ANALYSIS OF THE EFFECTS OF UNIT TRAIN PRODUCTION ON RAILROAD COSTS

P

 $\mathbf{B}\mathbf{y}$

Denver D. Tolliver Research Associate

UGPTI Staff Paper No. 58 December 1983

ANALYSIS OF THE EFFECTS OF UNIT TRAIN PRODUCTION ON RAILROAD COSTS

\mathbf{BY}

DENVER D. TOLLIVER RESEARCH ASSOCIATE

UPPER GREAT PLAINS TRANSPORTATION INSTITUTE NORTH DAKOTA STATE UNIVERSITY P. O. BOX 5074 FARGO, NORTH DAKOTA 58105

DECEMBER 1983

I. PROBLEM STATEMENT

The purpose of this analysis was to attempt to isolate the effects of unit train output on railroad costs.

Although unit train production has become increasingly important to the railroad industry in recent years, particularly with the increased demand for low-sulphur western coal during the last decade, no statistical analysis of the effects which unit train production may have on rail costs has been conducted to-date. The application of statistical techniques to railroad cost and production data, therefore, with the specific intent of measuring or capturing unit train effects may produce useful results in the areas of regulatory policy, railroad pricing, and/or long-run logistical planning by rail shippers.

II. DATA BASE

The data base used in this analysis consisted of railroad operating cost and production data for Class I American railroads. This constitutes a verified data file reported to the Interstate Commerce Commission annually by all Class I carriers.

Table 1 depicts some of the major cost and production measures which were available for this study. As Table 1 indicates, two levels of operating costs were available: (1) total operating expenses which include all aspects of cost except return on investment, and (2) varabous functional measures of cost, such as car costs and yard expenses, all of which add up to total operating costs. Production measures consisted of a range of output variables which were either: (1) distance measures, (2) time measures, (3) weight measures, or

TABLE 1. MAJOR RAILROAD COST AND PRODUCTION MEASURES AVAILABLE FROM ICC DATA FILES.

Production Measures
Car Miles
Locomotive Unit Miles
Tnain Miles
Hours Yard Switching
Road Train Hours
Gross Ton Miles of Cars and Contents
Tons of Freight Originated

(4) a combination of weight and distance. Of the output measures shown, car miles, locomotive miles and train miles may be sub-divided into unit train as opposed to non-unit train output on the basis of the statistics provided.

III. MODEL FORMULATION

In approaching the problem, a two-step procedure was followed. First, the highest possible explanatory cost model was devised based on the output measures shown in Table 1. Having developed this model, the second step in the analysis was to introduce a unit train variable into the equation, and seeing the effect which this might have on the cost model and the other explanatory variables.

Independent Variable Identification

Of the output measures shown in Table 1, each might be thought to exert a substantial influence over some portion of total cost. In addition, it was felt that certain of the potential exogenous variables (gross ton miles of cars and contents -- GTMC -- and car miles, for example) would be highly correlated; i.e., ton miles necessitate car miles.

A preliminary correlation analysis (Table 2) revealed that such a situation did indeed exist. Most of distance related or weight and distance related output variables were very highly correlated as were the time variables with each other. To identify appropriate exogenous variables, therefore, stepwise regression procedures were used in conjunction with operations theory to specify the aggregate model.

Stepwise Regression

All of the output variables shown in Table 1 were included in a stepwise regression procedure with total cost. The results are depicted in Table 3.

As Table 3 indicates, the output (independent) variable most closely associated with total cost (TOTAL), car miles (CM), was brought into the equation first. The resulting overall "F test" for model appropriateness was highly significant. The standard error of the estimate, the square root of the variance about the regression line, was relatively small, indicating fairly precise estimates. An R² of .97, furthermore, indicated that this variable alone explained 97% of the total variation in the dependent variable, TOTAL.

The testing function is the ratio $\frac{MS}{MS}$ Regression, which has an F distribution with K, n-K-1degrees of freedom. The "P value" or probability of obtaining a greater F value is .0001.

TABLE 2. CORRELATIONS BETWEEN DEPENDENT AND INDEPENDENT VARIABLES.

	Total Railway Operating Expenditures	Tons of Freight Originated	Gross Ton Miles of Cars and Contents	Car L Miles Running	Road ocomotive Unit Miles	e Train Miles Running	Road Train Hours	Hours Yard Switching	
Total	1.000	.938	928	.943	.918	.934	. 9677	.972	
Tons	.938	1.000	.890	.900	.864	.873	.933	.929	
GTMC	.928	.890	1.000	.998	.981	.973	.833	.845	
СМ	.943	.900	.998	1.000	.984	.979	.855	.866	
LUM	.918	.864	. 981	.984	1.000	.979	.820	.824	
TM	.934	.873	.973	.979	.979	1.000	.849	.860	
ROADHR	.967	.933	.833	.855	.820	.840	1.000	.967	
YARDHR	.972	.929	.845	.866	.824	.860	.967	1.000	

