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ABSTRACT 

Achieving and maintaining public transportation rolling stocks in a state of good repair is very crucial to 
providing safe and reliable services to riders. Transit agencies that seek federal grants must also keep 
their transit assets in a state of good repair. Therefore, transit agencies in small urban and rural transit 
systems need an intelligent predictive model for analyzing their transportation rolling stocks, 
determining the current conditions, predicting when they need to be replaced or rehabilitated, and 
determining the funding needed to replace in a future year to maintain the state of good repair. Since 
many transit agencies in small urban and rural transit systems do not have adequate analytical tools for 
predicting the service life of vehicles, this simple predictive model would be a valuable resource for their 
state of good repair needs and their prioritization of capital needs for replacement and rehabilitation. 
 
The ability to accurately predict the service life of revenue vehicles is crucial in achieving the state of 
good repair. In this research, three unique tree-based ensemble learning methods have been applied to 
build three predictive models. The machine learning methods used in this research are random forest 
regression, gradient boosting regression, and decision tree regression. After evaluation and comparison 
of the performance results among all models, the gradient boosting regression model with the top 35 
most important features was found to be the best fit for predicting the service life of transit vehicles. 
This model can be used to predict the projected retirement year for all small urban and rural vehicles in 
operation.  
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EXECUTIVE SUMMARY 

This research focuses on ways to improve and maintain America's small urban and rural revenue 
vehicles in a good physical condition so that smaller transit systems can successfully keep their transit 
vehicles in a state of good repair. This research includes a method to build a machine learning predictive 
model (MLPM) to predict the projected replacement year of transit vehicles. Further, it develops an 
analytical tool to calculate backlog and yearly projected vehicle replacement costs for rural and small 
urban transit agencies. Finally, the detailed reports produced by these tools will be helpful for decision-
makers to prioritize investment needs for rehabilitation and replacement of rural and small urban transit 
agencies. 

The literature review conducted in this research found that the Federal Transit Administration (FTA) 
tried to find an intelligent way to resolve issues with the state of good repair that transit agencies were 
facing. Per Map-21 requirements, transit agencies require a predictive model for prioritizing capital 
investment for replacement and rehabilitation of transit vehicles. The FTA’s study on the useful life of 
transit buses and vans showed that its minimum service life policy might need to be changed. NCHRP 
report 545 indicated that two analytical tools could be used along with existing systems to make the 
investment decision regarding transit vehicles. TCRP report 157 provided a framework for the state of 
good repair and developed tools for evaluating and prioritizing funding. TCRP project E-09 improved the 
state of good repair framework, which was developed in TCRP report 157. As a continuation of TCRP 
report 157, TCRP report 172 developed a transit asset management plan in accordance with Map-21 
requirements and further improved the prioritization tools for transit agencies.  

The literature reviews also discussed transit asset management systems. The development of asset 
management can help transit agencies optimize limited funding, estimate a state of good repair backlog, 
and set spending priorities. The FTA established a minimum useful life policy for transit vehicles funded 
with federal grants. However, the useful life benchmark by the transit providers may or may not be the 
same as the useful life threshold used for vehicle replacement by the FTA grant program. As per Map-21 
and the FAST Act, transit agencies are required to develop a transit asset management plan to achieve 
the state of good repair. Therefore, the FTA developed a Transit Asset Prioritization Tool (TAPT) as well 
as a Transit Economic Requirements Model (TERM) analysis tool, to predict the condition of transit 
assets and prioritize the investment needs. 

The methodology involved introducing machine learning techniques to develop a predictive model for 
the state of good repair to predict the service life of transit vehicles. The methodology discussed the 
basic concept of machine learning, the type of machine learning, and ensemble methods. The regression 
analysis of the supervised learning concept was utilized for the problem. The ensemble methods, which 
are very powerful techniques for a machine learning model, were discussed. There are three different 
machine learning techniques, which were introduced in the methodology: random forest regression, 
gradient boosting regression, and decision tree regression.  

The revenue vehicle inventory data from the National Transit Database (NTD) were used to build the 
predictive model. The preprocessing steps of the data were discussed to format the raw data for 
machine learning algorithms. Data with retired vehicles were used to train and evaluate the model, and 
data with non-retired vehicles were used to deploy the trained model for predictions. 
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Three different machine learning algorithms, random forest regression, gradient boosting regression, 
and decision tree regression, were applied to build three different predictive models. Before building 
the model, the parameters for each algorithm were tuned to optimize the performance of the model. 
During modeling, the training data were split into the training set and the test set in these proportions: 
70% of data to train the model and 30% of data to evaluate the model. As part of the evaluation, three 
performance metrics such as root mean squared error, mean absolute error, and R2 score were applied 
to see how accurately the models were performing. After comparing the performance results, the 
gradient boosting regression predictive model was selected because it provided better performance 
results for the problem.  

Sometimes a large number of features may cause problems in a generalizing a model. Therefore, the 
feature importance ranking method was further applied to the gradient boosting regression model to 
get the top 35 most important features. After applying the top 35 most important features and 
comparing the performance of the previous gradient boosting regression model, we found an even 
better performing predictive model. Finally, we applied the full dataset as a training set to train the 
model that further improved the performance of the predictive model. We concluded the gradient 
boosting regression model using the full training dataset with the top 35 most important features would 
be our final predictive model. 

After developing the predictive model using the gradient boosting regression algorithm with the top 35 
most important features, the model was applied on the deployment set for predictions. The authors 
deployed the predictive model on the nation’s small urban and rural transit agencies’ 2017 revenue 
vehicle data and calculated the service life of each vehicle. After the predicted service life of vehicles 
was acquired, the authors calculated the projected retirement year. The authors also calculated the 
replacement backlog from the projected retirement years, which were prior to 2019, and projected 
vehicle replacement cost for each year thereafter. The predicted replacement years for all revenue 
vehicles in small urban and rural transit agencies were calculated using the MLPM. For simplicity, 
automobile, ferryboat, and sport utility vehicles (SUVs) have not been included for analysis. The MLPM 
built in this research was applied on the North Dakota’s small urban and rural transit systems revenue 
vehicle inventory data as a case study. The financial cost analysis tool was applied on North Dakota’s 
transit vehicle dataset to estimate the backlog and yearly replacement costs.   
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1. INTRODUCTION 

Public transportation plays a vital role in providing mobility and accessibility while providing 
transportation alternatives and enhancement of a quality life. To maintain an efficient public 
transportation system, there is a need to keep the existing transit assets in proper condition. 
The problems of maintaining the condition of the small urban and rural transit systems in a 
state of good repair have become very crucial, and their transit agencies have made achieving a 
state of good repair a high priority. A major limitation of reaching rehabilitation and 
replacement needs for transit assets is under-investment, or not having a good analytical tool 
for investment decisions. There is growing concern that a large number of small urban and rural 
transit system rolling stocks are past their useful life and in need of immediate repair or 
replacement. Therefore, they need capital reinvestment to maintain revenue vehicles in a state 
of good repair. This is crucial for allowing public transportation systems to continue providing 
safe and reliable services (Cevallos 2016). 

1.1  Background 

The Moving Ahead for Progress in the 21st Century (MAP-21) bill passed by the federal 
government in 2012 indicates that the state of the nation’s aging transit systems, particularly 
small urban and rural transit systems, is becoming of greater importance (iDOT 2017). The FTA 
implemented the MAP-21 legislation, which will mandate public transit systems to create the 
Transit Asset Management (TAM) system in order to get capital funding. If transit assets, most 
notably rolling stocks, are not in a state of good repair, the transit systems will be unsafe and 
unreliable and cause more maintenance cost but lower performance. Thus, the objective of the 
TAM system is to make sure public transit systems maintain their public transit vehicles in a 
state of good repair so their capital assets can perform effectively. In July 2016, FTA released 
the TAM Final Rule to ensure public transit agencies track the conditions of their transit assets 
from start to end of their life cycle. The public transit agencies with a TAM system will be able 
to forecast their capital needs while maintaining system reliability. The TAM Final Rule also 
mandates transit agencies to report a condition assessment, performance measures, and 
performance targets for all transit assets to the NTD (iDOT 2017). 

1.2  Objective 

The objective of rehabilitation and replacement is to achieve and maintain transit assets in a 
state of good repair (James 2010). It is important to define state of good repair in terms of 
transit agencies and how the definition relates to their goals and objectives. The process of 
defining “state of good repair” for the transit agency will allow it to set goals, progress to 
achieve goals over time, and provide guidelines for capital investment prioritization. As per 
MAP-21 requirements, the FTA creates a definition for state of good repair, and it establishes 
performance measures for transit agencies to use in accordance with the Transit Asset 
Management Plan (TAMP). Even though a transit agency uses the FTA’s definition and relates 
the definition for its goals and objectives, it may extend and clarify the definition of state of 
good repair. 
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The FTA presented three possible approaches to define state of good repair at the 2010 State of 
Good Repair Roundtable. These definitions include the following (James 2010): 

Option 1 

A transit system is in a state of good repair when: 
• The transit agency keeps a comprehensive list of capital assets and rolling stock and 

maintains them 
• The transit agency has an asset management plan integrating with the management 

processes and practices of the transit agency 
• The transit agency’s assets are within their useful life and are performing at their 

designed function 

Option 2 

A transit system is in a state of good repair when: 
• System components are well maintained regularly and replaced based on the owner’s 

approved O&M procedures 
• The system performs its design function well 

Option 3 

A transit system is in a state of good repair when: 
• Transit assets are perfectly maintained and replaced before their condition 

deteriorates to an unacceptable level of a safety risk 
• Transit assets meet customer expectations for comfort and reliability 

The primary objective of this research is to improve and maintain America's small urban and 
rural revenue vehicles in a good physical condition so that smaller transit systems can 
successfully keep their transit vehicles in a state of good repair. Therefore, the main objective 
of this scope of work is to build a machine learning predictive model (MLPM) to predict the 
projected replacement year of transit vehicles for rural and small urban transit agencies for the 
purpose of obtaining a state of good repair by prioritizing rehabilitation and replacement 
decisions. The second objective is to build a financial analysis tool to estimate current backlog 
and predict yearly projected vehicle replacement costs. 
 
