds
during that period after application of the coefficients and offsets. One com-
plicating factor is that the angle offset corrections are assumed to be constant
factors caused by misalignment of the inertial measurement unit with the gust
probe axis, but actually also include time-varying inertial errors. Applying
IMU/GPS corrections first would alleviate this problem.

Upwash  Sidewash  Angle Offsets [°]
Factor Factor Pitch Roll Heading
0.759 0.776 0.290 -0.534 0.126

Tab. 10.4 Results of least squares procedure.
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Fig. 10.5 Time series of 10-Hz data from University of Wyoming
King Air flight on 19 March 2009. Shown are section from left turn
concatenated with section from right turn. Period of induced sideslip
oscillations is 10 seconds.
10.2.4

Small Scale Turbulence

Sampling and Sensor Resolution

The first question is how fast the sampling has to be to resolve a signal with
frequencies fmax. The Nyquist theorem states that the sampling frequency fs
has to be at least two times fhax which reads mathematically fs > 2 - fhax. If
the signal is sampled with fs < 2. fjax, from the sampled values of the signal
a waveform can be constructed with lower frequency. This effect is called
“aliasing” and demonstrated in Figure 10.7 where a signal (solid black line)
with f =4 Hz is sampled with fs =5 Hz (red stars) which fits with a phase-
shifted signal of 1 Hz (dashed black line). That is, in a Fourier spectrum one
would expect a peak at 1 Hz which does not represent the frequency of the
original signal.
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Fig. 10.6 Wind data after corrections from period as described in
Fig. 10.5.

This effect can be solved by sufficient high sampling frequencies (e.g., fs >
2 - fmax). Since the maximum frequency of a signal is often unknown and the
temporal resolution mainly depends on the sensor design, a low-pass filter
with a cut-off frequency foyt < fs/2 should be applied, thereby removing
the high frequency contributions which cannot be sufficiently resolved by the
sensor.

Another point which has to be considered is the question about the required
sensor resolution in combination as a function of sampling frequency. There-
fore, this subsection deals with a few basic considerations concerning sensor
resolution at a given TAS and degree of turbulence in terms of the mean en-
ergy dissipation rate. On small scales, turbulence is often described by the
statistics and correlation of velocity increments du(x,r) = u’(x) —u’(x +r)
where u’(x) are the velocity fluctuations (u’(x) = u(x) — (u),,where (.), de-
notes an average over the space parameter x). Here, we have simplified the
problem to the longitudinal velocity component, x is the coordinate in flight

711



712

7
8
9

10

11

12

13

14

15

16

17

10 Supplementary Material

1.0

o
l

0.0

Signal Amplitude

|
o
w

-1.0LC
0.0 0.2 04 06 08 1.0 1.2 1.4 16 1.8 2.0
Time (s)

Fig. 10.7 The aliasing effect: A sinusoidal signal with a frequency

f = 4Hz is sampled with a frequency of fs =5 Hz which violates the
Nyquist theorem. The sampled points are represented as black stars
and fit with a phase shifted signal with f = 1Hz.

direction, and r is a spatial lag in the same direction. The second-order statis-
tics of the velocity increments can be described by second-order structure
functions and its scaling behavior in the inertial subrange 7 < r < L. Turbu-
lence at sub-meter scale with r < 1 m down to about 10 - 7 can be assumed to
be safely within the inertial subrange under most turbulence conditions and
S(2) reads:

s@(r) = <((5u(x, r))2>x = 2(er)?3, (10.15)
Small corrections have to be applied to the scaling exponents (2/3) to consider
internal intermittency effects in high Reynolds number flows which are negli-
gible in this context, Note that Eq. (10.15) describes the same inertial subrange
behavior as the famous —5/3-Kolmogorov law in the frequency domain since
second-order structure functions and power spectra are a Fourier duality.

On an aircraft, a sensor signal is usually sampled as a function of time. Time
increments Jt can be transformed to spatial increments or by applying Taylor’s
hypothesis of “frozen turbulence”: ér = TAS - ér. This transformation can be
applied if the turbulence intensity | = uyms/ TAS is below a certain threshold
- typically below ~ 10% which is fulfilled for most airborne applications due
to the high TAS.
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Fig. 10.8 Required sensor resolution éu for velocity measurements
as a function of spatial resolution ér = TAS/ f and for different levels
of turbulence described by the mean energy dissipation rate ¢.

If we define the sensor resolution in such a way that the velocity increment
du(r) in EQ.(10.15) can be resolved at given spatial resolution ér ~ TAS/fs
and mean energy dissipation € we can derive the following expression:

1/3
ou =172 (E T’?S) . (10.16)
S

Figure 10.8 shows the required resolution du at given spatial resolution §
for four different € typical for atmospheric conditions. For example, a spatial
resolution of 0.1 m at given TAS = 100 ms~! requires a sample frequency of
at least 1 kHz and a sensor resolution of better than éu = 3 cms~1! to resolve
turbulence with ¢ = 10~* m?s~2 at given scale.

It has to be considered that this estimate is based on mean ¢ but atmospheric
turbulence is highly variable in space and time. Locally, ¢ can vary a few
orders of magnitude and it is more safe to estimate the sensor resolution based
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on a much smaller value (e.g., €jocai ~1 % of € results in a five times smaller
ou).

