DEVELOPMENT OF AN INTERACTIVE COMPUTER-BASED
MULTIMEDIA DESIGN MANUAL

Utah Department of Transportation
Report UT-95.02

Mountain-Plains Consortium
Report MPC 95-41

by
William J. Grenney

Brent C. Robinson
Thad E. Senti

Utah State University
Logan, Utah

June 1995

Acknowledgments

This has been a cooperative project with the Utah Department of Transportation and the
Mountain-Plains Consortium, University Transportation Centers Program of the U.S. Department
of Transportation. We would like to thank these agencies for their aid and support.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts
and the accuracy of the information presented herein. This document is disseminated under the
sponsorship of the Department of Transportation, University Transportation Centers Program, in the
interest of information exchange. The U.S, Government assumes no liability for the contents or use
thereof.

CONTENTS

Page

LIST OF TABLES ..ttt it e e e e e e e e e fii
LIST OF FIGURES .ttt ittt et e e e e e i e v
EXECUTIVE SUMMARY oot it e vii
INTRODUCTION AND OBIECTIVES .. o i s 1
GLOSS AR Y ottt e e e 5
REVIEW OF LITERATURE ...ttt 9
Decision Support Systems for Water Resource Applications ... 9
Decision Support Systems with Multimedia 12
FEATURES oot et e e e e e 15
Hypertext and Hypergraphics o.oovoni e 15
BIOWSEE + o v o v et et e e e e e e e e 17

POPUP WINAOWS .+« oottt e e et e e 19

Button Bars and Pulldown MENUSo i ii i 20

QAT + v ottt e e e e 21
HEStOTY LASE .« oo ot et oot 22
BOOKIIATKS © o v o e et et e e e et e e 22
ANDOTAEOIL + o v o vt et e et et e et e e s et 22
External Program Linkso 23
HyperCale ..ot 23
GLOSSAIY . vt vttt e 25
MUIEIMEALA .« .+ o o ot ettt e et e e e e e 25

AUGIO + e e 26

1) 1 - R 27

Movie CIPS .« vttt 29

BEquation SOLVETSoev e 30
Decision SUpport SYSLEIMLo vt e 33
DEVELOPMENT TOOLS o ottt e 35
Hypertext Authoring SYStems« ...oooiuer 35
Hypertext authoring tool evaluationo 36

Viewer authOring PrOCESS . ..ot vr v v r e i et 39

LT e T 40

Decision Support SYSIEML . ..o vu v vt 40
Knowledge encapsulationo.eoireii i 42

THfErence ENGIEot o ettt e 43

ii

Object-oriented programimingo i enon i 44

Flexpert implementation i 46

C Programming Language i i 55
Equation SOIVEIS e 55

HyperCale ..o 56

Integration of Applications i e e 56
Hypertextmodule o 57
Logiccontrolmodule s 57

Numerical module 58
AUTHORING PROCESS o ot e e e 59
User Needs Analysis ... oo e e e s 59
Definition of Application and Design Standards i 61
Application definition0.. 61
Designstandards e 61

Selection of Development Tools i 62
Knowledge Acquisition and Representationo 64
Prototype Development e 67
Debugging ProCess . . oo i i e 67
Updating of Manuals 68

BV ALUATTION S Lttt e e e e e e 71
User Bvaluation vt e e e e 71
AUthor Evaluation ... o ittt e e e e 78
SUMMARY AND CONCLUSIONS ...ttt 83
REFERENCE S . oottt e e e e 87
APPENDICES ot e 91
Appendix A. Equations Implemented in Equation Solver 93
Appendix B. Culvert Design Decision Support System Rule File 99
Appendix C. Culvert Design Decision Support System Variable File 111
Appendix D. Culvert Design Decision Support System Activity File 121
Appendix E. Equation Solver CCodeo 127
Appendix F. Computer-based Manual Evaluation Form 155

Appendix G. Computer-based Manual Evaluation Results 161

Table

ili

LIST OF TABLES
Page
Microsoft Multimedia Viewer 2.0 and Folio Views 3.0 Evaluation Summary 36
Structural Outline and Terminology Used for the Development of
Computer-Based Manuals 65
User Importance Ratings of the Computer-Based Manual Features 73
User Comparison of Computer-Based Manual to Printed Version 75

Advantages and Disadvantages of the Computer-Based Manual Perceived
by the BEvaluatorsovi e 77

iv

Figure

10

11

12

13

14

15

16

17

18

19

LIST OF FIGURES

Page
Examples of (A) Hypertext and a (B) Hypergraphic ..., 16
Browser Interface . ..ot e e e 18
Popup Window Examplet 20
HyperCale Interfaceooo i 24
AUdio Control DEVICE . oo\ttt e e 27
Movie Playback DEvICeo oviii e 30
Bquation Solver Inferfaceo 31
Inheritance EXampleottt 46
Flexpert Application Processc...vviii i 47
R0 LT (o € 1T A S I S I 48
Y atiable GUIT . o ottt e e 49
CACHVILY GUIT” . oot 50
Flexpert Object Templates MEIUo vvevni e 54
Hypertext, Logic, and Numerical Modules [NtEraction . .. vvv vt 57
Computer-Based Manual Authoring Process Flow Chartocovvennn 60
Debug@ing PrOCESS . . .« v o vt vt v e e e 68
Users Evaluation of Computer-Based Manuals Feature oot 73
Users Bvaluation of Computer-Based Manuals Feature (contiued)ocn v 74

User Comparison of Computer-Based and Printed Manuals, Average Reply
and Confidence Intervals are SHOWIot n i 76

vi
20 Author Evaluation of Computer-Based Manuals Feature 78

21 Author Evaluation of Computer-Based Manuals Features (continued) 79

22 Author Comparison of Computer-Based and Printed Manuals 80

EXECUTIVE SUMMARY

Manuals of instruction are important engineering tools because they
provide the information necessary to perform important design procedures and
calculations correctly and accurately. Effective manuals can result in savings of
both time and money by outlining approved design procedures as well as
familiarizing designers with the important policies and procedures of their
departments. Since accepted policies and procedures frequently change, manuals
must be updated continually. This process can be very expensive and time
consuming.

There is a growing realization that technical reference materials have
greater impact if presented in a computer-based format. Computer-based manuals
allow the author to convey information through the use of text, graphics, movies,
and audio, as well as use the intelligent capabilities of decision support systems,
and other programs. Computer-based manuals help users access information
more quickly than conventional hard copy manuals. The former also aids the user
in the design process and greatly simplify the process of updating and making
corrections or changes to manuals.

The objective of this project was to develop a computer-based design and
training manual by implementing tools and techniques normally used for the
development of rule-based decision support systems. Chapter 9 of the American
Association of State Highway and Transportation Officials (AASHTO) Model
Drainage Manual entitled “Culverts,” and the United States Geological Survey
Water-Resources Investigations Report 83-4129 entitled “Methods for Estimating

Peak Discharge and Flood Boundaries of Streams in Utah” were used as a

vii

viii

prototypes. The final application is a single computer-based manual, referred to

as the "Drainage Library", that is implemented on IBM compatible

microcomputers operating under Microsoft Windows 3.1. The following specific

tasks were accomplished during this project:

1

2)

3)

4)

5)

6)

7)

Two separate decision support systems were authored. The first
guides novice users through a step-by-step process for the design of a
culvert. The second helps the user select appropriate equations to
determine flood depth and peak discharge values for a given location
within the state of Utah.

Commercial hypertext authoring tools were analyzed to determine
which tool best met desired needs for organizing the contents of the
manual. Microsoft Multimedia Viewer was chosen and subsequently
used to create the hypertext of the computer-based manual.

The manual was directly linked with other computer programs,
allowing the user to access these programs from within the drainage
manual application. The Drainage Library was linked with the
decision support systems, Federal Highway Administration drainage
software, and commercial software products such as Word Perfect,
Quattro Pro, and Auto Cad.

Multimedia enhancements were implemented into the manual.
Pictures, video, and andio were added to the text of the manual to
increase the amount of information presented and to clarify concepts.

Equation solvers were developed which allow necessary calculations
to be performed quickly and accurately on the computer while using
the manual. Individual equation solvers were implemented for each
design equation found within the manual. Equation solvers were also
used to replace nomographs and charts, as well as to provide
conversions between English and metric units.

A table of contents (browser) was organized with hypertext jumps to
provide easy access of desired information within the manual.

