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ABSTRACT 

This study developed a level of traffic stress (LTS) map for Fargo-Moorhead and used crowdsourced 
bicycle use data from Strava to show relationships between the built environment and bicycle use. The 
LTS map is useful for showing how friendly and encouraging areas are toward bicycle use, as well as for 
showing the connectivity of low-stress pathways, and the bicycle ridership model shows how the 
development of bicycle facilities and other changes to the built environment are associated with bicycle 
use, as measured using Strava count data. The results of the bicycle use model show that the existence of 
bicycle facilities is positively associated with bicycle use. This suggests that bicyclists are using the 
roadway design features that are meant to accommodate them, including shared-use paths, bike lanes, 
buffered lanes, shared-lane markings, signed-only routes, and shoulders. Other significant predictors of 
bicycle use included industrial employment density, which was negative, proximity to downtown or to 
water, low-stress connectivity, traffic volume and speed, which had unexpected positive effects, and 
median age. 
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1. INTRODUCTION 

In recent years, cities across the country have been designing new bicycle facilities, or making 
improvements to existing ones, to provide additional transportation options to residents and encourage 
increased bicycling. Types of bicycle facilities include shared-lane markings, striped paved shoulders, 
bike lanes, buffered bike lanes, sidepaths, bicycle boulevards, cycle tracks, and multi-use trails. While 
providing new or improved bicycle facilities may encourage increased bicycling, design characteristics of 
the street and the built environment are also important. Streets with higher traffic volumes and faster 
vehicles speeds, for example, may discourage bicycle use.  

To measure how bicycle facility and street design characteristics affect bicycle users, Mekuria et al. 
(2012) developed the Level of Traffic Stress (LTS) ratings. LTS is a 1-4 rating given to a road segment or 
crossing indicating the level of stress it imposes on bicyclists. Criteria for rating street segments include 
proximity to traffic, interaction with traffic, traffic speed, and street width. A bicycle facility that is 
physically separated from traffic would have an LTS of 1 (lowest stress), while the LTS for bike lanes or 
for riding in mixed traffic can vary from 1 to 4 depending on bike lane width, bike lane blockages, street 
width, and vehicle speed. 

The LTS rating is a theoretical model for predicting bicycling. The factors used to calculate LTS may be 
important for predicting bicycle use, but other factors may also be important, such as population density, 
employment density, land use mix, proximity to destinations, connectivity, and demographics. The 
objective of this research is to study how each of these factors are associated with bicycle use. The 
research will also show if bicyclists are using roadway design features that are meant to accommodate 
bicyclists.  

One of the limitations for conducting this type of research is a lack of data on bicycle use. Wang et al.  
(2016) attempted to validate the LTS model using census data, mode choice data, and regional household 
travel survey data. Their results were mixed. Their study relied on survey data rather than actual bicycle 
count data. Recently, studies have begun using crowdsourced GPS data on bicycle use to gain a better 
understanding of bicycle ridership patterns across the city. One popular source of such data is Strava 
Metro. This study takes advantage of bicycle count data available from Strava Metro and analyze bicycle 
use in the Fargo-Moorhead metropolitan area. 

Specific research objectives are as follows: 
• Review the literature on bicycle LTS and other measures of bicycle level of service or suitability, 

the determinants of bicycle use, and the use of crowdsourced data for bicycle use. 
• Develop an LTS map for Fargo-Moorhead 
• Estimate the relationship between bicycle facility characteristics and bicycle usage. 
• Identify the importance of street design characteristics on bicycle usage. 
• Determine the importance of other built-environment or land-use characteristics on bicycle usage. 

The remainder of this report is organized as follows. The literature review is provided in section 2. In 
section 3, the LTS map for Fargo-Moorhead is developed and presented. This section describes the 
methodology and data used and presents the results. The model for bicycle use is provided in section 4. 
This includes the description of the data and modeling procedure and a discussion of the results. Finally, 
section 5 provides a summary, conclusions, recommendations, and limitations. 
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2. LITERATURE REVIEW 

This section reviews previous research on factors influencing bicycle mode choice and route choice, 
bicycle use models, level of traffic stress for bicyclists, bicycle level of service, and the use of 
crowdsourced data and Strava for bicycling studies. 

2.1 Measures of Roadway Bicycle Use Suitability 

2.1.1 Bicycle Level of Traffic Stress 

Various studies have attempted to measure how comfortable or stressful an environment is for bicycling. 
The Geelong Bikeplan Team first developed the bicycle tension rate in Australia in 1978, as described by 
Harkey et al. (1998) and Sorton and Walsh (1994). The classification was used to describe how 
acceptable the roads were from a cycling point of view, given that they would like to reduce not just the 
physical effort during their cycle ride but also the mental action or tension of sharing the road with other 
vehicles. They described the top three crucial factors that affect their stress levels when riding a bicycle: 
the curb lane width, the motor vehicle's speed, and traffic volume. Multiple combinations of these 
variables were classified between 1, referring to a very low-stress level, and 5, a very high-stress level. 
These qualitative values for the same three factors were re-evaluated by Sorton and Walsh (1994). They 
applied the definition to ordinary cyclists, grouped into three classifications: youth, casual, and 
experienced riders.  

More recently, the Level of Traffic Stress (LTS) rating was developed by Mekuria et al. (2012) to 
measure how bicycle facility and street design characteristics affect bicycle users. LTS is a 1-4 rating 
given to a road segment or crossing indicating the level of stress it imposes on bicyclists. Criteria for 
rating street segments include proximity to traffic, interaction with traffic, traffic speed, and street width. 
A bike facility that is physically separated from traffic would have an LTS of 1 (lowest stress), while the 
LTS for bike lanes or for riding in mixed traffic can vary from 1 to 4 depending on bike lane width, bike 
lane blockages, street width, and vehicle speed. The four levels of LTS refer to the road conditions 
workable for the four types of cyclists suggested by Geller (2009). Segments categorized as LTS 1 are 
convenient for all kinds of cyclists, while LTS 4 segments are optimal only for the most advanced cyclist; 
intermediate-level segments of LTS are considered suitable for moderately experienced cyclists. The LTS 
rating has been used in several studies to identify and select infrastructure interferences for creating low-
stress routes for cyclists. 

2.1.1.1 Measuring Level of Traffic Stress 

LTS for a street segment is measured based on street and traffic characteristics (e.g., road width, traffic 
level, the existence of a parking lane) and if the bicycles are in mixed traffic, on bike paths, or separate 
routes, as outlined in Tables 2.1 to 2.3 (Mekuria, Furth, and Nixon 2012). A low level of stress could be 
reached in mixed traffic on local roads with low traffic rates. As the number of lanes, the speed of traffic, 
and traffic volume grow, preserving a low degree of stress demands more safety measures – designated 
cycle lanes and, finally, physically separated bike lanes (Mekuria, Furth, and Nixon 2012). 
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Table 2.1 LTS Criteria for Bike Lanes Alongside a Parking Lane 
Lane factor LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 
Through lanes per 
direction 

1  no effect ≤2 no effect 

Speed limit 25 mph or less 30 mph 35 mph 45 mph or more 
Traffic Volume 
(AADT) 

≤6300 > 6300–≤14,000 > 14,000–≤27,000 > 27,000 

Functional Class Local Major or Minor 
Collector 

Minor Arterial Principal Arterial 

Sum of the bike 
lane and parking 
lane width 

15 ft. or more  15 ft. or more  15 ft. or more  15 ft. or more  

Bike lane blockage rare no effect frequent no effect 

Source: Mekuria et al. (2012) and Bearn et al. (2018) 

Table 2.2 LTS Criteria for Bike Lanes Not Alongside a Parking Lane 
Lane factor LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 
Through lanes per 
direction 

1 2, if directions are 
separated by a 
median 

more than 2, or 2 
without a 
separating median 

no effect 

Speed limit 30 mph or less no effect 35 mph 40 mph or more 
Traffic Volume 
(AADT) 

≤3000 > 3000–≤6300 > 6300–≤14,000 > 14,000 

Functional Class Local no effect Major or Minor 
Collector 

Minor Arterial 

Bike lane width 6 ft. or more  5.5 ft. or less no effect no effect 
Bike lane blockage  rare no effect frequent no effect 

Source: Mekuria et al. (2012) and Bearn et al. (2018) 

Table 2.3 Target Population of LTS Criteria in Mixed Traffic 
LTS Levels LTS ≥ 1 LTS ≥ 2 LTS ≥ 3 LTS ≥ 4 

Target Safety-aware 
children 

Most of the 
adult population 

Confident 
cyclists  

Fearless cyclists 

Criteria for 
mixed traffic 

2-3 lanes AND 
speed limit up to 

25 mph 

2-3 lanes AND 
speed limit up to 

30 mph 

4-5 lanes 
AND speed 

limit up to 35 
mph 

Any street width if speed limit 35 + 
mph OR Any speed limit if 6 + 
lanes OR Street width: 4-5 lanes 

AND speed limit 30 + mph 
Source: Mekuria et al. (2012)  

The original LTS categorized all segregated cycling facilities (shared-use paths, sidepaths) as LTS 1 
(Mekuria, Furth, and Nixon 2012). However, this approach does not incorporate the possible stress of 
bike and motor vehicle interactions at roadways, small intersections, and loading areas. Protected bike 
facilities, such as side lanes, one- and two-way cycle tracks, and raised cycle tracks, are categorized as 
LTS 2 due to motor vehicles and cyclists' possible interaction at mid-block roadways, crossings, and 
loading bays. 

The LTS 2 criteria are based on Dutch bike facilities planning and design criteria. Criteria for other traffic 
stress levels need either more isolation from traffic (for LTS 1) or increasingly less isolation (for LTS 3 
and 4) (Mekuria, Furth, and Nixon 2012). 
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LTS also addresses intersections. The original LTS criteria included measures such as the curb radius and 
the right-hand turn lane length. A crossing is categorized as low stress (LTS < 3) if the method is low 
stress and the crossing has a short right turn lane (< 150 ft. with a pocket bike lane and <75 ft. without a 
pocket bike lane) (Mekuria, Furth, and Nixon 2012). 

2.1.1.2 Using OpenStreetMap Data 

Obtaining the data discussed in the previous section to build an LTS network could be challenging, but 
OpenStreetMap (OSM) could be a useful alternative. OpenStreetMap (OSM) is a crowdsourced database 
of geographic characteristics that include administrative borders, route centerlines, structure footprints, 
and physical and natural features. OSM is continually updated and provides a useful source of network 
data for coordination and multimodal accessibility initiatives. This resource helps millions of users 
worldwide who can use OSM data without limitations. The data can be used to build a base map of 
bicycle networks. 

Some studies assessed the completeness of OSM tags and used OSM data to add LTS on networks. 
Hochmair et al. (2015) examined the integrity and accuracy of OSM tags linked to the bike infrastructure. 
They discovered a significant increase in the provision of information on cycling facilities within the 
OSM, and that the accuracy of this information is equal to or surpassing other datasets in Portland, 
Florida, Miami, and Oregon. Wasserman et al. (2019) found that OSM can create a successful LTS 
network with considerably less effort than traditional approaches. Murphy and Owen (2019) used OSM 
data to measure the utility of bicycle networks for real-world cyclists. They performed a national 
overview of low-stress bicycle connectivity through the use of OSM data to create low-stress bicycle 
networks in Minneapolis-St. Paul, Miami, Seattle, and Washington, D.C. 

2.1.1.3 Use of LTS Data 

LTS has been used and modified to assess bicycle network connectivity, biking behavior, accessibility, 
and bicycle safety. Table 2.4 shows studies that used the LTS model to identify and select infrastructure 
interferences for creating low-stress routes for cyclists and placing new bicycle facilities. No study, to our 
knowledge, has specifically validated LTS as a metric of cycling experience, but research has 
demonstrated a link between LTS and biking behavior. Prabhakar and Rixey (2017) studied the 
relationship between the level of traffic stress (LTS) and bike-share ridership in Montgomery County, 
Maryland. They demonstrated the effectiveness of the LTS measures in defining the impact of low-stress 
cycling links on ridership. They showed that the pairs of bike-share stations linked by a higher percentage 
of low-stress facilities had more bike-share trips. Linear regression was utilized to forecast the 
relationship between bike riding and low-stress bike interactions between stops, accounting for 
demographics, and built environment factors describing the regional context (Prabhakar and Rixey 2017). 
Wang et al. (2016)  attempted to validate the LTS model using census data, mode choice data, and 
regional household travel survey data. Their results were mixed. Their study relied on survey data rather 
than actual bicycle count data.  
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Table 2.4 Studies That used LTS Model 
Study Location Goal 
Geller (2009) Portland, Oregon Suggest that the four levels of LTS refer to the road 

conditions workable for the four types of cyclists. 
Mekuria et al.  (2012) California Develop the LTS ratings. 
Vogt (2015) New Hampshire Modify LTS to evaluate its relationship with bicycle 

crashes. 
Wang et al. (2016) Salem and Keizer, Oregon Measure the link between LTS and bike mode share 

and trip rates.  
Boettge et al. (2017) St. Louis, Missouri Use LTS to specific cyclists' stress experiences. 
Chen et al. (2017) Concord, Manchester, Nashua, 

Portsmouth, New Hampshire 
LTS with bicycle injury seriousness. 

