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1. Introduction 
 
Europe is the world’s largest market in crude oil imports, representing about one third of the world 
total. Ninety percent of oil and refined products are transported to and from Europe by sea. Some of 
this oil makes its way into the sea - either due to accidental pollution, or deliberate oil discharge.  
 
Oil spills ravage the fragile marine and coastal environments. They poison and suffocate countless 
aquatic creatures, like eider ducks, leatherback sea turtles, and polar bears. Immense tanker accidents 
discharge millions of liters of crude oil into the ocean. Yet, they represent only a small percentage of 
the tons of oil products discharged annually into our seas, mostly from smaller shipping operations, 
offshore rigs, and refineries. Other oil, leaked largely from automobiles, drains into storm sewers, 
waterways, and eventually oceans each year. Offshore oil spills hit hardest on coastal waters, the areas 
richest in biodiversity and the marine resources that humans depend on most. Oil, which is not 
evaporated or dispersed, tends to deposit on the seafloor or to hit the beaches, impacting the coastal 
ecology. 
 
To lessen this impact, and create effective contingency planning, reliable monitoring methodologies 
and continuously updated comprehensive information are necessary. 
Remote sensing represents a critical element for an effective response to marine oil spills: modern 
remote sensing instrumentation is a powerful tool both in preventing major disasters and in helping law 
enforcement for sea security. 
 
A number of remote sensing systems are available for the detection and monitoring of oil slicks in the 
marine environment (Brekke and Solberg 2005, Fingas and Brown 1997). Conventional sensors are 
both passive (i.e., infrared cameras, optical sensors, infrared/ultraviolet systems, microwave 
radiometers) and active (i.e., laser fluorosensors and radar systems). Among them, the synthetic 
aperture radar (SAR) is still the most efficient and superior satellite sensor for operational oil spill 
detection, due to its wide area coverage and day and night all-weather capabilities. Nevertheless, it does 
not have capabilities for oil spill thickness estimation and oil type recognition, and it is only applicable 
for oil spill monitoring in a certain range of wind speeds. A part of the oil spill detection problem with 
SAR is to distinguishing oil slicks from other natural phenomena that dampen the short waves and 
create dark patches on the surface. These natural dark patches are termed oil slicks look-alike. A 
surprising number of false positive sightings may be seen. Ice, internal waves, kelp beds, natural 
organics, pollen, plankton blooms, cloud shadows, jellyfish, algae, guano washing off rocks, threshold 
wind speed areas (wind speed < 3m/s), wind sheltering by land, rain cells, and shear zones may all 
appear as oil (Espedal 1998). 
It is the synergetic use of sensors working in different parts of the electromagnetic (EM) spectrum, 
which can achieve the most promising results.  
Recently, hyperspectral sensors have started to be used for oil slick monitoring purposes.  
While conventional multispectral sensors record the radiometric signal only at a handful of 
wavelengths, hyperspectral sensors measure the reflected solar signal at hundreds (100 to 200+) 
contiguous and narrow wavelength bands (bandwidth between 5 and 10 nm), spanning from the visible 
to the infrared. Hyperspectral images provide ample spectral information to identify and distinguish 
between spectrally similar (but unique) materials, providing the ability to make proper distinctions 
among materials with only subtle signature differences.  Hyperspectral images show hence potentiality 
for proper discrimination between oil slicks and other natural phenomena (look-alike); and even for 
proper distinctions between oil types. Additionally they can give indications on oil volume. 
 
At present, many airborne hyperspectral sensors are available to collect data, but only two civil 
spaceborn hyperspectral sensors exist as technology demonstrator: the Hyperion sensor on NASA’s 

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight



 4

EO-1 satellite and the CHRIS sensor on the European Space Agency’s PROBA satellite. Consequently, 
the concrete opportunity to use spaceborn hyperspectral remote sensing for operational oil spill 
monitoring is yet not available. Nevertheless, it is clear that the future of satellite hyperspectral remote 
sensing of oil pollution in the marine/coastal environment is very promising. 
 
In order to correctly interpret the hyperspectral data, the retrieved spectral signatures must be correlated 
to specific materials. Therefore specific spectral libraries, containing the spectral signature of the 
materials to be detected, must be built up. This requires that highly accurate reflected light 
measurements of samples of the investigated material must be performed in the lab or in the field. 
  
Accurate measurements of the spectral reflectance of several samples of oil-contaminated soils have 
been performed in the laboratory, in the 400-2500 nm wavelength range. Samples of the oils spilt from 
the Erika and the Prestige tankers during the major accidents of 1999 and 2002 were also collected and 
analyzed in the same spectral range, using a portable spectrophotometer. All measurements showed the 
typical absorption features of hydrocarbon-bearing substances: the two absorption peaks centered at 
1732 and 2310 nm. This is in perfect agreement with the findings of E. Cloutis (1989). 
The above measurements allow the building up of an oil-focused spectral library, which includes the 
spectral signatures of pure oil and oil-impacted soils and which will make the detection process of oil-
slicks more rapid and reliable. 
 
In Section 2 a general description of a hyperspectral sensor is given. Section 3 gives an overview of the 
algorithms and methodologies used for the interpretation of remotely sensed hyperspectral data, and 
which are of interest for oil spill monitoring. Recent applications of hyperspectral remote sensing to the 
monitoring of hydrocarbons in the marine/coastal environment are presented in Section 4. The 
hyperspectral measurements performed in situ and in the laboratory are described in Section 5. 
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2. Hyperspectral sensors 
 
Hyperspectral remote sensing, also known as imaging spectroscopy, is a relatively new technology that 
is currently being investigated by researchers and scientists with regard to the detection and 
identification of minerals, terrestrial vegetation, and man-made materials and backgrounds and to 
monitor land, water and atmosphere. 
Imaging spectroscopy has been used in the laboratory by physicists and chemists for over 100 years for 
identification of materials and their composition. Spectroscopy can be used to detect individual 
absorption features due to specific chemical bonds in a solid, liquid, or gas. Recently, with advancing 
technology, imaging spectroscopy has begun to focus on the Earth. The concept of hyperspectral 
remote sensing began in the mid-80's and to this point has been used most widely by geologists for the 
mapping of minerals. Actual detection of materials is dependent on the spectral coverage, spectral 
resolution, and signal-to-noise of the spectrometer, the abundance of the material and the strength of 
absorption features for that material in the wavelength region measured.  
Hyperspectral remote sensing combines imaging and spectroscopy in a single system which often 
includes large data sets and requires new processing methods.  
 
2.1 The spectral signature 
Any given material will reflect, absorb or transmit the electromagnetic (EM) radiation at different 
wavelengths in a unique and specific way. The specific combination of reflected and absorbed EM 
radiation at varying wavelengths is called the “spectral signature”.  
As an example, Figure 1 shows the reflectance spectra (i.e., the percentage of reflected EM radiation) 
measured by laboratory spectrometers for three materials: a green bay laurel leaf, the mineral talc and a 
silty loam soil. Field and laboratory spectrometers usually measure reflectance at many narrow, closely 
spaced wavelength bands, so that the resulting spectra appear to be continuous curves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Spectral signature (percentage of reflected EM 
radiation versus wavelength) measured by laboratory 
spectrometers for three materials: a green bay laurel leaf, 
the mineral talc and a silty loam soil. (source: Shippert 
2004) 
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2.2. Hyperspectral Data 
Like the laboratory spectroradiometers, hyperspectral sensors can record about 100 to 200+ contiguous 
selected wavelengths of reflected and emitted energy, with high spectral resolution (5-10 nm), enabling 
the construction of an effective, and continuous reflectance spectrum for every pixel scene (Figure 2 
and 3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Hyperspectral Imaging (source: Canadian Space Agency) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The concept of hyperspectral imagery. (source: Shippert 2004) 
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The electromagnetic spectrum covered by a range of hyperspectral imagers is shown in Figure 4. 

