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Abstract, Improvements in optical remote sensing spectral resolution and
increased data volumes necessitates the development of improved techniques for
quantitative geological analysis. Laboratory spectral studies indicate that absorp-
tion band positions, depths and widths are correlated with diagnostic physico-
chemical mineral properties such as composition and abundance. Most current
analytical techniques are incapable of providing comprehensive quantitative ana-
lysis of hyperspeciral geological remote sensing data. Factors which must be
considered for hyperspectral remote sensing campaigns include spectral resolution,
analytical technique, band pass positions and spatial resolution, In many cases
the volume of data required to address specific issues can be reduced through
intelligent selection of band passes and analytical techniques.

1. Introduction

Technological improvements in multi-spectral remote sensing are providing
opportunities for acquiring ever-increasing volumes of information as well as making
more types of geological information potentially derivable. Two competing require-
ments must be satisfied when designing hyperspectral geological remote sensing
campaigns: minimizing data volumes while maximizing information content.
Consideration must also be given to the fact that data compression techniques may
result in the loss of useful information and that many of the technigues developed
for analysis of broad-band data (such as Landsat and SPOT imagery) may not be
entirely suitable for analysis of hyperspectral data. A number of high tesolution
laboratory spectral studies of various classes of minerals have been undertaken to
determine the quantity of information derivable from hyperspectral data and spectral
resolution requirements. These studies are used to assess the applicability of various
analytical techniques for deriving geological information from hyperspectral remote
sensing data.

Over the years a number of analytical techniques have been developed for the
analysis of remote sensing data. Most of these technigues were developed when
breoad-band instruments were the norm in remote sensing. With the advent of remote
sensing instruments with programmable hyperspectral capabilities, such as the
Compact Airborne Spectrographic Imager (Anger et al. 1994), it is necessary to
examine the utility of traditional analytical techniques for hyperspectral data analysis
and to determine the relative usefulness of each and potential drawbacks, if any. In
order to provide a focused assessment, this analysis concentrates on the extraction
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of guantitative geological information from hyperspectral data. A number of investig-
ators have commented on the fact that new analytical techniques are required for
the efficient analysis of hyperspectral remote sensing data (e.g, Mazer et al. 1988,
Staenz 1992). Some investigators have found that hyperspectral imagery can provide
greater mineralogical details than existing geological maps {Ben-Dor and Kruse
1994).

2. Spectral reflectance properties of various mineral classes

Many mineral classes, including most of the major rock-forming classes, have
been the subject of systematic detailed spectral reflectance studies. The results are
useful for determining the physico-chemical properties derivable from spectral ana-
lysis and spectral resolutions necessary for deriving these parameters. Some of these
systematic studies are summarized below to illustrate the types of physico-chemical
information that are derivable from hyperspectral data.

2.1. Olivines

Olivines are an important class of rock-forming minerals, whose reflectance
spectra {0-3-2+6 um) are characierized by a broad absorption feature near 1 um (King
and Ridley 1987). Previous spectral studies {Cloutis 1985, King and Ridley 1987)
indicate that the wavelength position of the 1 ym absorption feature varies as a
function of Mg/Fe ratio with a total shift on the order of 30nm (figure I). The
widths of the constituent bands in the 1 um region may also vary systematically as
a function of Fe/Mg composition (Mustard and Sunshine 1992). The presence of
other elements, such as Mn, Cr and Ni, can be detected by the presence of minor
absorption bands shortward of ~0-65 um (Hirol et al. 1985, King and Ridley 1987,
Sunshine and Pieters 1990). Overall reflectance generally increases with decreasing
particle size while band depths decrease with decreasing grain size (Miyamoto et al.
1981, King and Ridley 1987).

These results suggest that high resolution spectra of olivines can be used to
constrain the major and some minor cation abundances as well as average grain
size. Given the magnitudes of the associated spectral variations, spectral resolution
better than 30nm is required in the 1pm region to permit the lowest level of
quantitative compositional information to be derived. At increasingly finer spectral
resolution, more detailed compositional information can be derived.

2.2. Pyroxenes

Pyroxenes are potentially important minerals for geological exploration because
they are often associated with deposits of platinum group elements and chromite.
Most pyroxene spectra are characterized by two major absorption bands located
near 1 gym (Band I) and 2 yim (Band II) (figure 2). The wavelength positions of these
bands can vary by up to 130nm (Band I) and 500nm {Band II) as a Rumction of
major element (Fe, Mg, and Ca) chemistry (Adams 1974, Cloutis and Gafley 1991 a}
(figure 3). Variations in major element composition for coexisting orthopyroxenc-
clinopyroxene pairs are a function of formation temperatures, enabling geothermo-
metric data to be derived. By superimposing the spectral information with the
geotherms on a compositional diagram, absorption band wavelength positions in
compositional space can be used to constrain formation temperatures (Cloutis and
‘Gaffey 1991a).

Absolute reflectance values of pyroxene spectra are a function of grain size. As
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Figure 1. Reflectance spectra (3002600 nm) of <45 um grain size olivines.

the grain size of pyroxene (and other mafic silicate minerals) decreases, overall
reflectance increases; thus if grain size determination is important to the analyst,
instrumental calibration becomes a critical issue. A factor of two decrease in mean
particle size results in an approximately 70 per cent increase in overall reflectance
(Cloutis 1985). These studies suggest that hyperspectral data can be used to derive
compositional information that in turn can be applied to various geochemical issues.

2.3. Amphiboles

Amphiboles are compositionally more complex than pyroxenes, consequently
interpretation of their reflectance spectra is less tractable. Calcic amphibole spectra
are characterized by a number of absorption features near 1 g, 1+4 um, and 2:3-2-4 um
(Mustard et al. 1989). Available amphibole spectra suggest that band wavelength
positions and depths are probably related to major cation abundances and may be
useful for deriving compositional information. The data suggest that variations in
the position of the 1 pm absorption band are on the order of 60 nm.

e
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Figure 2. Reflectance spectra (300-2600nm) of <45 um grain size pyroxenes.