In a similar way, the required sensor resolution for other passive scalars
such as temperature or humidity can be estimated by replacing the factor
“2¢2/3" in Eq. (10.15) with the appropriate values Warhaft (2000).

In the following, we will introduce a couple of fast-response sensors for dif-
ferent parameters which are usually not part of the standard instrumentation
of a research aircraft and which are going beyond the “standard” sensors in-
troduced in the previous sections - although a few of them can be sampled
fast enough to resolve sub-meter scales.

10.3
In Situ Measurements of Cloud and Precipitation Particles

10.31
Laser Doppler Velocimetry: Double—-Doppler Shift and Beats

The physical principle underlying LDV is essentially the same as that respon-
sible for Doppler broadening of spectral lines: the radiation source and detec-
tor can be considered stationary, with moving particles scattering light from
the source to the detector. The motion of any given particle (for LDV the par-
ticle would be an aerosol or cloud particle) leads to a slight Doppler shift in
the detected radiation. The general equation for the non-relativistic (v < ¢)
Doppler effect is:

Vo= C = Vobserver ~v (1 + Vobserver + VSOUI'CG) (10.17)
C = Vsource c c ’ .

where v and v’ are the inherent and Doppler shifted frequencies, ¢ is the prop-
agation speed, and Vsource @Nd Vopserver @re the velocity components of the fre-
quency source and observer, respectively, along the source-observer path. The
derivations that follow are based on the more detailed treatment of Davis and
Schweiger (2002).

In LDV there is a double Doppler shift because there are two ‘observers.’
First, light emitted from a stationary source (a laser) at frequency v is observed
by a moving particle as frequency v’. Second, light scattered by the moving
particle at frequency v’ is observed by a detector (e.g., a photomultiplier tube)
as frequency v”’. The total resulting Doppler shift is therefore:

vVi—v v
C

~
~

; (cos by +cosby) , (10.18)
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where v is the particle speed and again we have taken the limit v/c < 1.
The angles describe the velocity components resulting from the system ge-
ometry: 60, is the angle between the source-particle vector and the velocity
vector, and 0, is the angle between the particle-detector vector and the veloc-
ity vector. As should be expected, when the sum of 8, and 6, is 180°, meaning
the particle lies on a straight path between the source and the detector, the
double-Doppler shift is zero.

The basic physical mechanism is now clear, but because the relative Doppler
shift (v — v)/v o v/c we must consider how such a small Doppler shift can be
measured (assuming v ~ 10 m s~1, we would expect relative Doppler shifts
on the order of 10~7). The elegant approach is do this via heterodyne detec-
tion, in other words, mixing two coherent signals to obtain an easily measur-
able beat frequency. In practice, this can be accomplished by splitting the laser
beam and then crossing the two beams: The different source-detector geom-
etry results in slightly different Doppler shifts from each beam, as illustrated
in Figure 10.9. The beat frequency is equal to the difference of the two double-
Doppler-shifted frequencies from sources A and B, Av” = v\ — vg. The two
Doppler frequencies can be determined from Eq. (10.18) and, noting that 6,
is the same for both, we obtain Av” = v(v/c)(cosf,a — cosbig). Defining
angle « as the beam crossing angle and angle § as that between the velocity
vector and a perpendicular to the optical axis, these angles can be written as
Oia = /2 — B+ /2 and 615 = /2 — p — a/2. Using the sine difference
identity it follows that:

n' = 21/% cos (B) sin (%) : (10.19)

This result has several interesting implications. First, the beat frequency de-
pends on the beam-crossing angle, so this is a parameter that must be accu-
rately determined in the instrument setup. Second, the beat frequency is inde-
pendent of the detector location, a perhaps non-intuitive result that is contrary
to the single-source geometry (although the signal to noise ration may depend
on detector location due to the angular dependence of light scattering. Third,
the beat frequency is proportional to the component of the particle motion
lying in the plane of the crossing beams and perpendicular to the optical axis.
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Source A

Particle

Source B

v ' Detector

Fig. 10.9 Geometry of the heterodyne detection method for laser
Doppler velocimetry. Two laser beams, denoted sources A and B,
cross at their focal points with angle «. A particle passing through the
beam-—crossing region with velocity vector v scatters light from both
beams to the detector. Other angles are defined in the text.

10.4
Scattering and Extinction of Light by Particles

104.1
Approximate Solutions of Light Scattering Problems as Used in the Processing
Software of Modern Size Spectrometers

Light scattering methods are widely used in studies of turbid media such as
atmospheric aerosol and clouds. They are based on the fact that the intensity
and polarization of scattered light depends on the peculiarities of the object
from which light has been scattered. The advantage of light scattering meth-
ods is due to the fact that they do not disturb the medium under study and
enable investigations of dynamical processes in turbid media with high tem-
poral resolution. The same applies to light extinction techniques where the
attenuation of a direct beam is studied.