Semler et al. (2017) Washington, D.C. Make an LTS network map as a baseline to highlight 
potential bicycle infrastructure investments. 

Moran et al. (2018) Philadelphia, Pennsylvania Level street network links matching to their capacity to 
contribute to low-stress connectivity. 

Wang et al. (2020) Ohio, Franklin County Analyze the interaction between bicycle network 
design and sharing mode. 

 

Two studies in New Hampshire evaluated the performance of LTS in estimating bike crash risk. Vogt 
(2015) modified LTS to evaluate its relationship with bicycle crashes in four cities in New Hampshire. 
She provided a new model for assessing bicycle safety using LTS, adding bicycle crashes as an additional 
layer to LTS maps. Chen et al. (2017) compared LTS dimensions and crash sites using GIS. They 
created a bike accident severity model, which integrates LTS measurements, using a mixed logit 
modeling framework. Visual mapping findings suggested a geospatial association between higher LTS 
roads and bicycle-type accidents. They found that LTS was correlated with the severity of cycling 
collisions and that high LTS may have differing effects on the accident's severity. However, more 
analyses were suggested to better understand the statistical importance and impact of LTS on accident 
severity (C. Chen et al. 2017).  

Other studies have used LTS to measure accessibility by bicycle. Pérez et al. (2017) and Semler et al. 
(2017) applied various LTS adaptations in Washington D.C. Semler et al. (2017) assessed the 
accessibility of cyclists in the district by using the LTS model to identify places that could benefit from 
bike infrastructure and attract a more significant percentage of cyclists on a low-stress network.  

Semler et al. focused on data needs. They minimized the amount of data that generally need field-work 
collection. Their findings provided a comprehensive inventory of the road's characteristics. They 
suggested their approach as a creative method of classifying the bicycle network into LTS that could be 
adopted by other places in the United States.  

Connectivity affects how convenient it is for a person to travel across a transportation system (Twaddell 
et al. 2018). A low-stress bicycle path is less useful and convenient if it is disconnected from other low-
stress paths. Examining the level of stress for an entire route from origin to destination requires 
examining the network elements that make up the trip and identifying the most stressful element along 
that route. A route is limited by the weakest connection rule, which means that its most stressful 
connection measures the route's stress. The route’s stress level, therefore, is not determined by the sum or 
average of stress levels along the route but rather the most stressful connection (Mekuria, Furth, and 
Nixon 2012). Stressful connections may be avoided by detours, but long detours indicate a poorly 
connected cycling network. 
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Cyclists' may be reluctant to ride their bikes for transport if a low-stress network involves a significant 
detour, considering their sensitivity to distance (Furth, Mekuria, and Nixon 2016). According to Schoner 
and Levinson (2014), the lack of a connected network can have consequences such as forcing the cyclist 
into mixed traffic roads, requiring longer routes to avoid a mixed traffic road, or stopping cycling 
altogether.  

Greenways and recreational cycling paths provide a high degree of safety but often do not connect homes 
to critical destinations such as schools, offices, shopping centers, and entertainment facilities. If such 
pathways are linked, they often need long detours relative to a street network and higher stress 
connections. Thus, to promote cycling, high-quality, well-connected, and direct infrastructures are 
needed. When a network is categorized using the LTS model, different metrics can be used to evaluate 
connectivity. By isolating LTS-level network connections, it is possible to calculate how connectivity 
varies for groups with varying stress tolerances. LTS 2 and LTS 1 connections are placed in the network 
representation to evaluate "low-stress" connectivity.  

Mekuria et al. (2012) considered that two points are connected if they can be accessed using only 
connections of a provided stress level while restricting the route to less than 25% beyond the shortest 
possible route. Two connectivity measures are established from percent of the trip linked, including a trip 
table, and percent of the nodes linked, which is a rougher approach if a trip table is not available. 

Furth et al. (2016) developed a rating method for visualizing and assessing the deficiency of connectivity 
in a low-stress bicycle network. They suggested a measure for connectivity, which is the fraction of the 
origin-destination pairs connected without high tension or unnecessary detour, with the origin-destination 
pairs weighted by the travel demand. Moran et al. (2018) applied LTS connectivity analysis to assess 
potential connectivity improvements from individual street-level projects.  

Research on low-stress connectivity can also be extended to show bicycle access to jobs or other 
destinations. Faghih Imani et al. (2019) built a city-wide stress cycling network for the city of Toronto 
and found a low level of cycling connectivity to employment (< 5000 jobs) across the city at lowstress 
levels (LTS≤2). The relation between low-stress access to work and the decision to cycle from home was 
explored using a binary logit model. The findings show that the measure of cycling accessibility, 
particularly low-stress access, has a significant impact on cycling as a mode of transportation (Faghih 
Imani, Miller, and Saxe 2019). Wang et al. (2020) similarly analyzed the effect of the LTS network on 
bicycle mode shares for commuting to work. They found that increasing the proportion of LTS 2 road 
segments was positively associated with the share of bicycle commuters, but no relationship was found 
between the proportion of LTS 1 road segments and bicycle mode shares, and social and cultural factors 
were found to be more significant predictors of decreases in automobiles. 

Other studies have focused on perceived factors to evaluate and place new bicycle facilities. Boettge et al. 
(2017) suggested that active cyclists should be consulted to integrate users' site-specific information into 
cycling infrastructure evaluations. They conducted an approach that surveys cyclists’ stress levels along 
the roads in St. Louis, MO. They found stress associations with speed limit, highway classification, and 
the number of lanes. The survey prioritizes streets with bike lanes to roads with shared lane markings or 
no infrastructure. The existence of cycling infrastructure did not correlate with the documented levels of 
stress (Boettge, Hall, and Crawford 2017).  

In addition to these studies based on LTS rating, many studies have incorporated geographic information 
systems (GIS) in their analysis. A new study proposed an information approach for road classification 
based on LTS, which relied on a clustering component combined with statistically tuned models and 
easily accessible road network data. Huertas et al. (2020) used the clustering component, which provided 
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a quick and effective way of separating related road network segments. They merged government data 
with open-access repositories utilizing geographic information systems (GIS) to identify road segments. 
The interpretative component accounts for assigning the LTS classification to the road segments) 
considering the location-specific context. They introduced their LTS-based classification technique in 
Bogotá, Columbia, applying LTS divisions low, medium, high, and extremely high, compatible with this 
Latin American metropolis's characteristics. 

Bearn et al. (2018) proposed an adapted LTS measure in terms of traffic, highway, and bikeway attributes 
to the data applicable to most planning and engineering organizations. The adapted LTS was used to 
identify and assess the bike network's connectivity in two case studies in Atlanta to test the technique and 
illustrate realistic implementations for infrastructure management. The research was performed in ArcGIS 
and offered findings that can be readily understood by the public and decision-makers while focusing on 
quantifiable road and route characteristics. 

To understand the route preferences and the level of low-stress cycling link between origins and 
destinations, Crist et al. (2019) evaluated GPS trip data from utilitarian bikers, who are those riding 
bicycle for transportation purposes rather than leisure or recreation. GPS data were gathered from adult 
cyclists over several days. The LTS score was allocated to all bikeable road segments in the network. The 
shortest routes between origin and destination along bikeable roads and low-stress routes (LTS 1 or 2) 
were determined. They connected road paths to the LTS network, and the LTS and distances observed 
were compared to the shortest and lowest stress roads. LTS maps were created to demonstrate the 
shortage of low-stress links (Crist et al. 2019). 

Some studies have analyzed the effects on bicyclists from riding in high-stress conditions. Physiological 
factor-based methodology studies used technologies to evaluate biological responses to conditions 
experienced by the bikers. To assess the effect of cycling on physical and mental health, Jones et al. 
(2016) studied 240 participants in U.K. cities. The galvanic skin response (GSR) data revealed that high 
tension levels relate to video observations and rider accounts of pedestrian disputes in many cases. They 
discovered that the GSR baselines varied considerably depending on the subject, and to address this 
problem, the participant data are distributed in three bands of different colors for high, medium, and low 
measurements. Locations where participants displayed elevated GSR values corresponded to intersections 
where participants suggested that they had safety issues (Jones, Chatterjee, Spinney, Street, van Reekum, 
et al. 2016). Another study closely related to this research quantified traffic and bicycle facilities' effect 
on average stress levels. Caviedes and Figliozzi (2018) suggested an innovative approach: real-world, on-
road physiological stress assessments as bicycles ride through various types of cycling facilities at peak 
and off-peak traffic hours. By comparing videos with stressful activities, it was possible to observe the 
conditions of these stressful events.  

2.1.2 Bicycle Level of Service and Other Measures 

The LTS rating is one measure of the compatibility of street segments to bicycle use, but various similar 
measures have been developed over the years. One such alternative is the Bicycle Level of Service 
(BLOS), described in the Highway Capacity Manual (HCM). This model is based on 10 features 
(including speed, geometric characteristics, and volume) used to produce a numeric ranking, then 
converted into a letter rating to describe bicycling convenience and safety (M. Lowry et al. 2012). The 
HCM-based LOS is a qualitative method used to measure the ease of adaptability of the traffic flow, 
primarily from the point of view of traffic service. However, the biker-perceived LOS puts a great deal of 
focus on the safety of bikers, in addition to the organizational criteria (Turner, Shafer, and Stewart 1997). 
This method is based on 10 features: 1) width of outside lane, 2) width of bicycle path, 3) width of 
shoulder, 4) quantity of busy on-street parking, 5) vehicle traffic volume, 6) vehicle speeds, 7) percent 
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heavy vehicles, 8) pavement condition, 9) existence of curb, and 10) quantity of through lanes (M. Lowry 
et al. 2012). Table 2.5 identifies examples of studies using the BLOS model 

Table 2.5 Studies That Used LOS Model 
Study Location Method 
Dowling (2008) Several different metropolitan areas of 

the United States 
Highway Capacity Manual 2010 LOS 

Landis et al. (1997) Different urban sections of the United 
States 

Bicycle level of service (BLOS) 

Jensen (2007) Denmark Danish BLOS  
Dixon (1996) Gainesville, Florida Gainesville bicycle LOS 
Foster et al. (2015) Chicago, Illinois; Portland, Oregon; and 

San Francisco, California 
LOS for protected bike lanes  

Kang and Lee (2012) South Korea BLOS 
 
Several studies have developed comprehensive measures to assess the bicycle level of service (BLOS), 
comfort, and roadway safety. They used different approaches to assess the satisfaction of bikers with the 
street environment. Approaches involved field surveys (e.g., volunteers taking a prescribed course), video 
labs, and web-based interest surveys. Many studies have developed strategies that forecast the mean level 
of service that would be listed by bikers. Most of the studies estimate the level of service of bicycles for 
street segments between signaled intersections. A few studies are based on forecasting the overall level of 
service on the arterial route. Petritsch et al. (2007) produced an arterial LOS method for bikers focused on 
a combination of video lab and field surveys. LOS reports were collected from 63 volunteers who took 
the 20-mile course in Florida in November 2005. 

Examples of segment LOS methods based on field surveys or video lab are Landis et al. (1997) and 
Jensen (2007). Landis et al. (1997) produced the earliest statistically calibrated BLOS method for road 
segments depending on real observations of 145 bikers worldwide. They designed cycling safety in terms 
of traffic flow, the number of lanes, speed limits, the proportion of heavy traffic, accessibility to land use, 
the outside lane's width, and pavement. The safety and comfort levels for the different road segments 
were measured from A to F. Jensen (2007) produced a BLOS method under Danish conditions. The 
Danish BLOS uses a cumulative-logit method that estimates the percentage of consumers in each of the 
six BLOS grades from "very satisfied" to "very dissatisfied." The Danish BLOS method is more detailed 
than the HCM BLOS and BCI; the Danish BLOS model weighted the effect of on-road bicycle roads and 
bike tracks separately (Jensen 2007). Foster et al. (2015) sought to create the first BLOS method for 
protected cycle paths.  

Dowling et al. (2008) developed LOS models in National Cooperative Highway Research Program 
(NCHRP) Report 616. They established a model for evaluating how well an urban street addresses the 
needs of all its travelers: car owners, bus travelers, bike riders, and pedestrians. Four different LOS 
methods (one for each mode) were inserted into the data of the video lab and field survey. The methods 
integrate the interactions of the other street users, both consciously and implicitly. They recommended an 
Integrated Multimodal LOS Model Framework for urban street users. The National Cooperative Highway 
Research Program Bicycle Level of Service (NCHRP BLOS) was written as a spreadsheet software 
engine and delivered to assist analysts in applying the LOS methods (Dowling et al. 2008). 