The machine learning predictive tool and financial analytical tool in this scope will help transit 
agencies facilitate their state of good repair analysis and guide decision makers with investing 
rehabilitation and replacement needs. The detailed reports produced by these tools will help 
decision makers prioritize investment needs for rehabilitation and replacement of transit 
vehicles. This also includes elimination of investment backlog, replacement of transit assets 
reaching the end of their useful life, overall condition of their remaining service life, and 
projected yearly replacement costs. This tool will potentially tailor the replacement decision to 
a given system rather than rely solely on the FTA’s useful life policies or industry-wide 
experiences. Better pinpointing of the boundary between “rehab and replace” will potentially 
allow better-informed capital decisions and perhaps better modulate capital-funding needs 
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with available funding.  Finally, this research will also offer more intuitive, softer criteria that 
managers and other stakeholders can use in formulating capital plans. 

1.3  Organization 

This report is organized as follows.  It begins with the abstract that highlights the overall 
summary of the research and an executive summary of the key findings in each individual 
chapter. The main body of the report is organized into seven chapters. In Chapter 1, the 
introduction provides background information on state of good repair. In Chapter 2, previous 
studies and early research on the state of good repair and asset management practices are 
presented. This chapter also includes an overview of the transit asset management system and 
analytical tools used for the state of good repair. Chapter 3 presents the current condition of 
the revenue vehicles in small urban and rural transportation systems in the United States.  In 
Chapter 4, the methodology developed for service life prediction is presented and three 
machine learning algorithms are introduced. Chapter 5 presents the preprocessing of data, 
developing training and testing sets, building the predictive model, and making predictions on 
the deployment set. In Chapter 6, results are analyzed on revenue vehicles in all small urban 
and rural transit systems. This chapter also includes a case study on North Dakota’s small urban 
and rural transit systems’ revenue vehicle data. Finally, Chapter 7 concludes the study and sets 
goals for further research. 
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2. LITERATURE REVIEW 

The initial task of this research started with a review of the literature on state of good repair 
and an evaluation of transit capital asset rehabilitation and replacement previously published. It 
included, but was not limited to, FTA reports, TRB papers, related papers from other journals 
and conferences, and available reports from transit agencies, consultants, and vendors. The 
review focused on how the FTA maintains its current minimum service life policy and how it 
updates its policy as vehicle designs, new technologies, and new vehicle types are added to the 
transit fleet. It will help to understand how transit assets are inventoried, how conditions are 
assessed and tracked, and how transit asset management systems are used to prioritize funding 
for rehabilitation and replacement needs to ensure safe, reliable, and comfortable transit for 
riders. 

2.1  Early Research on the State of Good Repair 

“NCHRP Report 545: Analytical Tools for Asset Management, Reviewed Asset Management 
Tools and Systems,” published in 2005, provided two software tools: AssetManager NT and 
AssetManager PT (Cambridge Systematics, 2005). These tools were intended for state 
departments of transportation (DOTs) and transit agencies to support tradeoff analysis for 
transportation asset management. The tools were developed to integrate into existing systems 
to help agencies analyze and predict investment decisions for their transit assets (Cambridge 
Systematics, 2005). 

The “Useful Life of Transit Buses and Vans” research, published in 2007 by the FTA, assessed 
the policy on existing minimum service life for transit buses and vans (Laver, Schneck, et al., 
Useful life of transit buses and vans 2007). The study team interviewed transit agencies and 
performed engineering and economic analyses to evaluate the minimum service life policy. The 
engineering analysis showed that the bus life span was restricted by the bus structure, while 
the economic analysis showed that the optimal replacement points for various bus types were 
at or later than the FTA’s minimum service life. The study provided details on the useful life of 
buses and vans, the FTA’s minimum service life policy, the impact of the vehicle life 
expectancies, an agency’s decision on retirement, vehicle maintenance, and replacement best 
practices. The study also showed that the actual ages when agencies were retiring buses from 
service exceeded the FTA’s minimum service life and suggested that the minimum service life 
policy should be changed (Laver, et al. 2007). 

In 2008, the FTA published “Transit State of Good Repair: Beginning the Dialogue.” The first 
step was to collaborate on transit asset management practices and provide strategies to 
address the state of good repair needs and transit asset management for the nation’s transit 
rail and bus rolling stock (FTA, 2008). To do this, the FTA held a workshop in the summer of 
2008. Diverse stakeholders from 14 public transit providers and state DOTs addressed the state 
of good repair for the nation’s transit inventory. The objective of the workshop was to 
encourage stakeholders to be proactive by raising awareness regarding the scope of the 
problem and exploring creative approaches to fund replacement and rehabilitation of aging 
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transit assets. In the workshop, the FTA discussed the condition of transit capital assets, asset 
management practices, preventative maintenance practices, maintenance issues, and 
innovative financing strategies. The FTA also discussed related research work and supporting 
tools for transit agencies for coping with state of good repair problems (FTA, 2008). 

In 2010, the FTA’s “National State of Good Repair Assessment” study evaluated the level of 
investment required to bring all agencies in the United States to a state of good repair (FTA, 
2010a). This study showed that in 2009 an estimated state of good repair backlog of $77.7 
billion would be needed to achieve the state of good repair, and that an additional $14.4 billion 
per year would be needed to maintain the normal replacement investment for a state of good 
repair. The study assessed national reinvestment needs considering the condition of the 
existing transit assets. The study found that about one-third of the nation’s overall transit 
assets were either in marginal or poor condition, which meant these assets were nearly or 
already exceeding their expected useful lives (FTA, 2010a). 

The “Transit Cooperative Research Program (TCRP) Report 157: State of Good Repair - 
Prioritizing the Rehabilitation and Replacement of Existing Capital Assets and Evaluating the 
Implications for Transit” report published in 2012 provided a state of good repair framework to 
evaluate and prioritize the rehabilitation and replacement investment decisions for transit 
assets (Cohen & Barr, 2012). This state of good repair framework helps decision makers answer 
questions regarding transit asset replacement and rehabilitation investment decisions. The 
report supported the framework by presenting an analytical approach along with a set of 
spreadsheet tools. The tools are intended for evaluating rehabilitation and replacement 
investments in specific transit assets and for prioritizing them. In conclusion, transit agencies 
will find these models a valuable resource to plan or finance public transportation (Cohen & 
Barr, 2012). 

The “Moving Ahead for Progress in the 21st Century (MAP-21)” law was passed July 6, 2012, 
and authorized $10.6 billion in fiscal year 2013 and $10.7 billion in fiscal year 2014 for federally 
funded transit agencies and highway programs (US Congress, 2012). Under the MAP-21 law, 
most of the funding was distributed through the core formula programs. MAP-21 created a 
state of good repair program and authorized $2.1 billion in fiscal year 2013 and $2.2 billion in 
fiscal year 2014 for this program. Furthermore, the program also established new asset 
management systems and performance measurements for transit agencies (US Congress, 
2012). 

In 2014, the “TCRP Report 172: Guidance for Developing a Transit Asset Management Plan” 
presented a method for establishing a transit asset management plan for transit agencies to 
achieve transit state of good repair per MAP-21 (Robert, et al. 2014). This report is associated 
with a Transit Asset Prioritization Tool (TAPT), which has four spreadsheet tools designed to 
help transit agencies forecast future condition of transit assets and prioritize them for 
rehabilitation and replacement. The TCRP 172 report is the second phase of developing tools 
for transit agencies to improve their asset management plan and achieve a state of good repair 
condition. However, asset management is concerned with quality data to support decisions on 
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maintaining replacement needs and minimizing asset life cycle costs. Transit agencies can make 
decisions on prioritizing and investing by implementing the best practices in transit asset 
management and can reduce the cost of maintaining its systems over time per MAP-21 
requirements (Robert, et al. 2014). 

The above research reports, research studies, round tables, workshops, and the MAP-21 
provision culminated in the 2015 “Fixing America’s Surface Transportation (FAST) Act.” This law 
reauthorized the public transportation and federal highway programs for fiscal years 2016 to 
2020 (APTA, 2016). The state of good repair saw a 23.9% increase by FY 2020, beginning at 
$2.507 billion in FY 2016, rising to $2.684 billion by FY 2020. However, the FAST Act did not 
make significant changes in the state of good repair program to maintain the state of good 
repair on public transportation systems (APTA, 2016). 

2.2 Overview of Transit Asset Management 

According to Section 1103 of MAP-21, asset management is defined as a set of “actions that will 
achieve and sustain a desired state of good repair over the life cycle of the assets at minimum 
practicable cost” (Cevallos, 2016, p. 3). The FTA defines transit asset management as “a 
strategic and systematic process through which an organization procures, operates, maintains, 
rehabilitates, and replaces transit assets to manage their performance, risks, costs over their 
life cycle to provide cost-effective, reliable and safe service to current and future customers” 
(Lauren & Rose, 2012, p. 10). The FTA definition shows that asset management not only 
manages cost, it also handles risk and the performance across the life cycle of transit assets 
(Lauren & Rose, 2012). 

MAP-21 requires transit agencies to establish a transit asset management system. The 
development of an asset management system helps transit agencies request needed funds for 
investments and attain a state of good repair (Cevallos, 2016). In addition, asset management 
systems can help transit agencies monitor their current assets’ conditions and redistribute their 
existing resources to more effective uses (Meyer & Cambridge Systematics, Inc., 2007). Again, 
asset management can help agencies prioritize capital investment, allocate limited resources to 
maintain current transit assets, and plan for replacement and rehabilitation of existing assets. 
In addition, asset management can help transit agencies optimize limited funding, estimate a 
state of good repair backlog, and set spending priorities (US GAO, 2013). 