 

 

 

 

Figure 4: Typical Hyperspectral Frequency Bands (Vis Visible; NIR Near infrared; SWIR Short wavelength 
infrared; MWIR Medium wavelength infrared ; LWIR Long wavelength infrared) 

 
 
 
With respect to conventional multispectral sensors, which record the target radiance only at a handful 
of wavelengths with broad bandwidth (20-400 nm), hyperspectral data sets allow an almost complete 
reconstruction of the spectral signature: the retrieved spectrum for each pixel appears very much like 
the spectrum that would be measured in a spectroscopy laboratory. This is well illustrated in Figure 5, 
which depicts the reflectance spectra of the three materials of Figure 1 as they would appear to the 
multispectral Landsat 7 ETM sensor and to the hyperspectral AVIRIS sensor. The gaps in the spectra 
belong to wavelength ranges at which the atmospheric transmittance is so low that no reliable signal is 
received from the surface.  
It is important to underline that, although most hyperspectral sensors measure hundreds of 
wavelengths, it is not the number of measured wavelengths that defines a sensor as hyperspectral. 
Rather it is the narrowness and contiguous nature of the measurements.  
Hyperspectral imagery provides an opportunity for more detailed image analysis. Using hyperspectral 
data, spectrally similar (but unique) materials can be identified and distinguished, and sub-pixel scale 
information can be extracted. 
Table 1 lists the principal applications which can take advantages from hyperspectral remote sensing. 
 
 

Table 1. Principal applications which can take advantage of hyperspectral remote sensing 

Atmosphere water vapor, cloud properties, aerosols 
Ecology chlorophyll, leaf water, cellulose, pigments, lignin 
Geology  mineral and soil types 
Coastal Waters  chlorophyll, phytoplankton, dissolved organic materials, 

suspended sediments 
Snow/Ice snow cover fraction, grainsize, melting 
Biomass Burning  subpixel temperatures, smoke 
Commercial mineral (oil) exploration, agriculture and forest production 
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Figure 5: reflectance spectra of the three materials in Figure 1; on the left: as they would appear to the 
multispectral Landsat 7 ETM sensor; on the right: as they would appear to the hyperspectral AVIRIS 
sensor. The gaps in the spectra are wavelength ranges at which the atmosphere absorbs so much light 
that no reliable signal is received from the surface (source: Shippert 2004) 
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2.3 Hyperspectral versus radar sensors 
The SAR is still the most efficient and superior satellite sensor for operational oil spill detection in the 
marine environment. SAR detects oil features floating on the surface, exploiting the property of oil to 
dampen the Bragg waves (wavelength of a few cm) on the ocean surface, which leads to a decreased 
backscattered signal. SAR is particularly useful for observing ocean at night and in cloudy weather 
conditions, thanks to its all-day and all-weather capabilities.  
Hyperspectral sensors do not work at night and in cloudy conditions, but with respect to radar sensors, 
they consent to measure an intrinsic property of the observed feature: its spectral signature. 
Consequently, these sensors afford the potential for detailed identification of materials (eliminating the 
false alarm features) and better estimate of their abundance. In other words, distinction between man-
made oil slicks and natural slicks, oil type classification (light/crude oil), and estimate of oil spill 
thickness (i.e., its volume) should be feasible. Moreover, since the light penetrates through the water 
surface, when monitoring oil spills in the marine environment, hyperspectral (but also multispectral) 
sensors can potentially detect submerged oil slicks and dispersed oil droplets (emulsion). Hyperspectral 
sensors offer also the potentiality to detect oil-impacted soils as a consequence of oil-beaching, 
occurred, for example, as a consequence of the Prestige and Erika accidents and of the Lebanon Jieh 
power plant bombing.  
 
2.4 Recent and current hyperspectral sensors 
Most past and current hyperspectral sensors have been airborne (Table 2), with three recent exceptions: 
the U.S. Air Force Research Lab’s FTHSI sensor on the MightySat II satellite, the NASA’s Hyperion 
sensor on the EO-1 satellite, and the ESA’s CHRIS sensor on the PROBA satellite. All of them are 
non-commercial space-borne technology demonstrators. Several new space-based hyperspectral 
sensors have been proposed recently. Unlike airborne sensors, space-based sensors are able to provide 
near global coverage repeated at regular intervals. Therefore, the amount of hyperspectral imagery 
available should increase significantly in the near future as new satellite-based sensors are successfully 
launched. 
 
FTHSI 
MightySat II.1 is a technology demonstration mission of the US Defense Space Test Program (test of 
high-risk, high-payoff space system technologies). The MightySat II program, initiated in March 1996, 
represents a series of up to five small satellite missions over a decade. The Fourier Transform 
HyperSpectral Imager (FTHSI) was designed and built by Kestrel Corporation of Albuquerque, NM, 
and the Florida Institute of Technology, Melbourne, FL, heritage of airborne version of FTVHSI. The 
objective was to demonstrate spaceborne hyperspectral imaging technologies. This instrument has been 
the first earth remote-sensing hyperspectral imager collecting data from space, and produced valuable 
data from shortly after launch (July 2000) until it was turned off in October 2001. The nominal Ground 
Sampling Distance (GSD) is 30 m. 
 
Hyperion  
The Hyperion Imaging Spectrometer is a hyperspectral sensor which collects 220 unique spectral 
channels ranging from 0.357 to 2.576 micrometers with a 10-nm bandwidth. It is a pushbroom 
instrument. Each image frame taken in this configuration captures the spectrum of a line 30 m long by 
7.5 km wide, perpendicular to the satellite motion. Standard scene length is 42 kilometers, with an 
optional increased scene length of 185 kilometers.  
Hyperion flies on board the Earth Observing-1 (EO-1) NASA satellite, launched on November 21, 
2000 as part of a one-year technology validation/demonstration mission. The original EO-1 Mission 
was successfully completed in November 2001. Based on the interest of the remote sensing research 
and scientific communities, an agreement was reached between NASA and the United States 
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Geological Survey to allow continuation of the EO-1 Program as an Extended Mission. The EO-1 
Extended Mission is chartered to collect and distribute ALI (Advanced Land Imager) multispectral and 
Hyperion hyperspectral products in response to Data Acquisition Requests (DARs). Under the 
Extended Mission provisions, image data acquired by EO-1 are archived and distributed by the USGS 
Center for Earth Resources Observation and Science (EROS) and placed in the public domain 
(http://edc.usgs.gov/products/satellite/eo1.html). 
The EO-1 satellite follows a repetitive, circular, sun-synchronous, near-polar orbit with a nominal 
altitude of 705 km at the Equator. The spacecraft travels from north to south on the descending 
(daytime) orbital node, maintaining a mean equatorial crossing time between 10:00 AM and 10:15 AM 
for each daytime pass. The satellite circles the Earth at 7.5 km/sec, with an orbit inclination of 98.2 
degrees and an orbital period of 98.9 minutes. Each orbit takes nearly 99 minutes, and the velocity of 
the EO-1 nadir point is 6.74 km/sec. EO-1 completes just over 14 orbits per day, with a repeat cycle of 
16 days. 
EO-1 follows the same orbit as Landsat 7, trailing the latter by one minute (+/- five seconds). This 
orbit has been very useful for obtaining cross comparisons of instrument performance from the two 
satellites. Because EO-1 is much smaller and lighter than Landsat 7, periodic burns are required in 
order to maintain this distance, thus preventing EO-1 from overtaking Landsat 7. 
 