2.4. Feldspars

Plagioclase feldspars are another important group of solid solution, silicate rock-
forming minerals. Their reflectance spectra are generaily charactetized by an absorp-
tion feature in the 1-1—13 um region, attributable to ferrous iron (Adams and
Goullaud 1978). It was found that band wavelength position and depth are a function
of iron content, and that iron content is roughly correlated with anorthite content.
Decreasing grain size results in an increase in overall reflectance and decrease in
band depth (Crown and Pieters 1987). It appears that high resolution spectral data
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Figure 3. Pyroxene compositional tetralateral with wavelength positions of Band I (upper)
and Band II (lower) superimposed (in microns).

(200 nm minimum spectral resolution) can be used to constrain major (Ca, Na) and
minor {¥e) element abundances and grain sizes.

2.5, Clay/phyllosilicate minerals

Clay minerals are important elements for geological remote sensing because they
are common products resulting from weathering of exposed rock surfaces. Clays
exhibit a wide variety of spectral properties but identification of specific species often
depends on small differences in the number, depth and wavelength positions of
absorption bands (Hunt 1979, Hunt and Hall 1981, Crowley 1984, King and Clark
1989),

For most clay minerals, it has been found that the wavelength regions most useful
for species discrimination are located near -4 jum, 1-9 pm and between 2:2 and 2:6 pm.
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Spectral resolution in these regions should generally be better than 15-20nm to
permit accirate clay species diserimination and identification (King and Clark 1989},
Spectral resolution on the order of 100 nm is only useful for identifying the presence
or absence of clay minerals (Hunt 1979).

2.6. Iron oxides/hydroxides

Iron oxides/hydroxides and clay minerals are nearly ubiquitous weathering prod-
ucts Tor a range of rock types (Cloutis 1992). Different iron oxide/hydroxide species
can be discriminated on the basis of absorption band wavelengih positions.
Differences in band positions between different species may be as small as 10nm
{(Hovis 1965, Morris et al, 1985, Sherman and Waite 1985). Even smaller band
position shifts may be useful for discriminating small differences in composition
{Morris et al. 1985). Consequently high resolution reflectance spectra may be neces-
sary for quantitative analysis of iron alteration minerals {Townsend 1987). Iron
oxides/hydroxides also exhibit variations in absohute reflectance and band depths as
a function of grain size, although the variations are not as systematic as for other
mineral groups.

2.7. Carbonate minerals

Carbonate minerals are important because of their abundance, and potential
economic significance {Gaffey 1987). Carbonate spectra exhibit a number of dia-
gnostic absorption bands in the 0-3—2-6 um region. Band wavelength positions, depths
and widths can be used to characterize a wide range of physico-chemical properties,
including species type, minor element composition, degree of site distortion and site
symmetry (Gaftey 1985, 1986, 1987).

Band position differences on the order of 2 fewnm are often required to discrimin-
ate different carbonate minerals (Gaffey 1987). Spectral studies have also shown that
drying, heating, annealing and roasting may affect the physical and chemical proper-
ties of carbonates. The results suggest that spectral data may be used to infer
diagenetic conditions (Gaffey et al. 1991).

2.8. Mineral mixtures

A number of studies have examined the speciral properties of mineral mixtures.
These studies have shown that the spectral properties of intimate mixtures are not
simple linear combinations of the end member spectra {e.g., Cloutis et al. 1986,
Crown and Pieters 1987). A detailed discussion of the complexities inherent in
unravelling mineral mixture spectra is beyond the scope of this paper. Empirical
laboratory spectral studies can be used to unravel the relative effects of the end
members but the time involved in generating and analysing sufficient nambers of
mixture spectra is significant. Nevertheless these types of studies are useful for
providing information on the spectral parameters which are affected by the introduc-
tion of additional mineral species and which spectral properties are most useful for
deriving the various physical and chemical parameters of interest {Cloutis et al. 1986,
Cloutis and Gaftey 1991 b).

A comprehensive study of the spectral properties of olivines and pyroxenes
{Cloutis et al. 1986) found that the most diagnostic spectral parameters for deriving
the physical and compositional properties of the mixtores include absorption band
positions, band depths, band areas and absolute reflectance values. These parameters
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are the same as those which have been determined to be most diagnostic for
monomineralic assemblages.

In general the introduction of a second mineral will affect all of the key spectral
parameters such as band depths, wavelength positions, widths, areas, and absolute
reflectance. These results, and the fact that in operational remote sensing a spectrally
‘pure’ pixel is rarely encountered (ic., a pixel containing only a single, spectrally
homogenous material}), are the major impetus for the development of techniques
which can be used to derive the spectral properties and abundances of various end
members.

3. Hyperspectral versus broad-band remote sensing

The advent and continued growth of hyperspectral remote sensing imaging
systems, which acquire tens to hundreds of bands of spectral information for each
pixel in a scene, will necessitate the development of techniques which can efficiently
and accurately analyse the tremendous volumes of resultant data. Obviously, the
techniques which are developed and applied to data analysis will depend on the
nature of the problem being addressed and the level of accuracy required. The high
spectral resolution geological study results suggest that hyperspectral remote sensing
provides the potential to conduct previously unimagined levels of geological mapping
and exploration, Consequently, analytical techniques developed for analysis of broad-
band spectral data, such as Landsat and SPOT imagery, may be incapable of taking
advantage of the full range of information present in hyperspectral remote sensing
imagery. Some of the issues of importance in hyperspectral remote sensing are
discussed below.