TABLE 3. STEPWISE REGRESSION RESULTS FOR POTENTIAL INDEPENDENT VARIABLES.*

			FOR	WARD SEL	ECTION PROCEDU	RE FOR	DEPENDENT VARIAS	LE TOTAL	
STEP 1	VARIABLE	CM ENTERED	R	SQUARE =	0.97282638	C (F	P) = 230.757163	67	
			DF		SUM OF SO	UARES	MEAN SQUA	RE F	PROB>F
		REGRESSION ERRUR TOTAL	54	8098	3495237097000 6479539441740 99747/65391000	0.000	2.399403495237E+ 1.499749621101E+		0.0001
				B VALUE	sro	ERROR	TYPE II	SS F	PROB>F
	* -	INTERCEPT CM	7921 91 99 • 6 0 • 7	6535149 5236401	0.01	711130	2.399403495237E+	19 1933.26	0.0001
STEP 2	VARIABLE	YARDHR ENTER	RED R	SQUARE =	0.99334279	C (1	P) = 19.273362	299	
			DF		SUM OF SO	DUARES	MEAN SQUA	RE F	PRCB>F
÷		REGRESSION ERROR TOTAL	53	1984	8900924654200 1073951884739 9374776539100	0.0000	1.480274450412E+ 3.743593858846E+		0.0001
				B VALUE	STO	ERROR	TYPE II	S\$ F	PROD>F
		INTERCEPT CM Y AROHR		3545155 1955648 32094 <i>0</i> 7		012261 204867	2.495664843384E+ 6.114540559756E+		
STEP 3	VARIABLE	GTMC ENTERED	D R	SQUARE =	: 0 • 994 966 94		P) = 4.372889	992	
			DF		SUM OF S		MEAN SQUA		PR08>F
		REGRESSION ERROR TOTAL	52	1500	394843760246 00 0 43990051 4390 399747765391 00	0.0000	9.88463161625JE+ 2.88470959625JE+		0.0001
				8 VALUE	STO	ERROR	TYPE II	SS F	PRCB>F
	—	INTERCEPT CM GTMC YARDHR	-0.0	4608339 1304897 0853482 0363760	0.00	595579 208352 361223	1677593054998510 484059405137034 40053J7638366396	72 15.79	0.0001
STEP 4	VARI ABLE	LUM ENTERED	R	SQUARE =	: 0.99533583	c (P) = 2.534298	336	
			DF		SUM OF S	QUARES	MEAN SCU	ARE F	PRO3>F
		REGRESSION ERROR TOTAL	51	1390	84923039983200 1051736555723 89974775539100	0.0000	7.416222307600E+ 2.725696418932E+	2720 • 85 +15	0.0001
				B VALUE	STD	ERROR	TYPE II	SS F	PR08>F
		INTERCEPT CM GTMC LUM YAROHR	-0.0 1.5	1250206 0032630 0690654 9164531 5356808	0.00	690281 213152 689539 258714	706789540706419 27319349170647 109943316395866 374000622939952	740 Î0.03	0.0026

NO OTHER VARIABLES MET THE 0.5000 SIGNIFICANCE LEVEL FOR ENTRY INTO THE MODEL.

^{*}Does not include data for Conrail, which was excluded from the sample, as will be explained in a later section of the study. Includes only those railroads which provide unit train service.

Constructing a hypothesis test for the model in Step One (Table 4) it becomes apparent that the simple linear model of car miles on total cost is a good approximation of the relationship between cost and output.

In Step Two of the procedure, the variable "yard switching hours" (YARDHR) was brought into the equation. As Table 3 indicates, addition of the variable caused a significant improvement in the explanatory value of the model, as measured by the partial F statistic of 163; highly significant at the 99% confidence level. The R² also increased as a greater proportion of the variance of Y was explained by the expanded model.

In Step Three, the variable "gross ton miles of cars and contents" (GTMC) was brought into the regression. As before, the addition of the new variable increased the proportion of the variance in TOTAL explained by the model. The partial F test was significant and the R² increased slightly. However, at this stage of the procedure, a problem occurred. The variable GTMC had an unexpected (negative) sign. This is contrary to operations logic. Furthermore, as noted in Table 1, the variables CM and GTMC are highly correlated. The negative sign, therefore, may well be a sign of multicollinearity. For these reasons, a decision

$$SS(X_2|X_1) = SSR(X_1,X_2) - SSR(X_1).$$

 $^{^2{\}rm The~partial~F~denotes}$ the significance of the extra or incremental reduction in the unexplained portion of the sum of squares of TOTAl caused by the addition by YARDHR to the model. The general formula for the incremental SS for a two variable model is given by:

The test function is the ratio $SS(X_2|X_1)/MSE(X_1,X_2)$. This ratio is F distributed with 1 and (n-p-2) degrees of freedom under the H_0 .

TABLE 4. HYPOTHESIS TEST: STAGE ONE OF STEPWISE REGRESSION

Item	Description/Value
Testing Function	Mean square regression/mean square error
Test Statistic	F with K, n-K-1 degrees of freedom
H _o :	There is no linear relationship between CM and TOTAL; $B_1 = 0$.
Decision Rule:	If F_{cal} 7 F, n, n-k-1, for an alpha of .01, then reject H_0
Conclusion:	Reject H_0

was, made to halt the stepwise procedure after the second stage. 4

The aggregate model which thus came out of the stepwise procedure was:

(1)
$$\hat{Y} = \hat{B}_0 + \hat{B}_1 X_1 + \hat{B}_2 X_2 + E$$

where:

 $X_1 = car miles$

 X_2 = yard switching hours

E = error term

A B = estimated coefficients

This model, however, it will be noted, says nothing about the effects of unit train output on costs. After the major causal variables had been identified, therefore, unit train measures were introduced into the equation in an effort to explain the effects of unit train output on cost.

⁴While an additional variable, road locomotive unit miles (LUM), was added after GTMC, the variable was barely significant at the 95% confidence level. Therefore, because of this and because of its high correlation to car miles, it was decided not to include the variable in the model.

Unit Train Model

The model depicted in equation (1) was thus modified to account for unit train output, as depicted below:

(2)
$$\hat{Y} = \hat{B}_0 + \hat{B}_1 X_1 + \hat{B}_2 X_2 + \hat{B}_3 X_3 + E$$

where:

 X_3 = unit train miles of output.

The sample used, as noted earlier, contains only those railroads which originated unit train traffic in 1979 or 1980.

Table 5 depicts the results of the respecified model. Several things will be discussed on the basis of this and subsequent tables. First, the adequacy of the model containing a unit train output variable will be noted. Second, an analysis of the residuals of the regression will be undertaken. And third, the question of multicollinearity will be addressed.

IV. INTERPRETATION OF STATISTICAL RESULTS

First of all, a unit train model calibrated on the basis of Class I railroads which originate unit train traffic (including Conrail) is clearly a significant aid in explaining the variance of total cost. The overall F test is significant at the 99% confidence level; an R^2 of nearly .99 indicates that 99% of the variation in TOTAL is explained by the model; and a coefficient of variation $[(\sigma/\bar{Y})\ 100\]$ of 13.6 indicates that while there is considerable variation about the dependent variable mean, this does not appear unduly troublesome given the wide range of railroad sizes and configurations.