 
CHRIS 
The CHRIS (Compact High Resolution Imaging Spectrometer) is an imaging spectrometer, carried on 
board the ESA space platform called PROBA (Project for On Board Autonomy), successfully launched 
on October 22, 2001.  
The instruments on board are CHRIS, DEBIE (Debris In-Orbit Evaluator) and SREM (Standard 
Radiation Environment Monitor). PROBA also carries two imagers, a Wide Angle Camera (WAC) and 
a High Resolution Camera (HRC) with a 10 metre resolution.  
CHRIS is an AO hyperspectral instrument whose objective is the collection of BRDF (Bidirectional 
Reflectance Distribution Function) data for a better understanding of spectral reflectances. CHRIS 
provides 19 spectral bands (fully programmable) in the VNIR range (400 - 1050 nm) at a GSD of 17 m. 
Each nominal image forms a square of 13 km x 13 km on the ground (at perigee). The observation of 
the square target area consists in 5 consecutive pushbroom scans by the single-line array detectors. 
CHRIS can be reconfigured to provide 63 spectral bands at a spatial resolution of about 34 m. The 
CHRIS design is capable of providing up to 150 channels over the spectral range of 400-1050 nm. The 
repeat cycle is approximately 7 days. 
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Table 2. Selected Recent and Current Satellite and Airborne Hyperspectral Sensors 

 
Satellite Sensor 

 
Organization Number of 

Bands 
Wavelength 
Range (nm)  

Hyperion  
on EO-1 

NASA Goddard Space Flight Center  
http://www.gsfc.nasa.gov 220 400-2.500 

CHRIS  
(Compact High Resolution Imaging 

Spectrometer)  
on PROBA 

European Space Agency  
http://www.esa.int 150 450-1.050 

FTHSI  
(Fourier-Transform Visible 

Hyperspectral Imager)  
on MightySat II 

 
NOW OFF 

Operated by Air Force Research Labs  
http://www.vs.afrl.af.mil/TechProgs/MightySatII  

 
designed by Kestrel Corp.  

http://www.kestrelcorp.com/ 

256 350-1.050 

 
Airborne Sensor 

 
Organization Number of 

Bands 
Wavelength 
Range (nm)  

AHS  
(Airborne Hyperspectral Scanner) 

SenSyTech  
http://www.sensytech.com  48 433-12.700 

AISA  
(Airborne Imaging Spectrometer for 
Applications) 

Spectral Imaging  
http://www.specim.fi  Up to 288 430-1.000

AVIRIS  
(Airborne Visible/Infrared Imaging 
Spectrometer) 

NASA Jet Propulsion Lab  
http://www.makalu.jpl.nasa.gov/  224 400-2.500

CASI  
(Compact Airborne Spectrographic 
Imager) 

ITRES Research Limited  
http://www.itres.com  Up to 228  400-1.000

DAIS 7915  
(Digital Airborne Imaging 
Spectrometer) 

GER Corp.  
http://www.ger.com  79 430-12.300

EPS-H  
(Environmental Protection System) 

GER Corp.  
http://www.ger.com  152 430-12.500

HYDICE (Hyperspectral Digital Imagery 
Collection Experiment) Naval Research Lab  210 400 – 2.500

HyMap  Integrated Spectronics  
http://www.intspec.com  100 to 200 Visible to thermal 

infrared 

MIVIS  
(Multispectral Infrared and Visible 
Imaging Spectrometer) 

SenSyTech  
http://www.sensytech.com  102 400-2.500

PROBE-1 Earth Search Sciences Inc.  
http://www.earthsearch.com  128 400-2.500

SFSI  
(Short Wavelength Infrared Full 
Spectrum Imager) 

Canadian Centre for Remote Sensing  
http://www.ccrs.nrcan.gc.ca/ccrs/tekrd/rd/acc/sfsi/sfsi

e.html  
120 1,200-2,400

TRWIS III  
(TRW Imaging Spectrometer) 

TRW Inc.  
http://www.trw.com 384  380-2,450 

* Indicates satellite-based sensor. All other hyperspectral sensors listed are airborne. 
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3.  Hyperspectral image analysis: an overview  
 

There are four main oil characteristics that should be remotely retrieved for operational purposes: oil 
slick position, global volume of the oil contained in the slick, oil type and forecast of the drift 
trajectory.  
Hyperspectral sensors have the potential to detect the slick position, to retrieve information on the 
nature of the slick, to give indications on oil type (crude/light) and thickness, to detect submerged oil 
slicks, emulsions and oil-impacted soils as a consequence of beaching. 
Standard multispectral image classification techniques were generally developed to classify 
multispectral images into broad categories. To fulfill the new potential of hyperspectral data, new 
image processing techniques have been developed. Different retrieval algorithms are applied when 
focusing on specific EM regions (i.e., VIS, NIR and SWIR) or when considering the whole spectrum at 
once. Particularly interesting for the application of hyperspectral remote sensing to oil pollution 
monitoring are algorithms and methodologies developed in geological remote sensing, more 
specifically in the field of oil seep (macro- and micro-seepages) monitoring. 
In this section an overview of the principal algorithms and methodologies for hyperspectral data 
analysis will be given. The overview is not intended to be exhaustive, but its scope is to illustrate some 
procedures which can be applied for hyperspectral oil spill monitoring purposes. 
 
3.1 Analysis of the contrast in the SWIR  
As found by Cloutis in 1989 and as presented in Section 5, hydrocarbon-bearing substances show 
characteristics absorption peaks at 1730 and 2310 nm, i.e., in the SWIR.  Focusing hyperspectral 
remote sensing observation on this region, hydrocarbon can be detected efficiently and unambiguously. 
The above findings have been already used for the detection of oil contaminated areas by Kuehn and 
Hoerig (1995).  
Hoerig et al. (2001) showed that the same hydrocarbons spectral maxima/minima characteristics 
measured in situ, could be seen by a HyMap sensors flying on board an airplane. The absorption peaks 
(or radiance minimum) could be recognized in the HyMap pixel spectra, despite noise produced by the 
atmosphere between the scanner and the ground. Although less prominent, the peaks were still 
significant enough for hydrocarbon-bearing materials to be detected when the pixel spectra were 
evaluated. However, efficient mapping of the locations of hydrocarbons required image processing 
capable of accentuating all pixels with such absorption maxima. Following the above considerations, 
the same authors (Kuehn et al. 2004) developed a Hydrocarbon Index (HI) focused on the 1730 nm 
absorption peak (Eq. 1 and Fig. 6): 
 

BA
AC

AC
AB RR

RR
HI −+

−
−

−=
λλ

λλ )(                                                 (1) 

 
where, for the HyMap sensor: λA=1705 nm; λB=1729 nm and λC=1741 nm; while RA, RB and RC are 
the correspondent radiance values. Other wavelengths may be necessary for other scanners. If 
hydrocarbon-bearing material is present at the surface, HI>0. If no hydrocarbon-bearing material is 
present, HI=0. It is worthwhile to underline that the HI has been developed for the detection of oil-
impacted soils and that the absorption peak at 1730 nm is very closed to a strong water absorption 
band. 
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Figure 6. Enlarged 1730 nm portion of the spectral 
signature (radiance) of hydrocarbon-bearing 
materials with ‘index points’ A, B, B’ and C for the 
Hydrocarbon Index; Ri and λi are the radiance 
values and wavelengths at the ‘index points’ (source 
Kuehn et al., 2004) 

 
 
An analogous algorithm for the 2310 nm absorption feature is described in the NASA “Remote Sensing 
Tutorial” (NASA, 2006): a ratio of two reflectance values on either side of that absorption feature 
divided by the value of the decreased reflectance in the spectral curve at the feature low point enhances 
the detectability of the hydrocarbon and quantifies its magnitude (Figure 7). 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 7.  Hydrocarbon Detection Index (source 
NASA, 2006) 
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Hoerig et al. (2001) demonstrated that, at least for airborne remote sensing of oil-contaminated soil, if 
the image processing is focused on the hydrocarbon spectral characteristics, atmospheric corrections of 
the data are not necessary. 
Both algorithms described above are sensitive to the amount of hydrocarbon. The deeper the minimum, 
the higher is the oil amount. As an approximation, it can be assumed that the larger the index value, the 
larger the hydrocarbon concentration. Nevertheless the estimate of oil abundance is only qualitative and 
not quantitative. 
 