3.1. Spatial resolution variations

The issue of spatial resolution is one which will be of increasing importance in
future remote sensing campaigns. The advent of terrestrial remote sensing satellites
with spatial resolutions on the order of a few metres (e.g., Duval et al. 1989, Rast
and Bezy 1990, Henderson 1995), will impact geological remote sensing in a number
of ways. Increased spatial resolution will provide a greater likelihood of imaging
pixels which are more ‘pure’ in the sense that as pixel size decreases fewer components
will be present in a given pixel. This will result in improvements in spectral unmixing
as end member speciral signatures will be more readily obtainable (see §4.4 below).

Increased spatial resolution will also facilitate detailed surficial mapping, If, as
expected, smaller pixels result in less mixed pixels, more subtle surface composition
variations will be mappable than are currently possible. This capability has already
been demonstrated in a number of studies (e.g., Kneppeck and Ahern 1989, Marceau
et al. 1994).

3.2, Spectral resolution variations

Spectral resolution will affect the quality and quantity of geological information
derivable from optical remote sensing imagery. The results of some previous studies
are briefly discussed below to illustrate how spectral resolution variations can affect
geological interpretations.

Rowan et al. (1977), using ground-based high resolution spectra and Landsat
Multi-Spectral Scanner (MSS) imagery, found that some limited lithologic discrim-
ination was possible using Landsat MSS band ratios which minimizes the effects of
topography and overall albedo. Spectral normalization was also found by Pieters
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(1983) to be effective for minimizing the cffects of viewing geometry. Rowan et al.
(1977) noted that lithologic discrimination was dependent on the presence of ferric
iron oxides. A similar spectral study by Townsend (1987) found that different iron-
alteration minerals could be discriminated with appropriate band passes.

Hunt and Salisbury (1978), Blom et af. (1980), and Kruse (1989) compared
hyperspectral to broad-band data for lithologic discrimination. In all cases, the
higher spectral resolution data provided greater classification accuracies while broad-
band instruments provided only limited lithologic mapping capabilities.

High resolution reflectance spectra of a suite of soil samples have been used to
ascertain that a number of spectrally active soil constituents could be derived from
statistical analysis of the spectral-compositional data (Ben-Dor and Banin 1994).
The number of data points required to derive the compositional parameters ranged
from 25 to 3113, suggesting that instruments with a limited number of spectral bands
would be incapable of discriminating the various soil properties.

Field-based spectra were used by Rowan and Kahle (1982) to determine that
Landsat Thematic Mapper (TM) imagery could provide some broad lithologic
discrimination on the basis of the presence of some spectrally diagnostic minerals,
but would be incapable of discriminating some types of hydrothermally altered and
unaltered rocks. They concluded that high spectra! resolution data in the 20 and
2:5 ym regions would be required for enhanced lithologic discrimination.

High spectral resolution airborne imaging spectrometer (AIS) data were evaluated
by Pieters and Mustard (1988) for mapping mineralogical variations. They found
that the data could be used to identify the presence of several mineral components
of the surface materials and analysed in a spatial context. The level of analytical
aceuracy was such that specific geological problems, such as eruption/flow patterns,
could be addressed. They determined that the signal to noise ratio of the data is the
ultimate limitation to the accuracy of deconvolving individual spectral components.
It was also determined that spectral coverage affects the ability to derive minera-
logical information.

King and Clark (1989) and Clark et al. (1990) measured high resolution
reflectance spectra of various minerals. Wavelength positions and depths of some
diagnostic absorption bands were found to be correlated with various compositional
parameters. It was determined that spectral resolution greatly affected the ability to
derive these compositional parameters and to discriminate different phyllosilicate
species. While increased spectral resolution would enhance the ability to discriminate
the different specics, in a practical remole sensing campaign this would result in
increased data volumes. However, it was found that with increased spectral reso-
lution, less wavelength coverage was required to discriminate among various ser-
pentinites. It was also found that the ability to discriminate different minerals and
to derive compositional information increased with increasing spectral resolution.

Singer et al. (1984} examined the ability of broad-band optical remote sensing
instruments (Landsat TM and SMIRR) to discriminate and identily specific rock
types and mineral species. They determined that while some discrimination of iron
oxide species may be possible with these instruments, they can not be used to
discriminate different species of clays and carbonates and for mineralogical analysis
of basalts, and are poorly suited for iron oxide species discrimination. It was suggested
that band passes of 25nm or better would be required to accomplish these tasks.

These aforementioned studies all suggest strongly that geological and mineralo-
gical discrimination is greatly dependent on spectral resolution as well as indicating




Hyperspectral geological remote sensing 2323

that some spectral regions are more diagnostic than others for mineralogical discrim-
ination. The spectral resolution and wavelength intervals sampled will depend on
the geology of the study area, as well as the types of issues which a remote sensing
study is designed to address. Further summaries of geological remote sensing
campaigns can be found in a number of textbooks such as Sabins (1987).

The eftects of varying spectral resolution on the spectral properties of clays are
illustrated in figure 4. Tt can be seen that for clay spectra with narrow abscrption
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Figure 4. Effect of successive halving of spectral resolution on the reflectance spectrum of
gibbsite (Grove et al. 1992).
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features, a doubling of spectral resolution from 8 to 16 nm can result in the apparent
‘disappearance’ of absorption bands in the [-4 pm region (gibbsite in this case).

3.3, Spectral band pass position effects

With the advent of hyperspectral remote sensing systems which are programmable
in terms of spectral resolution, the issue of band pass wavelength position may be a
factor in qualitative data analysis and perhaps for quantitative analysis as well,
Hyperspeetral imaging systems will provide the opportunity for direct mineralogical
mapping and mineral species identification. As mentioned above, mineral species
discrimination in some cases relies on differences of a few nanometres in wavelength
positions of absorption bands.