2.3 Service Life of Transit Asset 

The FTA established a minimum useful life policy for transit vehicles funded with federal grants 
(Laver, et al. 2007). The policy is to ensure that federally funded vehicles have a significant 
service life serving transit riders.  Useful life of rolling stock begins when a transit vehicle is 
placed in revenue service and continues until it is removed from revenue service (iDOT 2017). 
The FTA set guidelines for a rolling stock useful life threshold based on the vehicle type 
purchased by FTA funds (iDOT 2017). The FTA has assigned a threshold for years of service or 
total mileage accumulated during service for each type of vehicle, whichever comes first. The 
FTA’s default useful life benchmark is listed in Table 2.1. 
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Table 2.1  FTA Grant Rolling Stock Useful Life Guidelines 

Transit Vehicle 
Years of 
Service 

Miles of 
Service 

Buses - Large, heavy-duty transit buses 12 500,000 
Buses - Small size, heavy-duty transit buses 10 350,000 
Buses - Medium-size, medium-duty transit buses 7 200,000 
Buses - Medium-size, light-duty transit buses 5 150,000 
Buses - Other light-duty vehicles such as regular and specialized vans, 
sedans, and light-duty buses 

4 100,000 

Trolleys - A fixed guideway steel-wheeled “trolley” 25  
A fixed guideway electric trolley-bus with rubber tires obtaining power 
from overhead catenary 

15  

Rail vehicles 25  
Ferries - Passenger ferries 25  
Ferries - Other ferries (without refurbishment) 30  
Ferries - Other ferries (with refurbishment) 60  
Aerial tramway 12  
Articulated bus 14  
Automated guideway vehicles 31  
Automobile 8  
Cable car 112  
Commuter rail locomotive 39  
Commuter rail passenger coach 39  
Commuter rail, Self-propelled passenger car 39  
Cutaway bus 10  
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Table 2.1  FTA Grant Rolling Stock Useful Life Guidelines (Continued) 

Transit Vehicle 
Years of 
Service 

Miles of 
Service 

Double decker bus 14  
Heavy rail passenger car 31  
Inclined plane vehicle 56  
Light rail vehicle 31  
Minibus 10  
Minivan 8  
Monorail vehicle 31  
Over-the-road bus 14  
Rubber tired vintage trolley 14  
School bus 14  
Streetcar 31  
Sport utility vehicle 8  
Trolleybus 14  
Van 8  
Vintage trolley 58  

Source: Table adapted from FTA Circular 5010.1D: Grant Management Requirements, 2008, and 2017 
Asset Inventory Module Reporting Manual, 2017 

However, the FTA encouraged state DOTs and transit providers to determine their own useful 
life threshold based on some guidelines stated in the Grant Management Requirements circular 
(iDOT 2017). The acceptable methods to determine useful life threshold include (FTA 2008): 

• Generally accepted accounting principles 
• Independent evaluation 
• Manufacturer’s estimated useful life 
• Internal Revenue Service guidelines 
• Industry standards 
• Grantee experience 
• The grantee’s independent auditor, who needs to concur that the useful life is 

reasonable for depreciation purposes 
• Proven useful life developed at a federal test facility 

With the TAM plan, the NTD requires transit providers to report an established useful life 
benchmark (ULB) for its entire vehicle fleet by vehicle type (FTA 2017). The transit provider may 
use either its own useful life benchmark for each vehicle type or the FTA’s default useful life 
benchmark for each vehicle type in terms of age. However, the useful life benchmark by the 
transit providers may or may not be the same as the useful life threshold used for vehicle 
replacement by the FTA grant program. The useful life thresholds addressed in the FTA Grant 
Management circular only apply to vehicles funded by the FTA, while the useful life benchmark 
in the TAM rulemaking applies to all vehicles reported in the NTD inventory as per the TAM 
reporting plan. The transit provider can enter fleet information into the NTD online portal and 
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the portal will automatically estimate the remaining useful life for each vehicle fleet and 
measure performance for each vehicle type (FTA 2017).  

2.4 Analytical Tools for State of Good Repair 

As noted, Map-21 authorized and the FAST Act reauthorized the FTA to develop a rule for the 
state of good repair program. This rule establishes a system to monitor performance, manage 
transit assets, increase safety and reliability, and estimate performance measures (WSDOT, 
2016). Therefore, transit agencies need to develop a TAMP process per MAP-21 and FAST Act 
requirements to achieve a state of good repair. The FTA also developed a TAPT tool for transit 
agencies to support the TAMP process. This TAPT tool includes four spreadsheet models, which 
help transit agencies predict the future conditions of their transit assets and help prioritize 
rehabilitation and replacement needs. The FTA’s TERM Lite can be used along with TAPT or 
without TAPT to support analysis of different investment scenarios. Furthermore, many 
agencies have developed their decision support tools and asset management systems, which 
can be used to support TAMP processes (Robert, William; Reeder, Virginia; Lauren, Katherine, 
2014). 

The FTA developed the TERM Lite tool in 1995 to estimate transit capital needs, and it spent 
about $5 million in development and updates until 2013. The TERM model measures asset 
conditions on a 5-point scale and considers a revenue vehicle to be in a state of good repair if 
the condition of the vehicle reaches or exceeds a condition rating of 2.5 (FTA, 2013; Zarembski, 
2013). It estimates the state of good repair backlog, determines the capital funding levels 
required to achieve the state of good repair, analyzes the impact of projected future 
investment on capital performance, and prioritizes long-term investment (Cevallos, 2016). By 
using TERM, transit agencies can forecast the trend of asset maintenance, replacement, and 
rehabilitation costs for a 20-year period; the FTA can use it to estimate capital needs and 
develop various reports. The TERM model uses information obtained from the NTD. The asset 
age and physical condition for each asset category are considered the predictors for 
determining the condition (Cevallos, 2016). 

Along with the TERM tool, the FTA also developed four analytical tools for transit agencies to 
support the TAMP process. These are (1) prioritization modeling tool, (2) vehicle modeling tool, 
(3) age-based modeling tool, and (4) condition-based modeling tool. The prioritization modeling 
tool prioritizes a series of asset rehabilitation or replacement funds and simulates the funds for 
10 years. The vehicle modeling tool estimates the cost minimizing point that a bus or rail 
vehicle should be replaced and predicts the annual costs and prioritizes replacement of transit 
vehicles based on age. The age-based modeling tool assesses deteriorations on a transit asset 
other than a transit vehicle over time, and it forecasts the annual costs of the transit agency as 
well as user costs of the transit asset. The condition-based modeling tool uses non-vehicle 
assets that deteriorate as a function of condition of assets (Cohen & Barr, 2012). 
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Most transit agencies use TERM Lite as their leading practice for a state of good repair. They 
also use TERM Lite to collect data and develop information inventories to manage transit assets 
and prioritize capital investment. However, some transit agencies are using in-house 
assessment tools to estimate state of good repair needs, make capital investment decisions on 
the state of good repair backlogs, and prioritize rehabilitation and replacement needs (US GAO, 
2013). 
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3. CONDITION OF SMALL URBAN AND RURAL TRANSIT SYSTEMS 

Rolling stock is a type of passenger vehicle used for public transit service (iDOT 2017). Age 
and/or mileage are primary indicators of state of good repair for rolling stock assets. A 
manufacturer or transit provider usually establishes the expected useful life threshold for 
rolling stock based on the vehicle type. When the rolling stock reaches its expected useful life 
threshold, the asset becomes “beyond its useful life.” When rolling stocks are no longer in a 
state of good repair, transit providers may utilize them for revenue service, as funding is limited 
to replace with new vehicles. However, the maintenance costs for vehicles beyond the useful 
life threshold tend to increase due to the increased likelihood of mechanical failures even 
though transit providers want to maintain their rolling stock in a state of good repair (iDOT 
2017). 

3.1 Condition of the United States Small Urban and Rural 
 Transportation System 

Most transit systems in the United States report to the NTD. In 2017, 950 systems served 716 
urbanized areas, which have populations greater than 50,000. In rural areas, 1,472 systems 
were operating. Thus, the total number of transit systems reporting to NTD in 2017 was 2,422. 
Of the transit agencies that submitted data to the NTD in 2017, small urban and rural systems 
provided both traditional fixed-route bus and demand-response services. These agencies 
operated 785 bus systems, with 1,398 demand-response services, 61 demand taxi services, 29 
transit vanpool systems, nine ferryboat systems, and one aerial tramway. These agencies 
reported 129 million (128,725,878) unlinked passenger trips and 497 million (496,838,698) 
vehicle revenue miles. They reported 33,824 vehicles in 2017. Figure 3.1 shows the number of 
rural transit vehicles in service in 2017. 



12 
 

 

Figure 3.1  Small Urban and Rural Transit Vehicles by Vehicle Type, 2017 
Note: *Other includes Articulated Bus, Double Decker Bus, Ferryboat, and Other similar vehicles. 
Source: National Transit Database, 2017 

Large buses carry more than 35 passengers, small buses carry 16–24 passengers, and cutaways 
carry 25–35 passengers. As seen in Figure 3.2, rural transit operators mostly use small cutaway 
buses (49.6%).  In comparison, buses account for 17.1%, minivans for 15.5%, and vans for 14.8 
% of the rural fleet.  
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Figure 3.2  Percent of Bus, Cutaway, Minivan, and Van in Small Urban and Rural Transit Systems 
Source: National Transit Database, 2017 

3.2 Age Distribution of Small Urban and Rural Transit Vehicles 

Figure 3.3 presents the age distribution of small urban and rural transit buses, cutaways, over-
the-road buses, ferries, vans, and minivans, respectively. Cutaways account for 49% of the small 
urban and rural transit fleets, whereas bus fleets account for 17% of total vehicles. Although 
most buses are retired by age 12 and most cutaways by age 10, roughly 9% to 17% of these 
fleets remain in service well after their typical retirement ages.  
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Figure 3.3  Age Distribution of Small Urban and Rural Transit Vehicles 
Source: National Transit Database, 2017 

3.3 Average Age and FTA Minimum Useful Life for Small Urban and 
 Rural Transit Vehicles 

The FTA establishes a minimum useful life that a vehicle must exceed before federal financial 
assistance can be used to replace the vehicle.  Many vehicles are rehabilitated, thereby 
extending their useful lives and reducing maintenance costs. Figure 3.4 details how the age of 
vehicles by vehicle type compares with the stated minimum useful life for small urban and rural 
transit assets. The rural transit fleet had an average age of 5.94 years in 2017; buses, with an 
average age of 7.71 years, were older than cutaways, which each had an average age of 5.48 years. 
In 2017, data reported to NTD indicated that 16.53% of rural buses, 9.22% of cutaways, and 21.14% 
of rural vans were past their FTA minimum life expectancy.  
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Figure 3.4  Comparison of Average Age and FTA Minimum Useful Life for Small Urban and Rural 
Transit Vehicles 

Source: National Transit Database, 2017 

Figure 3.5 shows the three-year (2015–2017) statistics of operating expenses, vehicle revenue 
miles, vehicle revenue hours, and unlinked passenger trips in small urban and rural transit 
systems. Small urban and rural transit operators reported 128.73 million (128,725,878) 
unlinked passenger trips on 496.84 million (496,838,698) vehicle revenue miles in 2017. Public 
transit passenger trips dropped 1% from 2015 to 2017 (130.36 million trips to 128.73 million 
trips). In response to reduced trip demand, transit operating expenses increased, while transit 
service hours increased 3% from 27.25 million revenue hours in 2015 to 28.05 million revenue 
hours in 2017. Vehicle revenue miles increased 3% from 482.50 million miles in 2010 to 496.84 
million miles in 2017. 