TABLE 5. RESULTS OF REGRESSION ANALYSIS FOR UNIT TRAIN COST MODEL, INCLUDING RESIDUAL AND COLLINEARITY DIAGNOSTICS.

DEP VARIABLE:	TOTAL						
SOURCE DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PRO	8>F		
MUDEL 3 ERROR 54 C TOTAL 57	5.20128F+19 1	.76376E+19 .11733E+16	1578.548	0.00	001		
ROOT MSE DEP MEAN C.V.	105703848 774546707 13.64719	R-SQUARE ADJ R-SQ	0.9887 0.9881				
VARIABLE DF	PARAMETER ESTIMATE		T FOR HO: ARAMETER=0	PROB >	T TOL	ERANCE	
INTERCEP 1 CM 1 UTM 1	-52011066 0.459354 -24.752948	18357817 0.043044 10.044378	-2.833 10.672 -2.464 16.018	0.0 0.0 0.0 0.0	001 0. 169 0.	098021 327429 163921	-
YARDHR 1	650.420	40,604378	10.010				COOK 'S
088		EDICT STD ERR VALUE PREDICT	RESIDUAL	STO ERR RESIDUAL R	STUDENT ESIDUAL	-2-1-0 1 2	Đ
1 BO 2 BO 3 BM	8.85+08 1.6	1E+09 23728937 0E+09 19098170 33586 17288190	-1.2E+08 48560414	1.0E+08 1.0E+08 1.0E+08	-1.311 -1.122 0.466 0.387	**	0.023 0.011 0.001 0.001
4 BM 5 CO 6 CO	8.7E+08 9.1 8.3E+08 9.1	90416 17358780 1E+08 17304579 8E+08 17228954 3E+09 74630415	-3.4E+0/ -1.5E+08 -3.2E+08	1.0E+08 1.0E+08 1.0E+08 74857228	-0.329 -1.450 4.276	**	0.001 0.014 4.543 0.269
7 CR 8 CR 9 DH 10 DH	3.7E+09 3.5 1.3E+08 402 1.2E+08 377	5E+09 51701703 03579 17717303 18445 17764407	1.7E+08 90303421 8)986555	92196732 1.0E+08 1.0E+08 1.0E+08	1.851 0.867 0.777 0.562	*** * *	0.005 0.004 0.002
11 DTI 12 DTI 13 EJE	76586000 133 1.3E+08 1.	07439 17631780 21101 17790668 9E+08 21366851 1E+08 19146903	3 63264699 1 -6.4E+07 3 -1.4E+07	1.0E+08 1.0E+08 1.0E+08	0.607 -0.621 -0.138	* *	0.003 0.004 0.000 0.004
14 EJE 15 GTW 16 GT# 17 PLE	2.4E+08 3. 2.0E+08 2.	2E+08_19209291 3E+08_17808692 2E+08_19074060	-7.1E+07 2 -3.2E+07 3 -6.5E+07	1.0E+08 1.0E+08 1.0E+08 1.0E+03	-0.687 -0.310 -0.627 -0.247	*	0.001 0.003 0.000
18 PLE 19 WM 20 WM	65745000 183 84308000 151	55159 17765542 71312 1751136	0 47J8JJ56 2 69152841 5 19263688	1.0E+03 1.0E+08 1.0E+08	0.455 0.664 0.185	*	0.002 0.003 0.000 0.000
21 AGS 22 AGS 23 CGA 24 CGA	85637000 641 1.2E+08 991 1.2E+08 1.	53717 17516419 00410 1700649 1E+08 1695604	3 24139590	1.0E+03 1.0E+08 1.0E+08 1.0E+08	0.206 0.231 0.187 0.176		0.000 0.000 0.000
25 CNTP 26 CNTP 27 ICG	1.3E+08 1.	1E+08 17630290 1E+09 18355440 6E+08 1658445	6 14405783 6 -5.3E+07 2 -1.8E+07	1.0E+08 1.0E+08 1.0E+08	0.138 -0.512 -0.172	*	0.200 0.002 0.000 0.003
28 ICG 29 LN 30 LN 31 SOU	1.1E+09 1. 1.0E+09 1.	2E+09 1832791 1E+09 2004299 4E+08 1726286	8 -1 · 1E + 08 0 -9 • 0E + 07	1.0E+08 1.0E+08	-1.028 -0.870 0.179	** 	0.007
32 SOU 33 ATSF - 34 ATSF	9.0E+08 9. 2.0E+09 1. 2.0E+09 1.	1E+08 1579140 9E+09 3260744	6 -1.0E+07 4 55991289 3 52631157	1.0E+08 1.0E+08 1.0E+08	-0.097 0.557 0.523 -0.759		0.000 0.008 0.007 0.093
35 BN 36 BN 37 CNW	2.7E+09 2.	8E+09 6622270 7E+09 7817569 0E+09 1709544 0E+09 1540146	5 8828835 8 -1.6E+08	71146779 1.0E+09	0.124 -1.497 -1.353	** **	0.005 0.015 0.010
38 CNW 39 MILW 40 MILW 41 CS	6.6E+08 6. 4.6E+08 4. 1.2E+08 96	1E+08 1537461 4E+08 1557252 79776_1830515	1 40426816 1 24570740 9 1.1E+08	1.0E+08 1.0E+08 1.0E+08 1.0E+08	0.387 0.235 1.102 1.011	**	0.001 0.000 0.009 0.008
42 CS 43 DRG W 44 DRGW 45 DMIR	2.5E+08 2. 2.3E+08 1.	91401 1883760 1E+08 1641269 9E+08 1682612 42374 1759525	4 41201914 4 45400444 5 59197626	1.0E+08 1.0E+08 1.0E+08	0.395 0.435 0.568	*	0.001 0.001 0.002
46 D'41R 47 F#D 48 FWD	73732000 142 93211000 402	42051 1774388 31060 1799073 12176 1856424 6E+08 1649372	0 52929940 0 55712824	1.0E+08 1.0E+08 1.0E+08 1.0E+08	0.571 0.508 0.535 -0.253	* *	0.002 0.002 0.002 0.000
49 KCS 50 KCS 51 MKT 52 MKT	2.4E+08 2. 2.0E+08 1.	.7E+08 1644627 .9E+09 1635063 .2E+09 1611247	7 -2.86+07 7 7133527 7 -7408897	1.0E+08 1.0E+08 1.0E+08	-0.264 0.063 -0.071		0.000
53 MP 54 MP 55 SP	1.5E+09	6E+09 1965585 6E+09 2066401 1E+09 4961182 4E+09 3488566	9 -1.3E+08 9 -1.3E+08 0 81159657	1.0E+08 1.0E+08 93337938 99731231	-1.250 -1.287 0.970 -4.295	** ** ******	0.014 0.016 0.053 0.564
56 SP 57_UP 58 UP	1 05100 1.	7E+09 3458566 7E+09 5013879 6E+09 4757309	9 48040089	93055920	0.516 1.323	**	0.111