The shortcomings of the light scattering and extinction techniques for par-
ticle sizing as compared, e.g., to microscopy and digital imaging, are due to
their indirect nature. For instance, if we limit ourselves to the case of single
scattering by a unit volume filled with spherical particles (e.g., as those present
in water clouds and fogs), the intensity of scattered light Isc4 at the wavelength
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10.4 Scattering and Extinction of Light by Particles

A in the direction specified by the scattering angle 6 can be presented as:
az
lea(1,0) = B / I(A,m,a60)n(a) da, (10.20)
ay

where (A, m, a, 6) is the contribution to the detected signal by a single sphere
with the radius a, m is the complex refractive index of particles, and n(a) is the
particle size distribution (PSD). It is assumed that only particles with radii be-
tween a; and a, are present in the scattering volume. The calibration constant
B depends on the incident light intensity and also on a particular experimen-
tal setup. The value of 1(A,m,a,0) can be presented via dimensionless Mie

intensities iy, i, (van de Hulst, 1981) as (A, m,a,0) = % The parameter
Csca(A,m,a,0) = '121”2'2 has a dimension of the area (k = 2%) and is called the

differential scattering cross section (for a single particle). Clearly, it follows:

/n(a)da -~ N, (10.21)

ag

where N is the number of particles of all sizes in the unit volume. The direc-
tional scattering coefficient is defined as fsca = N < Csca(6) >, where the
brackets here and below mean averaging with respect to the size distribution

f(a) = % namely:
az
(Ceca(8)) = / Csca(A,m, a,6) - f(a) da. (10.22)
ap

Therefore, we conclude that for the determination of PSD n(a), one needs to
solve the integral Eq. (10.20) for a given set of measured functions s, €.g., at
several angles 6. As a matter of fact this task belongs to a broad field of ill-
posed problems and not always has a solution. Therefore, careful selection
of the angular interval where measurements are performed is needed. In the
case of large spherical particles such as fog and cloud droplets(a > A in the
VIS), there are several ranges of scattering angles, where the scattered light
is most sensitive to the size of particles. They include the range of forward
(6 — 0) and backscattering (6 — ) angles and also the scattering in the
vicinity of the rainbow angle (6138°) (van de Hulst, 1981). The single particle
response function (SPRF) (A, m, a, 6) can be presented in a first approximation
as (van de Hulst, 1981):

(A, m,a60) = (3)2 B(x-0), (10.23)
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asf — 0. Here Jf(x@) is the Bessel function and x = % is the size parameter.
The Bessel function Jf(x@) is approximately equal to XTB at small scattering

angles. Therefore, we conclude that I (A, m, a,6) = XTA and the scattered energy
is proportional to the squared geometrical cross section of the particle as 6 —
0. It follows that the angular distribution of SPRF depends on the ratio of the
size of a particle to the wavelength, the distribution being more narrow for
larger particles. Generally, the Bessel function Jf(x@) oscillates and the first
minimum is located at x6min ~ 3.832. This gives for a typical droplet with:
x = 100 : Omin = 0.03832 or about 2.2°. For larger droplets and crystals with
the characteristic size parameter x ~ 1000, the value of 6y, is about 0.2°.
Taking into account that most of the energy is concentrated within the first
ring (0 < 6min) and the fact that the influence of the direct incident light must
be eliminated, the construction of the corresponding measurement system is
not trivial and powerful lenses with large focal lengths must be used.

Eqg. (10.23) has a very limited range of applicability. For smaller spherical
droplets, Mie theory (Mie, 1908) must be used. In particular, the refractive
index of particles must be taken into account in calculations. In the case of
large concentrations of scatterers, the small-angle, multiple scattering must
be accounted for. Eq. (10.23) is also not valid for non-spherical particles. For
instance, let us take the example of a single ellipsoidal particle. Then clearly,
the diffraction pattern is not symmetrical with respect to the incident beam.
The forward scattering pattern becomes symmetric with respect to the inci-
dent light only in the case of collections of randomly oriented particles.

In the case of a single crystal and at small scattering angles, the calculations
of SPRF can be performed using the scalar Fraunhofer approximation:

2
l(uv) = Y-‘//g(x’,y’)-exp[—i-k(u~x’+v~y/)] dx'dy’| (10.24)

Here Y = 2k_721 S is the geometrical cross section of the particle in the plane
perpendicular to the incident beam, &(x’,y’) is the aperture factor, u = %,
vV = % are angular coordinates in the observation plane located at the dis-
tance R from the particle. (X, Y) and (x’,y’) are coordinates in the observation
and object planes, respectively. In the Fraunhofer approximation, a particle is
substituted by an aperture having the same size and shape as the projection
of a particle on the plane perpendicular to the incident beam direction. The
aperture factor is equal to unity if it is assumed that the plane wave inside of
the aperture is the same as in the free space. In particular, Eq. (10.23) follows
from Eq. (10.24) under this assumption in the special case of spherical particles
(van de Hulst, 1981). The generalization to account for the refractive index of
particles (e.g., for small crystals) is also possible (van de Hulst, 1981). For col-
lections of randomly oriented particles (e.g., hexagonal crystals in glaciated
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clouds), Eq. (10.24) must be averaged with respect to the corresponding Euler
angles. Analytical calculations cannot be performed in this case and computer
simulations are needed. An interesting result is that the Fraunhofer diffrac-
tion pattern of a single randomly oriented irregularly shaped particle (ISP) is
equivalent to that of polydispersed spheres. The parameters of such a poly-
dispersion depend on the parameters of ISP. The corresponding theory was
developed by Shifrin et al. (1984).