Search capabilities were added to allow the user to find desired topics
or words and quickly access related information.

ix

8) A unit conversion package, HyperCalc, was developed and linked with
the Drainage Library to allow a user to quickly perform unit
conversions.

9) An easy access glossary was organized to provide an expanded
definition of terms. Popup windows were also incorporated within the
main body of the manual to explain or define unclear concepts and

terms.

10) Tables and graphs were displayed quickly and concisely.

Fourteen professionals from the Utah Department of Transportation participated
in an evaluation of the Drainage Library software. They were asked to rank seven
attributes (browser, hypertext, popup windows, search, glossary, history list, and
bookmarks) on a scale of 0 (not important) to 3 (very important) for each of three types

of applications: training, reference, and decision support. The results of the evaluation

are shown in the following figure.

RATING (0 - 3)

PopU ' Search Glossary History Bookmarks
Windows List
g Reference Dec. Support

Users' evaluation of computer-based manuals features (0 = not
important, 1 = little importance, 2 = important, 3 = very
important).

It was generally perceived that movie clips, pictures, and audio were most effective for
training applications. Hypertext, popup windows, searches, bookmarks, and annotation
were most useful for reference. Equation solvers, external program links, and decision
support systems were ranked highest in the area of decision making.

The evaluators were also asked to list what they thought were the major
advantages and disadvantages of the computer-based manual, The results are shown in

the following table:

Advantages and disadvantages of the computer-based manual perceived
by the evaluators

Advantages Disadvantages
Easy to update Cost of development
Offers interesting learning Cost of required hardware
environment

Potential to achieve quick solutions Required computer knowledge
Better use of resources Learning curve

Faster for obtaining information Accessibility - can carry a book with you,
but won’t always have a computer

Multimedia useful for explaining
concepts

Easy to find desired data
Search capabilities
Flexibility

Manual, equations, and software
packages can all be bound together

xi

The evaluators generally agreed that the computer-based manuals let users access
information much more quickly than conventional manuals, and that the computerized
manual offered more flexibility and would be easier to update and maintain. The major
disadvantage was the cost for development and hardware. The evaluators
overwhelmingly judged the overall effectiveness of the computer-based manual much

higher than a printed manual for the same information.

INTRODUCTION AND OBJECTIVES

Manuals of instruction are important engineering tools because they provide
the necessary information to perform important design procedures and calculations
correctly and accurately. Effective manuals can result in savings of both time and
money by outlining approved design procedures as well as familiarizing designers
with the important policies and procedures of their departments. Since accepted
policies and procedures frequently change, manuals must be updated continually.
This process can be very expensive and time consuming.

There is a growing realization that technical reference materjals can have
greater impact if presented in a computer-based format. Computer-based manuals
allow the author to convey information through the use of text, graphics, movies,
and audio, as well as utilize the intelligent capabilities of decision support systems,
and other programs. Computer-based manuals help users access more information
more quickly than conventional hard copy manuals allow. They also aid the user in
the design process, and greaily simplify the process of updating and making
corrections or changes to manuals.

The objective of this project was to develop a computer-based manual of
instruction by implementing tools and techniques normally used for the development
of rule-based decision support systems. Chapter 9 of the American Association of
State Highway and Transportation Officials (AASHTO) Model Drainage Manual
titied “Culverts” and the United States Geological Survey Water-Resources
Investigations Report 83-4129 titled “Methods for Estimating Peak Discharge and

Flood Boundaries of Streams in Utah” were used as a prototype. The final

2

application is a single computer-based manual, referred to as the Drainage Library,

implemented on IBM compatible microcomputers operating under Microsoft

Windows. The following specific tasks were accomplished.

1)

2)

3)

4)

5)

6)

7)

Two separate decision support systems were authored. The first guides
novice users through a step-by-step process for the design of a culvert.
The second helps the user select appropriate equations to determine flood
depth and peak discharge values for a given location within the state of
Utah,

Commercial hypertext authoring tools were analyzed to determine which
tool best met desired needs for organizing the contents of the manual.
Microsoft Multimedia Viewer was chosen and subsequently used to create
the hypertext of the computer-based manual.

'The manual was directly linked with other computer programs, allowing the
user to access these programs from within the drainage manual application.
The Drainage Library was linked with the decision support systems, Federal
Highway Administration drainage software, and commercial software
products such as Word Perfect, Quattro Pro, and Auto Cad.

Multimedia enhancements were implemented into the manual. Pictures,
video, and audio were added to the text of the manual to increase the
amount of information presented and clarify concepts.

Fquation solvers were developed which allow necessary calculations to be
performed quickly and accurately on the computer while using the manual.
Individual equation solvers were implemented for each design equation
found within the manual. Equation solvers were also used to replace
nomographs and charts, as well as provide conversions between English
and metric units.

A table of contents (browser) was organized with hypertext jumps to
provide easy access of desired information within the manual.

Search capabilities were added to allow the user to find desired topics or
words and quickly access related information.

3

8) A unit conversion package, HyperCalc, was developed and linked with the
Drainage Library to allow a user to effortlessly perform unit conversions.

9) An easy access glossary was organized which can be used to define
unknown terms. Popup windows were also incorporated within the main
body of the manual to explain or define unclear concepts and terms.

10) Tables and graphs were displayed quickly and concisely.

This report is divided into seven sections which explain the process of
developing a computer-based manual of instruction. The first section, Glossary,
defines concepts and terms which appear in the remainder of the document. The
Review of Literature provides an overview of decision support systems applied to
water resource and multimedia applications. No publications were found that combine
both of these elements, so they were addressed individually. The Features section
describes the various features and enhancements incorporated into the final application.
The Development Tools section describes the evaluation and selection of software
tools needed to implement the desired features. The Authoring Process section
describes how the information within the manual was organized and how the various
features were integrated into the application using commercial authoring tools and rule-
based decision support system technology. The Evaluations section presents the results
of evaluations performed by fourteen professionals at the Utah Department of
Transportation and the authors of the Drainage Library. The Conclusions section

presents the final conclusions of this project.

GLOSSARY

This section of this report was written to define terms and concepts with

which a reader might not be familiar. Many of these terms are also explained in

more detail within the other sections of this document.

Author

Bitmap

Browser

Button Bar

C(C++)

Decision Support
System (DSS)

Drainage Library

The author is the individual who creates and organizes
a computer-based manual.

A bitmap is a commonly used format for drawings,
scanned photographs, or artwork in a windows
environment. Bitmaps are made up of sets of individual
bits that coniain information about the color and
intensity of each pixel contained in an image and have a
* BMP filename extension.

The browser is an expandable table of contents that
allows the user to access information found within the
computer-based manual.

The button bar consists of a row of buttons displayed at
the top of each main topic of a document.

C and C++ are computer programming languages.
They were used to create the browser and equation
solvers as well as perform complex mathematical
calculations within the DSSs found in the Drainage
Library.

DSSs are programs which query a user for the
necessary information to make a decision and present
the user with possible solutions.

The Drainage Library is the computer-based manual
that includes:

Equation Solvers

Flexpert

Folio Views

Hot Spot

HyperCalc

Hypergraphic

Hyperjump

Hypertext

1) Chapter 9, “Culverts,” of the American Association
of State Highway and Transportation Officials
(AASHTO) Model Drainage Manual

2) The United State Geological Survey Water-
Resources Investigation Report 83-4129 titled
“Methods for Estimating Peak Discharge and Flood
Boundaries of Streams in Utah.”

Equation solvers are programmed functions which
allow the user to perform calculations and solve design
equations within the computer-based manual. The user
can enter values for desired variables and the computer
performs the calculations and displays the results.

Flexpert is the decision support system (DSS) authoring
tool used to create the DSSs contained within the
Drainage Manual,

Folio Views is a hypertext authoring tool.

Hot spots are regions (text or a graphic) that when
activated perform a particular action associated with the
hot spot. Hot spots activation occurs when a user
places the mouse pointer over the hot spot and clicks
the mouse button. Hot spots are typically used to
perform a jump, display a popup window, or run a
command.,

HyperCalc is an unit conversion utility which is
accessed from within the Drainage Manual,

Hypergraphics are images which have been defined by
the author to be used as hot spots.

A hyperjump takes the user from one point within a
computer-based document to another predefined point.

Hypertext is text which the author has defined to be
used as hot spots. Within the Drainage Library,

Jump

Microsoft Multimedia
Viewer

Multimedia

Popup Windows

Pulldown Menus

Scrollbar

Topic

User

7

hypertext is a light blue color to distinguish it from the
other text of the manual.