SUM OF RESIDUALS .00000482798 SUM OF SQUARED RESIDUALS 6.03358E+17_ The tests for significance of the individual parameters shown in Table 5 (the T test for the null hypothesis that $\hat{B}=0$) are all significant at the 95% level. The sign of the parameters, furthermore, is logical as well. Here, it is expected that unit train miles would have a negative sign; that is, after controlling for CM and YARDHR the effect of unit train miles is to lower cost. For example, every yard hour incurred switching results in a cost of \$650, while an expense of 46 % is incurred per car mile. However, if the shipment is a unit train, a cost savings of \$24 per mile will be incurred over non-unit train shipments.

Residual Analysis

Table 5 also presents detailed data concerning the residuals of the regression, or the portion of the variation in Y ($Y_i - Y$) which is not explained by the straight-line regression.

An analysis of outliers immediately flagged two railroads: Conrail, or Consolidation Railway Corporation, and the Southern Pacific. It was anticipated that Conrail would be an outlier, because of poor financial history and the current situation of the railroad. 5 Conrail's 1979 standardized residual value lay 3 standard deviations from the mean (the mean of all $\rm E_i$'s is zero). On the basis of an understanding of the history and financial posture of the railroad, and on the basis of a large residual value, it was decided to eliminate Conrail from the sample.

⁵Conrail is a government-created and financed amalgamation of several bankrupted railroads in the northeastern U.S. The carrier started with a poor physical system, little or no financial capital, and stiff truck competition for its traffic base. It was therefore anticipated that a large positive difference would exist between the actual and predicted values.

The second extreme case, the Southern Pacific, was somewhat more difficult to evaluate. It was not expected that this railroad would exhibit a negative deviation of 3 SD's about the mean in terms of its residual value. Furthermore, in the second year of the data, the Southern Pacific exhibited a small, "near-normal" deviation of 1 SD about the mean. It was decided, therefore, to rerun the analysis after excluding Conrailippior to making a final determination regarding the SP.

As Table 6 denotes, excluding Conrail from the sample did nothing but good things for the model. The fit improved dramatically for the exclusion of just one case. The F statistic more than doubled. The sum of squares of total was reduced by over 1/3. The coefficient of variation, consequently, dropped to 7.73. The parameter estimates themselves change (CM increasing to .60, YARDHR dropping to 357 and UTM remaining relatively stable). All statistical tests for significance (T-tests) were now significant at the 99% level, furthermore. The SP, however, remained a severe outlier but now for both years, and in opposite directions. It was decided, therefore, to eliminate the Southern Pacific from the final analysis as well.

Table 7 depicts of the results of the regression analysis for the reformulated data set excluding the SP. As was the case with the exclusion of Conrail, the omission of SP from the data base served to improve the fit of the linear model. Once again, a further reduction in the unexplained sum of squares for total was achieved. The F statistics increased by 42%, the R² increased slightly, and the coefficient of

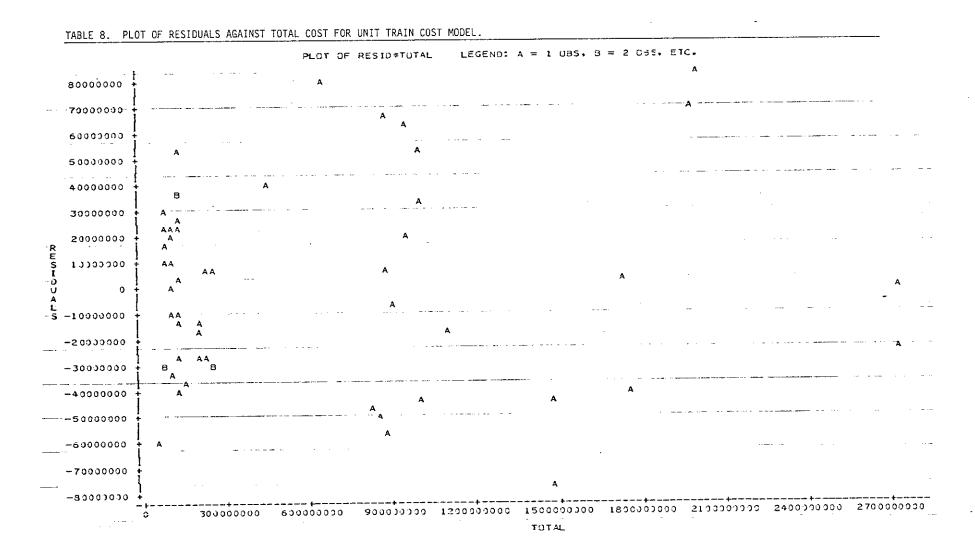
TABLE 6. RESULTS OF REGRESSION ANALYSIS FOR UNIT TRAIN COST MODEL EXCLUDING CONRAIL DATA.