16 
 

 

Figure 3.5  Operating Expenses, Vehicle Revenue Miles, Vehicle Revenue Hours, Unlinked 
Passenger Trips in Small Urban and Rural Transit Systems: Time Series 

Source: National Transit Database, 2017 
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4. METHODOLOGY 

Based on the state of good repair information from transit agencies and the literature review, a 
machine learning predictive model was developed to address the state of good repair for small 
urban and rural transit systems. The predictive model will predict the projected service life of 
transit vehicles. Next, a financial analytical tool was built to calculate the replacement backlog 
and yearly replacement cost for revenue vehicles to keep them in a state of good repair. This 
will help evaluate long-term capital funding and help decision makers evaluate replacement 
and rehabilitation needs for transit vehicles and allocate available funds across small urban and 
rural transit rolling stocks. It is the intention of this research to use existing data as may be 
found in the NTD. 

4.1 Basic Concept of Machine Learning Techniques  

The field of machine learning builds a computer program that can automatically improve with 
experience (Jordan & Mitchell, 2015). As one of the rapidly growing technologies, it uses the 
core concept of artificial intelligent (AI), data science, computer science, and statistics. The 
development of new machine learning algorithms and the availability of online data made the 
machine learning techniques more effective. Since machine learning methods are data 
intensive, the application of machine learning is an evidence-based decision-making process in 
the field of science, technology, medicine, education, manufacturing, finance, and marketing 
(Jordan & Mitchell, 2015). 

Machine learning algorithms have been developed to solve data and machine learning related 
problems (Jordan & Mitchell, 2015). In the past decade, scientists and engineers collected a 
vast amount of data through networking and mobile computing systems that are referred to as 
“big data.” They used machine learning to convert these data for a solution to the problem. 
Machine learning algorithms learn from large amounts of data and customize the output based 
on business requirements. The trend of capturing and mining large amounts of diverse datasets 
can improve services and productivity across many fields of science. For example, historical 
medical records can be used to identify a patient with similar symptoms and provide the best 
treatment; historical traffic data can be used to control traffic perfectly and reduce congestion; 
historical crime data can be used to dispatch police to a specific location and reduce the crime 
rate. Therefore, many organizations are capturing large datasets and analyzing them through 
machine learning techniques to automate decision-making processes across many aspects of 
data-intensive sciences (Jordan & Mitchell, 2015). 

The objective of developing a machine learning predictive model in this research was to choose 
the learning algorithm and train the model from several past retired revenue vehicles inventory 
data from the NTD and deploy the model to predict the projected retired years on current non-
retired revenue vehicles. Before feeding the data into the model, a variety of new features 
were created, missing data were fixed, and outliers were handled for the machine learning 
algorithm. 
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4.2 Machine Learning Algorithms 

In this research, the machine learning technique was used for estimating the service life of 
revenue vehicles. There are many methods of machine learning available for building predictive 
models. In this problem, the ensemble method was used to build the state of good repair 
predictive model.  

4.2.1  Ensemble Methods 

Ensemble methods are very powerful techniques, and the basic idea is to train multiple learners 
to solve the same problem and then combine them by averaging the output of models to 
calculate the final prediction. Therefore, ensemble methods are significantly more accurate 
than a single learner (Zhou, 2012). The idea of ensemble methods is used in many daily 
decision-making situations (Zhang & Haghani, 2015). For example, when we have problems, we 
seek others’ opinions. By combining the weighted ideas, we can make a better decision. 
Therefore, the success of the ensemble method depends on the combination of base models. If 
individual base models generate different outputs, then combining several base models is 
useful. The ensemble methods minimize errors on the predictions by correcting mistakes on the 
predictions made by the individual base model. If individual base models produce similar 
mistakes, combining base models becomes worthless. There are two techniques, such as 
bagging and boosting, which use various resampling methods to achieve diverse base models 
(Zhang & Haghani, 2015). 

Ensemble methods can handle extremely complicated behavior, but they are very simple to use 
and can rank features based on the predictive performance. Ensemble methods became 
successful in many real-world problems and provided nearly optimum performance among all 
major predictive analytics (Bowles, 2015; Zhou, 2012). The most popular ensemble algorithms 
are adaBoost, boosting, bootstrapped aggregation (bagging), gradient boosting machines 
(GBM), stacked generalization (blending), gradient boosted regression trees (GBRT), and 
random forest (Brownlee, 2013). The gradient boosting regression method uses a forward 
stage-wise modeling approach, which fits additional models to minimize the gap between the 
prediction value and the true value using the loss functions, such as squared error or absolute 
error (Zhang and Haghani 2015). 

4.2.1.1  Random Forest Regression 

Random forest is a predictive algorithm that is a representative of ensemble methods (Kumar, 
2016). The algorithm creates predictions on individual trees randomly and then averages 
predictions of all trees. The random forest does not use the cross-validation process; instead, 
the method uses bagging. Suppose there are m number of variables and n number of 
observations in training dataset T. S number of trees need to be grown in the forest, and each 
tree will be grown from the separate training dataset. Each training dataset from S number of 
training datasets is created from sampling n observation randomly; therefore, some datasets 
might get duplicate observations, and some observations might be missing from all the S 
training datasets. These datasets are called bootstrap samples or bagging. The observations 
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that are not part of the bag are “out of the bag” (Kumar, 2016). A random forest model has 
better generalization performance than an individual decision tree because of its randomness, 
and it helps the model decrease the variance. Another advantage of random forests is that they 
are good at handling outliers in the dataset and do not need much parameter optimization 
(Raschka, 2015).  

4.2.1.2 Gradient Boosting Regression 

Gradient boosting regression trees are stage-wise ensemble trees where weak models are fit 
sequentially to minimize the errors on the training set, and predictions are made by the 
previous model in the sequence (Gagne, McGovern, Haupt, & Williams, 2017). These weak 
models are considered as decision trees in gradient boosting trees. In the beginning, the initial 
model is fit directly to the training labels, and the additional weak models are fit sequentially to 
the negative gradient of the loss function to optimize the predictive model. The difference 
between the actual observation and the prediction from the previous model is called a residual, 
which is also the mean squared error of the loss function. The predicted residual is added to the 
sum of the previous residuals. A learning rate is multiplied by each tree’s prediction to minimize 
the residual of the prediction, and a smaller learning rate can be used to correct the prediction 
and minimize the risk to fit to noise. The base gradient boosting regression model uses the 
default parameters of learning rate 0.1, 500 trees, a maximum depth of 5, and least absolute 
deviance loss function (Gagne, McGovern, Haupt, & Williams, 2017). 

Several parameters can be tuned by the grid search method to optimize the performance of the 
predictive model (Johnson, et al., 2017). One of the parameters is the number of trees that 
grows sequentially, and another parameter is the depth of the tree that indicates the depth of 
interaction between features. The learning rate, which is another important parameter of the 
model, can be tuned to determine how much each tree contributes to the overall performance 
of the model (Johnson, et al., 2017). 

4.2.1.3  Decision Tree Regression 

The decision tree regression is a regression model built on a form of tree-based structures. The 
model generates predictions on the dependent variable in numeric form (Rathore & Kumar, 
2016). The decision tree method can build models with complex variables without having many 
assumptions on the modeling (Zhao & Zhang, 2008). The method can isolate important 
independent features by basis function when many variables are used in the model. The 
decision tree regression can be unstable; for example, a change in the training data can change 
the output and different attributes for the model need to be selected (Zhao & Zhang, 2008). In 
this research, the decision tree regression was also applied as it could handle datasets with high 
dimensionality and could predict a dependent variable in a numeric form (Rathore & Kumar, 
2016).  
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4.3 Parameter Optimization 

The regression algorithm requires parameter values to be set up before applying the algorithm. 
Appropriate parameter settings in the algorithm will provide the best model while bad 
parameter settings will produce poor results. The best model with the tuned parameter will 
provide good performance on making predictions on new data with previously unseen values 
(Ma, 2012). The random forest model works very well without optimizing parameters. 
However, the performance of the model can be improved by removing redundant variables, 
fixing a minimum leaf size, and defining a random state number (Mueller & Massaron, 2015). 

In this research, a simple parameter optimization method was used to find the optimal 
parameters for the random forest regression model. In addition, the grid search methodology 
was used in the gradient boosting and decision tree regression models to find the optimal 
parameter values where the points are situated on the grid within the parameter space. The 
grid search does a complete search starting from the minimum point of the grid in the 
parameter space to the maximum points and finds the optimal parameters. In short, the grid 
search chooses the best point after evaluating every point in the grid, and the best value on the 
best point is considered to be the optimum solution (Ma, 2012). 

4.4 Evaluation of Predictive Model 

After setting the best parameter values in the model, training the model with regressor objects, 
and fitting the model with the training set of data, the test dataset was used to calculate the 
performance of the model on the unseen data. The performance of the machine learning model 
was tested by measuring the R2 score, root mean squared error (RMSE), and mean absolute 
error (MAE) (Raschka, 2015). Once the evaluation of each model was complete, the 
performance of each model was compared with each other, and the best performing predictive 
model was chosen to predict on new data. 