The effect of altering band pass wavelength positions is shown in figure 5 for two
spectra of dickite, both with 16 nm resolution. The wavelength positions of the band
passes differ by 8nm. The appearance of the absorption feature near 14 pm is
dramatically different for the two spectra, even though spectral resolution is the
same in both cases (16 mm). At 32 nm resolution, the two absorption bands are not
visually resolvable.

4. Techniques for analysis of hyperspectral remote sensing data

The laboratory spectral studies cited above provide some guidelines for assessing
the applicability of various analytical techniques to hyperspectral data analysis, The
applicability of each technique will of course depend on the particular issues being
addressed. Since hyperspectral data provides the opportunity for conducting guantit-
ative geological/mineralogical information extraction, various techniques can be
evaluated for how well they address these issues.

The hyperspesiral studies summarized above indicate that quantitative mineralo-
gical information can be derived from spectral parameters such as band wavelength
positions, depths, widths, areas and absolute reflectance values. Evaluation of the
various ‘preprocessing’ techniques which may be applied to hyperspectral imagery
to correct {for atmospheric effects (in order to derive absolute reflectance values) and
for geometric distortions are beyond the scope of this study. A number of the most
common analytical techniques are summarized briefly below along with some specific
applications of each. These results are useful for assessing the benefits and limitations
of each as well as for assessing their potential for analysis of hyperspectral data,

4.1, Derivative analysis

Derivative spectroscopy involves fitling mathematical functions to reflectance
spectra and determining various orders of derivatives. The benefit of derivative
analysis is its ability to provide rapid determination of inflections points (which may
be indicative of overlapping absorption bands) as well as reflectance maxima and
minima. Derivative analysis has been applied to the analysis of extraterrestrial
reflectance spectra (Huguenin and Jones 1986), water quality parameters {(Dick and
Miller 1991, Goodin et al. 1993, Farrington et al. 1994), and vegetation stress
monitoring {(Demestriades-Shah et al. 1990). Tt was found that derivation could be
used to deconvolve overlapping absorption bands and to derive various target
parameters. For geological remote sensing, derivative analysis can be used to derive
various significant spectral parameters such as band positions, depths, and perhaps
band widths {Huguenin and Jones 1986).

The signal to noise ratio can affect the accuracy of derivative analysis. In most
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Figure 5. Effect of varying band pass positions on the reflectance spectra of dickite (Grove
et al. 1992),

cases it has been found that some level of spectral preprocessing (generally involving
some form of noise suppression) is required prior to derivative analysis. It has fong
been known that the accuracy of derivative analysis is sensitive to the signal to noise
ratio of the data; progressive differentiation will increasingly accentuate this noise.
A review of derivative spectroscopy by Singer and Geissler (1988) found that the
noise and other small random variations in reflectance spectra will have a pronounced
effect on the derivative resulis. It was determined that fower order derivatives are
less sensitive to noise and hence more useful in operational remote sensing. %



Raj Bridgelall
Note
Derivative analysis of spectra is sensitive to SNR and must be pre-filtered.
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4.2, Vegetation ‘ved edge’ derivative analysis

A variation of derivative spectral analysis involves analysis of the so-called
vegetation ‘red edge’. Reflectance spectra of vegetation commonly exhibit a steep
rise in reflectance near 750 nm, termed the vegetation red edge. A number of investig-
ators have attempted to use the wavelength position and shape of this reflectance
rise to characlerize various vegetation parameters (e.g., Horler et al. 1983, Filella
and Pefuelas 1994). More detailed analyses involve modelling this wavelength region
using inflection ratios (Campbell and Esaias 1983) and derivative spectra. These
models suggest that various plant parameters can be derived from various
characteristics of the red edge (e.g., Miller et al. 1990, Feng and Miller 1991, Miller
et al. 1991). Tt has been found that the vegetation red edge is a function of a number
of environmental and plant parameters and given the complex interplay of the
various parameters, may in fact not be useful for many of its anticipated uses
{Banninger 1989, Boochs ef al. 1990, Railyan and Korobov 1993). ‘Red edge’ derivat-
ive analysis is essentially a specialized application of derivative spectroscopy discussed
above, with many of the same advantages and disadvantages of derivative
spectroscopy.

4.3, Spectral matching

One approach to the analysis of remote sensing data for surface characterization
or change detection is spectral matching. This approach involves matching scene
spectra to reference spectra or comparing scene spectra to a spectral library in order
to highlight differences. Spectral matching has been used to isolate spectral features
of interest for detailed analysis (Goetz et al. 1990, Yasuoka et al. 1990) and for direct
comparison of scene to reference spectra {Goetz and Srivastava 1985, Ben-Dor and
Kruse 1994), It has also been used for geological analysis of hyperspectral remote
sensing data using neural networks (Segl et al. 1994). The effort required in spectral
fibrary searching has necessitated the development of new search criteria whereby
robust analyses are possible while minimizing searching times (Kawata et al. 1987).
Lyon and Zhu (1989) argue that in addition to absorption band wavelength position
and depth, spectral shape is an important criterion that should be included in spectral
analysis as it can greatly simplify spectral matching using pattern recognition,

4.4, End member mixing models

In order to improve the quantity and quality of information derivable from
remote sensing imagery, a number of techniques have been developed which can be
broadly classified as spectrai mixing models. These madels generally involve analysis
of spectral data in order to determine target parameters such as the fractional
abundances of vatious end members within a pixel, or the identification of additional
components not used in the end member analysis. These techniques have been
applied to a number of geological mapping studies (Adams et al. 1986, Mustard and
Pieters 1987 a, Boardman 1990, Sabol et al. 1992, Ben-Dor and Kruse 1994, Farrand
and Harsanyi 1995) as well as other land cover mapping applications {Foody and
Cox 1994, Gong et al. 1994), '