3.2 Analysis of the contrast in the VIS/NIR  
Recently, it has been shown that the medium-resolution multispectral sensor MODIS (with a spatial 
resolution up to ~250m), provides direct potentiality for large oil spill detection in water basins (Hu et 
al. 2003, Bulgarelli and Tarchi, 2006). 
In comparison with seawater, oil is characterized by higher refractive index and absorption (Byfeld and 
Boxal, 1999). Hence, when oil is floating on the sea surface, the reflected signal increases while the 
signal leaving the water body (the so called water leaving radiance) decreases. As a net effect, an 
optical contrast between oil and surrounding seawater appears. Radiative transfer simulations (Otremba 
and Piskozub, 2001, 2002, 2004) show that, while the optical contrast of oil droplets dispersed in the 
water (emulsions) is always positive, that of an oil slick floating on the sea surface can range from 
positive to negative depending on several different parameters: oil type, oil thickness, illumination and 
observation geometry, optical properties of the water body, sea surface state (wind, sea surface 
roughness).  
The above considerations mean that VIS/NIR contrast analysis allows detecting the oil slick position, 
and that, in principle, there is also the potential to retrieve oil thickness indications, once all other 
relevant parameters are known. Any image-enhancing software can be used to contrast-stretch an 
image and help identify and trace the oil slick; nevertheless only proper atmospheric correction 
provides meaningful geophysical data, offering the potential to derive additional indications (i.e., oil 
film thickness). It is therefore underlined that the retrieval of oil spill information from VIS/NIR 
requires a highly accurate, validated and operational atmospheric correction procedure. 
 
3.3 Retrieval of the spectral signature  
A full exploitation of hyperspectral data is only obtained when retrieving the whole spectral signature 
of the substance to be detected, from VIS to SWIR.  
Hyperspectral images are sometimes referred to as “image cubes” because they have a large spectral 
dimension as well as the two spatial dimensions (Figure 8). Hyperspectral data (or spectra) can be 
thought of as points in an n-dimensional scatterplot. The data for a given pixel corresponds to a spectral 
reflectance for that given pixel. The distribution of the hyperspectral data in n-space can be used to 
estimate the number of spectral endmembers (i.e., the set of spectrally unique surface materials existing 
within a scene) and their pure spectral signatures and to help understand the spectral characteristics of 
the materials which make up that signature. Typically, the analysis of a hyperspectral scene involves 
the decomposition of each pixel in the image into its constituents, where these are represented by 
spectra of relatively pure material, which are themselves extracted from the scene. The identity of these 
constituents is determined by comparison with ‘library’ spectra of known materials measured in the 
field or in the laboratory. 
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Figure 8. Hyperspectral images are sometimes 
referred to as “image cubes” because of the large 
number of measured wavelengths. The face of the 
cube in this example is an image of an 
agricultural region in Australia, which was 
collected by the Hyperion sensor. The top and 
right side of the cube show hundreds of color-
coded pixel values measured for each pixel along 
the top and right edge of the image. 

 
A short recall of the new hyperspectral image processing techniques (source: Shippert 2004) is given 
here for completeness. 
Boardman (1993) and Boardman et al. (1995) were among the first to develop and commercialize a 
sequence of algorithms specifically designed to extract detailed information from hyperspectral 
imagery. These tools, applicable to a variety of applications, distinguish and identify the unique 
materials present in the scene and map them throughout the image. They remain the most widely used 
image analysis tools for working with hyperspectral imagery. Tetracorder has been used to identify and 
map surface minerals, water, snow, vegetation, pollution, human-made objects and other phenomena 
through the analysis of hyperspectral data (Clark et al., 2003). Another algorithm for identifying the 
unique materials within a hyperspectral scene, known as Sequential Maximum Angle Convex Cone 
(SMACC), has recently been developed by Spectral Sciences Inc. (Gruninger et al. 2001) to be 
included in commercial softwares. Most commercial image processing software packages now include 
tools for analyzing hyperspectral imagery. These tools are being continually refined, expanded and 
simplified. 
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The standard procedure to interpret hyperspectral data includes: i) the performance of the atmospheric 
correction; ii) the identification of target; and iii) its classification, usually with the use of spectral 
libraries. 
 
3.3.1 Atmospheric correction 
Quantitative information extraction usually requires accurate preprocessing of the hyperspectral 
imagery and collection of accurate auxiliary data. Among the first challenges faced when performing 
quantitative analysis of hyperspectral data are those encountered due to the atmosphere. 
The solar radiation while traveling from the sun to the target and from the target to the sensor interacts 
with the atmosphere, through absorption and diffusion processes. Hence, data collected by the satellites 
are largely contaminated by atmospheric effects. The objective of atmospheric correction is to retrieve 
the surface reflectance (that characterizes the surface properties) from remotely sensed imagery by 
removing these atmospheric effects. 
A variety of atmospheric correction algorithms have been developed for the processing of 
hyperspectral data, among them: the ENVI atmospheric correction module FLAASH (Fast Line-of-
sight Atmosphere Analysis of Spectral Hypercubes; Matthew et al., 2000); a series of Atmospheric and 
Topographic CORrection codes (ATCOR) (Richter 1997); the Atmosphere CORrection Now algorithm 
(ACORN; Green 2001), the High-accuracy Atmospheric Correction for Hyperspectral data (HATCH; 
Qu et al. 2003); and the ATmosphere REMoval Algorithm (ATREM; Gao et el. 1996). All these 
algorithms are mostly designed for remote sensing of land surfaces.  Since the signal leaving the water 
is much lower than that of land and the air/water interface is not Lambertian, problems can occur when 
the above algorithms are applied in the correction of marine pixels.  Specific research has been done for 
removing the atmospheric effects from hyperspectral marine and coastal data. The TAAFKA 
atmospheric correction module has been, for example, expressly developed for hyperspectral ocean 
color images (Gao et al. 2000).  
 
3.3.2 Spectral libraries 
Spectral libraries are collections of reflectance spectra measured from materials of known composition. 
They require that highly accurate reflected light measurements of samples of the investigated material 
are performed in the lab or in the field (as shown in Section 5). In the present specific case, an oil 
dedicated spectral library is needed.  
 
3.3.3 Target identification and classification: unmixing and subpixel algorithms 
There are many unique image analysis algorithms that have been developed to exploit the extensive 
information contained in hyperspectral imagery. Spectral analysis methods usually compare pixel 
spectra with a reference spectrum (often called a target). Target spectra can be derived not only from 
spectral libraries, but also from regions of interest within a spectral image, or individual pixels within a 
spectral image. 
Some commonly used hyperspectral image analysis methods (also provided by ENVI) are described 
below. 
 