RMSE calculates the measure of the model’s performance, which is simply the square root of 
the average of the sum of squared error function. In regression problems, RMSE is the primary 
performance indicator over the other measures for regression problems (Aurlien, 2017). 
Another performance measure is called mean absolute error (MAE), which was used to check 
the accuracy of the model's predictions. MAE looks at every prediction the model makes, and it 
provides an average mistake across all the predictions (Geitgey, 2017). Another performance 
measure, the coefficient of determination (R2), which is the fraction of the response variance, 
was also used to measure the model performance. The value of R2 is between 0 and 1, and the 
model fits the data perfectly if the value is equal to 1. 

4.5 A Roadmap for Building Machine Learning Predictive Model 

Previously, the basic concepts of machine learning, supervised learning, and learning algorithms 
were discussed. In this section, Figure 4.1 depicts a workflow diagram for machine learning 
predictive modeling, which will be discussed below. After acquiring the revenue vehicle 
inventory data from the NTD, the initial raw data from FY 2002 to FY 2016 were combined and 
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preprocessed for the machine learning algorithm. The preprocessed data were separated into 
training data with retired vehicles to build the predictive model and deployment data for 
predictions for retirement. The training dataset was split into the training set and the test set. 
The learning algorithms were applied to the training set to build the predictive model, and 
various performance measures were applied to the testing set to evaluate the model. After 
getting the best predictive model, the model was deployed on deployment data for predictions. 

 

Figure 4.6  Roadmap for Machine Learning Predictive Model (Adapted from Raschka, Sebastian. 
2015. Python machine learning. First Edition. Edited by Roshni Banerjee. 
Birmingham: Packt Publishing Ltd.)
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5. PREPARE TRAINING, TESTING, AND DEPLOYMENT SETS FOR 
PREDICTIVE MODEL 

5.1 Preprocessing of Data 

The quality of data and the information they contain are key factors of how well a machine 
learning algorithm can learn. Most of the time, raw data from the source do not come in the 
form and shape to use in the machine learning algorithm. Therefore, the preprocessing of the 
data is a critical step before feeding the data to any machine learning application (Raschka, 
2015). The NTD contains the revenue vehicle inventory data in an Excel format, which has many 
general problems related to how transit agencies entered their data and maintained the data 
structures. In this research, the revenue vehicle inventory data from FY 2002 to FY 2016 were 
processed for a machine learning predictive model to solve the transit state of good repair. 

In the real-world application it is common to have errors in the data collection process. 
Therefore, items such as data quality, missing records, misspelling of different fuel types or 
vehicle types, extra whitespace at the end of columns, and inconsistencies of a column naming 
in the legacy datasets were taken into consideration to ensure the data’s accuracy. The most 
common problem is missing values. Some fields are sometimes left blank as NaN (not a 
number) in the database. Unfortunately, machine learning algorithms cannot handle missing 
values. Thus, it is very important to take care of the missing values before analyzing and 
modeling. The missing values were handled either by removing missing entries from the unique 
vehicle inventory ID or filling missing values in the non-unique attributes with the value 
calculated by different methods based on data types. In addition, there were misspellings of 
categorical names or alternate names present in the Fuel Type or Vehicle Type categories. 
These categorical names were replaced with a normalized form of name to maintain data 
consistency throughout all the historical data. All the other issues of the column names in the 
historical data were fixed either by replacing or renaming with correct attribute names.  

If the Retired column had a Flag Y present, a new column, Retired Year, was created with the 
value of the year the vehicle was retired. Another new column, Service Life, was created with 
the historical data for training the model. The value of Service Life was generated by 
subtracting Manufacturing Year from the Retired Year. Since Revenue Vehicle Inventory ID was 
unique for vehicle identification, it was used for indexing the datasets; and in that way 
duplication was avoided. The retired vehicle data were used for training and evaluating the 
model, and the data with the current vehicles in operation were used for predicting the 
projected service life of the transit vehicles. 

The reason behind the data preprocessing was to transform RAW data to useful ones; in this 
case we need to do the following: 

5.1.1  Data Cleansing 

• Remove white spaces from Fuel Type, Vehicle Type, Funding Source, and Ownership 
Type. 
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• Drop rows if data are missing from 'Manufacture Year' column. 
• Because inconsistent names such as Buses, Bus, and bus exist for vehicle type, rename 

these categorical names for consistency. 
• Because inconsistent names such as Diesel fuel, Bio-diesel(BD), and Diesel Fuel exist for 

Fuel Type, rename these categorical names for consistency. 
• Fill missing values for Fuel Type column for all vehicle modes based on vehicle model. 

For example, fill missing column for Fuel Type with “Electric Propulsion Power” for 
model TR – Aerial Tramway. 

• Rename categorical names for Funding Source for consistency. 
• Rename categorical names for Ownership Type for consistency. 
• Remove whitespaces from Dedicated Fleet column. 
• Fill missing values with 0 (zero) for Total Fleet Vehicles column. 
• Fill missing values by copying values from Total Fleet Vehicles. 
• Fill missing values with 0 (zero) for ADA Fleet Vehicles column. 
• Fill missing values with 0 (zero) for Emergency Contingency Vehicles column. 
• Filling missing values by applying forward filling along a series for Reporter Type and 

rename Reduced Asset Reporter with Reduced Reporter for consistency. 
• Fill missing values for Reporting Module based on Reporter Type. For example, if 

Reporter Type is Full Reporter, fill missing values with “Urban.” Rename category names 
Asset and Tribe with Tribal for Reporting Module. 

• Remove white spaces from the Seating Capacity column and fill missing values with the 
mean value of Seating Capacity based on Vehicle Type. For example, if missing values for 
Seating Capacity exist for Bus, fill missing values with the mean value of the Seating 
Capacity for Bus. 

• Remove white spaces from the Standing Capacity column and fill missing values with the 
mean value of Standing Capacity based on Vehicle Type.  

• Remove white spaces from the Vehicle Length column and fill missing values with the 
mean value of Vehicle Length based on Vehicle Type. 

• Fill missing values for Supports Model with the value of Mode. 
• Fill missing values for Supports Service with the value of TOS. 
• Fill missing values with 0 (zero) for Rebuild Year. 
• Fill missing values with 0 (zero) for Average Lifetime Miles per Active Vehicles. 
• Fill missing values with 0 (zero) for Total Miles on Active Vehicles During Period. 

5.1.2  Drop Unwanted Columns 

Some variables from the datasets were not required for either data analysis or modeling. 
Therefore, we do not need some columns, such as Agency Name, NTD ID, Legacy NTD ID, 
Manufacturer, Other Manufacturer Description, Retired, and Model, so we end up dropping 
them from the data frame. 
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5.1.3 Dealing with Categorical Features 

For the moment we still have several categorical features, which are Vehicle Type, Fuel Type, 
Funding Source, Ownership Type, Reporter Type, Reporting Module, Supports Mode, Support 
Service, and TOS.  The aim is to preprocess those features in order to make them numerical so 
they will fit into the predictive model. In the literature, there are two well-known kinds of 
categorical variable transformation; the first one is label encoding, and the second one is the 
one hot encoding. In this case, we will use the one hot encoding; we choose this kind of data 
labeling is because we will not need any kind of data normalization later.  

5.2 Data Exploration and Visualization 

Exploratory data analysis is the first step in analysis before creating a training dataset for a 
machine learning model (McKinney, 2017). As we built a training set using revenue vehicle 
inventory data for the predictive model, it was also important to visualize these data to see the 
significant value of the model and how data are distributed.  

Since we are looking to express the service life by different features, one of the important plots 
is to visualize how service life differs among vehicle types. 

 

Figure 5.7  Service Life Distribution by Vehicle Type in Retired Revenue Vehicle Inventory Data 
for Small Urban and Rural Transit Systems 

Source: National Transit Database, 2017 
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From the plot above, we can see that cutaway, bus, minivan, and van had a stable service life. 
On the other side, over-the-road bus, school bus, articulated bus, and ferryboat had a long 
range of service life.  

In the following plot (Figure 5.2), we will visualize the service life distribution by fuel type. 

 

Figure 5.8  Service Life Distribution by Fuel Type on Retired Revenue Vehicles for Small Urban 
and Rural Transit Systems 

Source: National Transit Database, 2017 

As we can see from the plot above, most of the revenue vehicles use gasoline, diesel fuel, and 
compressed natural gas as fuel. Most of the van vehicles use gasoline as fuel, and their average 
service life was about seven years. Bus vehicles use almost all kinds of fuels, and their average 
service life was about 10 years. Ferryboats use diesel fuel, and they had a wide range of service 
life. Aerial tramway uses electric propulsion power. 

There seems to be positive relationships between vehicle type and service life as well as fuel 
type and service life. We will look at what is the actual correlation between service life and the 
other data points in two ways: heatmap for visualization and the correlation coefficient score. 
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Figure 5.9  Correlation Matrix with Heatmap Visualization for Service Life with Other Data 
Points 

Source: National Transit Database, 2017 

As we can see from Figure 5.3, there is a strong correlation between service life and standing 
capacity, seating capacity, and vehicle length features, with the largest correlation score of 0.51 
for standing capacity. The strong correlation scores validate the relationship between the 
service life and those columns. 

5.3 Development of Training Dataset 

The development of the algorithm starts with building a training set, which consists of two 
types of data, such as the target data, and the features for making the prediction (Bowles, 
2015). In order to create the training set, the retired vehicles from revenue vehicle inventory 
datasets from the NTD from 2002 to 2016 were filtered out. After preprocessing and cleaning 
the data, the initial training dataset was built by creating the target column Service Life by 
subtracting Manufacture Year from Retired Year. Since the target column was created from 
Retired Year and Manufacture Year, which were no longer needed in the training set, the 
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columns were removed from the training set. At this stage, features of the training dataset 
need to be engineered before building a machine learning model. 