Griswold et al. (2018) argued that the quality of bicycle level of service measures could be enhanced 
based on empirically measured cyclist choices and expectations. They studied cycling patterns, interests, 
and user experience in the San Francisco Bay Area. They matched the facility preferences collected from 
a survey to the scores from the National Cooperative Highway Research Program Bicycle Level of 
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Service (NCHRP BLOS) and level of traffic stress (LTS). By combining statistics and behavioral 
analysis, they could improve the quality of bicycle level of service measures. 

Lowry et al. (2016) developed a new method for classifying bicycle stress based on the economic concept 
of the marginal rate of substitution (MRS), which is the rate at which a consumer is willing to give up one 
good in exchange for another. For bicyclists, MRS values can be evaluated based on analyses of route 
choices. For example, analysis of bicycle behavior may show that a bicyclist is willing to travel a certain 
distance farther in a bike lane than on a similar street without a bike lane. How much father they would be 
willing to travel to take that route provides information about how much less stressful, or more 
comfortable, it is to travel in a bike lane. Lowry et al. (2016) used these MRS values, along with the 
number of lanes and the speed limit, to reflect bicycle stress. 

Although the BLOS approach may, in theory, be used to rank the streets, it has some functional 
weaknesses. One is that it needs traffic volume and lane width data that are often inaccessible. The second 
is that there is no direct correspondence between the level of BLOS and the tolerance of the user; that is, 
the method does not seek to define a specific level of service as the minimum needed to support the 
majority population (Mekuria, Furth, and Nixon 2012). 

The Bicycle Compatibility Index (BCI) developed by Harkey et al. (1998) is another alternative. This 
index enables engineers to assess how appropriate a roadway is for bikes and motor vehicles' efficient 
operation simultaneously. This approach was developed based on speed, geometric data, and traffic 
volume. The BCI represents the variations between urban and suburban road segments. The sites chosen 
for the research were situated in five cities, reflecting various geographical conditions found in the United 
States. They watched a videotape of multiple road segments and assessed how comfortable they would 
feel traveling on each segment. The BLOS method and the BCI discuss the comfort of the bicycle along 
the road. The BCI method includes several additional aspects that may influence bikers' perceived 
comfort and safety level. This approach takes into account the existence of a bicycle lane or paved 
shoulder, the width of the bicycle lane or pavement shoulder, the width of the lane, the volume of the lane 
in one direction, the volume of the opposite lane, the 85th percentile speed of traffic, the existence of a 
parking lane of more than 30% occupation, the style of roadside construction and a modification factor 
for the volume of trucks, the turnover of parking spaces, and right-turn volumes.  

2.1.3 Summary 

The level of traffic stress (LTS) method was created to measure, track, and enhance bicycle networks' 
suitability. To properly reflect the acceptable tolerances of different types of riders, experts have 
established the LTS method. Due to its relative ease of data collection, LTS has rapidly become a 
standard used by researchers to calculate, track, and improve the bicycle network. The idea of bicycle 
stress levels was first created in 1978 by the Geelong Bikeplan Group in Australia (Harkey et al., 1998; 
Sorton & Walsh, 1994). A bicycle facility that is separated from traffic would have an LTS of 1 (lowest 
stress), while the LTS for bike lanes or for riding in mixed traffic can vary from 1 to 4 depending on bike 
lane width, bike lane blockages, street width, and vehicle speed (Mekuria, Furth, and Nixon 2012).  

The Bicycle Level of Service (BLOS) method is focused on the level of comfort provided by subjects 
who have completed a course involving a variety of bike paths and traffic situations. By linking those 
comfort levels to the characteristics of the different areas, they established a method for estimating the 
comfort rating that a person would assign to a road connection based on features such as traffic speed, 
traffic volume, the existence of a bike lane, the existence of a parking lane, whether the area is residential 
or not, and the volume of operating space accessible to bikes. Predicted levels are then classified into six 
levels of service, from A (best) to F (worst). 
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The LOS models could be used to compare the trade-offs between various street cross-sections from the 
viewpoint of each mode. LOS measurement is utilized as a traffic management system technique to 
establish project guidelines and goals but could also be useful for parallel and long-range transportation 
planning. A variety of methods were used to develop the various modal LOS models (Table 2.5). 

2.2 Determinants of Bicycle Use 

Bicycle use can be influenced by the characteristics or presence of bicycle facilities, characteristics of the 
street or street network, the built environment, and individual characteristics. Several studies have 
analyzed how these various factors are related to bicycle use. 

First, research has shown the relationship between bicycle facilities and bicycle use. Studies have shown 
that bike lanes have a positive effect on bicycling (Pucher, Dill, and Handy 2010; P. Chen, Shen, and 
Childress 2018; Zhao 2014; Buehler and Dill 2016). The characteristics of bike lanes can be important. 
Some research has shown greater comfort for bicyclists with wider lanes or buffered lanes because of the 
greater separation from traffic and from opening doors of parked cars (Buehler and Dill 2016). Studies 
have also shown a greater preference for separated facilities (Buehler and Dill 2016; Watkins et al. 2020). 
Watkins et al. (2020) found separated lanes with no curb parking as being rated the most comfortable.  

Connectivity of bicycle infrastructure is also important. While individual bike lanes or paths may be 
useful, encouraging bicycle use requires a network of connected bicycle facilities. Studies have shown 
that a dense network of connected bicycle facilities helps increase bike trips (Buehler and Dill 2016). 

In addition to bicycle infrastructure, the characteristics of streets and the street network are also important 
determinants of bicycle use. A network with greater street density, intersection density, and connectivity 
is easier to navigate by bicycle. Cervero et al. (2009) found that street density is positively associated with 
bicycling, and other research has shown the importance of connectivity (Zhao 2014; Y. Wang et al. 2016). 

The width of streets and the speed and volume of automobile traffic can also play a role. Neighborhood 
streets with low volumes of automobile traffic are more attractive for bicycle use. While studies have 
shown that adding bike lanes to busier streets increases bicycle comfort and use on those streets, these 
bike lanes are not necessarily any more attractive than bicycling on a low volume street (Broach, Dill, and 
Gliebe 2012). 

Research has shown that traffic calming efforts and reduced automobile speeds have had positive effects 
on bicycling (Pucher, Dill, and Handy 2010; P. Chen, Shen, and Childress 2018; Buehler and Dill 2016; 
Cui, Mishra, and Welch 2014). Cyclists have also been found to be sensitive to traffic volumes (Broach, 
Dill, and Gliebe 2012; Buehler and Dill 2016; Cui, Mishra, and Welch 2014), slope (Broach, Dill, and 
Gliebe 2012; P. Chen, Zhou, and Sun 2017; P. Chen, Shen, and Childress 2018; Cervero et al. 2009; 
Fraser and Lock 2011), intersection control (Broach, Dill, and Gliebe 2012), turn frequency (Broach, Dill, 
and Gliebe 2012), and distance (Broach, Dill, and Gliebe 2012; P. Chen, Shen, and Childress 2018; Fraser 
and Lock 2011). Additional vehicle lanes also tend to decrease cyclist comfort in most cases (Watkins et 
al. 2020). Focus groups conducted by Watkins et al. (2020) revealed that curbside parking was one of the 
biggest deterrents to bicycling. Bicyclists may be less likely to choose a route that has more traffic signals 
or, to a lesser extent, stop signs, unless conflicting traffic volumes are high, in which case signals are 
preferred (Broach, Dill, and Gliebe 2012; Buehler and Dill 2016). 
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Sensitivity to many of these factors vary between individuals. Inexperienced bicyclists have greater fear 
of motorized traffic (Buehler and Dill 2016). Experienced bicyclists tend to prefer on-street lanes to bike 
paths (Pucher, Dill, and Handy 2010). Bike commuters are less sensitive to car traffic volume and speeds 
(Buehler and Dill 2016). Preferences may also differ depending on the purpose of the bicycle trip. For 
example, cyclists are more sensitive to distance for commute or utilitarian trips (Broach, Dill, and Gliebe 
2012). 

Studies of bicycle use often control for demographics, including age, gender, income, education, car 
ownership, and employment status, and some also control for psychological factors, such as attitudes and 
perceptions (Buehler and Dill 2016). Watkins et al. (2020) found that age and education had significant 
effects on comfort, safety, and willingness to try using bicycle routes. Some research has shown greater 
bike use in neighborhoods with a higher percentage of white population and younger adults (P. Chen, 
Zhou, and Sun 2017). Studies have also found that attitudes are important in predicting bicycling behavior 
(Ma and Dill 2015). Watkins et al. (2020) found that attitudes regarding car dependence, bike enjoyment, 
active travel, and risk-taking were important. 

Areas with higher employment density have also been found to have greater bicycle use (P. Chen, Zhou, 
and Sun 2017; Cui, Mishra, and Welch 2014), as have areas with mixed land use (P. Chen, Shen, and 
Childress 2018; Zhao 2014; Y. Wang et al. 2016). Some research has also shown increased bicycling in 
areas with greater population density, household density, and school enrollment density (Cui, Mishra, and 
Welch 2014). Cyclists may also prefer routes near water, parks, and trees (P. Chen, Shen, and Childress 
2018; Fraser and Lock 2011). 

2.3 Crowdsourced Bicycle Use Data 

One of the major challenges to bicycle research and understanding bicycle usage is a lack of bicycle count 
data. Collecting bicycle count data manually or with automatic counters can be time consuming or 
expensive, so the number of locations for which bicycle count data are available is limited in most cities. 
This is especially true in smaller cities.  

In Fargo-Moorhead, the Metropolitan Council of Governments (Metro COG) has placed a total of five 
automated counters at various locations. These counters count passersby throughout the year, but they 
have several drawbacks. They are limited to just five locations; they may undercount the number of 
people traveling in a group, counting two people as one; and most importantly for bicycle analysis, they 
do not differentiate between bicycles and pedestrians. In addition to these five automatic counters, there is 
one automatic counter installed by the Minnesota Department of Transportation (MnDOT) that is able to 
differentiate between bicycles and pedestrians, but having just one counter is of limited use for bicycle 
analysis and is certainly not capable of helping us understand how bicycle volume varies through the city 
and the factors that contribute to that variation. 

Metro COG supplements the automated counters with manual counts conducted at 16 locations in the 
Fargo-Moorhead metro area. These counts are conducted once a year for a four-hour period on a typical 
weekday in September (some locations are counted for two consecutive weekdays, depending on 
availability of staff and resources). These counts differentiate between pedestrians, bicyclists on the 
path/sidewalk, and bicyclists on the street. The manual counts are more useful for bicycle research 
because they differentiate between bicycles and pedestrians and they cover a larger number of locations, 
but the data are still limited in that they are collected over a short period of time, and 16 locations is 
insufficient for detailed analysis. Understanding how variations in bicycle facilities, street design, and 
other factors influence bicycle use requires much more extensive count data. 
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One potential solution to this data problem is the use of crowdsourced data. In recent years, researchers 
have begun using crowdsourced data to study various problems relating to bicycle use. This includes 
crowdsourced data to map ridership, assess safety, map infrastructure, and track attitudes (Nelson et al. 
2020). Crowdsourced ridership data can be obtained through fitness apps that collect data by using GPS-
enabled smartphones or other GPS devices. One of the more popular of these apps is Strava. Strava also 
provides a data product, called Strava Metro, that has emerged recently as a new data source for analyzing 
bicycle ridership. Strava data have been shown to have potential for identifying travel patterns, estimating 
travel demand, and analyzing route choice (Lee and Sener 2020; Alattar, Cottrill, and Beecroft 2021). The 
data have also been used to study bicycle safety (Ugan et al. 2022; Fischer et al. 2022), gender inequality 
(Battiston et al. 2022), bicyclist exposure to air pollution (Lee and Sener 2019), and behavioral changes 
during and following the COVID-19 pandemic (Venter et al. 2021; Schweizer et al. 2021). 

Strava users track their bicycle trips with their phone or GPS device and share that data with the Strava 
app. Strava Metro removes any identifiers from the data, aggregates the data, and provides the data to 
transportation planners. Researchers have shown that, while the data have limitations, Strava Metro data 
can be used to analyze ridership and evaluate the impact of infrastructure changes. These data have the 
advantage of extensive coverage, providing far more data than could be collected using traditional 
methods. Griffin et al. (2020) argued that while big data, such as crowdsourced data, has potential biases, 
it should be used to address transportation challenges not solvable using traditional methods, including 
planning for bicycling, pedestrian, and emerging transportation modes.  

2.3.1 Bias in Strava Data 

One potential concern in using crowdsourced data such as Strava is that the data may not be 
representative and could be biased. This bias could be expected because only a small percentage of 
bicycle riders use Strava. Strava users are limited to those with access to the technology and the 
motivation to use it. If transportation decisions are based on the behavior of those who use a particular 
technology the most, others could be excluded, and urban equity issues could worsen (Nelson et al. 2020). 

Lee and Sener (2020) reviewed studies that have applied Strava data and found that these data typically 
represent 1-5% of total bicycle volume. Bias could occur if certain groups of people are more likely to use 
Strava or if Strava is more likely to be used for certain types of trips. Both sources of bias could be 
concerns. Research on the degree or seriousness of the bias is mixed. 