Whole Pixel Methods 
Whole pixel analysis methods attempt to determine whether one or more target materials are abundant 
within each pixel in a multispectral or hyperspectral image on the basis of the spectral similarity 
between the pixel and target spectra. Whole-pixel scale tools include standard supervised classifiers 
such as Minimum Distance or Maximum Likelihood (Richards and Jia, 2006), as well as tools 
developed specifically for hyperspectral imagery such as, for example, Spectral Angle Mapper, 
Spectral Feature Fitting, Derivative Spectroscopy. 
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Spectral Angle Mapper (SAM) 
In a scatter plot of pixel values from two bands of a spectral image, pixel spectra and target spectra will 
plot as points (Fig. 9). If a vector is drawn from the origin through each point, the angle between any 
two vectors constitutes the spectral angle between those two points. The Spectral Angle Mapper (Kruse 
et al., 1993) computes a spectral angle between each pixel spectrum and each target spectrum. The 
smaller the spectral angle, the more similar the pixel and target spectra. This spectral angle will be 
relatively insensitive to changes in pixel illumination because increasing or decreasing illumination 
doesn’t change the direction of the vector, only its magnitude (i.e., a darker pixel will plot along the 
same vector, but closer to the origin). Clearly, although this discussion describes the calculated spectral 
angle using a two-dimensional scatter plot, the actual spectral angle calculation is based on all of the 
bands in the image. In the case of a hyperspectral image, a spectral “hyper-angle” is calculated between 
each pixel and each target. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           Figure 9. The Spectral Angle Mapper concept. 
 
Another approach to matching target and pixel spectra is by examining specific absorption features in 
the spectra: 

 
Spectral Feature Fitting 

The Spectral Feature Fitting allows the user to specify a range of wavelengths within which a unique 
absorption feature exists for the chosen target. The pixel spectra are then compared to the target 
spectrum using two measurements: 1) the depth of the feature in the pixel is compared to the depth of 
the feature in the target, and 2) the shape of the feature in the pixel is compared to the shape of the 
feature in the target (using a least-squares technique). Spectral Feature Fitting is a relatively simple 
form (available in ENVI) of the Tetracorder method (Clark et al., 2003). 
  
 Derivative Spectroscopy  
Derivative Spectroscopy analysis of hyperspectral data provides a method for quickly identifying 
spectral absorption features, thereby simplifying large numerical data sets into smaller, manageable 
units. The enhancement of absorption features is done using finite approximation to calculate the 
change in reflectance over a bandwidth ∆λ defined as ∆λ=λj-λI, where λj>λi (Tsai and Philpot, 1998). 
The estimation of the nth derivative calculated as (Eq. 2):  
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Derivative spectroscopy is a powerful tool that is commonly used in the analysis of hyperspectral 
remote sensing data from terrestrial environment. It is able to enhance minute fluctuations in 
reflectance spectral and separate closely related absorption features. A primary application has been to 
analyze pigment and chemical composition of leaves in order to track physiological changes in plant 
canopies. 
 
Sub-Pixel Methods 
Sub-pixel analysis methods can be used to calculate the quantity of target materials in each pixel of an 
image. Sub-pixel analysis can detect quantities of a target that are much smaller than the pixel size 
itself. In cases of good spectral contrast between a target and its background, sub-pixel analysis has 
detected targets covering as little as 1-3% of the pixel. Sub-pixel analysis methods include Complete 
Linear Spectral Unmixing, and Matched Filtering. 

Complete Linear Spectral Unmixing 
The set of spectrally unique surface materials existing within a scene are often referred to as the 
spectral endmembers for that scene. Linear Spectral Unmixing (Adams et al., 1986; Boardman, 1989) 
exploits the theory that the reflectance spectrum of any pixel is the result of linear combinations of the 
spectra of all endmembers inside that pixel. A linear combination in this context can be thought of as a 
weighted average, where each endmember weight is directly proportional to the area the pixel 
containing that endmember. If the spectra of all endmembers in the scene are known, then their 
abundances within each pixel can be calculated from each pixel’s spectrum. Unmixing simply solves a 
set of n linear equations for each pixel, where n is the number of bands in the image. The unknown 
variables in these equations are the fractions of each endmember in the pixel. To be able to solve the 
linear equations for the unknown pixel fractions it is necessary to have more equations than unknowns, 
i.e., more bands than endmember materials. With hyperspectral data this is almost always true. The 
results of Linear Spectral Unmixing include one abundance image for each endmember. The pixel 
values in these images indicate the percentage of the pixel made up of that endmember. An error image 
is also usually calculated to help evaluate the success of the unmixing analysis. 

Matched Filtering 
Matched Filtering (Boardman et al., 1995) is a type of unmixing in which only user-chosen targets are 
mapped. Unlike Complete Unmixing, there is no need to find the spectra of all endmembers in the 
scene to get an accurate analysis (hence, this type of analysis is often called a ‘partial unmixing’ 
because the unmixing equations are only partially solved). Matched Filtering was originally developed 
to compute abundances of targets that are relatively rare in the scene. If the target is not rare, special 
care must be taken when applying and interpreting Matched Filtering results. Matched Filtering 
“filters” the input image for good matches to the chosen target spectrum by maximizing the response of 
the target spectrum within the data and suppressing the response of everything else (which is treated as 
a composite unknown background to the target). Like Complete Unmixing, a pixel value in the output 
image is proportional to the fraction of the pixel that contains the target material. Any pixel with a 
value of 0 or less would be interpreted as background (i.e., none of the target is present). One potential 
problem with Matched Filtering is that it is possible to end up with false positive results.  
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4. Recent hyperspectral applications for oil spill detection in the marine/coastal environment and 
further considerations 
Crude oil seeps naturally from geologic strata beneath the seafloor into water. They contribute the 
highest amount of oil to the marine environment, accounting for 46 per cent of the annual load to the 
world's oceans (NRC 2003). Natural oil seeps are commonly used in identifying potential petroleum 
reserves. Although entirely natural, these seeps significantly alter the nature of nearby marine 
environments; hence, they serve as natural laboratories where researchers can learn how marine 
organisms adapt over generations of chemical exposure. Seeps illustrate how dramatically animal and 
plant population levels can change with exposure to ocean petroleum.  
In early 2000 a cooperative R&D project, sponsored by Chevron, ExxonMobil and Royal Dutch/Shell, 
was initiated by the HJW Geospatial Inc. and the Geosat Committee Inc. to determine the viability of 
hyperspectral technology for detecting oil seeps and oil-impacted soils. The Geosat project proved that 
sophisticated airborne hyperspectral sensors were capable of detecting oil seeps and oil-impacted soils 
(Ellis 2001, Ellis 2003). The ENVI Software was used to extract subtle hydrocarbon signature from 
airborne hyperspectral datacubes. The research project demonstrated that facility managers, engineers, 
environmental scientists and geologists could use these technologies to obtain traditional maps and to 
detect oil-impacted sites, subtle variation in vegetation vigor, different plant types and differences 
among disturbed and engineered soils.  
Hyperspectral imagery is now regularly used by the private sector for oil exploration purpose (e.g.:Ellis 
GeoSpatial www.ellis-geospatial.com; Earth SearchSciences Inc. www.earthsearch.com, HyVista, 
www.hyvista.com ).  
The same methodology used by exploration professionals can be certainly used by environmentalists 
for the detection of oil-contaminated sites, indicative of environment-threatening oil spilling and 
leakage.  
Examples of airborne hyperspectral data applied for oil spills detection are available.  
The Probe-1 data, integrated with field and subsurface geological and geochemical data, have been 
used to predict possible sites of hydrocarbon microseepage in the Ventura Basin (Santa Barbara), in 
Southern California (van der Meer et al. 2002). The AISA sensor has been used to monitor the 
Chesapeake Bay, where major interstate commerce routes, underground pipelines, extensive 
development, large industrial facilities and heavy shipping traffic to the port of Norfolk and Baltimore 
exist, and which suffered during the last several decades of several large spill events threatening coastal 
habitats and species (Sanchez et al. 2003, Salem et al. 2005). Hyperspectral AVIRIS data have been 
used for oil spill detection and oil spill type classification, using advanced techniques, in the Santa 
Barbara County (Salem and Kafatos, 2004). The HyMap sensor has been successfully used to detect 
and measure chemical and physiographic variability within the hydrocarbon seepage off Coal Oil Point, 
Santa Barbara, CA: one of the largest and most active seeps in the world (HyVista Corporation, 2006).  
 