The ability to detect different surface materials in end member analysis of broad-
band data is a function of spectral contrast, noise and spectral resolution {Shipman
and Adams 1987, Sabol et al. 1990, Zhang ef al. 1993). Some studies have concluded
that for simple land cover targets, only a few end members are required to fully
characterize a scene (Johnson et al. 1984, Smith et al. 1984, Huete and Escadafal
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1990). Other studies have determined that full scene characterization requires the
analysis of residual spectra which result after the end members used in the analysis
have been modelled (Green and Craig 1985, Herrmann et af. 1988, Hutsinpiller 1988,
Roberts et al. 1993), or the application of successive mixture analyses (Chabrillat
et al. 1994). In some cases improved analysis may be possible by applying mixture
models to data initially processed by other means such as principal components
analysis {Hurcom et al. 1994). End member mixing analysis of hyperspectral data
can be used to address issues which may otherwise be intractable using broad-band
data (Smith et al. 1990}

4.5, Maximum likelihood classification

Maximum likelihood classification (MLC) is an analytical technique based upon
assigning pixels to various classes on the basis of similar spectral properties, on the
assumption that the probability for each spectral class is in the form of a multivariate
normal model with dimensions equal to the number of spectral bands. This technique
has been extensively applied to the analysis of broad-band remote sensing data.
Computational requirements increase significantly with increasing number of spectral
bands. In order to reduce computational demands, Jia and Richards (1994} found
that processing time could be reduced by dividing hyperspectral data into several
wavelength subgroups. However, in contrast to other techniques such as derivative
analysis, MLC inctudes the noise in the data and hence would not result in an
inadvertent loss of potentially useful spectral information. In this sense it provides
solutions with the highest probability of being correct (DeNoyer and Dodd 1991).
The greatest advantage of MLC is its ability to rapidly assign scene pixels to any
one of several classes.

4.6. Principal components and canonical analysis

Principal compeonents analysis (PCA) is an analytical technique based upon a
transformation of spectral axes such that spectral variability is maximized. This
technique is found to be quite useful for analysis of remote sensing data for which
certain channels exhibit high degrees of dependence. PCA has been applied to various
geological remote sensing projects involving both broad-band and high resolution
data (Lee et al. 1990, Bogliolo et al. 1994) as well as in aboratory spectral analysis
(Devaux et al, 1988 a,b), Loughlin (1991) found that PCA of selected Landsat TM
bands could be used to highlight mineralogical variations of interest while minimizing
the effects of non-desirable mineralogical variations. Rundquist and Di (1989) have
developed a variation of PCA, termed band-moment analysis which accounts for
variations in reflectance value distributions such as mean, standard deviation, skew-
ness and kurtosis. These values are applied on a band-by-band basis and hence are
poorly suited for deriving parameters such as band positions and band widths.

Canonical analysis is essentially a variation of principal componenis analysis in
which the principal components are designed to maximize the separability between
different land cover classes (e.g., Avery and Berlin 1985). Most of the benefits and
limitations of principal components analysis apply to canonical analysis as well.
Canonical analysis has been used by a number of investigators to provide lithologic
discrimination (e.g., Merembeck et al. 1977, Podwysocki et al. 1977). However the
limitations of broad-band data limit this technique to very generalized lithologic
discrimination,
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4.7. Linear vegression

Linear regression is a technique, adapted from analytical chemistry, for deterimin-
ing parameters of inlerest from spectral data, This technique requires the availability
of a statistically robust number of spectra from which spectral-compositional rela-
tionships are derived. Linear regression can be applied to either unprocessed or
derivative spectra. This techinique has been found to be useful for deriving various
crop and water quality parameters (Dekker et al. 1990, 1991, Shibayama and
Akiyama [991). Linear regression can also be used to select diagnostic wavelength
regions, thereby reducing the volume of data required to address particular issues
{Dekker et al. 1990).

4.8. Ratio analysis

A technique related to analysis of residuals resulting from end member mixing
models is ratio analysis. In this technique, target spectra are first divided by a
reference spectrum. This allows features of interest to be accentuated. This technique
has been applied to the analysis of water and plant spectra for pigment identification
and analysis (Chappelle et al. 1990, 1992). This technique possesses a number of
operational limitations common to some of the other analytical techniques.

49, Spectral decomposition

Under this heading are included a number of analytical techniques designed to
derive quantitative spectral-compositional refationships from empirical studies.
Huete and Escadafal (1991) analysed soil spectra in terms of underlying ‘basis’
curves. They found that linear combinations of four of these basis curves could be
used to reconstruct outdoor soil spectra. Huete (1986) applied a similar technique
to the analysis of soil-plant mixture spectra. Lucey et al, (1989 a,b) used laboratory
reflectance spectra of lunar samples to generate a grid of three component mixtures
which were used to match lunar surface spectra and to derive mineralogical
abundances.

4.10. Spectral deconvolution

Optical remote sensing data rarely contain ‘pure’ pixels, i¢., a pixel composed
entirely of a single component which is spectrally homogenous across the entire
pixel. Such pixels are generally required for various analytical technigues such as
end member mixing and for radiometric calibration. Normally, a pixel will contain
more than one type of material and/or be spectrally heterogeneous. In order to fully
decompose a remote sensing image, the various components in the scene must be
identified and their abundances and other physico-chemical properties quantified.
In hyperspeciral remote sensing data, the presence of more than one scene component
will often lead to overlapping absorption bands. In order to quantify the scene, the
relative spectral contributions of each component must be determined.