A hyperjump takes the user from one point within a
computer-based document to another predefined point.

The hypertext authoring tool which was used to create
the Drainage Library.

Multimedia is the combination of text, graphics, audio
or video segments within a single document on a
computer.

Popup windows are simplified windows that appear on
top of the main window within a hypertext document.
Also known as popups.

Pulldown menus are located directly above the button bar
and appear in the form of text. By placing the cursor
over the pulldown menu text, a list of commands appears
for the user to choose from.

Scrollbars are located on the far right side of main
windows. Scrollbars allow users to move up and down
within a topic by dragging the slider box with the
mouse or clicking on the arrows.

Hypertext documents created —using Microsoft
Multimedia Viewer are made up of topics, Topics
could be compared to individual pages of a book and
consist of paragraphs containing graphics and text.

The individual who actually uses the computer-based
manual is called the user.

REVIEW OF LITERATURE

Decision Support Systems for Water Resource Applications

An extensive literature review was performed by Grenney, Wallace, and
Senti (1993) on the use of decision support systems for water resource applications.
According to Grenney, very little research has been performed on this topic, but a
brief summary of the relevant literature follows.

Water management personnel are secking new ways to do a better job of
managing and operating complex water systems using new computer (echnology
(Labadie and Sullivan, 1986). Decision support systems (DSS) are interactive
computer tools that play an important role in accomplishing this objective.

Decision support systems can be used to incorporate both data and models to
help in the problem-solving process. They can also be used to aid senior
management who must make important decisions, but are not necessarily technical
experts in the field of the problem. The DSS is designed to assist the decision maker
or user by presenting him with alternative solutions to problems rather than
providing him with a single answer. The decision maker can then use decision-
making skills to choose the best possible alternative. DSS must be highly
interactive, visual programs which help the user advance towards a solution in a
stepwise manner, defining the problem and analyzing the impacts and trade-offs of

possible alternatives (Grenney, Wallace, and Senti, 1993).

10

There are numerous ways that DSSs have been implemented; however,
according to Johnson, the architecture of most of them contains three general types
of subsystems: (1) data base subsystems, (2) model subsystems, and (3) dialog
management subsystems (Johnson, 1986). Data base subsystems are used to store
factual data and can incorporate powerful data management and visualization
functionality like those of geographic information systems (GIS). The model
subsystem can be both procedural and declarative. Procedural models are typically
numerical algorithms for analyzing data and predicting results based on statistics or
deterministic relationships. Declarative subsystems attempt to represent heuristic
knowledge about a specific problem domain by representing the domain by its
premises and the relationships that link those premises. These relationships and
premises are usually defined as rules (Geselbracht and Johnston, 1988). The dialog
management subsystems are graphical user interfaces (GUI) that allow the user to
enter and receive data and information from the computer.

Different DSS applications require different emphasis within these three
subsystems. In some cases emphasis is on the use of simulation models. For
example, the Tennessee Valley Authority (TVA) depends on a collection of
compatible simulation models to analyze water-related programs for decision support
purposes, including data collection, hydrodynamics of rivers and reservoirs, water
quality of rivers and reservoirs, surface water hydrology, groundwater transport,

transport of toxic material adhering to sediment, reservoir system operation, and

11
hydropower planning (Brown and Shelton, 1986). Another DSS was developed to

aid in the management of the Tejo estuary in Portugal. This system was based on a
chain of data bases and simulation models for dispersion, nonpoint pollution, and
regional water-quality (Camara et al., 1990). Grenney (1992) developed a computer
implementation of the water cost-allocation process for six regions of the Nile River
Basin in Egypt. In order to maintain compatibility with existing software, he
developed 45 linked spreadsheets that provided a data base of the physical and
economical attributes for the regions. Procedural algorithms operate on the data to
produce output files for graphical displays in a spreadsheet.

Complex simulation models are being enhanced by the application of rule-
based pre- and post-processors. For example, software to expedite calibration of the
widely used storm water management model (SWMM) relies heavily on rule-based
subsystems to assist the user in selecting parameter values for the main simulation
model (Baffaut and Delleur, 1989; Liong, Chan, and Lum, 1991). Simulation
results are compared to observed values and useful adjustments in the values of
significant parameters are provided.

Several investigators have taken steps to couple policy guidelines with
simulation models in a DSS. Davis et al. (1991) described a prototype DSS that
estimates the effects of potential land-use and land-management policies on the costs
and quality of water supplied to the city of Adeclaide, Australia. The: DSS contains

modules that allow the user to create a collection of policies in a rule-like formal

12

syntax. A watershed simulation model is also integrated into the system for the
analyses of hydrologic data. Koch and Allen (1986) introduced a DSS to integrate
data management with hydrologic models for use in local water management in areas
where irrigation is the primary water use. Their program recognizes the priority of

water rights throughout the operation along with need based on soil moisture levels.

Decision Support Systems with Multimedia

Vanegas and Baker (1994) defined multimedia as the use of the computer as
an integrator, combining audio and visual media along with text and data into a
single digital document that can be directly accessed by the user through the
computer, What sets multimedia technology apart from television and other
technologies is the ability it provides the user to interact with the system
(Narasimhalu, 1994). Multimedia applications are defined by the way the user
interacts with the application as either passive or interactive. Passive multimedia
sequentially presents the material to the user. Interactive multimedia consists of a
nonlinear environment where users can navigate through the subject maiter according
to their own needs and pace using hypertext.

According to Narasimhalu (1994), multimedia technology can be incorporated
into DSS to provide a means of visualizing interaction between the user and the DSS.
However, he stated that the integration process is still in its infancy and will require

considerable study before robust operational systems can be created which utilizes

13

multimedia’s full capabilities. Maybury (1994) stated that decision support systems
benefit from multimedia technology because it helps make user interaction a natural
process. He explained that images are often used to identify or describe particular
objects or events. Sequences of images can be used to explain situations or actions
typically found in operation or design manuals. Video offers a continuous, dynamic
medium that can also be used to effectively communicate information. However,
when using multimedia technologies, appropriate media must be selected to
effectively present the information and care must be taken to ensure consistency
across multiple media. By integrating multimedia technologies into DSSs,
information can be presented in the most efficient and effective manner, helping the

user understand and interact with the system.

15
FEATURES

Within this section, the features are described which were incorporated into the
computer-based manual. Figures have been added to illustrate how each feature
appears within the manual. The tools and procedures used to create each of these
features will be discussed within the Authoring Process section of this report. As the
project was completed, several UDOT professionals evaluated each feature. The
Evaluations section will disclose how important they considered each of these features

were for training, reference, and decision support.

Hypertext and Hypergraphics

Hypertext and hypergraphics are “hot spots” that allow a user to maneuver
within a document and access information quickly and efficiently. When a hot spot
is selected (by position the cursor over the hot spot and clicking the left mouse
button), predefined actions are performed. These actions are defined by the author
and include moving the user from one point within a document to another predefined
point, displaying a popup window, or executing a desired command (Microsoft
Corporation, 1993).

Hypertext is a type of hot spot that can be placed anywhere within a manual and
appears in the same form as standard text. Hypertext is generally distinguished {rom
other text by its color, Microsoft Multimedia Viewer automatically creates the

hypertext and sets the color to green. However, the author can change the color of the

16

hypertext used within the docﬁment. A light blue color was used for all hypertext
within the Drainage Library, Hypertext activation occurs when the user positions the
cursor over the hypertext and clicks the left mouse button. When hypertext is
activated, the action or command associated with the hypertext is automatically
performed. Hypertext is typically used to navigate the user through the document by
moving the user to the position that the hypertext is linked to, known as the destination
topic. Microsoft Multimedia Viewer allows the author to create hypertext very easily

and quickly. An example of hypertext is shown in Figure 1(A).

This is an example of hypf:dq'jxt,

(A) (B)

Figure 1. Examples of (A) hypertext and a (B) hypergraphic.

Hypergraphics operates in much the same manner hypertext does., Bitmaps
(graphics) can be utilized as hot spots within a document to perform desired actions.
An entire bitmap can be used as a hot spot. This is particularly useful for the creation
of buttons, because commands can be associated with the button. Multiple hot spots
can also be placed on a single bitmap. This feature is useful when defining different

parts or regions found within a graphic. For example, a map of the different regions

17

within a state could be displayed as a bitmap. When users select a given region on the
map, they could jump directly to a topic that gives desired information about the
selected region.