The open challenge for the future of hyperspectral remote sensing of oil-impacted sites is the shift to 
satellite monitoring. This will allow exploiting all the advantages that satellites provide: synoptic view, 
global coverage, high repetitive acquisition and low data cost. 
 
It is finally worthwhile to list some other potential applications of hyperspectral remote sensing for 
marine and maritime surveillance.  
Airborne hyperspectral remote sensing has already been used to gather qualitative and quantitative 
information on seafloor in clear shallow waters (Louchard et al. 2002). Results indicate that derivative 
analysis of hyperspectral remote sensing data is a potentially powerful method for detailed analysis of 
benthic substrates. Since the hydrocarbon absorption peaks belong to an EM region (the SWIR) where 
water is so absorbent that, even in shallow waters, no seafloor signal is detectable, this methodology 
could not be used to unambiguously detect hydrocarbon sediments on the seafloor. Nevertheless the 
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methodology could be used to monitor changes in the benthic substrate, which could give indirect 
evidence of oil-sedimentation.  
Hyperspectral imagery may offer the potential to unambiguously identify the hold material released by 
ships (i.e., ballast water, dredged sediment dumping, sewage and trash dumping). As an example, Fig. 
9 shows a HyMap sensor image detecting a ship caught in the process of emptying its hold (source: 
www.HyVista.com). Recently, SeaWiFS data have been used to individuate the cell concentration in 
zone of ballast water exchange.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Image courtesy of HyVista Corporation.  

 
Figure 9. HyMap image acquired on the 9th Nov, 1998 at Moreton Bay, Queensland 
Coast, Australia.  The sandy bottom can clearly been seen in this shallow water image 
to the left, while the ship seen on the right was caught in the process of emptying its 
hold. Simple spectral processing leveraging the many bands of HyMap allows for 
unique identification of hold material. 

 
 
Finally, hyperspectral data could be usefully applied in monitoring the effects on aquatic ecosystems of 
non-indigenous species. These are increasingly conspicuous in marine and estuarine environments 
throughout the world, and their invasions are linked to ballast water. Invasive aquatic species are one of 
the greatest threats to the world's oceans, and can cause extremely severe environmental, economic and 
public health impacts.  
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5. Toward an oil dedicated spectral library: laboratory and in situ measurement of the spectral 
signature of oil and oil-impacted soil   
 
As pointed out in the previous Section 3, a fundamental step in the correct interpretation of 
hyperspectral data is the availability of dedicated spectral libraries. Libraries are built measuring in the 
laboratory and cataloging the spectral signatures of the target elements. A major challenge indeed, 
since a large in situ database needs to be acquired. 
In this Section, the spectral measurements performed both in laboratory and in situ will be described. 
 
5.1 Description of the Measurements  
A Perkin Elmer Lambda 19 double-beam spectrophotometer (Fig.10) equipped with a BaSo4 
integrating sphere was used for the measurements of the reflectance of the oil-impacted soil samples.  
Spectra were scanned over the 400-2500 nm wavelength interval with 1 nm step starting at 2500 nm 
and ending at 400 nm. The spectral resolution varied from 1 to 2 nm in the visible/ near infrared (400-
1000nm) and from 4 to 5 nm in the middle infrared (1000-2500 nm). 
The calibration of the instrument was performed using SpectralonTM reflectance and wavelength 
calibration standards. For each sample, five different spectrometric measurements were made. 
 

 

Fig: 10 Spectrophotometer in Reflectance 
mode 

 
An additional series of measurements was performed on samples of the oil spilt from the Erika and the 
Prestige tankers during the major accidents of 1999 and 2002. A portable high resolution 
spectroradiometer ASD-FieldSpec Pro (Analytical Spectral Devices) (Fig. 11), suitable for in situ 
measurements, was used in the 350-2500 nm range. 
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Fig.11 The spectroradiometer ASD-FieldSpec Pro in 
Reflectance mode 

 
 
 
5.2. Preparation of the oil-contaminated soil samples 
The samples of oil-contaminated soils were prepared by making use of pure sand (fig. 12) and a loamy 
type soil composed of 78% sand, 20% silt and 2% clay (fig. 13). Soil samples were put in black PVC 
supports and heated in an oven at 110°C for 48 hours to remove any residual humidity.  
Only a few minutes before the spectral measurements, some drops of hydrocarbons were added to the 
samples. Four different types of hydrocarbons were used: those more commonly discharged by ships 
and, for their longer evaporation time, those having a permanence on water and soil: diesel oil, used oil, 
and two types of crude oil: “Es Sider” light crude oil and “Iranian Heavy” heavy crude oil. 
The “Es Sider” oil has been obtained from the Tamoil refinery in Cremona, Italy; the “Iranian Heavy” 
from the IES refinery in Mantova, Italy; the other hydrocarbons are those commonly found in 
commerce. In addition, samples of the oil spilt from the Erica tanker during the accident which 
occurred in December 1999 off the west coast of France and from the Prestige tanker during the 
accident which occurred in November 2002 off the north-west coast of Spain, were obtained at the 
sites, and analyzed in their pure state. 
 
 

 
Fig: 12  Samples of pure sand and oil-impacted sand. 
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Fig:13    Samples  of pure soil  and  oil-impacted soil 
 
 
 
 
5.3. Analysis of the results  
As already demonstrated by Cloutis (1989), the hydrocarbon-bearing reference objects are 
characterized by absorption maxima at wavelengths 1730 and 2310 nm. 
These absorption peaks are typical of the C-H stretch: in particular, 1730 nm is the C-H Stretch 1st 
Overtone band, and 2310 nm is the C-H stretch Combination band.  
Fig. 14 shows the reflectance spectrum of pure sand and sand samples contaminated by diesel oil, used 
oil, “Es Sider” and “Iranian Heavy” crude oils. The two typical hydrocarbons peaks are clearly visible 
in the oil-impacted samples.  
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Fig  14: Spectral signatures of pure sand and  oil-impacted sand 

 
 
 
 

Raj Bridgelall
Highlight



 24

Fig. 15 shows an analogous plot for samples of oil-impacted soil. Also in this case, the two peaks at 
1730 and 2310 nm are visible, with particular evidence for crude oil contamination. 
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Fig  15: Spectral signatures of pure soil and  oil-impacted soil 

 
 