The measurements of angular scattering f(A,0) = N (Csca) and extinction
€(A) = N (Cext) (Cext is the extinction cross section) coefficients of clouds are
of importance not only for finding the size distributions and concentration of
particles but also these are important quantities themselves. In particular, re-
mote sensing of clouds is based on radiative transfer modeling, where (A, 6)
and e(A) are considered as an input. In addition, the total scattering coeffi-
cient:

7T
= 277/[%(/\,9) .sin6 do, (10.25)
0
the phase function p(6) = 4”5(9), the single scattering albedo wy = ¢, and the
absorption coefficient k = ¢ — o are used. The phase function is normalized as
follows:

7T
% _ /p(e).sinede. (10.26)
0

In radiative transfer studies, the asymmetry parameter:

N =

7T
g = /p(e) sin® - cos6 do, (10.27)
0

is often used as well. The values of g depend on the size and shape of particles
and they are often close to 0.75 for ice clouds and 0.85 for water clouds. This
means that ice clouds generally are more reflective (in the VIS, where k =~ 0)
as compared to water clouds of the same optical thickness:

I2
7= [ e(z)dz, (10.28)
/

where z is the vertical coordinate, and I; and |, are corresponding cloud
boundaries. It can be shown both using Mie theory and geometrical optics
calculations that in the case of non-absorbing large (a > A) particles as those,
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which exist in tropospheric clouds, it follows:
c = 2N-(S), (10.29)

where S is the geometrical cross section of particles (S = 7 - a® for spheres).
The angular integration of the geometrical optics part of scattering field, as
shown in Eq. (10.25), is somewhat involved. However, the diffraction part can
be easily integrated resulting in:

7T

2
Ca(Ama) = 27T-k*2/<3) -32(x6) -sin6 db

Q

0
27r~a2/Jf(y) .y ldy
0
= m-a%, (10.30)

in the case of a single sphere with the radius a as it should be. Here we ac-
counted for the property of Bessel functions (the orthogonality relation):

[e°]

2/Jf(y)-y*1 dy — 1. (10.31)
0

The geometrical optics part of the scattering cross section is equal to 7ra
as well (for non-absorbing particles). The analytical integration can be per-
formed till any scattering angle in the forward scattering region and not for
the whole diffraction peak as in Eq. (10.30):

kafp

Cgca(/\vmva790) ~ 27'[.a2 / J%(y)y_l dy
0

= ma |1-3(k-a-60) — F(k-a-6p)] . (1032)
In the calculation of this integral we employed the property:

By) _ ,
v Jo(y) - 3a(y) — Ju(y) - 91(y)., (10.33)
and the corresponding values of tabular integrals. Here J] is the derivative of

the Bessel function. Therefore, it follows that the fraction of scattered energy
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ACsca in the angular range e € [61, 6,] is proportional to the following function:

ACsa = 7-a2- [Jé(k-aﬂl) +2(k-a-0y) — 2(k-a-0p) — Jf(kaez)] .
(10.34)
This equation (averaged with respect to the PSD) is the basis for the mea-
surements of PSDs in a number of devices. Not only scattering but also light

extinction can be used to determine the size distribution of particles. The ex-
tinction coefficient can be written as:

e = N/Cext(a)-f(a) da. (10.35)
0

Usually the spectral measurements of € are used in the optics of turbid media
to determine f(a) solving Eq. (10.35). The value of Cext is close to 2S for large
particles (at the VIS wavelengths). It follows:

evis = 2N-(S) zzn.N.<a2>, (10.36)

or eyis = HWE ‘where LWC = Np (V), p is the density of water, (V) is the

def0
average volume of particles, a,s = % is the effective radius of particles. The
dimensionless volume concentration C, = N < V > is also often used in
various theoretical calculations.

The measured extinction coefficient gives the total surface area of particles
in unit volume X = 47N (a?). Namely: X = 2e. The information on PSD
is then lost. For thermal IR wavelengths (e.g., 12 um) particles are highly ab-
sorbing and small as compared to the wavelength. Then one derives (van de
Hulst, 1981) for the sphere of the volume V:

9a-n-V

C —, 10.37
ext ‘mz + 2|2 ( )
ek = ¢-N-(V), (10.38)
where:
9a-n 4r-x
- - =~ 10.
o m2 1 22 o T (10.39)
m = n —i- x is the complex refractive index of particles. It follows from

Egs. (10.35)) and (10.39) that the liquid water content can be obtained directly
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from etjgr. Namely, one derives:

ETIR " P
¢

LWC = (10.40)
Also the effective radius of particles can be determined, see EQs. (10.36)—
(10.38):

3eTR
Aof = 53—

= . 10.41
26 - Evis ( )

The application of theoretical results presented above in various optical in-
struments is given in Chapter5.