As previously mentioned, hot spots are utilized by positioning the cursor over
the hot spot and clicking the mouse button. When the cursor is located over a hot spot,
the cursor changes to a small pointing hand as depicted in Figure 1. Figure 1(B) shows

an example of a hypergraphic.
Browser

The browser is an expandable table of contents that makes it possible for a user
to hyperjump directly to a desired location within a computerized document. The
browser, shown in Figure 2, contains headings for the topics of the manual arranged in
a format similar to the table of contents of a book. However, the levels of information
within the browser can be expanded and collapsed by the user to display as much or as
little information as desired. When the manual is first accessed, the browser is
automatically opened, and the user can choose the location he wishes to enter the
manual. The browser can also be accessed from anywhere within the manual by the

clicking the “Browser” buiton located on the button bar.

Any heading within the broswer that has a small book (®) next to it can be
expanded or collapsed by clicking the mouse button over the book or the text associated

with the book. The headings can also be expanded and collapsed using the

18

B Classification of Methods Used in Flood Mapping
| Classification of Streams for Floodhazard Definintion
Use Of Floodmapping Methods
@Descriptinn of Methads For Estimating T Year Discharges and Depths

Figure 2. Browser interface,

“[evels” buttons located at the top of the browser window. By selecting a Levels
button (0 through 9), the browser will automatically be opened or closed to the number
of levels specified on the chosen button. The “close all” and “open all” buttons can

also be used to manipulated the number of levels displayed by the browser. ‘When the

topic headings within the browser that contain small white pages () next to them are
chosen, the user is taken directly to that topic found within the manual. These jumps
can only be performed from the headings that contain this white page next to them. The

“always open” check box found at the top of the browser button can be selected to keep

19

the browser open and on top of all other open windows after a jump to the manual is

performed. This can be particularly useful for navigation within the manual.

Popup Windows

Popup windows are simplified windows displayed on top of the main topic
window and are typically referred to simply as popups. Popups can be activated from
hypertext or hypergraphics and are placed directly on top of the main topic window
from which it was activated. Figure 3 shows an example of a popup window titled
“Flood depth.” The hypertext that was used to activate the popup window is also
shown in the figure. Popups can be closed by pressing the escape key or clicking the
mouse button outside the popup region (Microsoft Corporation, 1993). Text, graphics,
movie clips, and multimedia controllers can be placed within popup windows.
Hypertext and hypergraphics can also be activated from within these windows. As can
be seen in Figure 3, popup windows do not have title bars, button bars, pulldown
menus, or any of the other controls which windows normally contain. They also do not
contain scroll bars, The amount of information that can be displayed in an individual
popup is therefore limited to the size of the screen.

Popup windows are useful for displaying information:that reinforces or clarifies
information contained within the main topic. For example, a popup window can be

used to define unknown words or terms found within the main topic of a document.

20

Pull Down N
Menu Bar - utton

USGS MethodsAar Estimating Peak Discharg#
Bookmark /Help

Equations for estimating 2,5, 10,25, 50, and 100 year
peak discharges and flood depff)s at ungaged sites in Utah
were developed using multiple-=2gression technigues.

Flood depth

A term used herein to represent a vertical distance above a line
connecting points of zero flow along a reach of channel.

Figure 3. Popup window example.

Button Bars and Pulldown Menus

Buttons and menus provide shortcuts for commonly used commands. The
button bar and pulldown menu bars are shown in Figure 3.

The button bar consists of a row of buttons displayed at the top of each main
topic of a document. Commands are assigned to each button on the button bar, so that
when the user chooses a button, the command is executed. Button bars can be
customized by the author to include commands that would be most useful for a given
document.

Pulldown menus are located directly above the button bar and appear in the

form of text. By placing the cursor over the pulldown menu fext, a list of several

21

commands appears from which the user can choose. The items contained within the

menu bar can also be customized by the author.

Search

Multimedia Viewer contains full-text search capabilities that help the user
quickly find desired information within a document. Searches can be performed within
a document by selecting the “Search” button from the button bar. When this button is
chosen, a search dialog box is opened, and the user is able to enter what he wishes to
search for. Searches can be performed for words, phrases, numbers, or even special
characters. The user can also identify which topic groups or sections he would like the
searched to be performed within. For example, a computerized document might
contain several chapters. However, the user might wish to search for a word within
only one of the chapters. By selecting that chapter’s topic group, the search would be
limited to only that chapter of the document. The author of the document can define
these topic groups as he sees most beneficial and useful.

After a user defines what he would like to search for, the search results are
displayed. These results display the number of topics that contain the item being
search for and the title of each of these topics. The user can jump directly to any one of
the topics where the item was found by clicking on the topic title in the search display

window. Each occurrence of the item searched for is also highlighted within the topic.

22

History List

The history list is a sequential list of the topics that a user has accessed within
the manual. This list can be viewed by selecting the “History” button from the button
bar. Any of the topics on this list can be directly jumped to by double clicking the
topic title. This feature can be useful for accessing information previously found

within the document and navigating through the document.

Bookmarks

Bookmarks can be used to mark and find locations within a computerized
document that are frequently referenced. Users can define their own bookmarks by
selecting the pulldown menu titled “Bookmark.” Up to six bookmarks can be created
within each document. Each bookmark can be given its own title so it can be quickly
identified. Bookmarks can be accessed from anywhere within a document. When a
bookmark is chosen, a jump is performed to the position previously defined within the
document. Bookmarks are saved in a personalized file when a user exits a document

but can be deleted by the user at any time.

Annotation

Users can add personalized notes to any main topic using the annotation
command. This is done by selecting “Annotate” from the “Edit” pulldown menu. The

desired note or text can then be entered and saved. A small paper-clip icon is displayed

23

in the margin of the topic within which the note was created. Notes can be reaccessed
by double clicking the mouse while the cursor is located over the paper-clip icon.
Notes can also be changed and/or deleted. When the user exits the document, notes are
saved in a *.ANN file on the user’s computer that can be reaccessed when the

document is used again.

External Program Links

The ability to run other applications and programs while using a computerized
manual greatly enhances the usefulness of the manual. Program links can be created
by the author of a computer-based manual that allow the user to run programs from
within the manual. DOS and Windows-based programs were both accessed from
within the Drainage Library, These programs were activated using buttons on the

button bar, pulldown menus, and hypergraphics.

HyperCalc

HyperCalc is an application that was developed to allow a user to quickly and
accurately perform unit conversions. HyperCalc can be run directly from within the
computerized manual by selecting the “HyperCalc” button located on the button bar.
The version of HyperCalc (beta) linked to the manual contains general unit conversions
as well as some commonly used drainage and highway design equations and

conversions. The HyperCale interface is shown in Figure 4. Check boxes located at

24

the top of the page allow the user to select which of the three types of unit conversions
he wishes to perform. HyperCalc will convert values between units of the same system
(English to English and metric to metric), as well as between units of the English and

metric systems (metric to English and English to metric).

Figure 4. HyperCalc interface.

The user can choose what type of measurements he wishes to use from the
context menu. He can then choose the units that he wishes to convert between from the
next two menus. Two fields labeled with these units will then appear at the bottom of
the page. By enfering values in these fields, the user can convert between the

respective units.

23

(lossary

A glossary of terms found within the AASHTO Drainage Manual was created
for the computerized document. This glossary can be quickly accessed using the
“Glossary” button located on the button bar or the browser. Each of the definitions that
are contained within the glossary is arranged in alphabetical order in the form of
hypertext. When this hypertext is activated, the meaning or definition of the selected
term is displayed in a popup window.

Where terms that were defined in the glossary occur within the main body of
the manual, they were replaced with hypertext. This hypertext, when activated,

displays a popup window with the definition of the given term.

Multimedia

Graphics, audio, and movie clips can be used to enhance text that is contained
within a document. These multimedia effects can be used to increase the informational
content and clarify concepts contained within a document. Multimedia elements can
be displayed and run within a Viewer document because Viewer supports the use of
Media Control Interface (MCI) commands. These commands provide Viewer with the
capability to control audio and video playback devices. MCI commands can be pasted
anywhere within a topic, even within popup windows, using Viewers Topic Editor.
Like all Viewer commands, MCI commands can be activated by the following

situations (Microsoft Corporation, 1993):

26
1) When a topic is displayed or entered;

2) When a hot spot is chosen;

3) When a menu item or button is selected.

MCT commands can also be activated using the standard playback devices as shown in
the figures in the following subsections.