										-
DEP VARI	ABLE:	TOTAL			-	· · · · · ·	-			
SDURCE	DF	SUM O SQUARE		MEAN SQUARE	F VALUE	PROB	>F			
MODEL ERROR C TOTAL	3 52 55	2.96706E+1 1.33282E+1 2.98039E+1	7 2.563	21E+19 11E+15	3858.679	0.00	01			
	MSE MEAN	5062716 65486428 7•73093	16 AD	SQUARE J R-SQ	0.9955 0.995					
/AR I ABLE	DF	PARAMETE ESTIMAT		AND ARD ERROR	T FOR HO: PARAMETER=0	PRO8 > 1	rļ to	LERANCE		"
ENT EŘ CÉP SM JTM YAROHR	o 1 1 1 1	660846 0.60085 -24.38454 357.21	3 0. 6 4.	801253 023180 837387 107080	0.674 25.921 -5.041 12.272	0.00	01 0 01 0	.093126 .324099 .153236	-	
085	ī	D ACTUAL	PREDICT VALUE		RR CT RESIDUAL		TUDENT SIDUAL	-2-1-0	l 2	COOK *
1 BDB 3 BBM 4 BCD 6 DH 8 DH 10 EJ 11 EJ 11 GT 11 GT 11 GT 11 GT 11 WM 19 AG 21 CCN 22	14400) 441 TIEE SSAAPPGGNUU	96029000 76586000 1.3E±08 93796000 2.4E+08 59495000 62890000 65745000 84308000 —92735000 85600000 1.2E+08 1.2E+08 1.2E+08 1.5E+08 1.3E+09 1.0E+09 1.0E+09 1.0E+09 1.0E+09 9.5E+08	8.6E+08 1.0E+08 1.0E+08 8.6E+098 991649560 5976223560 597220716 1.0E+08 2.1EE+08 2.1EE+08 92736133 660012628 1.4E+08	140214 85561 86553 119385 121868 95697 96427 89205 91866 107546 917954 99114 86492 91691 86492 91796 94796 94796 94930 94796 106654 116626 104194 83077	96 81 891832 96 -3.0E+07 32 30 397285 36 19540041 04 19805440 73 16865284 28 -2.0E+07 17 -6516568 36 -2.2E+07 40 -1.3E+07 30 -5.6E+07 30 -5.6E+07 31 -6E+07 32 -6E+07 33 68997640 34 68997640 34 68997640 34 68997640 36 -4234831 37 -3.8E+07 39 20 3031813	4 364 6772 4 98 371 91 4 98 80 059 4 91 93 83 4 91 38 467 4 97 10 376 4 98 350 63 4 97 86 689 4 94 71 682 4 97 85 075 4 964 74 85 4 98 82 863 4 97 39 92 9 4 98 80 62 55 4 97 31 740 4 97 86 97 86 4 98 91 15 26 4 96 97 78 20 4 97 97 97 97 97 97 97 97 97 97 97 97 97	1.299 0.556 0.3797 1.664 -0.611 0.3997 0.3393 -0.4314 -0.1318 -0.1318 -0.4816	****	**	0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 SO 31 AT 32 BN 33 BN 35 CML 35 CML 35 CML 35 CML 36 CML 37 CML 37 CML 38 CML 38 CML 44 CML 44 CML 44 CML 44 CML 44 CML 51 CML 52 CML 53 CML 54 CML 55 CML 56 CML 57 CML 58	ISF SF NW NW LW LW LW ILW IS SC W IIR VD OD SS T	1.2E+09 2.5E+08 2.3E+08 91640000 73732000 93211000 1.2E+08 2.4E+08 2.4E+08 2.0E+08 2.1E+08 1.5E+09	1.5E+09 2.7E+09 8.7E+08 8.1E+08 9.1E+08 4.2E+08 40.7980202 2.2E+08 76284354 98542E+08 2.1EE+09 2.1EE+09 2.1EE+09 2.1EE+09 2.1EE+09 2.1EE+09 2.1EE+09 2.1EE+09 2.1EE+09 2.1EE+09	158378 157402 321915 375481 121792 102475 81773 75798 102261 106415 83979 90292 92394 96332 99246 78803 80014 78807 118306 11025 243454 250116 254216	09 -7647700 72 81519521 85 68747375 34 11069014 14 -2.4E+07 13 -4.5E+07 21 88565872 21 88565872 32 42858755 71 43587383 71 28996778 98 1266618 081 15555146 32 10449097 26 -5329299 60 -3662463 88 -2.4E+07 63 -3.4E+07 63 -3.5E+07 73 1.4E+08 84 -1.8E+08 94 -6.0E+07 17 -2.3E+07	480 860 -81 481 181 13 390 744 = 74 390 744 = 12 491403 554 495792 128 499622 393 500565 15 498836 14 494961 224 499253 223 498764 237 498764 237 498764 24 497022 216 49644 26 497022 216 49644 25 497022 216 49644 25 497022 216 49644 25 497022 216 49644 25 49702 2134 417 49812 123 443892 270 4401 73 26 43781 29	-0.153 1.6959 0.2339 -0.7199 -0.9183 1.7760 0.88796 0.0358 0.0358 0.0107 -0.4893 -0.107 -0.4893 -0.107 -0.404 -1.3787	* * * * * * * * * * * * * * * * * * * *	***	0.00 0.015 0.015 0.00 0.00 0.00 0.00 0.0