The feature engineering process involves determining what features need to be used, what 
iterative processes need to be required for feature selection, and what combination of features 
need to be added for making predictions (Downey, 2014). A convenient way to create dummy 
features for machine learning applications is to transform a categorical variable into a dummy 
matrix. If a string column in a data frame has n values, the get_dummies() function will convert 
n columns into 1’s or 0’s (McKinney, 2017). In this training dataset, the categorical string 
columns Fuel Type, Vehicle Type, Funding Source, Reporting Module, Mode, Supports Mode, 
Supports Service, Ownership Type, TOS, and Dedicated Fleet were converted into dummy 
variables by get_dummies. 

5.4 Development of Deployment Dataset 

The revenue vehicle deployment dataset includes the data where all vehicles are in operation. 
Since the 2017 revenue vehicle inventory data, the NTD has the most up-to-date data, which 
will be considered as the non-retired revenue vehicles data. The 2017 revenue vehicle 
inventory data include nationwide rolling stock data. However, in order to build the 
deployment dataset for small urban and rural transit systems, we need to remove the urban 
data. Therefore, we removed urban data by filtering out full reporter data by reporter type as 
well as Automobiles and Sport Utility Vehicles by vehicle type. The main purpose of creating the 
deployment dataset was to predict the target feature. In this case, the model will generate 
predictions as Predicted Service Life. Since the machine learning method works only when the X 
features in the training dataset exactly match with the deployment dataset, we needed to 
process the deployment dataset in the same general fashion as processing the training dataset. 
After building the model with training data, the model was applied to this deployment data to 
predict the service life of vehicles. 

5.5 Development of Predictive Model 

The main task in this process is data modeling. We used three machine learning models 
dedicated for regression problems, and at the end we created a benchmarking table to 
compare each model r2_score and select the best one. The models used are Random Forest 
Regression, Decision Tree Regression, and Gradient Boosting Regression. 

Before building any predictive model, it is important to test the model on unseen data to 
evaluate the performance of the model. Therefore, at first, the training data were split into 
train and test set where the model was fit to the train set and evaluated on the test set 
(Raschka, 2015). In this case, we used a test with 30% in test size, and the rest for training. After 
having fitted the model with the training data, the model was evaluated on test set as well as 
on train set by applying the performance measures of RMSE, MAE, and R2 score to see how well 
the model was working on the unseen data. If the performance results are satisfied on 
generalization errors, the model can be used to predict the future data. The performance 
measures will be further compared with the performance measures of the other algorithm used 
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in this research, and the best performing algorithm will be chosen to build the predictive 
model. 

5.5.1 Random Forest Regression Model 

The random forest regression is an ensemble technique that combines multiple decision trees. 
Due to randomness, the random forest has a better generalization than an individual decision 
tree, and it decreases the variance of the model (Mirjalili & Raschka, 2017).  

Scikit-learn follows four-step modeling patterns for building a machine learning model. In step 
one, the random forest regression class was imported. In step two, the model was instantiated 
with the estimator by setting hyper-parameters. In step three, the model was fit on the training 
data and stored the information learned from the data. In step four, the fitted model was 
applied to predict the response to the test set for evaluation. The performance results of 
predictive model on train set and test set are listed in Table 5.1. 

Table 5.1  Comparison of Performance Results on Training Set and Test Set using Random 
Forest Regression Method 

Method Training Set Hold-Out Set (Test Set) 
RMSE MAE R2 Score RMSE MAE R2 Score 

RFR 1.04 0.73 0.92 2.64 2.02 0.36 
 
From the above comparison results between the test set and the train set, we saw that the 
RMSE on the test set was 2.64, which was much larger than the RMSE on the train set value of 
1.04. This difference is an indicator that the current model is overfitting the train data. In a 
machine learning problem, overfitting is common where the model performs well on train data 
but does not generalize well on the test or unseen data. Due to overfitting, we also assume that 
the model may have a high variance. Many parameters in the model might make the model too 
complex and overfit. 

5.5.2 Gradient Boosting Regression Model 

Tree-based ensemble methods combine simple regression trees with poor results, fit complex 
non-linear relationships, and produce the high-performance prediction. In this problem, the 
gradient boosting regression tree method was applied to build the model for service life on 
revenue vehicle inventory data, and it was hoped to improve prediction accuracy over the 
random forest regression model. The gradient boosting regression method corrects the 
prediction made by previous base models and tries to improve prediction accuracy (Zhang & 
Haghani, 2015).  

The gradient boosting regression has many parameters that were tuned, such as learning_rate, 
n_features, max_features, min_samples_split, max_depth, and min_samples_leaf, before 
building the predictive model with the revenue vehicle inventory training data. The training 
data were split into the train set and the test set, and then train the model with the train set by 
setting tuned hyperparameters and fit it. In order to test the performance of the model on 
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unseen data, the performance results of the predictive model on the train set and test set are 
shown in Table 5.2. 

Table 5.2  Comparison of Performance Results on Training Set and Test Set with Gradient 
Boosting Regression Method 

Method Train Set Hold-Out Set (Test Set) 
RMSE MAE R2 Score RMSE MAE R2 Score 

GBR 1.52 1.05 0.95 1.37 0.94 0.96 

The above table shows that the RMSE score on the train set is very close to the RMSE score on 
the test set. It seems there is no indication of overfitting in the model and generalizes it very 
well. This model can be used for predictions; however, the full training set with limited 
important features can be used to train the model, which will further improve the performance 
as data contain more training data. 

5.5.3 Decision Tree Regression Predictive Model 

A decision tree builds a regression model in the form of a tree-like structure to solve regression 
problems, and is a good fit to handle the complex nonlinear relationship between feature 
variables and target variable. A decision tree is a top-down approach where the processing 
breaks down a dataset into smaller subsets while simultaneously the tree moves down into the 
leaf node. The basic idea is to break down a complex decision into the smaller subset of the 
simpler decision so it is easier to get a solution. In a regression problem, the decision tree 
considers features of data as predictor variables and a continuous variable as the target 
variable. The features with important information are chosen for the model, and features with 
no information are rejected automatically from the model, which increases the computational 
efficiency (Xu, Watanachaturaporn, Varshney, & Arora, 2005). 

The four-step scikit-learn modeling was used on the decision tree regression model in the same 
way the previous models were built with the training set. The performance results of the 
predictive model on the train set  and test set are listed in Table 5.3 for comparison. 

Table 5.3  Comparison of Performance Results on Training Set and Test Set with Decision Tree 
Regression 

Method Train Set Hold-Out Set (Test Set) 
RMSE MAE R2 Score RMSE MAE R2 Score 

DTR 2.68 2.10 0.49 2.92 2.23 0.21 

The high performance scores on the train and test sets indicate that the decision tree 
regression model is not a good fit for the problem on the revenue vehicle inventory dataset and 
will not predict perfectly on unseen data. Therefore, we will not consider the decision tree 
regression model as our predictive model. 
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5.6 Comparison between Random Forest Regression and Gradient 
Boosting Regression Model 

Since the decision tree regression model was not considered due to overfitting, we compared 
the following two methods for selection of the predictive model for service life on revenue 
vehicle inventory data. Table 5.4 shows the performance metric for both models. 

Table 5.4  Comparisons of Performance Measures between Random Forest Regression and 
Gradient Boosting Regression 

Method Full Training Dataset 
RMSE MAE R2 Score 

Random Forest Regression 1.02 0.72 0.92 
Gradient Boosting Regression 0.88 0.50 0.94 

From the above comparison results, we can conclude that the gradient boosting regression 
model is a better fit for this problem. The RMSE score of 0.88 indicates that the prediction will 
fall within one year below or above the standard deviation at 94% accuracy with a mean 
absolute error of 0.50 years of prediction difference from the actual service life of vehicles. 

5.7 Building Gradient Boosting Regression Model for Service Life 
 Prediction 

In the previous gradient boosting regression predictive model, we used every useful feature 
available in the data and some combined features in the training dataset. It seemed reasonable, 
as we wanted to use as much information as available to build the model. However, some 
features may sometimes add redundant information, which may lead to poor generalization, 
and some irrelevant features may cause overfitting the model. Some poor features may return 
poor results. Sometimes, a large number of features may increase computation time without 
improving the regression model and may cause the problem on generalizing to train a model on 
a dataset. As a result, a smaller set of the most important features may produce better results. 
Therefore, we found a way to get important features algorithmically. This process of selecting 
features is called feature selection, which is very important to get better performance for any 
machine learning algorithms (Garreta & Moncecchi, 2013). 

In addition, since the model was trained and tested, and the out-of-sample test dataset already 
provided a good estimate of prediction errors, the model can perform even better if a larger 
training dataset can be used. The model generalizes and performs better if it is trained on the 
combined large dataset (Downey, 2014). Therefore, the predictive model was created on an 
overall training dataset with the 35 most important features and saved for unseen revenue 
vehicle inventory data for prediction. 

The gradient boosting regression generates a rank among the important features on a scale 
between 0 and 1 (Downey, 2014). After ranking the 35 most important features, the scikit-learn 
modeling patterns were applied to build the predictive model with the 35 most important 
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features. Finally, the performance results of predictive model on the train set are listed in Table 
5.5. 

Table 5.5  The Performance Measures by Gradient Boosting Regression with 35 Most Important 
Features on Full Dataset 

Performance Measures Performance Scores 
Root Mean Squared Error (RMSE) 0.77 
Root Mean Squared Error (MAE) 0.38 
R2 Score 0.96 

In the above result, the root mean squared error of 0.77 and the R2 score of 0.96 indicate that 
the predictions will fall less than one year below or above the standard deviation with a 99% 
accuracy rate and a mean absolute error of 0.38 for predictions. The results show that the 
model is performing well enough, using a gradient boosting regression model to predict the 
future service life of vehicles. 
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6. RESULTS 

In this research, the authors deployed the predictive model on the nation’s small urban and 
rural transit agencies’ 2017 revenue vehicle data and calculated the service life of each vehicle. 
The service life of each vehicle depends on many important features such as vehicle type, 
vehicle length, fuel type, seating capacity, standing capacity, and mode. The predictive model 
built in this research learns the importance of such features and predicts the service life of 
vehicles in the nation’s small urban and rural transit agencies’ revenue vehicles. After the 
predicted service life of vehicles was acquired, the authors calculated the projected retirement 
year. The authors also calculated the replacement backlog from the projected retirement years, 
which were prior to 2020 and projected vehicle replacement cost for each year thereafter. 