Although multimedia elements can be used to greatly enhance a document,
their use typically requires very large amounts of storage. Authors should therefore
determine how a document will be distributed and what size constraints will be
associated with its distribution to determine how to incorporate multimedia

enhancements into a document.

Audio

Audio can be used to help reinforce concepts and make information more
available within a computer-based document. However, audio must be used effectively
in order to be useful. Audio clips should be easy to understand, not too loud or soft,
and of consistent quality throughout a document. Audio clips were incorporated into
the Drainage Library within the glossary and at the startup of cach document. These
examples can be quickly found and accessed utilizing the “Multimedia” pulldown
menu contained in the AASHTO Document.

MCI commands allow an author to customize the way that audio is played
within a document. Several examples of different play back methods were

implemented into the Drainage Library. For example, audio is played automatically

27

when the user enters a topic, when a hot spot is selected and from an audio control
device within the Drainage Library. The author also has the ability to customize the
controller device to fit desired needs. Figure 5 depicts a typical audio controller
device. As can be seen in the figure, the playback device contains a play and stop
button, as well as a sliding control bar. The sliding control bar can be moved by the

user, allowing him to listen to any portion of the audio segment.

Figure 5. Audio control device.

Viewer has the capability to support many different audio formats, but the
audio clips added to the Drainage Library were saved as waveform files (*.wav)
(Microsoft Corporation, 1993). These samples were digitized at 11.025 kilohertz
(kHz) and took up approximately 1.5 megabytes of storage per minute. The quality of
an audio sample depends on the frequency at which it is digitized. Higher quality
audio segments can be obtained by digitizing at a higher frequency. However, the

higher the audio quality, the more storage space that is required.

Graphics
Graphics can be used to help clarify unclear concepts and ideas. Graphics can

be saved as bitmaps (*.bmp). Bitmaps are made up of sets of individual bits that

contain information about the color and intensity of each pixel contained in an image.

28

Bitmaps can be obtained using paint software, digitizing slides, scanning in pic;[ures or
photographs, or digitizing video frames, or can even be purchased. Images can
generally be scanned and or digitized to a desired size. Bitmaps can also be resized
within most paint programs; however, sometimes resizing can distort the image. Paint
programs are also often used to touch up and crop images. Bitmaps can be pasted
directly into Viewer documents using embedded-pane statements.

The number of colors that the intended users' computers will support must be
taken into consideration while authoring a system. Sixteen-color bitmaps are typically
adequate for simple drawings and cartoons; however, most photographs and natural
images require 256-color bitmaps. Viewer supports both 16 and 256-color bitmaps,
however, when 256-color bitmaps are displayed on a system that only supports 16
colors, the images appear very distorted and are normally not distinguishable. This
problem can be avoided by an author because Viewer has an option which when set
determines how many colors /a computer is setup for and uses the appropriate bitmap
(the author enters two bitmaps, one for 16-color systems and one for 256-color
systems). Viewer also provides a command which when set dithers 256-color bitmaps
so that they can be viewed on a l6-color system. Dithering is a technique that
represents an image using fewer colors than it originally had. This is accomplished by
varying the pixel groups using subsets of the colors designed for the bitmap to recreate

the effect of the lost colors (Microsoft Corporation, 1994).

29

The Drainage Library was authored for systems that support 256 colors.
However, it contains examples of both 16- and 256-color bitmaps. These bitmaps can
be easily located using the “Multimedia” pulldown menu. The size and the number of
colors contained in bitmaps are directly related to the memory required to store an
image. The majority of the bitmaps were approximately 3 by 5 inches or 180 by 280

pixels and took up approximately 50 kilobytes for 256-color bitmaps.

Movig clips

Video or movie clips can be obtained from videotapes or using a video camera.
The video clips shown in the Drainage Library were taken in Sardine Canyon near
Logan, Utah using a home video camera and digitized into Audio Video Interleaved
(*.AVI) form.

Movie clips were incorporated into the glossary of the Drainage Library and
can quickly be referenced using the “Multimedia” pulldown menu. Movie clips can be
embedded in topics or activated from a hot spot. Several different interfaces and
playback configurations can be obtained using the MCI command options. Figure 6
shows a typical movie playback device.

Video clip size is dependent on the quality (number of frames displayed per
second), size of the display screen, and length of the clip. The clips contained within
the Drainage Library were designed to be viewed on systems that support 256 colors

and take up about 5 megabytes for 10 seconds of footage. Video clips typically require

30

Figure 6. Movie playback device.

19.2 kilobytes per frame displayed plus the memory required for the audio associated
with the video.

Special care must be taken when using movies within a document. Like
bitmaps, problems will result when movies are viewed on a system that does not
support as many colors as the movie was created to display. Differences in the speed of
the central processing units (CPU) of computers can also cause problems when a movie

is displayed. Movies, like most multimedia features, should be designed and authored

for a given system.

Equatjon Solvers

Equation solvers were incorporated into the Drainage Library to simplify
calculations. Equation solvers can be found within the manual using the browser or the
“Eq. Solver” pulldown menu. The equation solvers can be accessed by clicking on the

hypergraphic or hypertext containing the equation name. When an equation solver is

31

accessed, a window is opened that contains the equation, variable definitions, and units
and fields where values can be entered and displayed. Figure 7 shows an equation

solver used to calculate friction loss within a culvert.

Figure 7. Bquation solver interface.

As can be seen in Figure 7, the represented equation is displayed at the top of
the equation solver. The variables found in the equation and their respective units are
defined below the equation. Values can be entered for each variable in the fields
located next to the variable definitions. An unknown can be solved for by leaving its
field empty, placing values in all of the other fields, and clicking the “Enter” button.
As shown in the figure, the variable definitions contain an asterisk (*) beside them,
This asterisk denotes that the equation solver can be used to solve for that particular

variable.

32

Since all of the variables in the equation solver shown in Figure 7 contain asterisks next
to them, any of the variables can be solved for. Some equation solvers contain
variables that cannot be solved for. These variables contain exclamation points (1) in
place of the asterisk.

The units used within the equation solver can be changed to the English or
metric system by selecting the appropriate check box. When this is done, the units
displayed with the variable definitions are changed to the appropriate units and all
calculations are performed using these units.

When the “Misc” button is selected, copy and paste buttons are displayed which
enable the user to copy or paste to and from the clipboard. This allows the user to copy
and paste values from the equation solver variable fields as well as to and from other
applications (i.e., Quattro Pro, Excel, etc.). Up to five equation solvers can be open at
one time, and users can copy and paste from one equation box to another.

Twelve equation solvers were added to the AASHTO Drainage Manual in
section 9.5 where complicated design equations existed. Nine drainage equations were
implemented in equation solver form into the HyperCalc application. Fifty-nine
equation solvers were used to replace the design charts and nomographs found in
Appendix D of the same manual. Six equation solvers were implemented into the
USGS portion of the manual to aid the user in the calculation of peak discharges and

flood depths. Appendix A contains a list of all of these equations.

33

Decision Support System

Decision support systems can be linked directly to and executed from a
hypertext document. Hypertext documents can also be accessed from a DSS.
Accessing a hypertext document from a DSS can be a means of providing a user with
necessary background information or definitions required to effectively use the DSS.
Two separate decision support systems were incorporated into the Drainage Library.

The first decision support system steps the user through the process of
designing a culvert. This program queries the user for the necessary design data and
characteristics. It then selects the appropriate equations and relationships and performs
the required calculations to determine the feasibility of the entered values. The design
process used for this program is outlined in detail in sections 9.6 and 9.7 of the
AASHTO Drainage manual. This decision support system can be accessed by clicking
the “Culvert DSS” button located on the button bar of the Drainage Manual Document.

The second decision support system aids the user in determining the appropriate
equations to use for the estimation of peak discharge and flood depths within Utah.
Utah contains several regions which have different hydrological conditions.
Regression equations were developed to represent each of these different regions.
These equations can be found in The United States Geological Survey Water-
Resources Investigations Report 83-4129, titled “Methods for Estimating Peak

Discharge in Utah” (Blakemore and Lindskov, 1983). This system can be accessed by

34
clicking the “Region Finder” bufton found on the button bar of the USGS “Methods for

Estimating Peak Discharge in Utah” computer-based document.