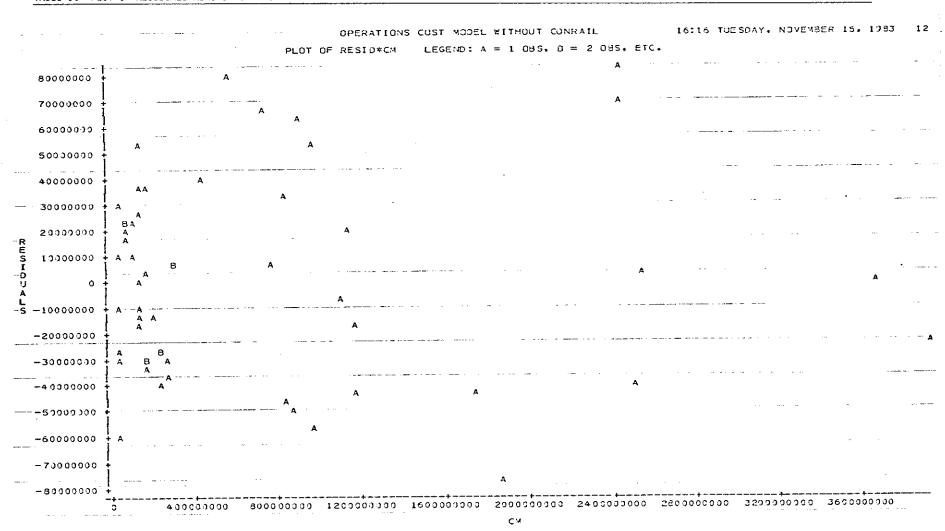
SUM OF RESIDUALS 7.45058E-08 SUM OF SQUARED RESIDUALS 1.33282E+17

TABLE 7. RESULTS OF REGRESSION ANALYSIS FOR UNIT TRAIN COST MODEL EXCLUDING BOTH CONRAIL AND SOUTHERN PACIFIC.

DEP VARIABLE	TOTAL	• •				
SOURCE DF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PRO6>F		
MODEL 3 ERROR 50 C TOTAL 53	2.53954E+19 7.69836E+16 2.54724E+19	8.46515E+18 1.53967E+15	5498.022	0.0001	•	
ROOT MSE DEP MEAN C.V.	39238650 601489500 6•52358	R-SQUARE ADJ R-SQ	0.9970 0.9968			
VARIABLE DF	PARAMETER ESTIMATE	STANDARD ERROR	T FOR HO: PARAMETER=0	PR08 > [T]	TOLERANCE	
INTERCEP 1 CM 1 UTM 1 YAROHR 1	-74304.488 0.576659 -23.311965 399.368	7870743 0.019272 4.299534 23.654300	-0.009 29.922 -5.422 16.384	0.0001 0.0001	0.393868 0.247131 0.170321	
08 S	ID ACTUAL	PREDICT STD ER VALUE PREDIC		STO ERR STUR	DENT DUAL -2-1-0	COOK * S
1 B0 2 BM 4 B4 5 CCD 7 DH 9 DT I 10 EJE 12 EJE 13 GTW 15 PLE 14 PLE 17 WM 18 WGS 20 CCNTP 24 CCGA 22 CCNTP 24 ICG 27 LN 28 SOU	8.8E+08 1 1.3E+08 1 8.7E+08 8 8.3E+08 92 1.2E+08 91 96029000 54 1.3E+08 1 96029000 54 1.3E+08 2 2.4E+08 2 2.0E+08 2 2.0E+08 2 2.0E+08 2 2.0E+08 1 1.2E+08 1	1.0E+08 683787 3.1E+08 1021876 3.8E+08 1053011 2792294 758082 1.63U561 764418 2.220431 707945 3.6884833 732552 1.0E+08 727186 2.7E+08 780897 2.1E+08 724834 3370007 707973 1.2E+08 724834 35660419 7212954 1.3E+08 749820 1.3E+08 676931 1.2E+08 752420 1.3E+08 769675 1.2E+08 769675 1.3E+08 769675 1.3E+08 769675 1.3E+08 769675 1.3E+08 769675 1.3E+08 1043548 1.3E+08 84318 1.3E+08 984318 1.3E+08 993203	7543560 21749969 10598311 1660907856 -4.6E+07 037714796 127074439 127074439 121901167 -2.9E+07 8-9363146 0-3.0E+07 3-1.7E+07 3-1.7E+07 9-9084581 6-3.3E+07 9-9162354 5-3.3E+07 29162354 5-3.3E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-3.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-3.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354 6-4.1E+07 29162354	37347271 38654537 38654537 3863259 37885352 138496357 38496857 38548779 38548779 38548779 38558937 -0 38558937 -0 38558937 -0 38558166 -1 38594676 -2 38561121 038515563 -0 38561121 038515563 -0 3856767 03856767 03856767 03856767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 0385767 038577 038577 038476377	\$53 \$202 \$203 \$274 \$745 \$224 \$730 \$617 \$568 \$730 \$17 \$730 \$177 \$440 \$236 \$756 \$14 \$236 \$14 \$236 \$314 \$236 \$314 \$236 \$314 \$236 \$314 \$236 \$314 \$236 \$314 \$236 \$314 \$236 \$316	* 0.043 0.001 0.001 0.002 0.003 0.004 0.003 0.00
31 ATSF 32 ATSF 33 ATSF 33 ATSF 33 ATSF 34 BN 35 CNW 36 MILW 37 MILW 39 CS 40 DRGW 42 DRGW 43 DMIR 44 DMIR 45 FWD 46 FWD 47 KCS 48 KCS 49 MKT 51 MP 52 MP 53 UP	2.0E+09 1 2.7E+09 2 8.6E+08 9 8.7E+08 9 6.7E+08 9 4.6E+08 4 1.2E+08 2 2.5E+08 2 2.5E+08 2 2.3E+08 2 2.3E+08 2 2.3E+08 2 2.3E+08 2 2.3E+08 2 2.4E+08 2 2.4E+08 2 2.4E+08 2 2.4E+08 2 1.5E+09 1 1.5E+09 1 1.5E+09 1	9-3E+08 899 375 5-7E+03 652241 5-2E+09 590246 2569351 833205 274E+08 666142 2-3E+08 695389 1472004 715121 7756689 733971 2079802 785364 2-1E+08 820862 2-6E+08 615271 2-7E+08 615271	4 70 501795 - 4888951 9 - 2488407 3 - 548407 2 - 5588407 2 81312960 1 39417019 9 51816649 1 37739454 0 56147996 2 20167996 3 15975319 1 111119 1 2704062 4 - 2468407 4 - 2468407 5 - 148407 5 - 1	36516496 130121388 -0 37777093 -1 38124032 -1 38692762 2 38792172 1 38231714 0 38669072 0 38546663 0 38581496 0 38581496 0 38581496 0 38546269 0 38546269 0 38546269 0 38546269 0 385753268 0 38753268 -0 38753268 -1 37566546 -1 37686546 -1 37885364 -2 37885364 -2	.257 .931 .016 .860 .340 .522 .102 .016 .352 .937 .145 .166 .523 .414 .029 .070 .789 .333 .414 .029 .789 .333 .4175 .417	**** 0.207 0.144 0.100 0.248 0.035 0.035 0.035 ** 0.001 0.000 * 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.004 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.003


