

SI Base Units

m - meter - length s - second - time kg - kilogram - mass K - kelvin - thermodynamic temperature A - ampere - electric current cd - candela - luminous intensity mol - amount of substance

SI Supplementary Units

radian – rad – plane angle steradian – sr – solid angle

SI Derived Units

N - Newton - Force - 1kg x m/s² Pa - Pascal - Pressure, Stress - 1N/m² J - Joule -Work, Energy, Amount of Heat -1N x m Im - Lumen - Luminous Flux - 1 cd x sr ⁰C - Degree Celsius - Temperature – (K - 273)

		SI Pref	ixes		
deca	10	da	deci	10-1	d
hecto	10 ²	h	centi	10-2	c
kilo	10 ³	k	milli	10 -3	m
mega	10 ⁶	Μ	micro	10-6	m
giga	10 ⁹	G	nano	10 -9	n
tera	10 ¹²	Τ	pico	10-12	p
peta	10 ¹⁵	Р	femto	10-15	f
exa	10 ¹⁸	E	atto	10-18	a
zetta	10 ²¹	Ζ	zepto	10-21	Z
yotta	10 ²⁴	Y	yocto	10-24	y

Spectroscopy

Set of methods where interaction of electromagnetic radiation with chemical molecules is measured to obtain characteristics, properties and quantity

Spectro	oscopy - Colour	S
TABLE 14.1 Colors of Different Wavelength I	Regions	
Wavelength Absorbed nm	Absorbed Color	Transmitted Cole (Complement)
Wavelengen Absorbed, him		
380-450	Violet	Yellow-green
380–450 450–495	Violet Blue	Yellow-green Yellow
380–450 450–495 495–570	Violet Blue Green	Yellow-green Yellow Violet
380–450 450–495 495–570 570–590	Violet Blue Green Yellow	Yellow-green Yellow Violet Blue
380-450 450-495 495-570 570-590 590-620	Violet Blue Green Yellow Orange	Yellow-green Yellow Violet Blue Green-blue

Spectroscopy – Radiation Terminology

- **Wavelength** (λ) length between two equivalent points on successive waves
- Wavenumber the number of waves in a unit of length or distance per cycle - reciprocal of the wavelength
- **Frequency** (v) is the number of oscillations of the field per second (Hz)
- Velocity (c) independent of wavelength in vacuum is 3.00 x 10¹⁰ cm/s (3.00 x 10⁸ m/s)
- **Photon** (quanta) quantum mechanics nature of light to explain photoelectric effect

Spectroscopy - Relations

The De-Broglie Relationship – The link between Particle and Wave behavior

Where:

h = Planck's constant – 6.62 x 10⁻³⁴ Js Proportionality constant

When $v = c/\lambda$ is substituted:

Spectroscopy - Relations

The De-Broglie Relationship - The link between Particle and Wave behavior

$\mathbf{E} = \mathbf{m}\mathbf{c}^2$

Combining with previous equation

$$mc^2 = hc/\lambda$$

That gives

 $\lambda = h/mc$

Spectroscopy Modes

TABLE 6-1 Common Spectroscopic Methods Based on Electromagnetic Radiation

Wavelength Range*	Wavenumber Range, cm ⁻¹	Type of Quantum Transition
0.005–1.4 Å	-	Nuclear
0.1–100 Å	-	Inner electron
10–180 nm	1×10^6 to 5×10^4	Bonding electrons
180–780 nm	5×10^4 to 1.3×10^4	Bonding electrons
0.78–300 µm	1.3×10^4 to 3.3×10^1	Rotation/vibration of molecules
0.75–3.75 mm	13–27	Rotation of molecules
3 cm	0.33	Spin of electrons in a magnetic field
0.6–10 m	1.7×10^{-2} to 1×10^3	Spin of nuclei in a magnetic field
	0.005–1.4 Å 0.1–100 Å 10–180 nm 180–780 nm 0.78–300 µm 0.75–3.75 mm 3 cm 0.6–10 m	Wavelength Range* Range, cm ⁻¹ $0.005-1.4 \text{ Å}$ $0.1-100 \text{ Å}$ $10-180 \text{ nm}$ $1 \times 10^6 \text{ to } 5 \times 10^4$ $180-780 \text{ nm}$ $5 \times 10^4 \text{ to } 1.3 \times 10^4$ $0.78-300 \mu\text{m}$ $1.3 \times 10^4 \text{ to } 3.3 \times 10^1$ $0.75-3.75 \text{ mm}$ $13-27$ 3 cm 0.33 $0.6-10 \text{ m}$ $1.7 \times 10^{-2} \text{ to } 1 \times 10^3$