10.4.2
Light Scattering Theory for Specific Spectrometers

The operating principle of the FSSP, CDP, CAS, CAS-DPOL, CPSD and SID is
based on the concept of light scattering described above, i.e. that the intensity
of scattered light depends on the particle size and can be predicted theoret-
ically if the shape and refractive index of a particle is known, as well as the
wavelength of the incident light, as was described in detail above. The im-
portant thing to remember is that the intensity of light scattered by a particle
varies with the angle with respect to the incident light. If the particle is spher-
ical and of homogeneous composition, the scattered intensity is symmetric
around the axis parallel with the incident wave but varies in intensity from 0°
to 180°, where 0° is the most forward scattering and 180° is directly backward.
Figure 10.10 shows an example of the angular pattern of scattering. This angu-
lar dependency of the scattering around a spherical particle can be calculated
using the equations that were developed by Mie (1908) for a specific diameter,
refractive index and incident wavelength.

This theory is applied in optical particle counters (OPCs) by collecting scat-
tered light from particles that pass through a light beam of controlled intensity
and wavelength and converting the photons to an electrical signal whose am-
plitude can be subsequently related back to the size of the particle.

The property of a particle to interact with light is usually described by its
scattering cross section, os. This is the product of the scattering efficiency, 6s,
and cross sectional area, %DZ, where D is the particle diameter. If we have
an optical system that collects light over a range of angles and we measure
the intensity of scattered light collected from a particle, we can determine the
particle size from the calculated scattering cross sections by integrating over
the range of angles used in the instrument. The single particle light scatter-
ing spectrometers differ mostly in the collection angles that are used in each
system.
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Light Reflection | 5pe (Diffraction)
and Refraction

Fig. 10.10 This diagram demonstrates the intensity of scattered light
as a function of angle with respect to the incident ray for a typical
spherical particle.

10.4.3
Imaging Theory

Section 5.3.3 described the optical array probes (OAP) that capture images of
cloud particles using optical imaging. Here we describe in greater detail the
theory underlying the measurement.

Consider a plane wave that is incident, perpendicular to an opaque screen
Figure 10.10. Following Babinet’s principle, the amplitude of the diffracted
wave at point Q can be presented as, e.g., Born and Wolf (1965, 2003):

U(Q) = Ua(Q)+Up(Q), (10.42)

where U, (Q) is the amplitude of the diffracted wave, if the opaque screen is
in place and Uy (Q) is the diffracted wave when the aperture, with the same
shape as the screen, is in place. In the frame of the Fresnel-Kirchhoff diffrac-
tion theory U,(Q) and U, (Q) can be written as (Baker and Copson, 1950):

exp (i - KK - g) if pointQis outside the geometrical shad( \(/)V43)
0 if pointQis inside the geometrical shadow '

Ua(Q) = {

723
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1 . - iKS =

where k = % is a unit vector in the direction of the wave propagation; K = 27”
is the wave number,  is the radius vector of point P on the contour I', S is the
differential element along the contour I', S is the distance between points P

and Q, and S'is the unit vector in the PQ direction.

g b~ w N

ARt

Fig. 10.11 A schematic explaining calculation of diffraction by an
opague disc.

6 Integration of U, (Q) in Eq. (10.44) is carried along the contour of the bound-

7 ary of the geometrical shadow. Egs. (10.42)—(10.44) give a general description

8 of the Fresnel diffraction by an opaque screen with an arbitrary shape. For

9 the case of an opaque disc Egs. (10.43) and (10.44) can be transformed into
10 (Korolev etal., 1991)

11
2
Up(Q) = 7%/exp(| k- SS) ((5 ZI)? r-cosa) du.  (1046)
0

12 where = %, R is the radius of the opaque disc; r is the distance from the center
13 of the image to point Q, k = 2, is the wavelength, Z is the distance between

14 the disc and its image; and S can be found as S = (Z% + R? +r? — 3Rr cos ac)%.
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The intensity of the light at point Q Figure 10.11 is calculated as:

Q) = |Ua(Q)+Up(Q)?. (10.47)

The analysis of Eqgs. (10.45)-(10.47) yields the following properties of diffrac-
tion images by an opaque disc (Korolev et al., 1991):

1. The diffraction image can be presented as a function of only one dimen-
sionless variable:

A|Z|
Zy = RZ (10.48)
2. Two droplets with different diameters give the same diffraction image if
2
% = %. The images for such droplets are different only by the scale factor
& 2
Ry *

3. The diffraction image does not depend on the sign of Z. The diffraction
image of the same droplet will be the same at equal distances on opposite
sides of the object plane.

10.4.4
Holography Theory

For the purposes of providing a clear understanding of the holographic
method it is useful to consider an analytical model for the hologram resulting
from a single water droplet. Holograms recorded in a liquid cloud typically
involve the interference of a reference beam and a wave scattered by trans-
parent, order 10 to 100 um diameter, spherical water droplets. This would
suggest a complete solution using Mie theory to describe the electric field due
to scattering from a sphere and its interference with the incident plane wave.
However, we note that the particle size and scattering geometry allow for
several useful approximations.