35
DEVELOPMENT TOOLS

Powerful commercial authoring systems are available that greatly simplify the
process of creating computerized documents. It is important to use an authoring
system that fits the desired needs of a given project, Three separatc authoring tools
were used in the creation of the Drainage Library. These tools included a hypertext
authoring tool, decision support system authoring tool, and the C programming

language. These tools are evaluated and described in detail within this section.

Hypertext Authoring Systems

Hypertext authoring systems can be used to organize information (text,
graphics, audio, video, etc.) in a manner that is accessible and useful for a user. In
order to determine which authoring system best fit our needs, an evaluation of
Microsoft Multimedia Viewer 2.0 and Folio Views 3.0 was performed. After
examining these products, it was decided that Microsoft Multimedia Viewer best fit our
requirements for an authoring system. The results of this evaluation are summarized in
the following section. As previously mentioned, Microsoft Multimedia Viewer 2.0 is
referred to as Viewer. Folio Views 3.0 will simply be referred to as Folio throughout

the remainder of this document.

36
Hypertext authoring tool evaluation

Both Folio and Viewer contain many features which make them powerful
authoring tools and greatly enhance their usability. The features and capabilities of
the Folio and Viewer authoring systems are listed and rated in Table 1. In Table 1,
the features are rated as “Excellent,” “Acceptable,” “Poor,” or "Not Availabie.”
Many of these features were discussed in detail in the Features section of this report.
Brief explanations of those features not discussed within the Features section will be

given within this section.

Table 1. Microsoft Multimedia Viewer 2.0 and Folio Views 3.0 evaluation

summary
Microsoft Multimedia Folio

Feature Viewer 2.0 Views 3.0
Hypertext Excellent Excellent
Popup Windows Excellent Excellent
Annotation Excellent Excellent
Bookmarks Excellent Excellent
Highlighters Not Available Excellent
History Lists Excellent Excellent
Search Capabilities Excellent Excellent
External Program Links Excellent Excellent
Multimedia Support Excellent Excellent
Printing Acceptable Excellent
Text Support (Post & Subscripts) Acceptable Excellent
Table of Contents (Browser) Acceptable Acceptable
Controllability by External

Programs Excellent Not Available

Custom Button and Menu Bars Excellent Poor
Security Acceptable Excellent
Updateability Excellent Excellent
Royalty Costs Excellent Poor

Overall Ease of Use

Acceptable

Excellent

37

Both Viewer and Folio can be used to create documents that contain
hypertext, popup windows, annotation, bookmarks, history lists, search capabilities,
external program links, and multimedia enhancements. These features were all rated
“Excellent” for both authoring systems.

The “Highlighter,” “Printing,” “Text Support,” and “Table of Contents
(Browser)” features were rated higher for Folio than for Viewer. Highlighters are
supported under Folio, but are not an option under Viewer. Highlighters can be used to
quickly mark text in the hypertext document much as one might mark a textbook.,
Folio and Viewer both allow the user to print information contained in the hypertext
document. However, the print options supported by Folio offer the user more
versatility. Under Folio, the user can add headers and footers and specify exactly what
he wants to print. On the other hand, Viewer only allows the user to print complete
topics and does not support headers or footers. Folio supports the use of superscripts
and subscripts within the hypertext document, whereas Viewer does not. In order to
display superscripts and subscripts using viewer, the author must either save the
characters as bitmaps and paste them into the document or create a custom
superscript/subscript font that includes characters that sit above or below the baseline.

The ability to control a hypertext document from an external program greatly
increases the usability of an application. Folio 2.0 does not provide the necessary
hooks to allow a hypertext document to be externally controlled. On the other hand,

Viewer provides these hooks that allow its documents to be controlled from external

38

applications. The application programming interfaces (APIs) provided by Viewer let
an author start or run Viewer applications from within another application or program.
These APIs can also specify which topic of a document should be opened when an
instance of Viewer is started. This ability to externally control hypertext documents is
extremely useful. The browser that was incorporated into this project made use of
these APIs to link the browser to the individual topics contained within the document.
These APIs can also be useful for accessing and displaying information found within a
document from a decision support system (Microsoft Corporation, 1993).

«“Custom Button and Menu Bars” was rated “Poor” for Folio and “Excellent”
for Viewer. Both Viewer and Folio allow the author to choose from several standard
buttons and design a button bar. However, Viewer allows the author the option of
creating his own buttons and placing them along with the standard buttons on the
button bar. Folio does not allow the author the ability to customize pulldown menus,
whereas Viewer does.

Secutity is an important feature which prohibits individual users from making
changes to the hypertext document. It is important to be able to make necessary
changes and updates to a hypertext document, but problems could occur if everyone
had the ability to make these changes. Both Folio and Viewer provide systems that
allow the author of a document to make changes and updates as well as limit those who

have the ability to do so.

39

Viewer does not have any royalty cost associated with its use and distribution,
whereas Folio does. The importance of royalty costs is dependent 'on the uses and
expected number of users of the application.

Folio was rated as having a higher “Ease of Use” than Viewer. Folio has a
much shorter learning curve than Viewer. The process of authoring jumps, popups,
and multimedia enhancements is also much simpler using Folio.

After reviewing the use of Microsoft Multimedia Viewer 2.0 and Folio Views
3.0, it was decided that Viewer best fit the expected needs of this project. The main
reason being the desire to access the hypertext document from external locations (the
decision support systems). The ability to customize buttons and menus and the related

royalty costs also weighed heavily in this decision.

Viewer authoring process

The text for a document created using Viewer is stored in topic files. Topic
files can be created from text files and word-processed documents by saving them in
rich-text format (RTF). This can be accomplished using Microsoft Word or Word
Perfect. Once a document has been converted to rich-text format, hypertext and other
desirable features can be added. These procedures are outlined in detail in the Viewer
Authoring Guide (Microsoft Corporation, 1993).

Tt was found that the conversion of the data to topic files (RTF) can be
performed automatically using RoboHELP, another commercial hypertext authoring

tool. RoboHELP utilizes Microsoft Word to create RTF files, but has a much more

40

user {riendly convention for the authoring of hypertext, popups, etc. than Viewer does.
RoboHELP does not support many of the features previously mentioned within this
report. However, RoboHELP can be used to quickly create RTF files that contain
topics, hypertext, and popup windows. These RTF files can be utilized by Viewer to

create documents that contain the previously mentioned features and enhancements.

Browser

As previously mentioned, Viewer does not support or generate a table of
contents. The browser utility was therefore developed to provide documents
authored with Viewer table of contents functionality. The browser utility was
developed at the C-BIT laboratory using the C++ programming language. This
utility contains an executable (BROWSER.EXE) that provides hierarchical structure
functionality. This structure is based on data that are placed in a data file
(HIERLIST.DAT). This data file supplies the executable with the hierarchical
outline and the macros that are called from the browser when a selection is made. In
this case, the APIs previously mentioned are utilized to open specific topics within

Viewer.

Decision Support System

The term decision support system (DSS) was coined in the early 1970s to
represent the use of information systems to support complex decision-making

processes (Davis, 1988). Since that time, various interpretations and definitions

41
have been applied to this term. Turban (1990) cited Scott-Morton (1971) and Keen

and Scott-Morton (1978) to emphasize that interactive computer-based systems help
decision makers utilize data and models to soive unstructured problems. He
continued to define DSSs as follows:

Decision support systems couple the intellectual resources of individuals

with the capabilities of the computer to improve the quality of decisions.

It is a computer-based support system for management decision makers

who deal with semi-structured problems. (Turban, 1990, p. 9)
Although there is not a universally accepted definition for a DSS, it is generally
accepted that DSSs are implemented to improve the quality of the information on
which a decision is based (Turban, 1990). This is accomplished as DSSs provide a
range of alternative solutions for a problem under a given range of circumstances and
data. This allows the user to better understand the problem and possible solutions,
leading to better informed decisions.

Decision support systems are typically implemented using either a declarative
or a procedural approach, The declarative scheme involves the use of nonsequential
data that are typically organized using a rule-based approach. Procedural
programming involves the use of sequential data that can be implemented through

conventional programming. Some applications are more suitable to a rule-based

design and others to the procedural design (Grenney, 1992).

42
Knowledge encapsulation

As previously mentioned, knowledge is typically represented within an expert
system through declarative or procedural schemes. This report will focus on the
declarative approach and rule-based systems.

Most commercial DSSs are rule-based and consist of rules, variables, and
activities or similarly named terms.