<section-header><text><text><equation-block><text><text><text><text>

Observed only at the highest energy – vacuum ultraviolet. Rarely, never observed in normal UV/VIS

Saturated compounds containing atoms with unshared electron pairs (nonbonding electrons) capable this transition. This transition requires less energy – happen in 150 to 250 nm (most absorption peaks below 200nm). Molar absorptivity are low 100 – 3000 L cm⁻¹ mol⁻¹

FABLE 14-1	BLE 14-1 Some Examples of Absorption due to $n \rightarrow \sigma^*$ Transitions ^{<i>a</i>}		
Compound	$\lambda_{\max}(nm)$	€ _{max}	
H ₂ O	167	1480	
CH ₃ OH	184	150	
CH ₃ Cl	173	200	
CH ₃ I	258	365	
$(CH_3)_2S^b$	229	140	
(CH ₃) ₂ O	184	2520	
CH ₃ NH ₂	215	600	
(CH ₃) ₃ N	227	900	

Chromophore	Example	Solvent	$\lambda_{max}(nm)$	€max	Type of Transition
Alkene	C ₆ H ₁₃ CH=CH ₂	n-Heptane	177	13,000	$\pi \rightarrow \pi^*$
Alkyne	$C_5H_{11}C = C - CH_3$	n-Heptane	178	10,000	$\pi \rightarrow \pi^*$
-			196	2,000	-
			225	160	-
	O II				
Carbonyl	CH ₃ CCH ₃	n-Hexane	186	1,000	$n \rightarrow \sigma^*$
			280	16	$n \rightarrow \pi^*$
	0 II				
	CH ₃ CH	n-Hexane	180	large	$n \rightarrow \sigma^*$
			293	12	$n \rightarrow \pi^*$
	0 II				
Carboxyl	CH ₃ COH	Ethanol	204	41	$n \rightarrow \pi^*$
	0				
Amido	CH ₃ CNH ₂	Water	214	60	$n \rightarrow \pi^{+}$
Azo	CH ₃ N=NCH ₃	Ethanol	339	5	$n \rightarrow \pi^{+}$
Nitro	CH ₃ NO ₂	Isooctane	280	22	$n \rightarrow \pi^*$
Nitroso	C ₄ H ₉ NO	Ethyl ether	300	100	-
			665	20	$n \rightarrow \pi^*$
Nitrate	C ₂ H ₅ ONO ₂	Dioxane	270	12	$n \rightarrow \pi^*$

Spectroscopy	– Chromophores

Chromophore	System	λ _{max}	€ _{max}
Amine	-NH ₂	195	2,800
Ethylene	-C=C-	190	8,000
· ·	100	195	1,000
Cetone	0=0	270-285	18-30
Aldehyde	—СНО	210	Strong
		280-300	11-18
litro	-NO ₂	210	Strong
Nitrite	-ONO	220-230	1,000-2,000
		300-400	10
zo	-N=N-	285-400	3-25
Benzene		184	46,700
		202	6,900
		255	170
Naphthalene		220	112,000
		275	5,600
		312	175
Anthracene		252	199,000
		375	7,900