Studies indicate Strava users are more likely to be male and aged 25-44 (Lee and Sener 2020). However, 
bicycle users, in general, are also more likely to be male and younger. Children are not represented in the 
Strava data, because Strava policy restricts users to those who are 16 or older. Nelson et al. (2020) 
concluded that despite demographic bias, the spatial patterns may be representative.  

Because Strava is a fitness app, it may be more likely to be used for exercise or recreational trips and less 
for utilitarian or commute trips. Garber et al. (2019) found that fitness app users, not specifically Strava 
users but users of any smartphone app for recording rides, rode proportionately more for leisure. These 
apps are not exclusively used for leisure or fitness, as Garber et al. (2019) found most users commonly 
report utilitarian trips, and Lee and Sener (2020) found that about 20-40% of Strava cycling is for 
commuting, but Garber et al. (2019) concluded that the app data may over-represent recreational rides. 
Kwayu et al. (2021) also recommended that data from fitness apps be complemented with other data 
sources to capture travel behaviors of both commuting and recreational riders. 
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Bicyclists riding for recreation may choose different routes or use different types of facilities than those 
riding for utilitarian purposes. Those riding for utilitarian purposes may be more likely to choose the 
shortest route, avoid hills, and use on-street facilities, while recreational riders may be more likely to use 
separated paths and may seek challenging terrain (Garber, Watkins, and Kramer 2019; Griffin and Jiao 
2015). While some research found that Strava users prefer steeper terrain (Griffin and Jiao 2015), other 
research found that Strava users prefer flatter segments (Lin and Fan 2020b). 

Sultan et al. (2017) analyzed crowdsourced data in the Netherlands and Germany and found bicyclists 
commonly prefer longer routes through safe, more attractive, and popular areas. While Strava data could 
be biased toward recreational, off-street trails, Hochmair et al. (2019) found just the opposite. They found 
that Strava under-counted ridership on these trails, which they speculated could be due to Strava users 
wanting to ride at a faster pace and therefore selecting on-street riding. Some research, such as that by 
Sanders et al. (2017) in Seattle, has found no discernible bias in the Strava data toward recreational riding. 
Garber et al. (2019) also concluded that at the individual level, app users and non-app users had similar 
infrastructure preferences. Jestico et al. (2016) concluded that in urban areas, recreational riders and 
commuters may use the same routes. 

Based on this review of the literature, there is a possibility of demographic and spatial bias within the 
Strava data. However, the evidence regarding the size and seriousness of the bias is inconclusive and 
mixed. 

2.3.2 Correlation Between Strava Counts and Official Bicycle Counts 

Despite potential bias, some studies have shown that the Strava counts are significantly related to 
observed bicycle counts (Jestico, Nelson, and Winters 2016; Dadashova and Griffin 2020).  Jestico et al. 
(2016) concluded that even though Strava users represent a small portion of all cyclists, the crowdsourced 
data may be a good proxy for estimating cycling volumes. Research has shown strong correlations 
between Strava counts and observed count data. Lee and Sener (2020) reviewed several studies that found 
correlations greater than 0.75 between Strava data and actual count data.  Conrow et al. (2018) found a 
correlation of 0.79 in Sydney, Australia. They found the correlation to be higher in areas with lower 
population density, greater social disadvantage, and lower ridership overall. 

Lee and Sener (2020) concluded that Strava data can be generalizable to the entire population, but the 
validity of the results may depend on temporal aggregation and the analysis site. Large enough time and 
spatial frames should be used to improve the validity of the results. One potential problem with the Strava 
data is that Strava does not report counts on segments with fewer than three users, for privacy reasons, 
which could result in ridership not being counted on some segments. The sampling issues with Strava 
could be corrected by using a longer time frame or larger spatial aggregation (Lee and Sener 2020).  

2.3.3 Modeling with Strava Data 

A few studies have developed models to understand the effects of the types of bicycle facilities, road 
network characteristics, land use characteristics, demographics, terrain, and other factors on bicycle use, 
as measured by the count of Strava users (Dadashova and Griffin 2020; Griffin and Jiao 2015; Hochmair, 
Bardin, and Ahmouda 2019; Jestico, Nelson, and Winters 2016; Lin and Fan 2020b; Orellana and 
Guerrero 2019; Garber et al. 2022; Munira and Sener 2020). These studies developed regression models 
using the Strava counts as the dependent variable (Table 2.6). Some of these studies aggregated Strava 
data at the census block group level (Griffin and Jiao 2015; Hochmair, Bardin, and Ahmouda 2019). 
Others used street segments as the unit of analysis (Lin and Fan 2020b; Orellana and Guerrero 2019). 
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Table 2.6 Studies That Have Modeled Strava Bicycle Counts 
Study Location Explanatory Variables 
Dadashova and Griffin 
(2020) 

Texas Roadway facility, household income, demographics, population 
density, weather conditions 

Griffin and Jiao (2015) Travis County, 
Texas 

Gross activity density, regional diversity, average percent slope, 
bike lanes, bike paths, roadway shoulder > 1.2 meters 

Hochmair et al. (2019) Miami-Dade 
County, Florida 

Road network characteristics (functional class, bicycle facility type, 
off-street paths, intersections, network impedance, betweenness 
centrality), built environment characteristics (bicycle park, bridge, 
distance to central business district, distance to ocean or bay, near 
university, mixed density index, greenness), socio-demographics 
(income, race, gender, number of jobs, median age, car ownership) 

Jestico et al. (2016) Victoria, British 
Columbia 

Slope, population density, pavement widths, on-street parking, 
posted speed limits, bicycle facilities 

Lin and Fan (2020b) Charlotte, North 
Carolina 

Temporal variables, road characteristics (length of road segment, 
number of lanes, one-way), sociodemographic characteristics 
(household income, total households), geometry (slope), bicycle 
facilities (off-street paths, bike lanes, signed bike lanes, suggested 
bike routes) 

Orellana and Guerrero 
(2019) 

Cuenca, 
Ecuador 

Social-economic and land use conditions (household density, living 
conditions index, and land use mix), infrastructure variables (road 
hierarchy, existence of segregated bike lane, number of 
intersections), physical conditions (slope) 

Munira and Sener 
(2020) 

Austin, Texas Age, education, income, frequency of schools and office 
establishments, distance from transit hub, number of transit stops, 
sidewalks, and trails 

 
These studies found significant associations between Strava counts and bicycle facilities, roadway 
characteristics, and other factors. Griffin and Jiao (2015) found greater bicycle volumes for roads with 
bike lanes, shoulders, and paths, and bike use was found to be greater in and near populated places with 
businesses. They also found greater volumes on roads with challenging terrain, likely because of Strava 
users seeking the challenge, though other studies have found that slope has a negative effect. Orellana and 
Guerrero (2019) found that the road hierarchy and segregated cycle paths had a strong influence on 
bicycle use. Hochmair et al. (2019) showed that on-road cycling facilities on low-traffic roads and off-
road trails are associated with an increase in bicycle use for Strava users, and that bicycle facilities on 
arterial roads did not affect bike use. Lin and Fan (2020b) concluded that variables associated with 
providing higher safety and comfort levels, such as off-road paths and suggested bike routes, are 
positively associated with bike use.  

Chen et al. (2017) examined the correlation between Strava data and the bicycle level of traffic stress 
(LTS). They found that roadways with LTS 2 have the most total Strava trips and those with LTS 4 have 
the least. In general, they found Strava users tended to choose routes with lower LTS, which is expected 
as those roadways with higher LTS are less safe for bicyclists. 

Some research has used Strava data to examine the impacts of new bicycle infrastructure (Boss et al. 
2018; Heesch et al. 2016). Boss et al. (2018) used Strava data to compare changes in ridership following 
three infrastructure projects in Ottawa-Gaineau, Canada, and they found cyclists shifted their routes to 
take advantage of the new infrastructure. 
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Spatial autocorrelation needs to be considered when modeling with Strava data (Griffin and Jiao 2015; 
Hochmair, Bardin, and Ahmouda 2019; Lee and Sener 2020). Griffin and Jiao (2015) employed a 
geographically weighted regression. Hochmair et al. (2019) used a spatially filtered regression model, and 
they noted that several coefficients that were significant in other studies and in their nonspatial models 
became insignificant in the spatially filtered regression model. 

Using Strava data in conjunction with other data sources could provide improved bicycle ridership 
estimates. Some studies have attempted to correct for biases in the Strava data and provide improved 
estimates of bicycle use. These studies developed models of bicycle use with the official bike counts at 
counting locations as the dependent variables and Strava counts as one of the independent variables. For 
example, Sanders et al. (2017) modeled bicycle use in Seattle as a function of land use variables, 
transportation system variables, and Strava counts. They found that the model fit improved by adding the 
Strava data. Lin and Fan (2020a), similarly modeled bicycle manual counts as a function of Strava counts 
along with road network characteristics, slope, socio-demographic data, zoning, temporal data, and 
bicycle facility data in Charlotte, North Carolina. Nelson et al. (2021) found that Strava data can be used 
as an input to map bicycle ridership across a city. They modeled official bike counts in several North 
American cities as a function of the number of Strava riders and several variables for safety and design, 
land use, demographics, socio economics, topography, and climate. Livingston et al. (2020) studied 
Strava data in Scotland and concluded that the crowdsourced data could be used to predict the order of 
magnitude of cycling flows but that it lacks precision, making it unable to detect small changes bicycle 
use. 

Roy et al. (2019) showed that models such as these could correct for biases in the Strava data and provide 
reasonably accurate estimates of bike use. They modeled bicycle counts in Maricopa County, Arizona, as 
a function of Strava data along with built environment measures, demographics, land use mix, socio-
economic factors, and commute patterns. They found that the most significant variables for correcting 
bias were the proportion of the population that is white, median household income, traffic speed, distance 
to residential areas, and distances to green spaces. In testing their model, Roy et al. (2019) found the 
estimated counts were correct to within 25% of observed counts in 80% of road segments. While using 
such a model to correct the bias in Strava data could be useful, it also requires a sufficient number of 
official counts to build and test the model. 
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3. LEVEL OF TRAFFIC STRESS MAP FOR FARGO-MOORHEAD 

Following the methods developed in previous studies, a level of traffic stress (LTS) map was developed 
for the Fargo-Moorhead metropolitan area. This section describes the methods used for categorizing the 
level of traffic stress, the data sources, and the results. 

3.1 LTS Methodology 

3.1.1 Criteria Used for Categorizing the Level of Traffic Stress 

Based on geometric design and traffic factors, this section provides the criteria for classifying road 
segments and separating bicycle facilities by the level of traffic stress. These criteria are proposed based 
on traffic features such as road width, traffic speed, annual average daily traffic volume, functional class, 
and the presence of or lack of on-street motor vehicle parking, and whether bikes are in mixed traffic, 
bike lanes, or on segregated routes. Road segments and bike facilities are classified as LTS 1, LTS 2, LTS 
3, and LTS 4. LTS 1 roads and bikeways are the least stressful, with low traffic levels and speed 
restrictions, whereas LTS 4 roadways and bikeways are the most stressful, with high traffic volumes and 
speed limitations. To categorize the Fargo-Moorhead area in terms of the level of traffic stress, the area 
was divided into three classes of bikeways: paths that are physically separated from traffic, on-street 
bikeways, and mixed traffic streets. Figure 3.1 shows the workflow to prepare the data for bike level of 
traffic stress classification. 

 

 
Figure 3.1 Workflow for Bike Level of Traffic Stress Classification 
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3.1.1.1 Criteria for separated bicycle facilities 

According to research, people prefer riding on segregated bicycle infrastructure (Broach, Dill, and Gliebe 
2012). Physically separated bikeways, multi-use pathways, walkways in parks, and trails are given the 
lowest level of traffic stress, LTS 1. So, all separated cycling facilities (shared-use pathways and 
protected cycle tracks) were categorized as LTS 1 in the original LTS. 

This category does not include sidewalks unless they are designated for biking or shared-use pathways. 
Therefore, in this study, separated cycling facilities and shared-use routes that are the most segregated 
from motor vehicle traffic are classed as LTS 1. 

3.1.1.2 Criteria for bikeways 

All facilities where a bicycle is permitted such as roadways, shared-use pathways, or greenways are 
considered part of the bicycle network. In the United States cyclists are allowed to travel on bicycle-
exclusive and shared facilities, including any unrestricted roadway. Bike lanes can experience the whole 
spectrum of traffic stress (Mekuria, Furth, and Nixon 2012). If bike lanes are wide enough and are located 
on a road with moderate and straightforward traffic, they can create a low-stress riding environment. 
However, if bike lanes are located on roads with high speeds or aggressive traffic, or close to high-
turnover parking lanes with insufficient clearance, they can create a high-stress environment. 

For the purposes of bikeways LTS analysis, the features that were considered in this study are the type of 
bikeways, annual average daily traffic volume, speed limits, functional class of roads, number of road 
lanes, and other bikeways characteristics, such as whether the facility is alongside a parking lane or not. 
On-street bikeways in the Fargo-Moorhead area are categorized as buffered bike lanes, signed only, 
shared-lane markings (commonly referred to as sharrows), shoulders, and separated bike lanes. In 
addition, the presence of parking lanes alongside bikeways were extracted from Google Earth.  