13

SUM OF RESIDUALS .00000102818 SUM OF SQUARED RESIDUALS 7.69836E+16


variation declined to 6.5. And, in general, the value of the parametric test for each of the independent variables in the model improved. While there were still instances of large discrepancies between the observed and predicted values for several cases, nothing approached the extreme values generated by Conrail and SP in the raw data set.

After reformulation of the original data set to exclude the two extreme outliers, a visual inspection of the residual plots were made. Inspection of these plots, depicted in Tables 8-11, indicates general conformance with the assumptions underlying the linear model; i.e., homoscedasticity and independence of the E_i 's associated with various combinations of values of the independent variables.

As Table 8 indicates, the residuals for the unit train model scatter in a fairly random pattern about the mean of E, indicating that the assumption of linearity for the overall model appears to be an appropriate supposition. The residuals, in addition, were plotted against each individual output variable, searching for signs of potential nonlinearity or violations of the independence assumptions. As Table 9 indicates, the plot of residuals against car miles is once again random in nature, as is the plot of residuals against the variable "yard switching hours", depicted in Table 10. Only in the case of unit train miles is there reason to perhaps ponder over the residual scatter (Table 11). The majority of the residuals scatter caimlessly at lower levels of output. There is considerable difference in the value of two observations for the data set, which appear at the extreme right

ب

1000000

800000

1200000

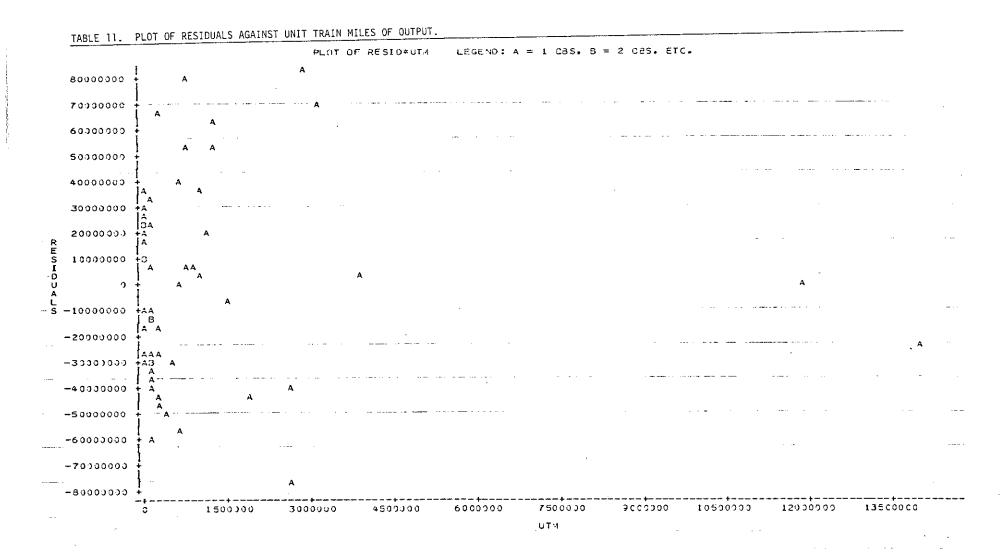
YARDHR

1400000

LEGEND: A = 1 085. 8 = 2 C85. ETC.

TABLE 10. PLOT OF RESIDUALS AGAINST YARD HOURS SWITCHING FOR UNIT TRAIN COST MODEL.

-30000000 -40000000 -50000000


-60000000 -70000000

-83000000

200000

400000

PLOT OF RESID#YARDHR

of the quadrant (Burlington Northern for years 1979-1980). If these two observations are considered as a subpopulation, then their variance is clearly less than the remainder of the residuals, which may be defined as a second subpopulation. Any overall pattern, however, is weak at best.

As a general rule, the simple fact that some errors are larger than others is not, in and of itself, sufficient to establish a violation of homoscedasticity. Rather, "unless pattern is found, the convenient assumption of homoscedasticity should be accepted". And so it will in this instance.

Test for Differences Between Years

A related problem with regard to using pooled data is whether or not there is a signficant difference across years after inflating costs for inflation. If so, it is desirable that this be controlled for by bringing a "dummy" variable into the equation.

To test for such possible differences, a dummy variable was created (1 if year = 1979, 0 otherwise) and the regression re-ran including the variable DYEAR. As Table 12 indicates, the introduction of the dummy variable added little to the explanatory value of the model. The T-test for the null hypothesis that $\hat{B}_{3}=0$ could not be rejected at any reasonable alpha. It was concluded, therefore, that the dummy should be dropped from the equation; the implication being that there really is no significant difference between the two years of data.

⁶Beals, Ralph E. Statistics for Economists, Rand McNally and Company, Chicago, Illinois, 1972: Chapter 13, "Distribution of Errors", page 343.

TABLE 13. ANOVA TABLE FOR MODEL INCLUDING DUMMY VARIABLE.