Compound	- I		
compound	Туре	$\lambda_{max}(nm)$	€max
CH ₃ CH ₂ CH ₂ CH=CH ₂	Olefin	184	~10,000
СH2=СHCH2CH2CH=CH2	Diolefin (unconjugated)	185	~20,000
Н2С=СНСН=СН2	Diolefin (conjugated)	217	21,000
H ₂ C=CHCH=CHCH=CH ₂	Triolefin (conjugated)	250	_
O CH ₃ CH ₂ CH ₂ CH ₂ CCH ₃ Q	Ketone	282	. 21
СH ₂ =СHCH ₂ CH ₂ CCH ₃	Unsaturated ketone (unconjugated)	278	3
О Ш СH ₂ =CHCCH ₃	α,β -Unsaturated ketone (conjugated)	324	:
		219	3,60

Compound		E ₂ Band		B Band	
		$\lambda_{max}(nm)$	€ _{max}	$\lambda_{max}(nm)$	€ _{max}
Benzene	C ₆ H ₆	204	7,900	256	20
Toluene	C ₆ H ₅ CH ₃	207	7,000	261	30
m-Xylene	C ₆ H ₄ (CH ₃) ₂	-	-	263	30
Chlorobenzene	C ₆ H ₅ Cl	210	7,600	265	24
Phenol	C ₆ H ₅ OH	211	6,200	270	1,45
Phenolate ion	C ₆ H ₅ O ⁻	235	9,400	287	2,60
Aniline	C ₆ H ₅ NH ₂	230	8,600	280	1,43
Anilinium ion	C ₆ H ₅ NH ⁺ ₃	203	7,500	254	16
Thiophenol	C ₆ H ₅ SH	236	10,000	269	70
Naphthalene	C10H8	286	9,300	312	28
Styrene	C ₆ H ₅ CH=CH ₂	244	12,000	282	45

Spectroscopy

Auxochrome – functional group that does not absorb radiation itself in the UV range but has a shifting effect on main chromophore peaks to longer wavelength as well as increasing their intensity.

Example: -OH and –NH₂ on benzene chromophore

<section-header> Spectroscopy Spec

BLE 14-6 Solvents for the Ultraviolet and the Visible Regions			
Solvent	Approximate ^a Transparency Minimum (nm)		
Water	190		
Ethanol	210		
n-Hexane	195		
Cyclohexane	210		
Benzene	280		
Diethyl ether	210		
Acetone	330		
1,4-Dioxane	220		

Spectroscopy - Quantification

Beer's Law (Beer – Bourguer – Lambert Law)

Radiation energy decays exponentially

$$T = P/P_0 = 10^{-kb}$$

Where:

k – constant

- T the transmittance the fraction of transmitted radiant energy
- **b** the pathlength of the medium

Spectroscopy - Quantification

If we present in logarithmic form:

$$\log T = \log P/P_0 = - kb$$

The same stands for concentration:

$$\log T = \log P/P_0 = -k^2c$$

Spectroscopy - Quantification

$$\log T = \log P/P_0 = -k'c$$

Because $A = -\log T$, then:

$$\mathbf{A} = \mathbf{k}^{\prime}\mathbf{c}$$

Where: k' = ab

$$\mathbf{A} = \mathbf{abc}$$

Where:

a – proportionality constant called absorptivity

b – pathlength of the medium

A = abc

If:

c - is expressed in moles per liter

b – pathlength (cell length) in CM

Then <u>**a</u>** is called the *molar absorptivity* and</u>

has the special symbol **E** and units: L mol⁻¹ cm⁻¹

Spectroscopy - Mixture
Multi-component mixture:
$$A_T = A_1 + A_2 + A_3 + A_n$$
$$A_T = \varepsilon_1 b \varepsilon_1 + \varepsilon_2 b \varepsilon_2 + \varepsilon_3 b \varepsilon_3 + \varepsilon_n b \varepsilon_n$$
Where: 1,2,3,...,n – refer to absorbing components

Spectroscopy – Beer's Law Limitations

Deviations from the direct proportionality (b=const)

Instrumental Deviations

Chemical Deviations

Beer's Law Limitations

Deviations from the direct proportionality (b = const)

- Valid at concentration usually below 0.01M
- Molecules interference distance between molecules affects charge distribution of molecules (ions)
- Effect of refractive index –
 concentration affects refractive index
 ε is affected (low, less important)