This study used different criteria for bikeways alongside a parking lane and those not alongside a parking 
lane. As mentioned before, bikeways separated from traffic were considered LTS 1, and the other types of 
bikeways, such as bike lanes, signed only, shared-lane markings, and shoulders (except buffered bike 
lanes which have specific criteria in this study), were categorized through these criteria as LTS 1 to LTS 4 
after determining whether they were alongside a parking lane or not. Tables 3.1 and 3.2 were provided by 
Bearn et al.  (2018) which define the four LTS categories used in this research regarding speed limits, the 
number of lanes, functional class, and traffic volume.  

Table 3.1 Criteria for Bikeways Not Alongside Parking Lane 
LTS≥1 LTS≥2 LTS≥3 LTS≥4 

Through lanes per direction 1 (No effect) ≤2 (No effect) 
Traffic Volume (AADT) ≤6300 >6300–≤14,000 >14,000- ≤27,000 >27,000
Functional Class Local Major or Minor 

Collector 
Minor Arterial Principal Arterial 

Speed Limit ≤25mph 30 mph 35 mph ≥40mph 
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Table 3.2 Criteria for Bikeways Alongside Parking Lane 
LTS≥1 LTS≥2 LTS≥3 LTS≥4 

Through lanes per direction 1 (No effect) ≤2 (No effect) 
Traffic Volume (AADT) ≤3000 >3000–≤6300 >6300- ≤14,000 >14,000
Functional Class Local (No effect) Major or Minor 

Collector 
Minor Arterial 

Speed Limit ≤25mph 30 mph 35 mph ≥40mph 

3.1.1.3 Number of through lanes per direction 

Street width has a major impact on cyclists' perception of security, which is evaluated in this study by the 
number of through lanes per direction. Multilane highways, as opposed to those with a single lane in each 
direction, promote faster traffic speeds and more "turbulent" traffic since they are less restricted and 
predictable. At driveways and junctions, a multilane environment reduces a cyclist's visibility to left-
turning and cross-traffic (Mekuria, Furth, and Nixon 2012). In the Fargo-Moorhead area, most local 
streets are one lane in each direction, which could be the best reason for classifying them as LTS1.  

The LTS based its criterion for the number of lanes on the Dutch CROW Design Manual but amended the 
Dutch requirements to allow for additional lanes per direction if the route featured a median. Because of 
the lack of data on the placement of medians in the case study area and data on the impact of medians on 
speeds and bike collisions, this study did not include medians. 

It would be preferable to consider if the bicycle lane and parking lane width were adequate to reduce 
perceived stress due to the potential of a car door opening in the path of a bicyclist, referred to as 
“dooring.” Therefore, this study evaluated less traffic volume on the streets with bikeways alongside 
parking lanes than those not. However, because data on parking and bicycle lane width is generally 
unavailable, this study confined data collection to the presence or lack of on-street parking close to bike 
lanes. Therefore, data on parking lanes alongside the bikeways for Fargo and Moorhead were obtained 
manually from Google Earth, as the data was not available.  

3.1.1.4 Speed limit 

The comfort of bikers is affected by traffic speed, and bicycling is discouraged by high motor vehicle 
traffic speeds. When available, measurements of observed speed are the best data to utilize, especially 
when observed traffic speed and the posted speed limit vary. However, in general, measurements of 
observed speed are not widely available, so speed limit could be a good alternative, especially in cities 
where speed cameras control speeds, making actual speeds conform with the speed limits. In this study, 
due to lack of data, speed limits were considered instead of actual speeds. 

In Fargo, although speed limits differ, they are generally 25 mph on residential and local streets and 
higher on higher-order roads. These speed limits generally correspond with actual traffic speeds. But in 
Moorhead, the speed limit may not be a good alternative to actual speed because the speed limit of 30 
mph is used in residential and local streets. In some local streets, traffic runs at speeds of 25 mph, and on 
some roads like arterials where actual speeds can exceed 35 mph. But due to the lack of data, we 
considered speed limits instead of prevailing speed, which was the main reason that most of the local 
streets in Fargo are categorized as LTS1. However, most Moorhead streets are classified as LTS2. 
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3.1.1.5 Traffic volume or Annual Average Daily Traffic (AADT) and functional class 

When categorizing facilities, the original LTS did not consider traffic volume or functional class. 
However, according to studies, most people who wish to ride their bikes more frequently see "too much 
traffic" as the most significant environmental barrier. As a result, this study covered traffic volume and 
functional class. According to the USDOT FHWA Highway Functional Classification Concepts, Criteria, 
and Procedures, the number of travel lanes and functional class are closely related: "roadways are built 
and constructed according to their expected function." Most travel takes place on a network of 
interconnected roads, with each roadway segment moving traffic through the system toward destinations. 
The idea of functional categorization outlines the role that a certain highway segment performs in 
servicing the network's traffic flow. Roadways are classified in one of many functional classes within a 
hierarchy based on the type of transport service they provide (U.S. Department of Transportation Federal 
Highway Administration, 2013). An arterial, for example, is meant to be a high-capacity road with more 
travel lanes, but a collector has fewer travel lanes than an arterial, and a local road has even fewer travel 
lanes than a collector. When comparing the shortest route to the actual path, bicycles used arterial 
highways substantially less frequently than predicted by the shortest route model and used local roads 
significantly more frequently  (Winters et al. 2010). 

The AADT information for Fargo was manually extracted from an interactive map from Metro COG for 
2015, and 2018 AADT data for Moorhead was extracted from Metro COG's shapefile. 

3.1.1.6 Criteria for buffered bike lanes with and without on-street parking 

A buffer can be placed in a buffered bike lane between the bicycle lane and the motor vehicle lane and 
between the bicycle lane and the motor vehicle parking lane or curb. In addition, Fees et al. (2015) 
described research showing that a buffered bike lane eliminates or reduces the threat of “dooring” when 
the lane travels alongside on-street parking. Some bikeways are buffered in the Fargo-Moorhead area, so 
we need to set the specific criteria for these kinds of bike lanes. Tables 3.3 and 3.4 show the criteria for 
buffered bike lanes with and without on-street parking (Bearn, Mingus, and Watkins 2018). 

Table 3.3 Criteria for Buffered Bikeways Not Alongside Parking Lane 
LTS≥1 LTS≥2 LTS≥3 LTS≥4 

Through lanes per direction 1 (No effect) ≤2 (No effect) 
Traffic volume (AADT) ≤6300 >6300–≤14,000 >14,000- ≤27,000 >27,000
Functional class Local or Major or 

Minor Collector  
(no effect) Minor Arterial Principal Arterial 

Speed limit ≤30mph 35 mph 40 mph (no effect) 

Table 3.4 Criteria for Buffered Bikeways Alongside Parking Lane 
LTS≥1 LTS≥2 LTS≥3 LTS≥4 

Through lanes per direction 1 (No effect) ≤2 (No effect) 
Traffic volume (AADT) ≤3000 >3000–≤6300 >6300- ≤14,000 >14,000
Functional class Local Major or Minor 

Collector 
Minor Arterial Principal Arterial 

Speed limit ≤25mph 30 mph 35 mph ≥40mph 
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3.1.1.7 Criteria for mixed traffic streets 

The level of traffic stress is considered unaffected by signs, shared-lane markings, or a wide outer lane 
where bikes share space on the road with motor vehicles. Studies have proven that shared-lane markings 
offer a little advantage, but nothing close to the benefit of defining an exclusive biking zone by marking a 
bike lane. Studies of wide-lane conversions (when a wide lane is divided into a travel lane and a bike 
lane) have consistently shown that bicyclists experience less stress when a bike lane line formally 
separates the bicycling zone, as evidenced by a shift in cyclist position away from right side hazards. 
Beyond the effect of the operational area provided by the bike lane, bike lane stripes improve the level of 
traffic stress by nearly one level (e.g., 3 to 2 or 2 to 1) (Mekuria, Furth, and Nixon 2012). 

This study considered that level of traffic stress when riding in a mixed traffic street depends on the 
number of lanes, speed limits, traffic volume, and functional class; related criteria are illustrated in Table 
3.5 from the Bearn et al. (2018) study. For example, in multilane traffic with 40 mph or greater speeds 
and traffic volume of 14000 vehicles per day or greater, LTS is 4. 

Table 3.5 Criteria for Mixed Traffic Streets 
LTS≥1 LTS≥2 LTS≥3 LTS≥4 

Through lanes per direction 1 (No effect) ≤2 (No effect) 
Traffic volume (AADT) ≤2000 >2000–≤6000 >6000- ≤14,000 >14,000
Functional class Local (No effect) Major or Minor 

Collector 
Minor Arterial 

Speed limit ≤25mph 30 mph 35 mph ≥40mph 

3.1.1.8 Criteria for mixed traffic in the presence of right-turn lanes 

Bicyclists will be in a high-stress situation if there is an auxiliary right lane and no bike lane, either 
because the street does not have bike lanes or because the bike lane is dropped to make room for an 
auxiliary lane. Unless the right-turn lane is so little used and has low traffic speeds, cyclists can share it as 
a de facto bike lane with right-turn cars. When a roadway has a bike lane for part of the block but not on a 
junction approach, the block is classified as having no bike lane. As a result, the requirement to ride in 
mixed traffic will be factored into the base segment's traffic stress level (Mekuria, Furth, and Nixon 
2012). Table 3.6 from Mekuria et al. (2012) study shows the level of traffic stress criteria related to mixed 
traffic in the presence of a right-turn lane. 

Table 3.6 Level of Traffic Stress Criteria Related to Mixed Traffic in the Presence of a Right-Turn Lane 
Configuration Level of Traffic Stress 

Single right-turn lane with length < 75 ft. and intersection angle and curb radius limit 
turning speed to 15 mph 

(no effect on LTS) 

Single right-turn lane with the length between 75 and 150 ft., and intersection angle 
and curb radius limit turning speed to 15 mph 

LTS > 3 

Other LTS = 4 

The data required to apply these criteria for the Fargo-Moorhead area was unavailable, and it was 
provided manually from shapefiles, So, it was only used in a few right-turn lanes. However, most streets 
with right-turn lanes were multilane arterials with a stress level of 3 or 4, so this step did not significantly 
impact the results. 
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3.1.1.9 Criteria for Unsignalized Intersections 

Auxiliary turn lanes are frequently created as roadways approach signalized junctions. The effect of 
additional left-turn lanes on bicycles may be ignored because cyclists typically keep to the right. 
However, additional right-turn lanes challenge a cyclist's regular position and create a weaving problem. 
Following the "weakest link" concept, the stress level associated with an intersection approach should be 
aggregated with the stress level previously allocated to a segment. As a result, the features of an 
intersection approach might worsen rather than improve a segment's LTS (Mekuria, Furth, and Nixon 
2012). Unsignalized crossings can be risky, especially if they require crossing several lanes and include 
fast traffic. When a segregated path crosses a roadway or ends at an intersection, there is a high possibility 
for motor vehicle and bicycle conflict. Bicyclists using a protected cycling facility, bicycle lane, or shared 
travel lane are also more likely to suffer increased perceived stress at unsignalized crossings, especially if 
the roadway being crossed has several lanes and a higher posted speed limit (Bearn, Mingus, and Watkins 
2018). Therefore, in this study, the traffic stress associated with unsignalized crossings was calculated by 
Bearn's LTS, calculating the intersection LTS as the LTS level of the highest-stress street. So, if a low-
stress street crossed a high-stress artery, the intersection was classified as high-stress. For example, if a 
street is considered LTS 3 while a crossing approach on either end of the street has LTS 2, the combined 
stress level remains LTS 3; but if the approach has LTS 4, the combined stress level for the road will be 
LTS 4. 

3.1.1.10 Criteria for signalized intersections 

The original LTS guideline defines a set of design requirements for signalized junctions with right-turn 
lanes. In addition, the original LTS methodology needs particular design parameters such as curb radius 
and right turn lane length, which are not available for the case study. 

Signalized crossings are not often a barrier to riding and so were not included in the criteria used in this 
study. Long crossings on roadways where the bicycle's signal period is too short for a slow rider to cross 
before conflicting traffic is receives a green signal might be added as an exemption (Mekuria, Furth, and 
Nixon 2012). However, because data on signal timings correlated with crossing length are not widely 
available, this aspect was not addressed in this study. Consequently, the signalized junction LTS criterion 
did not affect the overall network connectivity. 

3.1.2 Data 

Shapefiles were obtained from the Fargo-Moorhead Metropolitan Council of Governments (Metro COG) 
for roadways, bikeways, and shared-use paths. They include a comprehensive inventory of roadways and 
road characteristics. Data sources used for this study were from Metro COG, the Minnesota Department 
of Transportation, and Google Earth: 

• Roads shapefiles for Fargo and Moorhead (Clay_Road_CLs, Fargo_Road_Centerline) from
Metro COG include data on each street segment, including its geographical coordinates, number
of lanes, speed limit, functional class, and shape length.