Much effort has been expended on developing techniques to deconvolve compos-
ite spectra inte individual components. Various curve fitting techniques have been
developed based on presumed shapes of absorption bands and degrees of overlap.
It has been found that the ability to resolve overlapping absorption bands is a
function of the signal to noise ratio and the degree of overlap (e.g., Kaper et al. 1966,
Maddams 1980, Nadler et al. 1989, Pierce et al. 1990). Techniques have been
developed to resolve component spectral features within these limitations (e.g,
Kauppinen et al. 1981, Harbecke 1986, Hawthorne and Waychunas 1988).
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In the area of hyperspectral geological remote sensing, Kruse (1988} developed
a technique to determine the position, depth and width of the strongest absorption
band in each pixel in AIS imagery. He found that this parameter could be used for
limited mineralogical mapping. Mineralogically significant factors, such as band
position and width, would normally not be derivable from broad-band data. Green
and Craig (1985) have developed techniques for removing the effect of background
continuum from reflectance spectra so that individual absorption bands can be
isolated and analysed. They found that this approach is useful for comparing
reflectance spectra from diverse sources.

4.11. Theoretical treatments

Under this heading are included a variely of methodologies which attempt to
model reflectance spectra on the basis of scattering and absorpiion properties of
minerals and rocks. Hapke (1981) developed approximate analytical solutions to the
radiative transfer equation describing the scattering of light from particulate surfaces.
‘This approach allows the spectral reflectance properties of a wide range of particulate
surfaces to be modelled, However, even with the simplifications, application of the
model to the analysis of reflectance spectra relies on the determination of some
optical properties of the materials being studied as well as some simplifying assump-
tions whose validity may not be widely applicable.

Johnson et al. {1992) have developed a number of simple algorithms for modelling
the reflectance spectra of mineral particulates, The derived approach involves a
number of steps and ultimately relies on deriving a synthetic spectrum that best
matches a target spectrum. An aiternative approach to modelling reflectance spectra
is the so-called ‘isograin model’ (Hiroi and Takeda 1989, Hiroi and Pieters 1991,
1992). This model involves calculating the proportion of light scattered and reflected
from multiple layers and requires the input of optical constants for the constitueat
minerals. The results of this model compare favourably with the more rigorous
model of Hapke cited above (Hiroi and Pieters 1994).

Mustard ef al. (1986) and Musiard and Pieters (1987 b, 1989) developed a number
of simplifications to the Hapke (1981} model which greatly simplify its application
to reflectance spectral analysis. For accurate analysis the model requires empirical
data in the form of reflectance spectra over a range of phase angles and well
characterized particle size distributions. In situations where this information is lack-
ing, relative mineral abundances can still be derived,

Kinoshita and Miyamoto (1990) developed a methodology for predicting the
reflectance spectra of mineral mixtures on the basis of the reflectance and trans-
mittance properties of the mineral components. The disadvantage of this method is
its reliance on knowing both the reflectance and transmittance properties of potential
end members.

4,12, Modified Gaussian model analysis

The last few years have witnessed the development of a new analytical technique
for analysis of reflectance spectta—the modified Gaussian model (MGM). This
technique was developed in order fo address inconsistencies in the use of Gaussian
or Lorentzian profiles in fitting of absorption bands. Comparative analysis of the
MGM to other curve fitting models indicates that the algorithm is firmly rooted in
crystal field theory and hence provides more valid results (Sunshine et al. 1990). .
MGM is used to model reflectance spectra as a series of modified Gaussian curves
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with each curve characterized by a central wavelength position, width and depth.
Using this method, the characteristic absorption bands present in reflectance spectra
can be quantified.

While this technique is fairly new, it has been applied to a number of geological
studies. These include characterizing mineral chemistry of tremolite-ferroactinolite
solid solution series minerals (Mustard and Sunshine 1992), deriving compositional
information for olivines (Sunshine and Pieters 1990}, deriving compositional and
abundance information for pyroxenes and pyroxene mixtures (Sunshine er af. [988,
Sunshine and Pieters 1993), deriving mineralogical and mafic silicate compositional
information for the surface of Mars (Sunshine and Mustard 1994), lunar and
tervestrial basalts (Sunshine and Pieters 1991) and martian meteorites (Sunshine
et af. 1993). MGM analysis can be used to identily the presence of specific minerals
_in mixtures, to quantify compositions, and to identify the presence and perhaps types
of any accessory phases (Mustard 1991). For pyroxene reflectance spectra it was
found that modal abundances of pyroxene mixtures could be estimated to within
510 per cent without predetermined knowledge of end member spectra and that
the results are largely independent of particle size.

5. Discussion

Few studies have been conducted to compare the quantity and quality of lithologic
information derivable from hyperspectral data with different analytical technigues,
Feldman and Taranik (1988} compared the results obtained using band ratios,
principal components analysis and spectral matching for peological mapping of a
study area in Nevada from AXS hyperspectral imaging data. They found that spectral
matching provided the highest level of discrimination of alteration minerals followed
by prineipal components and band ratios. Several papers in the volume edited by
Vane and Goetz (1985) also compare the results of applying various analytical
techniques to the analysis of airborne hyperspectral data. In general it was found
that the use of speciral libraries provided the highest levels of classification accuracy.
Clark and Roush (1984) have reviewed the various techniques developed for analysis
of reflectance spectra. They found that while empirical studies are useful for some
applications, the development of bidirectional reflectance theories are more promising
because of their wider applicability.

Many analytical fechniques specifically developed for analysis of hyperspectral
remote sensing data are limited, largely for practical reasons, in that they fail to
provide a sufficient capability for analysing the full range of compositional informa-
tion inherent in parameters such as absorption band positions, dépths, widths, and
areas (Mazer et al. 1988, Staenz 1992). Given the relative paucity of comparative
studies, the results of hyperspectral laboratory and comparative studies cited above
can be used to assess the relative efficacy of various analytical approaches for the
effective analysis of hyperspectral remote sensing data.

No single analytical technique can be used to fully deconvolve hyperspectral data
in the absence of ancillary data. However, comparison of the various techniques
suggests that some are more suited than others for hyperspectral data analysis for a
variety of reasons, such as ability to isolate diagnostic absorption features, ease of
application, and reduced computational demands.