Rules. Rules are conditional statements, typically consisting of two parts,
that analyze the state of variables within a rule base. The first part, the antecedent,
contains one or more IF clauses. The IF clauses are used to test the values of
variables. After the state of a rule, the IF clause, is tested, the second part of the
rule is implemented, This portion executes the consequence, THEN and ELSE
clauses, of the rule. The THEN and ELSE clauses typically execute the activities of
the rule base.

Varjables. Variables are objects that can change state. The state of a
variable can be assigned and/or tested within a rule base. These values can be
previously set or input by the user or another device such as a remote sensor or an
external program.,

Activities. Activities are actions or consequences that are performed when
the described conditions of an associated rule are met. Activities are typically used
to display text, graphics, or other multimedia enhancements, or perform a defined

operation or command.

43

Inference engine

Rules, variables, and actions are selected, tested, and executed by the
inference engine. The inference engine is the brain of a decision support system. It
is also referred to as the control structure or the rule interpreter. The inference
engine selects the rules to be tested, tests the rules, and determines when a rule has
met the defined conditions. Because all of the information of a DSS is contained in
the rule, variable, and activity files, the inference engine does not need to be
reprogrammed in order to change the application. An application can be modified by
simply changing the rules, variables, or activities.

Rules are selected on one of two approaches which control inference for rule-
based DSS: forward or backward chaining. The type of chaining which is most
useful for a given application depends on the characteristics of that application. In
some jinstances, both types of chaining can be implemented within one DSS.
Forward and backward chaining are described in the following paragraphs.

Forward chaining. Forward chaining is a data-driven approach. The program
starts from available information or a basic idea and then tries to draw conclusions.
This is accomplished by analyzing the variables or facts that match the antecedent
portion of a rule. As each rule is tested in this manner, the computer works its way
towards a conclusion (Turban, 1990). In forward chaining, rules are simply tested in
the order that they appear within the rule base. When an unknown varjable is

encountered, a query is performed to determine the variable’s value (EXSYS, 1988).

44
Backward chaining. Backward chaining is a goal-driven approach. The

computer starts from an expectation of what is going to happen and seeks evidence to
support or contradict that expectation. The program starts with a goal to be proven
either true or false and then looks for rules that contain that goal in their conclusion
(THEN or ELSE clauses). It then checks the variables contained in that rule to see
whether the defined conditions are met to reach that goal or conclusion. If these
conditions are not met, the program looks for another rule that contains the desired
goal and tests it in a similar manner. This process continues until all possible rules
are checked or until the goal is satisfied (Turban, 1990). When backward chaining is
used, the order of the rules does not matter. If a new rule relevant to the decision

process is needed, it can be added anywhere within the rule base.

Object-oriented programming

Object-oriented programming (OOP) is a useful way to represent knowledge,
and its use in DSSs is increasing rapidly. OOP is a method of programming based
on the use of objects that communicate with one another using messages. Each
object has rules and procedures associated with it. When an object receives a
message, the object processes the message and carries out its commands. OOP can
therefore be highly modular, can perform local actions, and can both receive
information from and send information to other objects. Objects represent

knowledge that can be used over and over again. Objects can be reused within the

45

same application or even within other applications. OOP also provides a simple
method for unifying rules, variables, actions, and other data (Hu, 1989).

Encapsulation, inheritance, and polymorphisms are the three main propetties
that characterize OOP (Borland International, 1990). These concepts will be
explained in the following paragraphs.

Encapsulation. Encapsulation is a process that is used to combine objects
with functions that use and manipulate information contained within the object. It
can simply be viewed as a process that welds code and data together into a single
object. This process makes objects easier to work with because it reduces the chance
for error and creates a more controlled environment that is easier to perceive,

Inheritance. Inheritance is the process by which an object assumes the
characteristics and properties of another object of the same class. Inheritance allows
objects to contain common features, yet be as specialized as needed. For example,
insects could be classified as shown in Figure 8 and each ellipse could be considered
an object. The “insects” object would be defined to contain characteristics and
features that all insects have. The “winged” and “wingless” objects could each be
created containing the same characteristics defined for the “insects” object as well as
specialized characteristics. The “bees,” “moths,” and “flies” objects each contain
the properties associated with the “winged” object, yet each of these objects has a set

of very distinct properties that define its object (Borland International, 1990).

46

CORNCD

Cow> | oD

Figure 8. Inheritance example.

Once the characteristics of an object are defined, all of the objects beneath
that object include those characteristics. Higher levels contain the general
characteristics, and lower levels contain more specific ones.

Polymorphism. Polymorphism is a Greek word meaning “having many
shapes.” It involves the ability of an entity to refer to instances of various classes at
run-time (Gonzalez and Dankel, 1993). This is accomplished using virtual functions
that allow many versions of the same function to be used throughout a class

hierarchy, with the version to be implemented determined at run time.

Flexpert implementation

The decision support systems implemented into the Drainage Library were

authored using Flexpert. Flexpert is an expert system/decision support system

47

authoring tool that is under development by the Computer-based Intelligent
Technology (C++BIT) Laboratory at Utah State University.

Flexpert is a rule-based, object-oriented system that provides a friendly
environment for the development of decision support systems. Figure 9 depicts the
layout of a decision support system authored using Flexpert. The domain expert or
author creates the rule base by preparing “Activities,” “Variables,” “Rules,” and
“Resources.” Individual activity, variable, and rule files can be created very easily

using the interfaces provided by Flexpert.

Tripod Rule
Base
(*.FLX)

Inference
Engine
(* EXE)

Resources

Variables
(*VAR)

Activities
(*.ACT)

Figure 9. Flexpert application process.

Rule file. Variables can be tested, and actions performed depending on the
value of a variable using rules. Rule files are identified by the extension *.RUE.
Rules can be formed within Flexpert using the “Rule Guru,” which is shown in

Figure 10.

 [cnyunoneLeTeRUE

o

Figure 10. “Rule Guru.”

The antecedent portion of a rule is made up of “conditions” that are defined
using the “Rule Guru." These conditions are tested within the ruie, and the
consequences of a rule are fired depending on the results of these tests. The author
can define single actions or activities to be performed when these ftests are
determined to be either true or false.

Flexpert also allows rules to be tested by other rules. Individual rules are
arranged within the rule file to form a useful decision support system. The rule file
developed for the culvert design decision support system that was implemented into
the Drainage Library is displayed in Appendix B.

Variable file. The variable file is identified by the extension *.VAR.
Variables can be created very simply using the “Variable Guru.” The “Variable

Guru” is shown in Figure 11.

Figure 11. “Variable Guru.”

The “Variable Guru” allows for the creation of several different and distinct
types of variables. The tabs along the bottom of the guru, Figure 11, show all of the
types of variables that can be created using Flexpert. As can be scen in the figure,
Flexpert allows for the creation of variables that can contain a true or false value, a
single or multiple selection (menu), text (string or essay), ratings, real and integer
numbers, or even visual variables. Visual variables can be used to display a bitmap
and have the user select a region or feature within the bitmap. Flexpert also allows
for the creation of presentation variables. Presentation variables are useful for
displaying information or results within a DSS.

By selecting the “preview” button, the author accesses an interface that

allows him to enter text, usuaily in the form of a question, to invoke a response from

50

the user for each variable. This interface also allows the author to create buttons and
add multimedia enhancements to customize the individual variables.

Appendix C contains the variable file utilized in the development of the
culvert design decision support system.

Activity file. Activity files typically consist of more than one action or
command that an author desires to perform within the decision support system. An
individual action can be executed from a rule, but if more than one action needs to
be fired at a given instance, an activity is used. Activities can be reused and the
same activity can even be executed from several different locations within a rule
base. The activity file is identified by the extension *.ACT. Activities can be
created very simply using the “Activity Guru.” The “Activity Guru” is shown in

Figore 12,

@ Mulimedia Gadgets _
i Tutorial and Testing Analysi

1@ Rule-hase Commands

Figure 12. “Activity Gurn.”

51

The “Activity Guru” allows the user to create activities that display text and
multimedia enhancements or perform any of a large number of rule-based
commands.

Appendix D contains the activity file utilized in the development of the
culvert design decision support system.

Tripod rule base. Variable, rule, and activity files are created and compiled
using the Flexpert Integrated Development Environment (Flexpert IDE). The
Plexpert IDE component contains an executable (FM.EXE). This executable creates
a single knowledge-base file known as the tripod rule base from the variable, rule,
and activity files. The tripod rule base has extension *.FLX and can be utilized by
the Flexpert inference engine along with resources and files to interact with the user.