• A bikeways shapefile (Bikeways_08192020) from Metro COG for the Fargo-Moorhead area
includes data on each bikeway, including its geographical coordinates, type of bikeways, and
shape length.

• A shared-use-paths shapefile (Shared_Use_Paths_08192020) from Metro COG for the Fargo-
Moorhead area includes data on each shared-use-paths, including its geographical coordinates,
pavement, width, and shape length.

• A traffic signal shapefile for Fargo from Metro COG indicating which intersections have traffic
signals.
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• Traffic signal data for Moorhead from Google Earth indicating which intersections have traffic
signals.

• An annual average daily traffic volume (AADT) 2015 sub-area interactive map for Fargo from
Metro COG.

• An AADT 2018 shapefile for Moorhead from Minnesota Department of Transportation.

3.1.3 Methodology 

3.1.3.1 Bikeways 

Information on bicycle facilities, including buffered lanes, bike lanes, signed-only routes, shared-lane 
markings, and shoulders was obtained from Metro COG and combined with the information about speed 
limits, number of lanes, and functional class from the Clay County and Fargo roadway shapefiles. The 
traffic volume information was manually extracted from an AADT 2015 interactive map from Metro 
COG, and those for Moorhead were manually inserted from an AADT shapefile from the Minnesota 
Department of Transportation. The location of on-street parking on roads with bike lanes, signed-only 
routes, shared-lane markings, and shoulders was manually coded in Excel by utilizing Google Earth 
imagery. Then bikeways were divided into two categories: bikeways alongside the parking lanes and 
those not alongside the parking lanes. According to the criteria for bikeways not alongside parking lane 
and criteria for bikeways alongside parking lane (Table 3.1 and 3.2), bike lanes, signed-only routes, 
shared-lane markings, and shoulders were categorized as LTS 1 to LTS 4. According to the criteria for 
buffered bikeways not alongside parking lanes and alongside parking lanes, they were classified as LTS 1 
to LTS 4. According to the criteria, all physically separated bike facilities were classified as LTS 1.  

3.1.3.2 Mixed traffic 

To classify mixed traffic roads, data from Metro COG for speed limits, number of lanes, and functional 
class of road segments for the Fargo-Moorhead area were used. Information related to traffic volume was 
manually inserted from the AADT 2015 interactive map for Fargo from Metro COG and the AADT 2018 
shapefile for Moorhead from the Minnesota Department of Transportation. Road segments were given an 
LTS classification according to the criteria for mixed traffic street (Table 3.5).  

As mentioned, because of the lack of actual speed data, speed limits were considered the speed feature of 
this study. The speed limit on residential and local streets of Fargo was 25 mph, which means with 1 
through lane per direction and traffic volume of less than 2,000 AADT, these streets were categorized as 
LTS1. However, in Moorhead, the speed limit on residential and local streets was 30 mph, and in the 
same situation, with 1 through lanes per direction and traffic volume less than 2,000 AADT, these streets 
were categorized as LTS2. These differences between speed limits in these two areas resulted in different 
levels of traffic stress for similar streets, which made these areas' LTS analysis more complicated. 

3.1.3.3 Applying the presence of right-turn lane effects on segments 

If a roadway has a bike lane for part of the block but drops it on a junction approach, that block is 
categorized as having no bike lane. As a result, the necessity to ride in mixed traffic will be factored into 
the degree of traffic stress in the base section. The presence of right-turn lanes in Fargo-Moorhead 
segments was manually extracted by utilizing Google Earth imagery. In streets where there was a right-
turn lane, the length of that was measured by using ArcMap. Regarding related criteria for mixed traffic 
(Table 3.6) in the presence of right-turn lanes, the effect was applied to the segment in GIS by changing 
the LTS code. In streets where the segment had single right-turn lanes with a length < 75 ft, this right-turn 
lane had no impact on the segment's LTS. In streets where the segment had single right-turn lanes with a 
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length between 75 and 150 ft, the LTS of that segment was modified to LTS 3. And in other situations, 
the LTS of that segment was changed to LTS 4. The data required to apply these criteria in the Fargo-
Moorhead area were not consistently accessible and were extracted manually from Google Earth in only a 
few situations. However, most roadways with right-turn lanes are multilane arterials with base segment 
stress levels of 3 or 4. 

3.1.3.4 Applying the crossing effect to segments 

For analyzing the level of traffic stress in segments with a crossing, where a low-traffic-stress-level 
segment like LTS 2 intersects a high-traffic-stress-level roadway like LTS 3 at an unsignalized 
intersection, the stress level for crossing the low-traffic-stress-level street was adjusted to the high traffic 
stress level. Stress levels caused by a crossover are coupled with stress levels caused by other variables in 
the standard "weakest link" manner, which means they determine the amount of stress only if they are 
worse than the stress caused by the connection (Mekuria, Furth, and Nixon 2012). 

For Fargo, the presence of a traffic signal was checked by overlapping the traffic signal shapefile from 
Metro COG on the LTS map of the segments. For Moorhead, because of the lack of GIS data, this was 
manually extracted from Google Earth images.  

It is critical to define the effect of stressful crossings on path choice because if paths are chosen solely on 
the stress associated with links, shortest-path logic will attempt to connect low-stress segments that meet 
on opposite sides of a wide street without accounting for the stress involved in the crossing.  

3.2 Results 

Using GIS, a level of traffic stress was allocated to each road segment and pathway in the Fargo-
Moorhead area based on the parameters outlined in the previous section. Colors show the level of traffic 
stress as LTS1: Green, LTS2: Blue, LTS3: Purple, and LTS4: Brown. Figure 3.2 shows the level of traffic 
stress in the Fargo Moorhead area.  
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Figure 3.2 The Level of Traffic Stress Map of Fargo Moorhead Area 
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3.2.1 Distribution of Traffic Stress Levels 

As shown in the LTS map, green lines occupy a large part of the study area because residential streets 
account for most of the area. For example, 56% of the Fargo-Moorhead segments and pathways are 
classified as LTS 1 (mostly residential streets) and 24% as LTS 4 (higher speed arterials). The distribution 
of segment miles by the intensity of traffic stress is shown in Table 3.7.  

Table 3.7 Distribution by Level of Traffic Stress 

Table 3.8 shows the results of the LTS map based on the road types and bike lanes. As mentioned before, 
all separated bike lanes and shared-used paths facilities are considered LTS 1. As you can see in the table, 
all the shoulder bike lane facilities, after considering their AADT (Annual Average Daily Traffic), the 
number of lanes, speed limits, and functions categorized as LTS 4, which could be because of existing 
shoulder facilities alongside the highways with two or more lanes each way and speed limits of 45 mph or 
more.  

Table 3.8 Distribution Different Types of Facilities by Level of Traffic Stress 
LTS Shared 

travel 
lanes 

Shared- 
used path 

Bike lane 
Buffered 
bike lane 

Separated 
bike lane Shoulder 

Shared-
lane 

Markings 
Signed 

only 
1 794.9 271.6 0.7 0 0.2 0 4.0 7.8 
2 302.7 0 0.1 3.2 0 0 6.5 4.5 
3 45.1 0 9.5 0.7 0 0 1.1 0 
4 215.6 0 1.0 0 0 253.2 0 1.5 

Total 1358.4 271.6 11.23 3.9 0.2 253.2 11.6 13.8 

For greater detail and better understanding, Figure 3.3 zooms in on a portion of the city to show level of 
stress. As these maps show, the principal and minor arterial network can be visualized as a grid of mostly 
brown (LTS 4) streets. Some arterials have shared-used paths or bike lanes alongside the roads, shown by 
blue lines that indicate LTS 2. However, most of the area was covered by the local streets shown as LTS 1 
by green lines, with speed limits of 25 mph or less and a traffic volume of 6,300 AADT or less, and the 
major collectors with speed limits of 30 mph are categorized LTS 2. There are some blue lines alongside 
the brown lines, which indicates there are bike lanes alongside but separated from the highways with LTS 
4. 

LTS Stress Miles Percent 
1 Lowest 1079.16 56.1% 
2 Low 317.05 16.5% 
3 Medium 56.3 2.9% 
4 High 471.23 24.5% 
Total 1923.74 100 % 
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Figure 3.3 Zooming in on the Level of Traffic Stress Map for an Area of the City 

3.2.2 Connectivity  

Figure 3.4 shows a map of only the LTS 1 and 2 linkages. The Moorhead area that emerges from the 
map’s right side is the connected blue lines. And the curvy green line in the middle of the map is the 
shared-used path network along the Red River. There are some connected clusters in Fargo, which show 
the local streets with speed limits of 30 mph or less.  
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Figure 3.4 Level of Traffic Stress Map Showing Only LTS 1 and LTS 2 Links 

To illustrate the connectivity of low-stress networks, Figure 3.5 shows clusters of LTS 1. Each cluster 
represents connected LTS 1 facilities. The edges of clusters are barriers with no LTS 1 connectivity. Each 
color represents a different cluster, and the largest clusters are shown in the map. As you can see there is a 
good connection between the bike paths alongside the Red River and the local streets close to that. 
Analysis of connectivity cluster maps reveals that there is a barrier, which is the arterial streets. A high-
stress artery divides the smaller streets on each side of it from one another, causing them to become 
isolated. Unsafe crossings can prohibit local streets from connecting with arterial roads, even if they meet 
at an unsignalized 4-way intersection. Because of the high demand at signalized intersections of arterials 
and secondary roads, the secondary roads are typically enlarged on the blocks that approach arterials, with 
bike lanes often removed or shifted in a way that causes high-stress merging conditions for cyclists.  
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Figure 3.5 Clusters of LTS 1 Connectivity 

The clusters are expanded to include LTS 2 in Figure 3.6, which shows the largest connected clusters of 
LTS 1 or 2. Barriers are created by LTS 3 or 4 facilities. The map shows there are some large clusters of 
low-stress networks, but their utility is limited if they lack low-stress interconnecting links. Highways, 
railways, and rivers, which need grade-separated crossings, are examples of natural and artificial barriers. 
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Figure 3.6 Clusters of LTS 1 and 2 Connectivity 
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4. MODEL FOR BICYCLE USE 

The level of traffic stress is important because it influences how comfortable someone is likely to feel 
riding a bicycle, which can determine whether they decide to ride their bicycle, influencing the overall 
level of bicycle use in the city. The components of LTS are related to the design of the street and bicycle 
networks. Along with these design characteristics, other elements of the built environment may also 
influence bicycle use. Cervero et al. (2009) defined five dimensions of the built environment: density, 
diversity, design, destination accessibility, and distance to transit. These dimensions, along with 
sociodemographic characteristics, can be used as a theoretical framework for modeling bicycle use. 

Measures of density used in the study include population density and employment density, and land use 
mix is used as a measure of diversity. Increases in density and land use mix are expected to be positively 
related to bicycle use, because they indicate a greater number of people or trip attractors, and land use mix 
suggests the possibility of shorter distance trips that could be made by bicycle.  

Several design factors are considered in this study. These include barriers in the roadway network, bicycle 
facility type and width, connectivity, intersection density, number of lanes, street classification, street 
density, traffic speed, and traffic volume. Previous studies have found many of these factors to be related 
to bicycle use, as discussed in Section 2. 

Destination accessibility refers to the proximity or accessibility of trip attractors. If there are major 
destinations nearby, individuals may be more likely to use their bike as a means of transportation. This 
study considers the proximity to downtown, which can be a major trip attractor. The proximity to water is 
also considered, as previous research suggested cyclists prefer trips near water, parks, and trees. 

The last of the five dimensions of the built environment is the distance to transit. Distance to transit could 
have either a positive or negative relationship with bicycle use, depending on if the relationship is 
complementary or substitute. Transit and bicycling may complement each other if transit riders use a 
bicycle to access the transit service. On the other hand, if they are substitutes, proximity to transit would 
be negatively related to bicycle use, as transit riders could use transit for making a trip instead of 
bicycling. In that case, bicycle trips would be more likely in areas with poor or no transit service, as those 
trips could not be easily made by transit, if at all. Of course, proximity to transit could also be related to 
other built environment factors that could also influence bicycle use, such as density, land use mix, street 
design, and destination accessibility, so its inclusion in the model would need to be examined for 
potential multicollinearity. Despite the potential relationship between transit and bicycle use, distance to 
transit was not considered in this study because of the nature of the bicycle data. As noted from other 
studies, Strava users are more likely to ride for recreational purposes and may have higher incomes. 
Therefore, the location of transit stops is less likely to have an effect, particularly in Fargo-Moorhead 
where automobile ownership and accessibility is high. 

In addition to the five dimension of the built environment, demographic characteristics are also likely 
related to bicycle use, as suggested by previous research reviewed in Section 2. This study examines 
neighborhood demographics, including median age, median household income, minority population 
percentage, and percentage of population that is male, as potential determinants of bicycle use. 
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4.1 Data 

Several measures of density, diversity, and design, as well as demographic data, were obtained from the 
Smart Location Database, provided by the U.S. Environmental Protection Agency. The Smart Location 
Database provides data at the Census block group level for several measures of housing and population 
density, diversity of land use, neighborhood design, destination accessibility, transit service, employment, 
and demographics.  