The maximum likelihood and principal components techniques, which were
largely developed for analysis of broad-band data could, in theory, be applied to
analysis of hyperspectral data for direct lithologic discrimination. However each
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possesses certain inherent limitations which would limit their usefulness for full
quantitative analysis of hyperspectral data,

Maximum likelihood classification (MLC) is not particularly well suited to this
task because of its inability to properly analyse mixed pixels. Mecaningful quantitative
information from spectral parameters such as band wavelength positions, widths,
depths and shapes are also not directly derivable from MLC, Its greatest benefit is
in rapidly assigning scene pixels to any one of several classes. MLC could perhaps
be combined with other analytical techniques such that pixels are assigned to one
of several classes on the basis of certain lithologic/spectral parameters and the pixels
in each class subsequently analysed using other techniques.

One of the advantages of principal components analysis (PCA) is that spectral
discrimination can be maximized in the first few principal components. However,
determining the physical significance of each principal component is difficult. In
addition, since mineralogically significant variations may be associated with minor
spectral differences, these differences are often relegated to the higher order principal
components which are normally ignored in the analysis, since the first few principal
components can generally account for upwards of 95 per cent of the spectral variation.
Consequently, PCA is perhaps better suited for identifying gross mineralogic and
lithologic variations rather than quantitative mineralogical identification and
mapping.

If full mineralogical discrimination were required, such that end member abund-
ances and subtle variations in composition could be derived, this would require an
exceedingly large number of end members for maximum likelihood classification or
analysis of the full complement of principal components. In the latter case, relating
the various principal components to mineralogically significant factors would be
difticult at best.

Derivative spectroscopy, whereby spectra are fitted by various mathematical
functions which are then differentiated may introduce artifacts due to noise ampli-
fication, Intuitively one expects that some information may be lost in derivative
analysis due to noise suppression (filtering) and curve fitting, The major impediments
to derivative analysis are the extensive preprocessing required (and associated sensit-
ivity to filter type), undesirable amplification of spectral noise, and potential loss of
information during filtering and curve fitting, The major benefit of derivative analysis
is its ability to often resolve partially overlapping absorption bands. Derivative
spectroscopy is probably less robust than analytical techniques that do not require
differentiation, such as MGM, since these non-differentiation techniques are not
affected by noise amplification and fiitering,

Spectral matching is a promising analytical technique if probable target spectra
are available in spectral libraries. However, extraneous factors such as viewing
geometry effects and grain size variations, which are not central to mineralogical
identification, must be accounted for if valid interpretations are to be derived. These
effects can often be minimized through spectral normalization (Pieters 19383, Barnes
et al. 1989). Spectral matching is probably more useful for scene change detection
(Yasuoka et al. 1990) rather than the identification of unknown scene components.
It appears that the full benefits of spectral matching would be realized when combined
with other analytical techniques such as MGM or various modelling algorithms.

Linear regression is somewhat useful for spectral analysis because the analysis
can be targeted to derive scene parameters of interest. A potential drawback is the
possibility of the presence of additional spectral components in a scene which could
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adversely aftect the spectral-compositional correlations, Consequently, the results for
one study area may not be applicable to other areas. In addition, ground-based
{(non-spectral) data are normally required for analysis.

The major limitations of end member mixing models are that the number of end
members must be less than the number of spectral bands of data used in the analysis.
This would normally not be a problem for hyperspectral imagery. In addition, the
identification of ‘pure’ end member spectra is sometimes problematic. The presence
of additional scene components not included in the analysis could lead to erroneous
results and their identification and abundance could only be addressed by analysis
of the ‘residuals’, an area of research which requires further investigation.

Ratio analysis has the advantage of resulting in no loss of information. However,
it is probably of limited usefulness for many of the reasons outlined for linear
regression: the results from one study area may not be applicable to other targets
due to the presence of additional, unanticipated scene components, In addition,
linear regression would probably yield similar statistical results without the need for
the intermediate step of reference spectrum division. The main advantage of this
fechnique appears to be providing a visual enhancement of spectral differences but
does not supplant other analytical techniques; rather it represents an intermediate
processing step.

Spectral decomposition may be uselul for studies with very limited objectives
and extent. This technique appears to be more suited for analytical laboratory work
where material characterization is performed on a single type of material. The heavy
reliance on empirical data and limited applicability outside of narrowly defined
project objectives also limits its widespread utility.

The majority of the theoretical treatment studies cited above are designed to
model the spectral reflectance properties of mineral mixtures. The major impediments
to widespread applications of these models can be attributed to any one of a number
of reasons: the difficulty of application, the requirements for empirical data—some-
times extensive—limited applicability in some cases, and the number and nature of
simplifying assumptions. Nevertheless, this avenue of approach is perhaps the most
promising because of the probability that continued development of these techniques
witl lessen the requirements for supporting empirical data.

Spectral deconvolution is a potentially powerful analytical technique provided
proper curve shapes are used in the analysis. Tn order to interpret the various
absorption features, it will probably be necessary to refer to reference spectra con-
tained in some sort of spectral library.

MGM analysis possesses a number of advantages over other analyfical
approaches. The mathematics are more firmly rooted in the physical processes of
electronic absorptions; the sensitivity can be limited by the signal to noise ratio, and
can be used to reduce hyperspectral data volumes by reducing reflectance spectra to
a series of modified Gaussian curves with almost no loss of information. In addition,
this technigque can be used to identify the minerals contributing to a refiectance
spectrum, and to constrain their abundances and compositions. The MGM method
has also been found to be relatively insensitive to particle size variations (Sunshine
and Pieters 1991). MGM analysis could also readily be applied to the data in spectral
libraries, resulting in simplified speciral searching.