SOURCE	OF	SUM OF SQUARES	MEAN SQUARE	F VALUE	PROB>F
MODEL ERROR C TOTAL	4 49 53		6.34913E+18 1.54939E+15	4097.812	0.0001
ROOT DEP A C.V.	MSE MEAN	39362349 601489500 6.544146	R-SQUARE ADJ R-SQ	0.9970 0.9968	
VAR IABLE	DF	PARAMETER ESTIMATE	STANDARD ERROR	and the control of th	PRO8 > T
INTERCEP		-4121123	9284628	-0.444	0.6591
UTM	1	-23.177160	4.316157	-5.370	0.0001
CM	1	0.577566 397.167	0.019364 23.877094	29.827 16.634	0.0001
YARDHR	.8.	8955581	10810766	0.828	0.4115

Multicollinearity Diagnosis

A likely problem with multiple regression analysis, in this instance, as noted earlier, is that of multicollinearity or mutual linear dependence among exogenous variables. Multicollinearity, other than where perfect correlation exists is a relative not an absolute problem. The question is when does it become a critical concern for the model. And when so, how should it be treated.

An initial test for the presence of multicollinearity was undertaken using the tolerance of each variable as a measure of potential multicollinearity. The tolerance is that proportion of the variation in a given independent variable not explained by a regression using all other independent variables (i.e., $1 - R^2$ of the regression of X_1 with X_2, \dots, X_p). A low tolerance represents high multicollinearity, and vice versa.

Table 13 depicts the tolerance proportions for each independent variable, restated from Table 7. Here, it will be noted that all variables, but car miles and yard hours switching particularly, have a discussively low tolerance. From Table 2 it will be recalled that a simple correlation of .866 existed between CM and YARDHR, thus explaining part of the problem.

A second test for multicollinearity tracks the departure of the correlation matrix of independent variables from orthogonality. If the variables are uncorrelated, the matrix will assume orthogonality. If the variables are highly inter-correlated, a significant departure from orthogonality will occur.

TABLE 13. TOLERANCE VALUES FOR INDEPENDENT VARIABLES.

Variable	Tolerance	
Car Miles	.091	
Unit Train Miles	.247	
Yard Switching Hours	.170	

The procedure consists of taking the determinant of the correlation matrix. Since the correlation matrix is a "normalized positive definite matrix", with all elements lying between -1 and +1, the determinant of the matrix itself will assume a value between 0 and one. The determinant (DET) approaches zero, this connotes

⁷Schilderinck, J.H.F. Regression and Factor Analysis in Econometrics, International Graphics Dordrecht, Leinden, The Netherlands, 1977.

a departure from orthogonality. If the DET approaches one, departure from orthogonality is minimal or nill. 8

In the instance of the unit train model, the DET of the correlation matrix of independent variables is .0465, connoting a marked departure from orthogonality. This was to be expected and points-out the need for adjusting the cost model.

One obvious solution to multicollinercity is to drop one of the two highly intercorrelated variables. If this does not drastically alter the explanatory benefit of the model, this may, in fact, be the most straightforward and acceptable approach.

Table 14 depcits the results of a regression using such a reformulated model, containing only UTM and CM as exogenous variables. As the Table indicates reformulation of the model reduced somewhat the proportion of the variation in TOTAL explained by the model. The model, however, still explains nearly 98 percent of the variation in total cost. Furthermore, the parameter estimates and the parametric tests for significance were not substantially altered.

TABLE 14. RESULTS OF REFORMULATED REGRESSION MODEL.

SUM OF MEAN SOURCE DF SQUARES SQUARE F VALUE PRO MODEL 2 2.49566E+19 1.24783E+19 1.233.625 0.0 ERROR 51 5.15872E+17 1.01151E+16	
) 0.1
C TOTAL 53 2.54724E+19	通信 医多性性坏疽 化二氯甲基甲基甲基
ROOT MSE 100574011 R-SQUARE 0.9797 DEP MEAN 601489500 ADJ R-SQ 0.9790 C.V. 16.72083	
PARAMETER STANDARD T FOR HO: VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB >	TOLERANCE
INTERCEP 1 57748913 18163781 3.179 0.0 CM 1 0.842354 0.028514 29.542 0.0 UTM 1 -45.542450 10.490807 -4.341 0.0	0.272707

The key question here, though, is whether or not the reformulation mitigated substantially the effects of multicollinearity. Table 14 indicates that while the tolerance measure between the two variables is relatively low, it is a considerable improvement over the previous model. The DET of the correlation matrix is, in this instance, synonymous with the tolerance (.2727) for the 2X2 matrix. This DET may itself be transformed into a test statistic, with a CHI-SQUARE distribution, which can be used to test the significance of the departure from orthogonality. The test statistic consists of the logarithmic transformation of the matrix determinant, as noted below: 10

(2) LOG(DET) [(T-1)
$$\frac{1}{6}$$
 (2n + 5)]

where:

T = number of rows in the correlation matrix

n = sample size

This statistic has a CHI-SQUARE distribution with $\frac{1}{2}$ k degrees of freedom. The C-S value can then be used to accept or reject a null hypothesis that there is no significant departure from orthogonality, or that the DET of the matrix = 1. In this instance, a C-S statistic of 9.886 was calculated. Referring to the CHI-SQUARE table for K-1 or 1 degree of freedom, it was discovered that at the 99th percentile, the table value of 6.635 is less than the C-S value; the null hypothesis is thus rejected.

⁹Ibid., Chapter One.

¹⁰Ibid.

Conclusions on Multicollinearity

The foregoing analysis has established the fact that multi-collinearity is present and that the effect is to cause a significant departure from orthogonality. Multicollinearity, however, is not perfect, but is relatively high. This in itself does not bias the regression coefficients except by rounding error. Furthermore, all parameter tests are significant, so the inflation of the SE has not necessarily resulted in the acceptance of a false H_0 .

V. CONCLUSIONS

The objective of the study was partially achieved: a model explaining the effects of unit train output on rail costs was developed. The statistical analysis indicates that when controlling for gross output (car miles) the effect of unit train output is to decrease rail-road costs by \$45 per train mile.

For predictive purposes, the model appears as follows: Total = 57748913 + .842354 CM - 45.542 UTM + E.

The presence of multicollinearity, however, is a confounding factor which diminishes the statistical viability of the model. The solution would perhaps be to use a technique such as path analysis to point-out the indirect effects of unit train output on costs through other output variables (i.e., yard switching hours, road hours, etc.). rather than include a unit train variable in the equation.