Data for bicycle infrastructure and the roadway network that were used for creating the LTS maps are 
also included for modeling bicycle use. This includes locations of bicycle facilities across the metro area, 
including bike lanes, buffered lanes, shared-lane markings, signed-only bicycle routes, and shared-use 
paths, as well as data for speed, AADT, and number of lanes. 

The dependent variable in the model is the count of bike trips from Strava summed over the two-year 
period of 2019-2020. The data were aggregated over this time period, as suggested by Lee and Sener 
(2020), to reduce the number of segments without any trips recorded and to have a larger sample of data. 
Figure 4.1 maps the number of bicycle trips recorded by Strava over these two years across the Fargo-
Moorhead metro area. Areas with the greatest number of trips include the trails near the river, streets in or 
near downtown, various shared-use paths, and popular routes for recreational cyclists who are riding out 
of town. The number of trips recorded by Strava is a small sample of the total number of bicycle trips 
taken. 
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Figure 4.1 Map of Strava Bicycle Trips for Fargo-Moorhead, 2019-2020 

Merging the Strava data with the GIS data for the street network and bicycle facilities created difficulties 
because the GIS data collected from Strava did not match the other GIS files. For example, the locations 
of the streets did not completely match, and the datasets did not include a common field to allow them to 
be joined. Further, the Strava shapefile included sidewalks and paths in some places, but not in others, 
and the accuracy of the GPS data in determining if a trip occurred on the street or an adjacent path or 
sidewalk could be questionable. Merging these two datasets proved to be a challenge. Attempts to use a 
spatial join created several errors. Therefore, to address this problem, the Fargo-Moorhead metro area was 
divided into a grid, and data from the separate GIS files were joined to the grid. The square cells in the 
grid are 500 feet long by 500 feet wide, which is approximately the size of a city block. They are small 
enough to capture the effects of bicycle infrastructure and the built environment, but large enough to 
avoid errors in joining data from different data sources. In each cell of the grid, the number of bicycle 
trips was calculated as the maximum number of trips recorded by any Strava segment within that cell. 
Figure 4.2 maps the grid and the number of bicycle trips in each cell. Cells in the grid were removed if 



they did not contain any streets or bicycle facilities or were not located within city limits. Interstate 
highways were also removed because no bicycle traffic is possible on those highways. This resulted in 
6,490 cells with data. 
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Figure 4.2 Grid Map of Strava Bicycle Trips for Fargo-Moorhead, 2019-2020 

Table 4.1 shows explanatory variables that were considered in this study. Population density was obtained 
from the American Community Survey and employment density from the Smart Location Database. Both 
were measured at the Census block group level. Further, employment density data were obtained 
separately for retail, office, industrial, service, and entertainment jobs. Different types of jobs may affect 
bicycle use differently. For example, areas with a high density of retail or entertainment jobs may attract 
trips, whereas industrial areas may be less attractive for bicycle use. The calculation of each of the 
measures used from the Smart Location Database are described by Chapman et al. (2021). 
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Table 4.1 Potential Explanatory Variables for Bicycle Use 
Variable Data Source 
Density 

Population density American Community Survey 
 Employment density: Total, retail, office, industrial, service, entertainment Smart Location Database 
Diversity 

Employment and household entropy Smart Location Database 
Household workers per job equilibrium index Smart Location Database 
Employment entropy Smart Location Database 

Design 
Road network density: Total, auto-oriented, multi-modal, pedestrian-
oriented 

Smart Location Database 

Street intersection density: Total, auto-oriented, multi-modal, pedestrian-
oriented (3 or 4 legs) 

Smart Location Database 

Bike lane Metro COG GIS data 
Buffered lane Metro COG GIS data 
Shared-use path Metro COG GIS data 
Shared-lane markings Metro COG GIS data 
Signed-only bike route Metro COG GIS data 
Shoulder Metro COG GIS data 
Low-stress connectivity Derived 
Number of lanes Metro COG GIS data 
Speed Metro COG GIS data 
AADT Metro COG GIS data 

Destination Accessibility 
Distance to downtown Derived 

 Distance to water Derived 
Demographics 

Median age American Community Survey 
Median household income American Community Survey 
Percentage population male American Community Survey 
Percentage population white American Community Survey 
Percentage population low wage Smart Location Database 
Percentage population no vehicles American Community Survey 

Other 
Highway 81 dummy variable Derived 
Highway 3 dummy variable Derived 

Three measures of diversity from the Smart Location Database were considered: employment and 
household entropy, household workers per job equilibrium index, and employment entropy. The first two 
measures attempt to quantify the mix of employment and residential development within the area, and the 
third measures the mix of employment types. See Chapman et al. (2021) for more details. 

Road network and street intersection density data were also obtained from the Smart Location Database. 
Increased density of streets and intersections indicates greater connectivity. The Smart Location Database 
provides several measures of network and intersection density. Total road network density is provided, as 
well as network density specifically for auto-oriented links, multi-modal links, and pedestrian oriented 
link. Density is measured as facility miles per square mile. Intersection density is similarly available for 
total intersections excluding auto-oriented intersections, auto-oriented intersections, multi-modal 
intersections, and pedestrian-oriented intersections. Density is measured as intersections per square mile. 
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Pedestrian-oriented facilities are defined as having lower speeds. Chapman et al. (2021) provides more 
detail about how each of these are defined and measured.  

The design characteristics also include several variables used to calculate the level of traffic stress, as 
described in Section 3. These include the locations of bicycle facilities – bike lanes, buffered lanes, 
shared-use paths, shared-lane markings, signed-only bike routes, and shoulders. It also includes speed, 
measured as the speed limit, the number of lanes, and AADT.  

The study also considered another measure of connectivity that was derived from the LTS maps 
developed in Section 3. The low-stress connectivity measure is based on the LTS 1 and 2 clusters shown 
previously in Figure 3.6. A few potential measures were considered. One was a dummy variable 
indicating if the area was part of one of these clusters. Dummy variables were also created for each 
individual cluster. Finally, a measure was created which quantified the size of the cluster. Cluster size was 
measured as the number of grid cells that belong to an individual cluster. If a grid cell belonged to one of 
these clusters, the cluster size indicates the size of the cluster to which it belongs. 

Distance to downtown and to water were considered as two measures of destination accessibility. A 
boundary area for downtown Fargo and Moorhead was identified, and the distance from each grid cell to 
that boundary was measured in GIS. Within downtown, distance was measured as being equal to zero. 
Distance to water was measured for two rivers in the metro area: the Red River and the Sheyenne River. 
The distance was measured to whichever river was the closest. 

Demographic data for median age, median household income, and percentage of population that is male, 
white, low wage, or in a household without a vehicle were obtained from the American Community 
Survey or the Smart Location Database. 

Lastly, two dummy variables were created for two roadways that might be expected to have higher levels 
of bicycle use than would otherwise be expected based on the variables included in the model. These are 
for U.S. Highway 81 and Clay County Highway 3, which are roadways that connect the city to rural areas 
and are popular routes for recreational cyclists. 

Each of the variables obtained from the Smart Location Database and the American Community Survey 
were measured at the Census block group level. This provides some level of variation throughout the 
metro area, which includes 188 block groups. However, this is far fewer than the 6,490 grid cells 
developed for this study, which is the unit of observation for the ridership model. The data captures some 
variation across the metro area but not block-to-block variation in density or demographics. For the 
model, each individual grid cell was assigned the values for the Census block group to which it belongs. 

Each of the bicycle facility variables are represented by dummy variables equal to 1 if the grid cell 
contains such a facility and 0 if not. Number of lanes, speed, and AADT for each cell was determined by 
the street segment located within that cell. If more than one street segment was located in a cell, the 
largest value was used. AADT data were not available for all low-volume residential streets. Therefore, 
the AADT variable was converted to a 1-16 scale, and the streets without AADT data were considered to 
have the lowest volume of traffic (AADT=1). 
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4.2 Model Development 

As shown in Table 4.1, there are several potential independent variables to explain variations in bicycle 
trips. However, some of these variables may be correlated, creating multicollinearity issues, and some 
may be better predictors than others. An exploratory regression was first conducted in ArcGIS to identify 
independent variables that provide the greatest fit, and the variance inflation factor (VIF) was calculated 
for each variable to identify multicollinearity problems. 

The exploratory regression tool in ArcGIS Pro 2.8 was used to help specify the model. It is a data mining 
tool that tries all possible combinations of explanatory variables and determines which models provide the 
greatest fit and passes all of the necessary OLS diagnostics. The exploratory regression tool was run using 
models with 2-4 explanatory variables. The tool then considered all possible combinations of explanatory 
variables. The model was limited to four variables, because including more would have created too many 
possible combinations for the tool to analyze within a reasonable time. The dependent variable was the 
log of bicycle trips. Each model was assessed based on the adjusted R2, coefficient p-values, and other 
diagnostics. Models were tested for spatial autocorrelation using Global Moran’s I, which is a measure of 
the overall clustering of the spatial data. The existence of spatial autocorrelation would violate the 
assumptions of an OLS model and require the use of a spatial regression model, such as a spatial error or 
spatial lag model. 

4.3 Results 

The results of the exploratory regression showed that the models with the highest adjusted R2 included 
some combination of the shared-use path dummy variable, proximity to water, proximity to downtown, 
cluster size or cluster dummies indicating connectivity, AADT, speed, and the dummy variable for U.S. 
Highway 81.  

Table 4.2 shows a summary of the significance of each independent variable in the exploratory 
regression. It shows the percentage of models in which the variable was statistically significant, and the 
percentage of models in which the estimated coefficient was negative or positive. Several of the variables 
were significant 99% or 100% of the time, with coefficients that consistently had the same sign, either 
positive or negative. This indicates that these results are robust. In particular, bicycle facilities are shown 
to have a positive effect. The dummy variables for bike lanes, buffered lanes, shared-lane markings, sign-
only paths, and shoulders are all consistently significant and positive.  
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Table 4.2 Exploratory Regression: Summary of Variable Significance 
Variable % Significant % Negative % Positive 
Bike lane 100 0 100 
Buffered lane 100 0 100 
Shared-lane markings 100 0 100 
Signed-only 100 0 100 
Shared-use path 100 0 100 
Distance to water 100 100 0 
Shoulder 100 0 100 
AADT 100 0 100 
U.S. Highway 81 100 0 100 
Clay County Highway 3 100 0 100 
Cluster 3 100 100 0 
Worker-job mix 100 100 0 
Cluster size 100 0 100 
Median age 100 0 100 
Speed 100 0 100 
Percentage population white 100 0 100 
Industrial employment density 99 100 0 
Employment and household entropy 98 100 0 
Service employment density 95 1 99 
Distance to downtown 95 90 10 
Cluster 95 2 98 
Cluster 1 95 4 96 
Office employment density 94 1 99 
Pedestrian-oriented intersection density (4-leg intersections) 93 13 87 
Multi-modal network density 93 99 1 
Pedestrian-oriented network density 92 10 90 
Cluster 2 91 4 96 
Cluster 5 91 7 93 
Retail employment density 91 91 9 
Median household income 89 8 92 
Percentage population male 88 12 88 
Street intersection density 85 18 82 
Total road network density 85 16 84 
Auto-oriented network density 81 92 8 
Population density 78 18 82 
Percentage population aged 25-49 77 96 4 
Pedestrian-oriented intersection density (3-leg intersections) 76 17 83 
Auto-oriented intersection density 73 76 24 
Multi-modal intersection density (3-leg intersections) 72 96 4 
Percentage low-wage workers 70 55 45 
Entertainment employment density 70 12 88 
Percentage households no vehicles 69 15 85 
Gross employment density 69 21 79 
Multi-modal intersection density (4-leg intersections) 64 54 46 
Percentage population aged 18-24 55 73 27 
Employment entropy 44 54 46 
Cluster 4 39 20 80 
Number of lanes 27 15 85 
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Population density is often found to be significant, and the effect is usually positive, as expected, but the 
result is not as robust, as it is sometimes insignificant or negative. Employment density tends to be 
significant and positive, but the results are not as robust and tend to differ depending on the type of 
employment. Industrial employment density is consistently significant and negative, indicating fewer bike 
trips in industrial areas. On the other hand, office and service employment density are found to have 
consistently positive effects on bicycle use. Results for retail and entertainment density are less consistent, 
though retail density tends to be negative and entertainment density positive. 

The diversity measures, including the worker-job mix and the employment and household entropy, have 
unexpected negative relationships with bicycle use. This might be explained by Strava trips being biased 
more toward recreational trips rather than commuting or utilitarian trips. Employment entropy, which 
measures the mix of employment types, appears to have no relationship with bicycle use. 