Given the goal of geological remote sensing to quantify reflectance spectra in
terms of the abundances and compositions of the spectrally contributing components,
MGM analysis represents an important advance in this area, particularly if the
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results found for the mineral species examined so far can be extended to other
species. To date there are no indications that this expansion cannot be accomplished.
This technique is particularly well suited for analysis of hyperspectral geological
remote sensing data and with confinued improvements in software its application
will be further simplified, permitting increasing automation of spectral analysis.

Spectral deconvolution and MGM appear to hold the most promise for detailed
spectral analysis. These approaches are potentially capable of isolating absorption
features of interest which laboratory spectral studies have found are capable of
providing detailed information on factors such as mineralogical compositions and
end member abundances. The major drawback to these approaches is the requirement
of a spectral library in a form suitable for analysis with the particular methodology
employed, _

It should be evident that no analytical technique can provide quantitative min-
eralogic/lithologic information without a knowledge of the spectral properties of
potential target materials. Otherwise the analysis results in the identification of
unknown components whose abundances and compositions are poorly constrained
at best. Consequently spectral libraries in some form will continue to be an essential
component of quantitative mineralogic/lithologic analysis.

The quantity of data which would be acquired even in the course of a modest
hyperspectral remote sensing campaign can number in the millions of individual
spectra. If quantitative mineralogical information is required, each of these spectra
must be individually analysed. The consequence of the relative infancy of the various
spectral deconvolution techniques is that they have not yet been fully adapted for
automated data analysis. Once the validity of these techniques is more fully demon-
strated, dramatic improvements in ease of application are expected. This has already
proven to be the case for spectral matching (e.g, Segl ef al, 1994) which, it appears,
will be a central feature of spectral deconvolution in some form.

The ability to conduct increasingly detailed geological interpretation of remote
sensing data is largely correlated with spectral resolution. Programmable hyperspec-
tral scanners (Anger ef al. 1994) allow spectral resolution to be varied for a particnlar
application, resulting in reduced spectral resolufion (and reduced data volumes) for
wavelength regions of low diagnostic potential.

Using the pyroxene spectral study as an example, the resolution of the spectral
data used in the analysis was on the order of S5nm. This translates into 461 data
points per spectrum (0-3-2:6 um). However, it was also found that much of the
diagnostic compositional information was ‘concentrated” in certain wavelength
regions. The spectral resolution necessary for characterizing these minerals will
depend on the types of information and level of accuracy required. At a minimum,
three data points are required to characterize an absorption band, one on either side
of the feature and one (ideally) at the band minimum. For pyroxenes with two major
absorption bands this translates into six or less data points. Since the wavelength
position of the band minimum is not known a priori, the full possible range of band
minima should be sampled. If the level of accuracy for this parameter is sef at 25 nm,
then 6 bands and 20 bands are needed to sample Band I and Band II, respectively.
For non-diagnostic spectral regions, the spectral resolution may be dictated by the
spectral properties of additional components in the target area.

Another approach to reducing the volume of hyperspectral data, before or after
data acquisition, is suggested from the results of the modified Gaussian method.
With MGM each absorption band can be characterized in terms of wavelength
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position, depth and width. For a two-pyroxene mixture, ~ [3 absorption bands are
present. This translates into 39 values of position, depth and width, a better than
order of magnitude decrease in data volume (from an original 461 point spectrum).

6. Summary and conclusions

A number of laboratory spectral studies have shown that spectral parameters
such as band minimum position, band depths, band widths, band areas, absolute
reflectance, and ratios of these various parameters can be used to extract composi-
tional information. The spectral parameters can be used to quantify, or at least
severely constrain, important physical and chemical properties such as major, and
in some cases minor, element chemistry, end-member abundances, and grain sizes,
This type of information along with ancillary geomorphometric information readily
obtainable from spatial analysis of hyperspectral imagery may allow a detailed
geological, geochemical and geothermometric history of a target region to be
constructed. The spectral reflectance properties of rocks and minerals have also been
found to be a function of grain size, particle packing and viewing geometry (Adams
and Filice 1967). Ratioing or normalization can often reduce these effects so that
spectral-compositional relationships can be better delineated (e.g., Pieters 1983).

Of the various analytical techniques examined which can potentialiy be applied
to quantitative analysis of hyperspectral geological remote sensing data, those which
were developed for analysis of broad-band data appear to be poorly suited for
efficient quantitative analysis of hyperspectral data. The most promising techniques
appear to be those involving various forms of curve fitting, such as MGM, which
permit mineralogically diagnostic spectral features such as band depths, wavelength
positions and widths to be derived.

Spectral resolution is a key factor in determining the guantity and quality of
information derivable from hyperspeciral data. An analysis of spectral properties of
various materials by Price (1994) has revealed that high spectral resolution data, on
the order of 10nm, offer unprecedented opportunities for uniquely identifying a
range of rock, soil and vegetation types,

Hyperspectral remote sensing provides both challenges and opportunities for
studying the Barth’s surface. The large volumes of data require that analytical
techniques be developed which are efficient and capture the full range of information
contained in the data. Variable spectral resolution and/or curve fitting can be used
to reduce data volumes as much as possible while still sampling the most diagnostic
regions of the spectrum fo a desired level of accuracy. A variety of analytical
techniques can then be applied to the data depending on the issues being addressed
and desired levels of accuracy.

A key requirement in the development of robust analytical techniques for hyper-
spectral data will be additional comparative studies to augment the few which have
been undertaken. For geological applications this will require the acquisition of
hyperspectral remote sensing data over a well characterized study area and extensive
analysis of the data using a variety of the analytical techniques cited above. Plans
are underway to conduct such a study for an area in northern Canada, involving
the acquisition of ground-based and airborne high spectral and spatial resolution
data as well as detailed field mapping.
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