Finally, figure 16 shows the reflectance spectra of the samples of the oils spilt from the Erika and 
Prestige tankers. They were analyzed with the portable Spectroradiometer ASD-Field Spec, in 
reflectance mode. For both oils, the two C-H stretch absorption peaks are clearly visible. 
Cloutis (1989) and afterwards Hoerig et al. (2001) found that the strength of the signal is proportional 
to the oil content. 
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Fig.16  Spectral signature of the oil spilt from the Prestige and Erika tankers 
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Additional experimental tests have been performed to analyze the consistency of the signal when the 
sample is put under ordinary meteorological conditions. Successive measurements made months or 
even years after sample collection and preparation showed unchanged results. This strengthens the 
validity of the test. 
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6. Summary and conclusions 
Hyperspectral remote sensing shows great potentialities in the monitoring of oil spills in the marine 
environment. 
Hyperspectral data are not all-weather all-day available, but they have the ability to measure an 
intrinsic property of the oil: its spectral signature. As a consequence, hyperspectral sensors offer the 
potential to unambiguously detect oil features, distinguish between oil types (crude/light oil), give 
indication on oil slick thickness and even detect submerged oil and emulsions. 
While several different airborne hyperspectral sensors exist, only two technology demonstrator satellite 
hyperspectral sensors are nowadays available. Others are foreseen in the near future. 
Airborne hyperspectral remote sensing is routinely used to detect natural oil seeps, as indicator of 
potential petroleum accumulation. 
The same methodologies developed for exploratory purpose can certainly be extended to monitor oil 
pollution threatening the environment. 
A correct interpretation of hyperspectral data generally requires a pre-processing stage to remove the 
atmospheric noise (which can be consistent for marine data); the extraction of endmembers spectral 
signature and their identification via spectral library match.  
Spectral libraries are a collection of the spectral signatures of the target materials. They require the in 
situ collection and laboratory spectroscopic analysis of the investigated samples. 
For oil pollution monitoring purpose, an oil dedicated spectral library is needed, including the spectral 
signature of oil and oil-impacted soils. 
To this aim, laboratory analysis have been performed in the frame of the MDIV project, over samples 
of oil-impacted soils and of crude oil spilled during the Erica and Prestige tank disaster. 
 
At present no operational use of hyperspectral satellite sensors for oil spill monitoring is possible, but 
the future of hyperspectral remote sensing in this field is highly promising.



 27

7. Bibliography 
 
Adams, J. B., Smith, M. O., and Johnson, P.E., Spectral mixture modeling: A new analysis of rock and 
soil types at the Viking Lander 1 site. Journal of Geophysical Research, vol. 91(B8), pp. 8090-8112. 
(1986) 
 
Andreoli G., P. Viaud, B. Hosgood, “Hyperspectral Characterization of Soil Types applied to 
Demining”, JRC Ispra, S.P.I.03.16 (2003) 
 
Blackburn, G. A.. “Quantifying chlorophylls and carotenoids at leaf can canopy scales: an evaluation of 
some hyperspectral approaches”. Remote Sensing Reviews, 66:273– 285. (1998) 
 
Boardman, J.W.,”Inversion of imaging spectrometry data using singular value decomposition”. Proc. 
of the Twelfth Canadian Symposium on Remote Sensing, v. 4, pp. 2069-2072. (1989) 
 
Boardman, J. W., “Automated spectral unmixing of AVIRIS data using convex geometry concepts: in 
Summaries”, Fourth JPL Airborne Geoscience Workshop, JPL Publication 93-26, 1:11-14. (1993) 
 
Boardman, J. W., F. A. Kruse and R.O. Green,“Mapping target signatures via partial unmixing of 
AVIRIS data: in Summaries”, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95-1, 
1:23-26. (1995) 
 
Brekke C., and A.H.S. Solberg, “Oils spill detection by satellite remote sensing”, Remote Sensing of 
Environment, 95, 1-13,  (2005) 
 
Bulgarelli B. and D. Tarchi, “Exploratory use of MODIS in oil spill monitoring”, in Workshop on Moni-
toring Activities Related to the Oil Pollution in Lebanon ed., G. Ferraro, D. Tarchi, G. L. Ruzzante,
A. Sieber, EUR 22531
 
Byfeld V. and S. Boxal, “Thickness estimated and classification of surface oil using passive sensing at 
visible and near-infrared wavelength”, in Proc. Of the IEEE International Geoscience and Remote 
Sensing Symposium (1999) 
 
Cairns B., B. E. Carlson, R. Ying, A.A. Lacis and V. Oinas, “Atmospheric Correction and Its 
Application to an Analysis of Hyperion Data”, IEEE Transaction on Geoscience and Remote Sensing, 
vol. 41, no. 6, (2003) 
 
Clark, R.N. and Swayze, G.A.. “Mapping minerals, amorphous materials, environmental materials, 
vegetation, water, ice and snow, and other materials: The USGS Tricorder Algorithm”. Summaries of 
the Fifth Annual JPL Airborne Earth Science Workshop, January 23- 26, R.O. Green, Ed., JPL 
Publication 95-1, p. 39-40. (1995) 
 
Clark, R.N., Swayze, G.A. Livo, K.E. Kokaly, R.F. Sutley, S.J. Dalton, J.B. McDougal, R.R. and Gent, 
C.A.. “Imaging Spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and 
expert systems”, Journal of Geophys Research, 18(E12):5131. (2003) 
 
Cloutis E. “Spectral Reflectance Properties of Hydrocarbons: Remote-Sensing Implications”, Science, 
245, 165-168, (1989) 
 

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight



 28

David L.B. Jupp, “Discussion around Hyperion Data”, CSIRO Office of Space Science & Applications 
Earth Observation Centre, http://www.eoc.csiro.au/hswww/oz_pi/docs/Hyp_Notes.pdf, accessed on 
November the 10th 2006,  
 
Ellis JM, HH Davis, JA Zamudio, “Exploring for onshore oil seeps with hyperspectral imaging”, Oil 
and gas Journal, vol. 99.37, p. 49-58 (2001)  
 
Ellis JM, “Hyperspectral imaging technologies key for oil seep/oil-impacted soil detection and 
environmental baselins”, Environmental Science and Engineering. Retrieved on Feb. 23, 2004 from 
http://www.esemag.com/0503/index.html (2003) 
 
 
Fingas M. and C.E. Brown, “Review of oil spill remote sensing”, Spill Science and technology 
Bulletin, 4, 199-208 (1997) 
 
Gao B.- C., K.B. Heidebrecht and A.F.H. Goetz, Atmosphere Removal Program (ATREM) Version 2.0 
Users Guide, Center for the Study of Earth from Space/CIRES, University of Colorado, Boulder, 
Colorado, 26 (1996). 
 
Gao B.-C., M.J. Montes, Z. Ahmad and C.O, Davis, “Atmospheric correction algorithm for 
hyperspectral remote sensing of ocean color from space”, Applied Optics, vol. 39, no. 6, pg. 887-896, 
(2000) 
 
Green R.,“Atmospheric Correction Now (ACORN),” developed by ImSpec LLC, available from 
Analytical Imaging and Geophysics LLC, (2001). 
 
Gruninger J., R.L. Sundberg, M.J. Fox, R. Levine, W.F. Mudkowsky, M.S. Salisbury and A.H. 
Ratcliff,”Automated Optimal Channel Selection for Spectral Imaging Sensors”,  Proc. SPIE 4381, 
Algorithms for Multispectral and Hyperspectral Imagery VII, 4381-07 (2001) 
 
Hoerig B., Kuehn F., F. Oschuetz and F. Lehmann, “HyMap hyperspectral remote sensing to detect 
hydrocarbons”, Int. J. Remote Sensing, vol. 22, no. 8, 1413-1422 (2001) 
 
Hosgood B., G. Andreoli. Laboratory measurements of spectral signatures of marine pollutants. JRC 
Ispra EUR 19019 EN (1999) 
 
Hu C., F.E. Mueller-Krager, C. Taylor, D. Myhre, B. Murch, A.L. Odriozola and G. Godoy, “MODIS 
detects oil spill in Lake Maracaibo, Venezuela”, EOS Vol. 84, n. 33. (2003) 
 
HyVista Corporation, “Mapping Natural Hydrocarbon Seeps. Santa Barbara, California, USA”, 
accessed from www.Hyvista.com on November 2006. 
 