Among the design variables, as previously noted, bicycle facilities are important. Connectivity is also 
important. The pedestrian-oriented intersection and density variables are often statistically significant and 
in most models are shown to have a positive relationship with bike use.  Conversely, the auto-oriented 
network and intersection density are often found to have negative relationships. Overall street intersection 
density and road network density tend to have positive effects. Connectivity is also measured by 
belonging to a large low-traffic stress cluster. Belonging to such a cluster is shown to have a significant 
and positive relationship with bicycle use, and bicycle use is also positively related to the size of the 
cluster. The dummy variables for the individual clusters have varying effects. AADT and speed were 
unexpectedly found to have positive relationships with bicycle use, and the number of lanes appears to be 
insignificant. It is likely that increased AADT and speed are correlated with other factors that attract 
bicycle use. 

Destination accessibility variables are also significant. Distance to water is consistently significant and 
negative, which indicates that bicycle use increases closer to water. Similarly, distance to downtown is 
usually found to be significant, with a negative effect, indication bicycle use is greater closer to 
downtown, though the results are not as robust. 

Some demographic variables appear to be important, while the results for others are inconsistent. Notably, 
median age and the percentage of the population that is white are consistently significant with positive 
effects. Results also suggest median household income tends to be positively related to bicycle use, and 
the percentage of the population that is male is often found to have a positive relationship. Other 
demographic variables have inconsistent and often insignificant results. Lastly, the dummy variables for 
U.S. Highway 81 and Clay County Highway 3 are significant and positive in every model. 

Multicollinearity and spatial autocorrelation need to be addressed before specifying a final model. The 
calculation of VIFs show that many of the independent variables are correlated. For example, gross 
employment density is correlated with some of the other employment density variables. Many of the 
measures of intersection and network density are correlated, and the cluster size and cluster dummy 
variables are correlated. A second exploratory regression was run using five independent variables, with 
some of the correlated variables removed, and the results were largely the same as shown in Table 4.2, 
which was based on models with 2-4 independent variables. 

Global Moran’s I shows that these models exhibit spatial autocorrelation. None of the models tested with 
the exploratory regression passed the spatial autocorrelation test. A model with spatial autocorrelation 
violates the assumption about the independence of residuals, resulting in inflated test statistics. 
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A final model was selected consisting of independent variables found to be highly significant in the 
exploratory regression, excluding variables that were correlated with other independent variables (VIF > 
5). The regression was estimated using a spatial error model, which accounts for spatial dependence in the 
error terms. Results from the spatial error regression model are shown in Table 4.3.  

Table 4.3 Results of Spatial Error Regression Model of Bicycle Use 
 Variable Coefficient p-value

Constant 2.9313 0.016* 

Density 

Population density 0.0088 0.726 

Employment density 0.0001 0.994 

Industrial employment density -0.2878 0.004** 

Diversity 

Worker-job mix -0.3236 0.153 

Design 

Bike lane 2.1920 0.000** 

Buffered lane 1.1150 0.004** 

Shared-lane markings 2.0747 0.000** 

Signed-only 0.8015 0.000** 

Shared-use path 2.3099 0.000** 

Shoulder  1.2215 0.000** 

Pedestrian-oriented intersection density -0.0014 0.689 

Cluster size 0.0003 0.016* 

AADT 0.2133 0.000** 

Speed 0.0259 0.000** 

Destination Accessibility 

Distance to downtown -0.0001 0.000** 

Distance to water -0.0003 0.000** 

Demographics 

Percentage population white 0.1107 0.900 

Median household income 0.0000 0.634 

Percentage population male -1.2790 0.362 

Median age 0.0223 0.000** 

Other 

U.S. Highway 81 5.6938 0.000** 

Clay County Highway 3 4.2543 0.000** 

Lambda  0.7362 0.000** 

R2 = 0.617 

n = 6490 
*p<0.05, **p<0.01
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The population density and total employment density variables are not statistically significant. However, 
industrial employment density is significant with a negative effect. This shows that bicycle use is lower in 
industrial areas, everything else equal. The one diversity variable in the model, worker-job mix, is not 
significant. 

Many of the design variables are statistically significant. The dummy variables for bike lane, buffered 
lane, shared-lane markings, signed-only, shared-use path, and shoulder are all significant with positive 
effects. These results show that bicycle use is greater where these bicycle facilities exist. Each of these 
types of bicycle facilities are shown to be positively related to bicycle use. The magnitude of the effect is 
greatest for the shared-use path and bike lanes, suggesting these are most effective in increasing bicycle 
use, and the effect is smallest for signed-only routes and shoulders, but results still suggest that these are 
also effective in increasing bicycle use. 

The cluster size variable is significant and positive, suggesting that connectivity is also important. This 
result means that areas that are part of a larger, connected cluster of low stress facilities have increased 
bicycle use. Many of the intersection and network density variables were correlated, so only the 
pedestrian-oriented density variable was included in the model, but it was not found to be significant. 
Cluster size is shown to be a better predictor of bicycle use than intersection density. 

The results also show AADT and speed to be significant and positive. This is the opposite of what was 
expected. However, there may be a confounding factor that explains the positive relationship. Areas with 
higher levels of traffic and speed may be desirable routes to cyclists for other reasons. Perhaps they 
provide more direct routes or better access to destinations. The result could also be caused by a potential 
bias in the data, due to the demographics and riding preferences of Strava users. Strava users may be less 
fearful of higher-stress roadways, and therefore, may be more inclined than the average rider to use high-
volume, high-speed roadways. This could be especially true if they are attempting to maintain a certain 
speed, which would lead them to prefer higher speed routes with less traffic control. 

Distance to downtown and distance to water are both negative and significant. This indicates that as 
distance from downtown or water increases, bicycle use decreases. In other words, bicycle use increases 
closer to downtown or closer to the water. The magnitude of the effect is greater for water. Many of the 
areas with the greatest bicycle usage are trails near the Red River. 

Among the demographic variables, only age was found to be statistically significant. Bicycle use was 
found to be positively related to median age. Income, gender, and race were not found to be significant.  

Lastly, the dummy variables for U.S. Highway 81 and Clay County Highway 3 are significant and 
positive, and the magnitude of the effect is large. This shows that bicycle use on these highways is greater 
than would be expected based solely on the other variables in the model. Bicycle use is likely greater on 
these highways because they are parts of popular routes used by recreational cyclists for making longer, 
out-of-town rides. The large positive effect of these variables could show some bias in the Strava data 
toward recreational trips, because these routes are not likely to be used as significantly for commuting or 
utilitarian trips. 
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5. CONCLUSIONS 

This study developed a level of traffic stress (LTS) map for Fargo-Moorhead and used crowdsourced 
bicycle use data from Strava to show relationships between the built environment and bicycle use. The 
LTS map is useful for showing how friendly and encouraging areas are toward bicycle use, as well as for 
showing the connectivity of low-stress pathways, and the bicycle ridership model shows how the 
development of bicycle facilities and other changes to the built environment are associated with bicycle 
use. 

The constructed LTS map shows that much of the Fargo-Moorhead area consists of low-stress (LTS 1 or 
2) facilities, mostly low-volume residential streets and shared-use paths that are separated from traffic. 
However, higher-speed and higher-volume roadways often create barriers for the low-stress network. The 
maps of the connected low-stress clusters show that some areas are well connected by low-volume 
residential streets and separated paths, but the boundaries of these clusters show where there are barriers 
to bicycle use. Areas outside these clusters tend to be in more auto-oriented neighborhoods where there 
are more barriers to bicycle use. Overcoming these barriers often requires lower-stress options for 
crossing an LTS 3 or 4 roadway. This could require reducing speeds, reducing the number of lanes to 
cross, or creating a grade-separated crossing. Low-stress interconnecting links are necessary to create a 
more connected network.  

The greatest low-stress connectivity is shown to exist in neighborhoods along the Red River and in the 
older parts of the metro area, including downtown and areas near downtown. The separated path along the 
river provides a connection to several neighborhoods, and these neighborhoods are built on a grid network 
that offers greater connectivity. The area has a more urban development pattern with fewer of the wide 
arterials to create barriers. Even within this cluster, there are areas of poor connectivity. For example, 
traveling between north and south Moorhead on a low-stress network could only be done by traveling on 
the separated path along the river. 

There are some limitations to the LTS map. Calculations were made using speed limit data instead of 
actual vehicle speeds. The use of actual vehicle speeds could provide different results. Low-volume 
residential streets were classified as LTS 1 if their speed limit was 25 mph. However, if actual speeds are 
greater than 25 mph, then they should be classified as LTS 2. Low-volume residential streets in Moorhead 
were all classified as LTS 2 because the speed limit is 30 mph, even though traffic speeds may be no 
different than on similar streets in Fargo. The methodology provides support for speed limits being no 
higher than 25 mph on these streets, because those lower speeds are necessary to create a network that is 
more supportive of bicycle use. 

The LTS method is less useful for classifying roadways that travel outside the city. The method makes no 
distinction between a multilane highway with a 70-mph speed limit and a two-lane roadway with a wide 
shoulder and a 45-mph speed limit. Both would be classified as LTS 4, but they offer tremendously 
different experiences for bicyclists. Even gravel roads are categorized as LTS 4, using this methodology. 
A different method is needed to categorize roadways that travel outside the city.  
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The results of the bicycle use model provide some expected results and some surprising results. First, the 
model shows that the existence of bicycle facilities is positively associated with bicycle use. This suggests 
that bicyclists are using the roadway design features that are meant to accommodate them, and it suggests 
that investments in these facilities have been useful. The model cannot say whether investments in bicycle 
facilities has led to an increase in bicycle use, rather it shows that areas where those investments have 
occurred have greater bicycle use. That greater bicycle use could be because of an increase in bicycle use 
or it could be because those facilities are simply influencing route choice. It likely could be a combination 
of increased bicycle use and route choice, but the model cannot say. Regardless, the results show 
bicyclists are more likely to travel where those facilities exist. 

Results also show that each type of bicycle facility has had a positive effect, even shared-lane markings, 
signed-only routes, and shoulders, although the effect is greatest for shared-use paths and bike lanes. It 
may be expected that buffered bike lanes would have a greater impact than regular bike lanes with no 
separation or buffer. However, there are too few buffered bike lanes in Fargo-Moorhead to show that 
distinction. Separated lanes were not included in the model because there are very few instances of such 
lanes in the metro area. Connectivity was also shown to be important. Areas within a larger cluster of 
connected, low-stress streets or bike paths had higher levels of bicycle use.  

Bicycle use was also found to be greater in or near downtown and in areas near the Red River or 
Sheyenne River. These are popular attractors for bicycle use. The findings, therefore, support the 
development of bicycle infrastructure in these areas. 

The results for AADT and speed were unexpected. Areas with higher AADT and speed had greater 
bicycle use, even though these are higher stress areas that would be expected to discourage bicycle use. 
This result may be because arterials and collector streets with higher speeds and traffic volumes may 
provide better access to destinations and more direct routes for cyclists. It could also be due to bias in the 
data, as Strava users may be more confident bicyclists who are less deterred by the higher-stress routes. 
The results are not showing specifically that the bicycle traffic is occurring on the streets, but rather it 
could be on adjacent paths or sidewalks. Some of these streets have separated paths to accommodate 
bicyclists. The findings suggest that these higher stress streets should have facilities to accommodate 
bicyclists, particularly separated paths, because there is higher demand for bicycle use.  

Bicycle use was also found to be higher for two highways, U.S. Highway 81 and Clay County Road 3, 
leading out of town, even though they are classified as LTS 4. Clay County Highway 3 currently has a 
wide shoulder to accommodate bicycle traffic, while U.S. Highway 81 has no accommodations. Findings 
suggest that the greater demand for bicycle use on these roadways could justify improved bicycle 
infrastructure. 

There are some limitations to the model of bicycle use. The Strava data represent only a small portion of 
bicycle use, and there is potential for bias regarding the types of trips being made or the types of users, as 
discussed in the literature review. Although, as other studies have suggested, the results can still be useful 
and fairly representative of the use of bicycle infrastructure. Existing bicycle count data in the Fargo-
Moorhead metro area is sparse, so it is difficult to validate the Strava data. The Strava data show some 
positive correlation to the official count data, but it is not a strong correlation. Additional count data is 
needed to validate the results. As shown by other studies, the combination of official count data with 
crowdsourced data from Strava or other sources can be useful for mapping bicycle use across the metro 
area. 
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The study aggregated Strava data for 2019 and 2020 to provide a greater number of observations. This 
study did not attempt to identify any trends in bicycle use over time, but there were more than twice as 
many Strava trips reported in 2020 than in 2019. However, that increase could be because of either an 
increase in bicycle use or an increase in the popularity of Strava, or both of those factors. The Covid-19 
pandemic of 2020 appeared to result in significant increases in bicycling across the world (Venter et al. 
2021; Schweizer et al. 2021). However, it is possible that the share of bicyclists using Strava has also 
increased, and if Strava or other crowdsourced apps are capturing a larger share of bicycle use, then future 
data may prove to be more useful. The combination of future crowdsourced data with an increase in 
official counts could be used to map bicycle use more accurately across the metro area, and the data could 
be studied further to identify specific barriers in the network. 
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