6.1 Backlog and Predicted Year Retirement for Revenue Vehicles in 
 Small Urban and Rural Transit Systems 

The predicted replacement years for all revenue vehicles in small urban and rural transit 
agencies were calculated using the machine learning predictive model (MPLM). For simplicity, 
automobiles, ferryboats, and sport utility vehicles have not been included for analysis. If 
vehicles are replaced according to MLPM, then 8,394 out of 29,251 of the revenue vehicles 
have reached or surpassed that benchmark and would need to be replaced to bring the 
revenue vehicles into a state of good repair, as shown by the red bar in Figure 6.1. Then a 
corresponding number of vehicles would need to be replaced each year to maintain a state of 
good repair in providing a 12-year long-range plan, as indicated by the year in Figure 6.1. The 
figure includes vehicles that may be replaced more than once during the period and assumes 
vehicles will be replaced with similar types of vehicles and total fleet size will not change.  
 



33 
 

 
Figure 6.10  Backlog and Projected Replacement of Revenue Vehicles in Small Urban and Rural 

Transit Systems 
Source: National Transit Database, 2017 

6.2  Backlog by Vehicle Type in Small Urban and Rural Transit 
 Systems 

The number of revenue vehicles indicated as backlog was further categorized by vehicle type, 
shown as a bar chart in Figure 6.2 and as a pie chart in Figure 6.3. The bar chart plot in Figure 
6.2 shows that the cutaway vehicles have more backlog than any other vehicle type, and they 
account for about 49% of all vehicle types, as shown in Figure 6.3.  
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Figure 6.11  Backlog of the Revenue Vehicles by Vehicle Type in Small Urban and Rural Transit 
Systems 

Source: National Transit Database, 2017 

 
Figure 6.12  Percentage of Backlog of the Revenue Vehicles by Vehicle Type in Small Urban and 

Rural Transit Systems 
Source: National Transit Database, 2017 
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6.3  Backlog and Predicted Replacement Cost of Revenue Vehicles 

The replacement costs of revenue vehicles are calculated considering fleet characteristics, 
including date of manufacture, manufacturer, model, length, and equipment for U.S. transit 
agencies, which are acquired from American Public Transportation Association’s (APTA) Public 
Transportation Vehicle Database. The replacement backlog of revenue vehicles for Small Urban 
and Rural Transit Systems is calculated using service life predicted by the MLPM on revenue 
vehicles. The revenue vehicle inventory data from the NTD were used for fleet information, and 
the U.S. fleet data from APTA’s Public Transportation Vehicle Database were used to estimate 
the cost of the vehicles.  

In addition, with the MLPM, a financial cost analysis tool was developed and applied on the 
deployment dataset to estimate the backlog and yearly replacement costs. Figure 6.4 shows a 
backlog of $1.212 billion for small urban and rural transit systems to achieve a state of good 
repair, and the replacement cost in each year after the backlog shows the funds needed for 
replacement to maintain the state of good repair. 

 
Figure 6.13  Backlog and Projected Replacement Cost for Revenue Vehicles in Small Urban and 

Rural Transit Systems (NTD 2017) 
Source: 2017 Revenue Vehicle Inventory Data, the National Transit Database (NTD); U.S. Fleet Data, 
APTA 2018 Vehicle Database 



36 
 

6.4 Funds Needed for Backlog by Vehicle Type for Small Urban and 
 Rural Transit System 

The bar chart plot in Figure 6.5 shows the funds needed for backlog by vehicle type to achieve a 
state of good repair. For example, the backlog for replacing buses that have exceeded their 
useful lives would be nearly $644 million to achieve a state of good repair.  

 
Figure 6.14  Funds Needed for Backlog by Vehicle Type in Small Urban and Rural Transit 
Systems (NTD 2017) 
Source: 2017 Revenue Vehicle Inventory data, the National Transit Database (NTD); U.S. Fleet Data, 
APTA 2018 Vehicle Database 

6.5 Backlog and Projected Replacement Cost by Vehicle Type in 
 Small Urban and Rural Transit Systems 

The replacement years for buses, cutaways, minivans, and vans were predicted according to the 
MLPM. Based on the predicted service life of each vehicle, the number of vehicles in each 
category that would need to be replaced each year was calculated. The number of vehicles 
predicted to be retired before 2020 were considered as backlog. The replacement costs also 
were calculated by vehicle type similar to the calculation of replacement costs for all revenue 
vehicles. The backlog and replacement costs for buses, cutaways, minivans, and vans by 
predicted replacement year are shown in Figure 6.6 to Figure 6.13.



37 
 

 
Figure 6.15  Backlog and Projected Replacement of Buses in 

Small Urban and Rural Transit Systems 

 
Figure 6.16  Backlog and Projected Replacement Cost for Buses 

in Small Urban and Rural Transit Systems 

 
Figure 6.17  Backlog and Projected Replacement of Cutaways in 

Small Urban and Rural Transit Systems 

 
Figure 6.18  Backlog and Projected Replacement Cost for 

Cutaways in Small Urban and Rural Transit Systems 
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Figure 6.19  Backlog and Projected Replacement of Minivans in 

Small Urban and Rural Transit Systems 

 
Figure 6.20  Backlog and Projected Replacement Cost for 

Minivans in Small Urban and Rural Transit Systems 

 
Figure 6.21  Backlog and Projected Replacement of Vans in 

Small Urban and Rural Transit Systems 

 
Figure 6.22  Backlog and Projected Replacement Cost for Vans 

in Small Urban and Rural Transit Systems 



39 
 

6.6  Case Study on North Dakota’s Small Urban and Rural Transit 
 Systems Revenue Vehicles Data 

Next, we will provide an example using the state of North Dakota to illustrate how the DOT may 
benefit from using the model. The revenue vehicle inventory data are reported for North 
Dakota for 28 transit agencies, including 261 total fleet vehicles. The number of revenue 
vehicles by vehicle type is shown in Figure 6.14, and the percentage of revenue vehicles by 
vehicle type is shown Figure 6.15. Minivans comprise 41.4% of total fleet vehicles while 
cutaways, buses and vans account for 35.6%, 14.2%, and 8.8%, respectively. 

 
Figure 6.14  Number of Revenue Vehicles by Vehicle Type in North Dakota’s Small Urban and 

Rural Transit Systems 
Source: National Transit Database, 2017 
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Figure 6.23  Number of Revenue Vehicles by Vehicle Type in North Dakota’s Small Urban and 
Rural Transit Systems 

Source: National Transit Database, 2017 

The machine learning predictive model built in this research was applied on North Dakota’s 
small urban and rural transit systems revenue vehicle inventory data (NTD, 2017). The number 
of revenue vehicles the model predicted to be retired before year 2020 will be considered as 
backlog. The model shows 51 revenue vehicles, shown in Figure 6.16, exceeded their service life 
before 2020 in North Dakota’s small urban and rural transit systems, and would need to be 
replaced to bring the revenue vehicles into a state of good repair. The corresponding number of 
vehicles, as shown by the number above each year (Figure 6.16), would then need to be 
replaced in that year to maintain a state of good repair. 
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Figure 6.24  Backlog and Projected Replacement of Revenue Vehicles in North Dakota’s Small 
Urban and Rural Transit Systems 

Source: National Transit Database, 2017 

The financial cost analysis tool was applied on North Dakota’s small urban and rural dataset and 
estimated the yearly replacement costs. The plot in Figure 6.17 shows a backlog of $5.58 million 
to achieve a state of good repair for the vehicles, and the replacement cost in each year 
thereafter the backlog shows the funds needed for replacement to maintain the state of good 
repair. 
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Figure 6.25  Backlog and Projected Replacement Costs for Revenue Vehicles in North Dakota’s 

Small Urban and Rural Transit Systems 
Source: 2017 Revenue Vehicle Inventory Data, the National Transit Database (NTD); U.S. Fleet Data, 
APTA 2018 Vehicle Database 

The number of revenue vehicles indicated as backlog was further categorized by vehicle type, 
shown as a bar chart in Figure 6.18. It shows that cutaway vehicles indicate more backlog than 
any other vehicle types, and they require a fund of $1.81 million to eliminate backlog, as shown 
in Figure 6.19. Even though fewer buses indicate backlog, as shown in Figure 6.18, they require 
more funds ($3.02 million) than the backlog of other vehicle types to eliminate backlog, as 
shown in Figure 6.19.  
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Figure 6.26  Backlog by Vehicle Type in North Dakota’s Small Urban and Rural Transit Systems 

(NTD 2017) 
Source: National Transit Database, 2017 

 
Figure 6.27  Fund Needed for Backlog by Vehicle Type in North Dakota’s Small Urban and Rural 

Transit Systems (NTD 2017) 
Source: 2017 Revenue Vehicle Inventory Data, the National Transit Database (NTD); U.S. Fleet Data, 
APTA 2018 Vehicle Database 
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The backlog for replacement costs were calculated by vehicle type in a way similar to the 
calculation of replacement costs for all revenue vehicles. The projected replacement costs were 
also calculated by vehicle type on a yearly basis. The backlog and replacement costs for North 
Dakota’s small urban and rural transit systems by vehicle category are shown in Figure 6.20 to 
Figure 6.27. The cutaway category indicates more backlog (21 vehicles) than any other vehicle 
category; however, the bus category indicates more replacement cost for backlog ($3.02 
million) than any other vehicle category. Again, the backlog and replacement costs for the 
nation’s statewide small urban and rural transit systems by vehicle category are shown in 
Appendix A.
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Figure 6.28  Backlog and Projected Replacement of Buses in 

North Dakota’s Small Urban and Rural Transit 
Systems 

 
Figure 6.29  Backlog and Projected Replacement Cost for Buses 

in North Dakota’s Small Urban and Rural Transit 
Systems 

 
Figure 6.30  Backlog and Projected Replacement of Cutaways in 

North Dakota’s Small Urban and Rural Transit 
Systems 

 
Figure 6.31  Backlog and Projected Replacement Cost for 

Cutaways in North Dakota’s Small Urban and Rural 
Transit Systems 
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Figure 6.32  Backlog and Projected Replacement of Minivans in 

North Dakota’s Small Urban and Rural Transit 
Systems 

 
Figure 6.33  Backlog and Projected Replacement Cost for 

Minivans in North Dakota’s Small Urban and Rural 
Transit Systems 

 
Figure 6.34  Backlog and Projected Replacement of Vans in 

North Dakota’s Small Urban and Rural Transit 
Systems 

 
Figure 6.35  Backlog and Projected Replacement Cost for Vans in 

North Dakota’s Small Urban and Rural Transit 
Systems 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1  Conclusion 

The predictive model developed in this study provides a tool to conduct an analysis to predict 
the service life of small urban and rural transit agency revenue vehicles and evaluate the state 
of good repair for the agency rolling stocks. Because the machine learning predictive model 
learns from data, it gives accurate and realistic information regarding the predicted service life 
of revenue vehicles. Therefore, the predictive model developed in this research will allow 
transit agencies to utilize their revenue vehicles for maximum service and reduce overall long-
term replacement costs to achieve and maintain a state of good repair. Furthermore, the FTA, 
US DOT, and researchers can use this tool to identify the overall condition of the nation’s small 
urban and rural revenue vehicles. 