Kuehn F. and B. Heorig, “Environmental Remote Sensing of Military Exercise Areas in Germany”, 
Remote Sensing and GIS for site characterization: Applications ad Standards, ASTM STP 1279, V.H. 
Singhroy, D.D. Nebert and A.I. Johnoson Eds., American Society for testing Materials, pp. 107-116 
(1995) 
 
Kuehn F., K. Oppermann and B. Hoerig, “Hydrocarbon Index – an algorithm for hyperspectral 
detection of hydrocarbons”, Int. J. Remote Sensing, vol. 25, 12, 2467-2473, (2004) 

Raj Bridgelall
Highlight

Raj Bridgelall
Highlight



 29

Kruse F.A., A.B. Letkoff, J.W. Boardman, K.B. Heidebrecht, A.T. Shapiro, P.J. Barloon and A.F.H. 
Goetz,”The Spectral Image Processing System (SIPS) – interactive visualization and analysis of 
imaging spectrometer data”, Remote Sensing of Enviroment, 44, 145-163 (1993) 

Liang S. and H. Fang, “An Improved Atmospheric Correction Algorithm for Hyperspectral Remotely 
sensed Imagery”, IEEE Geosc. and Rem. Sens., 1 (2), 112-117 (2004)  

Louchard E. M., R.P. Reid, C.F. Stephens, C.O. Davis, R.A. Leathers, T.V. Downes, R. Maffione, 
“Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate 
sediments”, Optics Express, vol. 10, n. 26, 1573-1584 (2002) 
 
Matthew M.W., S.M. Adler-Golden, A. Berk, S.C. Richtsmeier, R.Y. Levine, L.S. Bernstein, P.K. 
Acharya, G.P.Anderson, G.W. Felde, M.P. Hoke, A. Ratkowski, H.-H. Burke, R.D. Kaiser, and D.P. 
Miller, “Status of Atmospheric Correction Using a MODTRAN4-based Algorithm,” SPIE Proceeding, 
Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, 4049, pp. 199-207, (2000). 

NASA, “Remote Sensing Tutorial”. Principal Author: Nicholas M. Short, NASA Official: J. Bolton, 
Website Curator: Laura Rocchio, site last update May 19, 2006. http://rst.gsfc.nasa.gov 

NRC (National Research Council) Committee on Oil in the Sea: Inputs, Fates, and Effects,”Oil in the 
sea III: Inputs, fates and effects”, Report 2003. U.S. National Academy of Sciences. 
 
Otremba Z. and J. Piskozub, “Modeling the optical contrast of an oil on a sea surface, Optics Express, 9 
(8), 411-416 (2001) 
 
Otremba Z. and J. Piskozub, “Modeling the remotely sensed optical contrast caused by oil suspended in 
the sea water column”, Optics Express, 11 (1), 2-6 (2002) 
 
Otremba Z. and J. Piskozub, “Modeling the bidirectional reflectance distribution function (BRDF) of 
sweater polluted by an oil film”, Optics Express, 12 (8), 1671-1676 (2004) 

Phinney J.T., F. Muller-Karger, P. Dustan, J. Sobel,  “Using Remote Sensing to Reassess the Mass 
Mortality of Diadema antillarum 1983-1984”, Conservation Biology ,Vol. 15 Issue 4 Page 885, August 
(2001) 

Qu Z., Kindel B.C., Goetz A.F.H.,”The (HATCH) model : Earth Observing 1 mission”. IEEE 
transactions on Geoscience and Remote Sensing , vol. 41 (1), no6, pp. 1223-1231 (2003) 

Richards, J.A., and Jia, X., “Remote Sensing Digital Image Analysis, an Introduction”. Fourth Edition. 
Springer-Verlag: Berlin (2006). 
 
Richter R., “Correction of atmospheric and topographic effects for high spatial resolution satellite 
imagery”, Int. J. Remote Sensing 18:1099-1111, 1997. 
 
Salem F., M. Kafatos, T. El-Ghazawi, R. Gomez and R Yang, “Hyperspectral image assessment of oil-
contaminated wetland”,  Int. J. of Remote Sensing, vol. 26, n.4, 811-821 (2005) 
 



 30

Salem, F., and Kafatos, M.,  “Hyperspectral Partial Unmixing Technique for Oil Spill Target 
Identification,” XX th Congress International Society for Photogrammetry and Remote Sensing”, 
Conference 21-23 July 2004, Istanbul, Turkey (2004).  

Sanchez G, W.E. Roper, R. Gomez, “Detcetion and Monitorino of Oil Spills using Hyperspectral 
Imagery”, Geo-Spatial and Temporal Image and data Exploration III, Nickolas L. Faust, W.E. Ropers, 
Editors, Proc. of SPIE, vol. 5097, 233-240, (2003) 

Shippert  P., “ Why Use Hyperspectral Imagery?”, Photogrammetric Engineering & Remote Sensing  
Journal of the American Society for Photogrammetry and Remote Sensing, volume 70, number 4 
(2004) 

Tsai F, and W. Philpot,”Derivative analysis of Hyperspectral data”, Remote Sens. Environ., 66, 41-51 
(1998) 

van der Meer  F., P. van Dijk, H. van der Werff and H. Yang. Remote sensing and petroleum seepage:a 
review and case study.  International Institute   for Aerospace Survey and Earth Sciences ITC, Division 
of Geological Survey, Enschede, Netherlands. (Blackwell Science Ltd. 2002) 
X. Liu, W. L. Smith 
 
 
 
 
 



European Commission

EUR 22739 EN – DG Joint Research Centre 
Institute for the Protection and Security of the Citizen 

Hyperspectral Analysis of Oil and Oil-Impacted Soils for Remote Sensing Purposes

Authors: G.Andreoli, B.Bulgarelli, B.Hosgood, D.Tarchi

Luxembourg: Office for Official Publications of the European Communities
2007 – 34 pp. –  21  x 29.7  cm 
Scientific and Technical Research series; ISSN 1018-5593

Abstract

While conventional multispectral sensors record the radiometric signal only at a handful of wavelengths, hy-
perspectral sensors measure the reflected solar signal at hundreds contiguous and narrow wavelength bands, 
spanning from the visible to the infrared. Hyperspectral images provide ample spectral information to identify 
and distinguish between spectrally similar (but unique) materials, providing the ability to make proper distinc-
tions among materials with only subtle signature differences.  Hyperspectral images show hence potentiality for 
proper discrimination between oil slicks and other natural phenomena (look-alike); and even for proper distinc-
tions between oil types. Additionally they can give indications on oil volume.

At present, many airborne hyperspectral sensors are available to collect data, but only two civil spaceborn hy-
perspectral sensors exist as technology demonstrator: the Hyperion sensor on NASA’s EO-1 satellite and the CHRIS 
sensor on the European Space Agency’s PROBA satellite. Consequently, the concrete opportunity to use spaceborn 
hyperspectral remote sensing for operational oil spill monitoring is yet not available. Nevertheless, it is clear 
that the future of satellite hyperspectral remote sensing of oil pollution in the marine/coastal environment is 
very promising.

In order to correctly interpret the hyperspectral data, the retrieved spectral signatures must be correlated to 
specific materials. Therefore specific spectral libraries, containing the spectral signature of the materials to be 
detected, must be built up. This requires that highly accurate reflected light measurements of samples of the 
investigated material must be performed in the lab or in the field.

Accurate measurements of the spectral reflectance of several samples of oil-contaminated soils have been per-
formed in the laboratory, in the 400-2500 nm wavelength range. Samples of the oils spilt from the Erika and 
the Prestige tankers during the major accidents of 1999 and 2002 were also collected and analyzed in the same 
spectral range, using a portable spectrophotometer. All measurements showed the typical absorption features of 
hydrocarbon-bearing substances: the two absorption peaks centered at 1732 and 2310 nm. 
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