Because size parameters are large(rt - d/A > 60) and in-line holographic
systems observe only forward-scattered light (scattering angle < 10°), to
good approximation we may neglect the complexities of Mie theory and treat
the scattered wave as diffraction from an opaque disk with the same diam-
eter as the water droplet (Bohren and Huffman, 1983b). Furthermore, in the
droplet size range considered, most holographic systems operate in the far
field (z > d?/A ~ 2 to 20mm), so we may treat the scattered wave with
the Fraunhofer approximation. In practice, digital reconstruction of the holo-
grams is normally carried out using more general approaches because actual
conditions do not always satisfy the far—field constraint (for example, ice par-
ticles larger than 100 um in extent).
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To develop the analytical model, we consider an opaque disk of diameter
d located at z = 0, and centered on the optical axis, where the z—coordinate
is taken to be the optical axis. We use (x,y) as coordinates in the (far field)
diffraction plane, also perpendicular to the optical axis. Making the foregoing
assumptions (far—field, large size parameter, etc.), an analytical expression for
the total electric field Ey can be obtained. Defining r = (x> +y?)/2,C = -
d°/(41-2),Q(r) = 2y(&)/Ewith & = rr-d/(A-z),and &(r) = wr?/ (A - 2),
the resultant field Ey and measured intensity Iy(r) = En(r) - Ef;(r) has the
form:

Eh = 1-C-Q-it-exp(i®d)
ly = 1—-2C-Q-sin(d)+C%- Q2. (10.49)

The first term is the background intensity and (C - Q)? is the negligible scat-
tered intensity (diffraction) term. In the Fraunhofer limit, therefore, the holo-
gram obtained from a population of cloud droplets may be approximated as
the superposition of the fields, one for each particle, with r and d adjusted ap-
propriately for droplet position and size, respectively. In practice the cloud of
particles is sufficiently dilute that interference of waves from various particles
can be neglected.

Eq. (10.49) demonstrates several important features of holography. First, the
interference term @(r) depends only on the position of the particle along the
optical axis, not on its diameter d. Hence, the spatial frequencies in this term
alone contain sufficient information to provide the particle’s position along
the optical axis (the position in the (x,y) plane is easily determined). Also, the
spatial frequency increases radially as r = z so that the desired depth of field
of the instrument places a constraint on the spatial resolution of the detector.
Note also that the increasing spatial frequency with r suggests that the finite
pixel size limits the maximum sharpness attainable in reconstructed images.
Both of these conclusions can be obtained by considering in-line holography
for a point particle, but the disk aperture model makes it clear that the inter-
ference fringe pattern described by the sin[®(r)] term contains information on
particle position, while the modulation of this pattern by the term 2C - Q(r),
depends on both z and d, as expected from common experience with diffrac-
tion by a circular aperture.
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LIDAR and RADAR Observations

10.5.1
Overview of Airborne RADAR Systems
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10.5 LIDAR and RADAR Observations

10.5.2
Results of Airborne RADAR Observations—Some Examples

Examples are presented on the following pages of the variety of observations
possible with airborne RADAR systems. Figures 10.12 to 10.19 demonstrate
the possibilities, and also the limitations, of what can be learned with the use
of the airborne RADARSs currently in use. The cases selected here demon-
strate the use of different RADAR systems and platforms, applications in var-
ious projects, and the interpretations of observations making use of numerous
RADAR parameters. Brief explanations of each case are presented in the fig-
ure captions.
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Fig. 10.12 (provided by Wen—Chao Lee): The NCAR/NSF Electra
with ELDORA flew by a F5 tornado near Kellerville, TX on 8 June
1995. ELDORA's conical helix sliced through the vertically tilted tor-
nado. Reflectivity and radial velocity are shown in the upper panels.
Precipitation particles were centrifuged out by the tornado circulation
to form a weak reflectivity “hole” (left panel). This was associated with
an intense Doppler velocity couplet (right panel) with a > 30ms ~1 ap-
proaching wind (green) and > 80ms ~! receding wind (red) separated
by ~1km. The anticyclonic rotation on this ELDORA scan inferred by
the Doppler velocity couplet suggested that the tornado vortex was
vertically tilted into the page with height. The speckles in the Doppler
velocity display suggested highly turbulent winds within this supercell.
Horizontal wind vectors and the reflectivity (in color) of the tornado are
shown in the lower panel. The parent mesocyclone of the tornado as-
sociated with a “hook” RADAR reflectivity signature is clearly shown.
With the 300 m resolution of the ELDORA data the actual tornado cir-
culation on the scale of 500 m could not be resolved.

Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.17_eldora.tif
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Fig. 10.13 (provided by G. Vali): Vertical section through a winter
storm over the Medicine Bow Mountains of SE Wyoming (January
27,2006, 22:02 UTC). The image consists of data collected by the
95GHz WCR, see Table 10.10, onboard the Wyoming King Air as it
flew at 4285 m altitude from west to East (left to right in the figure).
Two antennas were used simultaneously, one pointing upward and
one downward. The figure is very close to a 1:1 true proportions of
the storm. The reflectivity scale is in dBZ. The image reveals an un-
expected layer of shallow clouds right over the surface on the upwind
side of the mountain range. The near—surface echo is very likely due
to blowing snow. Due to its shallow depth and low reflectivity, it would
have been very difficult to detect with ground-based RADARs. On the
downwind side of the ridge, a deep cloud mass is seen as the result of
the merger of wave clouds (5—6 km altitude), a cell forming there and
the snow layer near the surface. Essentially all of the echo is due to
ice crystals. Temperature at flight level was —15.5 °C and ice particle
concentrations reached 80L 1.

Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.18_jan27-

2222 _bw.tif
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Fig. 10.14 (provided by Samuel Haimov and Bob Rauber): Wyoming

Cloud RADAR reflectivity image, which was taken as the NCAR C-130

passed from the dry slot into the deformation zone north of the center

of a continental cyclone, illustrates the triggering of convection along

the dry slot-cloud interface. The data were collected during the U.S.

NSF funded “Profiling of Winter Storms” or PLOWS experiment over

the states of Illinois and Indiana on December 2, 2009.

Available from

ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.19 _PLOWS09.20091203.012502_013956_nexrad.eps
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Fig. 10.15 Stratiform rain observed with EDOP (upper panels) and
CRS (lower panels) in July 2002 over Florida. In the rain region be-
low the melting band (4.3 km) scattering at 10 GHz is in the Rayleigh
regime except for very large raindrops, the while at 94 GHz it is in the
Mie regime except for the very small raindrops. The signal at 10 GHz is
subject to little or no attenuation in light rain while the signal at 94 GHz
is subject to significant attenuation by rain and water vapor. Conse-
quently, the mean Doppler velocity and reflectivity measured at the two
frequencies are quite different. These differences have been exploited
to retrieve the parameters of an exponential raindrop size distribution,
vertical air velocity, and attenuation by rain, melting band and water
vapor for the entire rain fields. Graphs (lower panels) show the aver-
ages for the entire rain fields: median volume diameter, D g, and the
intercept parameter, Ng, rainfall rate R, and rain water content W.
Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.20_edop.tif
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Fig. 10.16 (provided by Mengistu Wolde): During C3VP campaign,
the Convair flew in large winter storms over eastern Ontario on March
01, 2007. Upper panels show simultaneous measurements of W and
X-band reflectivity in vertical sections. The lowest panel shows the dif-
ference between the two, showing values near 0 dB for regions where
ice crystals smaller than 1 mm were present (as per in situ data), close
to 5dB for the regions above the melting band (~ 2 km altitude) where
larger crystals and aggregates were detected, and a significant drop
by up to 15dB in the W—band signal in the rain below the melting band
due to attenuation and resonance effects.

Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.21_edop.tif
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Fig. 10.17 (provided by Zhien Wang): RADAR (WCR), LIDAR (WCL)
and in situ (Wyoming King Air) data collected in wave clouds. RADAR
and LIDAR images are vertical sections combining data from upward
and downward pointing beams. Wind is from left to right in the figure.
The horizontal scale is ~3.6 km per major time tick of 0.01 h. The wave
cloud on the left produced RADAR echoes only from its downwide side
where ice crystals grew larger. The LIDAR return depicts the upwind
part of this wave too. The polarization data from the lowest layer of this
cloud indicates the presence of liquid water drops (low depol ratio).
Similarly, almost all of the wave on the right hand side of the figure
consisted of supercooled droplets.

Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.22_WCR.WAICOO09.tif
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Fig. 10.18 (provided by A. Protat and J. Delanoe): Calibration check
of the CloudSat CPR using the airborne cloud RADAR RASTA (Protat
et al., 2009). Flights below the track of CloudSat with airborne cloud
RADARSs are a unique and direct way of evaluating the instrument and
cloud microphysics products from the CloudSat mission. Direct com-
parisons of the ocean backscatter (o) in Protat et al. (2009) indicate
that on average CloudSat measures ocean backscatter 0.4dB +1dB
higher than the airborne cloud RADAR. Panels a and b show collo-
cated RASTA and CloudSat vertical cross-sections through the strati-
form part of a West—African squall line. Panel ¢ shows the difference
as a function of time lag between observations and of distance (color
code in panel c). These data show that ice cloud reflectivities mea-
sured by CloudSat are 0.4dB +1.2dB higher than the airborne cloud
RADAR. Both numbers are within the uncertainties in calibration of
the airborne cloud RADARS, so the conclusion is that CloudSat is well
calibrated. The results have been further confirmed using long time
series of ground—based cloud RADAR observations and a statistical
approach (Protat et al., 2009).

Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.23_cpr-rasta.eps
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Fig. 10.19 (provided by R. Damiani, S. Haimov and G. Vali): Reflectiv-
ity and velocity measurements in marine stratus. Panel (a) depicts the
reflectivity field between the aircraft flying above the cloud layer along
a long arc at 780m and the ocean surface; The presence of drizzle
cells is evident. For two of those cells dual-Doppler analysis of the 2D
flow field are shown in panels (b) and (c) which identify convergence at
the bases of updraft regions and reveal that the drizzle cells coincide
with those updrafts. From Stevens et al. (2003); Damiani and Haimov
(2006).

Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.24_dycoms.eps



750

10 Supplementary Material

Figure 10.20 illustrates the dependence of LDR on beam elevation angle for
different particle types and it also highlights the detection limitations of weak
cross-polarization signals even at close range. Simultaneous LDR at low (side—
view) and high (vertical-view) beam angles were collected using NAWX as
the aircraft descended through ice clouds, the melting layer and rain. The
maximum LDR is observed in the melting layer (-15 to —-10dB) with no no-
ticeable dependence in elevation angle (side view at 20:02:00 vs. vertical at
20:02:30-20:04:00). In contrast, planar and columnar crystals show strong de-
pendence on RADAR beam angle. The LDR of planar crystals are higher (~-
20 dB) at low (near horizontal) beam angles, while the opposite is the case in
columnar crystals where the maximum LDR is observed at vertical incidence
angle (~19:56). These observations support the results shown in Figure 9.21.
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Fig. 10.20 LDR measured by NAWX on Mar 01, 2007 as the aircraft
descended from an altitude of 4 km to 1.5km. Top: Vertical cross-
section from upward pointing RADAR beam. The white line shows the
aircraft altitude. Middle: LDR from the side—looking dual—pol antenna.
Bottom: Sample of PMS 2D-C images corresponding to the aircraft
altitude.

Available from
ftp://cat.uwyo.edu/pub/permanent/vali/suppl/10.25_Idr.eps
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10.6 Processing Toolbox

10.6
Processing Toolbox

10.6.1
Introduction

Within the EUFAR framework, the Standards and Protocols (N6SP) group is
tasked with developing recommendations for common solutions in data for-
mats, metadata and data processing. Establishment of standards in these areas
will reduce errors in data usage, and provide a common platform for compar-
ison, exchange and dissemination of data. In addition, these developments
can provide a useful resource for both new and experienced users of airborne
science data. More information on these developments can be found on the
N6SP wiki, hosted at http://www.eufar.net/N6SP

As a part of the N6SP common solutions, a software toolbox has been devel-
oped to provide a common platform for processing airborne measurements.
This toolbox, known as the EUFAR General Airborne Data-Processing Soft-
ware (EGADS), compiles processing algorithms provided by the EUFAR Ex-
pert Working Groups into a Python framework. These algorithms, many of
which are based on concepts found in this book, are considered as best practice
by the community, and thus, can be used as a reference for future work. In-
tegration of the algorithms is an ongoing process - there are around 20 imple-
mented algorithms at the time of this writing, and many more will be added
in the near future.

Alongside the algorithms implemented in the EGADS framework are file in-
put and output routines for common airborne data formats (NetCDF, NASA
Ames, CSV, etc). Included in these file access routines are methods to auto-
matically process any available metadata when reading file data. These allow
EGADS to be used with most existing airborne data while following estab-
lished data and metadata conventions. The EGADS package is completely free
and open-source, thus, can be modified as needed if other file access methods
are desired.

10.6.2
Installation and Use

EGADS is hosted for free download on Google Code at the following ad-
dress: http://eufar-egads.googlecode.com, or through the Python Package
Index (PyPl). EGADS is a Python-based library, thus to use it, Python ver-
sion 2.5 or higher must be installed on your system. The toolbox depends
on several commonly available libraries, which are all also freely available.
A list of these libraries can be found in the included EGADS documentation.
To install EGADS, simply download the code from Google Code and follow
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1 the included instructions, or install through Python’s easy_install feature (see
2 documentation included with EGADS for more detailed installation instruc-
3 tions for either method).

4 To use EGADS, import the package from the Python command line, and
5 any of the included routines can then be used. The script below shows a short
6 example of EGADS being used to process a series of data files.

7

8 #!/usr/bin/env python

10 # import egads package

11 import egads

12 # import thermodynamic module and rename to simplify usage
13 import egads.algorithms.thermodynamics as thermo
14

15 # get list of all NetCDF files in ’‘data’ directory
16 filenames = egads.get file list(’data/+.nc’)

17

18 f = egads.input.EgadsNetCdf ()

19 # create EgadsNetCdf instance

20

21 for name in filenames:

22 # loop through files

23

24 f.open(name, ’a’)

25 # open NetCdf file with append permissions
26

27 T {\rm s} = f.read variable('T t’)

28 # read in static temperature

29 P {\rm s} = f.read variable('P_{\rm s}’)
30 # read in static pressure from file

31

32 rho = thermo.DensityDryAirCnrm().run(P_{\rm s}, T {\rm s})
33 # calculate density

34

35 f.write variable(rho, 'rho’, ('Time’,))

36 # output variable

37

38 f.close()

39 # close file

40



10.6 Processing Toolbox

For further usage information, refer to the documentation included in the
EGADS package. There are two sets of documentation: the first - EGADS
Documentation - describes the use of the toolbox itself, including examples
on how to explore the package from Python, an overview and examples of
the file access classes and a short sample processing script. Detailed descrip-
tions of the EGADS API are also included in this document. The second set of
documentation - the EGADS Algorithm Handbook - describes each included
algorithm in detail. This includes expected algorithm inputs and outputs, as
well as a theoretical description and background of the algorithm itself and
references to any relevant literature.

For questions, bug reports or to get more information, please contact eu-
farsp@eufar.net.
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