A financial analytical tool developed as part of this research, used the predicted service life data 
from MLPM to calculate the backlog and project replacement costs for revenue vehicles for 
small urban and rural transit systems. The financial analytical tool may help rural and small 
urban transit agencies to facilitate their state of good repair analysis and guide DOTs and 
decision makers to determine investment, rehabilitation, and replacement needs. This tool will 
potentially tailor the replacement decision to a given system rather than solely rely on the FTA’s 
useful life policies or industry-wide experiences. Better pinpointing the boundary between 
“rehab and replace” will potentially allow better-informed capital decisions and, perhaps, 
better modulate capital-funding needs with available funding. 

The detailed reports produced by these tools will be helpful for decision makers to prioritize 
investment needs for rehabilitation and replacement of rural and small urban transit agencies. 
This includes elimination of investment backlog, replacement of transit assets reaching the end 
of their useful life, overall condition of their remaining service life, and projected yearly 
replacement costs. Therefore, the machine learning predictive model would be a more cost-
effective approach to replacing revenue vehicles and achieving a state of good repair for small 
urban and rural transit systems. Finally, this research offers a more intuitive, softer criteria that 
managers and other stakeholders can use in formulating capital plans. 

7.2 Limitation 

The FTA releases NTD data each year from the previous year’s most recent data on transit 
revenue vehicles. For example, in 2018, FTA released its 2017 NTD data. Therefore, reports 
produced with the deployment data may not match with the current data.  

The model did not take manufacturer issues into consideration. The FTA does not track 
systematic problems with certain manufacturers into the NTD. In order to make this worth the 
time, an agency would need to be able to report its preventive maintenance issues into the 
NTD’s revenue vehicle inventory database. 
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7.3 Recommendation 

Even though the performance of the predictive tool is very good, it could be further improved 
by implementing some recommendations. Data are the most important part of developing any 
predictive model. Lack of good quality data or lack of sufficient data may not produce a good 
predictive model. Therefore, in the future, the authors recommend adding more retired data to 
the training set to train the model considering vehicles will be retiring in future years. Adding 
more training data to train the predictive model may improve the performance of the model in 
the future.  

This model did not take factors not reported to NTD’s revenue vehicle inventory data into 
consideration. The authors recommend that the FTA should take an initiative to add crucial 
columns in the revenue vehicles inventory database. For example, the FTA can instruct transit 
agencies to add “operating start date,” “retired date,” “cost of vehicles,” and “agency zone” 
columns in the database.  

The exploratory data analysis showed that some extreme values in the data were causing 
outliers in the data. For example, in some cases, the retired year was earlier than the 
manufacture year, which was creating negative service life of vehicles. The authors recommend 
that the FTA take actions to improve the quality of the revenue vehicle inventory data by 
correcting manufacture year in the NTD.  

The above information will improve the predictive performance for the model. The authors 
suggest that further analysis of revenue vehicle inventory data should be an essential step to 
resolve issues in the state of good repair. Even though the performance of the predictive tool is 
good enough to predict the service life of an agency’s revenue vehicles, the agency may not 
retire them because of the good condition of their vehicles. In addition, there could be some 
safety risks if vehicles are kept in service too long according to MLPM’s predicted service life. 

7.4 Further Research 

As this is a relatively new field, the authors suggest that the research of machine learning 
algorithms on the state of good repair problem opens many opportunities for further research. 
It has enormous potential for further analysis, development of tools, and other areas that can 
be used by agencies to efficiently prioritize investments and keep rolling stocks in a state of 
good repair. Adding features as suggested earlier and selecting better features for the model 
may produce optimum results. Further improvement of this predictive model will help transit 
agencies predict the service life of their vehicles accurately so that the agency can plan and 
prioritize to replace or rehabilitate their assets accordingly. 
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APPENDIX A 
 
THE BACKLOG AND PREDICTED REPLACEMENT YEAR OF REVENUE VEHICLES IN 
SMALL URBAN AND RURAL TRANSIT SYSTEMS 

 
The details report of backlog and replacement costs for Nation’s statewide small urban and 
rural transit systems by vehicle category are shown in the following figures:
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01 AK – Revenue Vehicles Information for Alaska’s Small Urban and Rural Transit Systems (NTD 2017) 

 
Number of Revenue Vehicles by Vehicle Type 

 
Percentage of Revenue Vehicles 

 
Backlog and Projected Replacement of Revenue Vehicles 

 
Backlog and Projected Replacement Costs for Revenue 
Vehicles 
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Backlog and Projected Replacement of Vans 
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02 AL – Revenue Vehicles Information for Alabama’s Small Urban and Rural Transit Systems (NTD 2017) 
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03 AR – Revenue Vehicles Information for Arkansas’s Small Urban and Rural Transit Systems (NTD 2017) 
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04 AZ – Revenue Vehicles Information for Arizona’s Small Urban and Rural Transit Systems (NTD 2017) 
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Backlog of the Revenue Vehicles by Vehicle Type 
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05 CA – Revenue Vehicles Information for California’s Small Urban and Rural Transit Systems (NTD 2017) 
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Backlog of the Revenue Vehicles by Vehicle Type 
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06 CO – Revenue Vehicles Information for Colorado’s Small Urban and Rural Transit Systems (NTD 2017) 
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Backlog of the Revenue Vehicles by Vehicle Type 
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07 CT – Revenue Vehicles Information for Connecticut’s Small Urban and Rural Transit Systems (NTD 2017) 
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08 FL – Revenue Vehicles Information for Florida’s Small Urban and Rural Transit Systems (NTD 2017) 
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09 GA – Revenue Vehicles Information for Georgia’s Small Urban and Rural Transit Systems (NTD 2017) 
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10 HI – Revenue Vehicles Information for Hawaii’s Small Urban and Rural Transit Systems (NTD 2017) 
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11 IA – Revenue Vehicles Information for Iowa’s Small Urban and Rural Transit Systems (NTD 2017) 
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12 ID – Revenue Vehicles Information for Idaho’s Small Urban and Rural Transit Systems (NTD 2017) 
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13 IL – Revenue Vehicles Information for Illinois’s Small Urban and Rural Transit Systems (NTD 2017) 
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14 IN – Revenue Vehicles Information for Indiana’s Small Urban and Rural Transit Systems (NTD 2017) 
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15 KS – Revenue Vehicles Information for Kansas’s Small Urban and Rural Transit Systems (NTD 2017) 
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16 KY – Revenue Vehicles Information for Kentucky’s Small Urban and Rural Transit Systems (NTD 2017) 
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17 LA – Revenue Vehicles Information for Louisiana’s Small Urban and Rural Transit Systems (NTD 2017) 
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18 MA – Revenue Vehicles Information for Massachusetts’s Small Urban and Rural Transit Systems (NTD 2017) 
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19 MD – Revenue Vehicles Information for Maryland’s Small Urban and Rural Transit Systems (NTD 2017) 
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20 ME – Revenue Vehicles Information for Maine’s Small Urban and Rural Transit Systems (NTD 2017) 
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21 MI – Revenue Vehicles Information for Michigan’s Small Urban and Rural Transit Systems (NTD 2017) 
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22 MN – Revenue Vehicles Information for Minnesota’s Small Urban and Rural Transit Systems (NTD 2017) 
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23 MO – Revenue Vehicles Information for Missouri’s Small Urban and Rural Transit Systems (NTD 2017) 
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24 MS – Revenue Vehicles Information for Mississippi’s Small Urban and Rural Transit Systems (NTD 2017) 

 
Number of Revenue Vehicles by Vehicle Type 

 
Percentage of Revenue Vehicles 

 
Backlog and Projected Replacement of Revenue Vehicles 

 
Backlog and Projected Replacement Costs for Revenue 
Vehicles 



145 
 

 

 
Backlog and Projected Replacement of Buses 

 
Backlog and Projected Replacement Cost for Buses 

 

Backlog and Projected Replacement of Cutaways 

 

Backlog and Projected Replacement Cost for Cutaways 



146 
 

 

 

Backlog and Projected Replacement of Minivans 

 

Backlog and Projected Replacement Cost for Minivans 

 

Backlog and Projected Replacement of Vans 

 

Backlog and Projected Replacement Cost for Vans 



147 
 

 

 

Backlog of the Revenue Vehicles by Vehicle Type 

 

Funds Needed for Backlog by Vehicle Type 

 

 

 



148 
 

25 MT – Revenue Vehicles Information for Montana’s Small Urban and Rural Transit Systems (NTD 2017) 
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26 NC – Revenue Vehicles Information for North Carolina’s Small Urban and Rural Transit Systems (NTD 2017) 
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27 ND – Revenue Vehicles Information for North Dakota’s Small Urban and Rural Transit Systems (NTD 2017) 
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28 NE – Revenue Vehicles Information for Nebraska’s Small Urban and Rural Transit Systems (NTD 2017) 
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