Inference engine. The Flexpert inference engine contains a run-time module
(Flexpert. EXE) which utilizes the tripod rule base (*.FLX) created using Flexpert
IDE.

The Flexpert inference engine has the ability to perform both forward and
backward chaining. This is a unique featurc in that most decision support system
authoring tools support only one of the two types of chaining. When using Flexpert,
the author can decide what type of chaining best fits the given application and can
even use both types of chaining within the same rule base.

Forward chaining is automatically implemented unless the author specifies

otherwise. Forward chaining is a procedural approach because rules are fired in the

52

order that they appear within the rule base and any variables that do not contain a
value are immediately queried.

Backward chaining can be implemented on a per variable basis within
Flexpert. A check box titled “back chain” can be checked on the “Variable Guru,"
Figure 11, to make a variable backward chaining. This allows the author the option
to make the entire rule base or just an individual variable backward chaining. If the
back chain box is not checked, Flexpert assumes that the variable is forward
chaining. Since backward chaining is implemented on a per variable basis, a given
rule could contain variables that are both forward and backward chaining. When
backward chaining is implemented for a variable, Flexpert tests rules that contain the
given variable in their consequence portion, If Flexpert is unable to obtain a value
for the variable in this manner, after it has tested all of the rules that contain the
variable in their consequence, it will directly query the variable.

Resources. Resources typically consist of pictures, movie clips, audio
segmenis, and hypertext documents that can be directly incorporated into the
decision support system. Text and data files can also be read from or written to by
the inference engine.

User-defined dynamic link library. Figure 9 shows a dynamic link library
(DLL) interacting with the inference engine, The mathematical calculations required
for the culvert design decision support system were performed in the wrapper using a

DLL. A DLL is a collection of functions, data, and resources. Flexpert is capable

53

of calling and sending necessary parameters and data, as well as retrieving calculated
output from a DLL. The references of a DLL are resolved each time the application
is run, rather than when it is originally compiled (Borland International, 1993).

Encapsulation, The variable, rule, and activity files created by Flexpert are
objects that incorporate the concept of encapsulation. Activities encapsulate Flexpert
commands, inclading text and information display, control gadgets, multimedia
enhancements, and rule-base commands that allow the author to change the state of
the rule base. Activities are encapsulated by rules because they can be reused and
the same activity can be fired by more than one rule. Variables and rules can also be
encapsulated by rules.

Inheritance. Flexpert implements the inheritance process through its use of
templates. Flexperts’ template menu is shown in Figure 13. Flexpert aflows for two
different types of templates to be implemented: base-knowledge objects and cover
layers. Base-knowledge objects, also known as master layers, define components
that the author wishes to keep uniform from one variable to the next. Variable
characteristics such as background bitmaps, control buttons, and other gadgets are
typically defined for variables within a rule base using base-knowledge objects.
Flexpert allows the author to define more than one base-knowledge object, and
specify when each is to be executed within the rule base. By changing the
characteristics of a base-knowledge object, the characteristics of all of the variables

associated with that object are also be changed.

54

Figure 13. Flexpert object templates menu.

Cover layers, also known as cloneable objects, demonstrate restricted
inheritance properties. Cover layers can be used as templates for the creation of
variables. Typically a cover layer would be made which describes the characteristics
of each type of variable utilized within the rule base. For example, Figure 13 shows
three cover layers that have been defined for the creation of menu, true/false, and
real variables. Cover layers can be defined and changed by the author. When he
creates a variable, he would use the appropriate cover layer as a template. The

characteristics defined on the cover layer would be inherited by each variable created

55

from it. However, once a variable is saved, its inherited characteristics are saved

and cannot be changed by changing the cover layer.

C Programming Language

The C programming language was used to create numerical modules which
were incorporated into the Drainage Library. These modules include custom
equation solvers, the HyperCalc utility, and other DLLs which were accessed from
. the DSS to perform mathematical calculations . These applications were described in

detail within the Features section of this report.

Eguation Solvers

Equation solvers were developed using a DLL that was written in the C
programming language. The portion of this DLL which generates the equation solver
displayed in Figure 7 is displayed in Appendix E. This DLL is accessed by Viewer
and passed the necessary parameters. Viewer passes a variable to the DLL that
identifies which instance (equation) of the equation solver is being called. These
variables are associated with the hypergraphic or hypertext that are used to start the
equation solver application. Viewer actually loads a DLL at the exact moment that is
is used within a document, not when the document is first entered. In order for
Viewer to load and access a DLL, it must also be registered (using the Register
Routine Command) and its exact location specified within Viewer. The equation

solver DLL was developed to support muliiple instances, so that it can be accessed

56

numerous times from within the same Viewer application. This allows the user to
use the same equation solver over and over again as well as have several equation

solvers open and running at the same time.

HyperCalc

HyperCalc is a stand-alone application that was developed at the C-BIT
Laboratory at Utah State University. It was created using the C programming
language and called from within Viewer using an external program link. The DLL
that was developed for the equation solvers was used within HyperCalc to perform

the drainage equation calculations.

Integration of Applications

Several individual programs or modules can be incorporated into a single
application. Three different types of models were created for the Drainage Library
using the authoring tools discussed within this section. Figure 14 shows how these
individual modules interact with each other and how they can be linked together to
form a single application.

As can be seen in Figure 14, the user can directly access each of the three
different types of modules. The user can also access any of these modules from
within another module. These modules interact with each other through application
programming interfaces (APIs). They could also interact with any other program or

application which conforms to API specifications.

57

Logic Control
Modules

DSS Tutorial

Numericak
Modules

Hypertext
Modules

Figure 14. Hypertext, logic, and numerical modules interaction.

Hypertext module

The hypertext module typically contains individual topics that consist of text,
graphics (bitmaps), wave files, video clips, etc. The hypertext module incorporated
into the Drainage Library was authored using Viewer. Both logic control and
numetical modules are accessible from hypertext modules. Logic control modules
are used to help a user perform design procedures Or processes that are outlined
within the hypertext module. Numerical modules are utilized from hypertext

modules to help the user perform calculations of necessary design parameters.

I

Logic control module

Logic control modules consist of knowledge bases or DSSs. The logic
control module that was implemented into the Drainage Library was a DSS that was

created using the Flexpert authoring tool. Both hypertext modules and numerical

58

modules can be accessed from logic control modules. Hypertext modules are
typicaily accessed from DSSs to supply the user with definitions and background
information to make necessary decisions. For example, the culvert design DSS of
the Drainage Library contains a “More Info” button that, when selected, links the
user with a Viewer topic. Numerical modules can be executed from a DSS to
perform necessary mathematical caiculations. For example, the culvert design DSS
accesses a numerical module in the form of a DLL that is used to perform the

essential calculations for the design of a culvert.

Numerical module

Numerical modules are programs which are utilized to perform mathematical
calculations. Equation solvers and HyperCalc are examples of numerical modules
which were implemented into the Drainage Library. These niodules were created
using the C programming language. Numerical modules can be used to access both
logic control and hypertext modules. Numerical values were passed back and forth
between the logic control and numerical modules within the Drainage Library.
Hypertext modules are typically executed from a numerical module to provide help
or background information for the user. For example, the HyperCalc application
contains a “Help” button. When this button is sclected, a hypertext topic is

displayed which contains context-sensitive help.

59
AUTHORING PROCESS

The process of authoring a computerized document can be very time
consuming and requires careful planning and preparation. In order to take full
advantage of the computer’s potential power, more needs to be done than simply
transferring the material contained within a book to a computer-based document.
Within this section, the design approach followed in the creation of the Drainage
Library will be outlined and discussed.

Figure 15 shows a flow chart of the authoring process that was followed in
the creation of the Drainage Library. This figure will be explained in detail in the

following portions of this sections.

User Needs Analysis

The first step in the process of developing a computer-based reference manual
is to evaluate the expected needs of the users of the manual. ‘This can be
accomplished by interviewing the potential user group and discussing what they
would like the application to accomplish. It is also important to involve the advisory
committee in this process so that their goals and long-range objectives are
understood. Continually involving the user group and the advisory committee in the
authoring procéss will help ensure that their needs and wants are understood and

met.

60

User Necleds Advisgry
Analysis Committee
Definition of Advisory
Application & Design Standards Committee

Selection of
Development
Tools

Advisory
Commiittee

Knowledge Acquisition & Representation

User - Logie Control Modules
- Hypertext Modules

- Numerical Modules

Technical
Experts

Prototype
Development

Critical

Advisory
Comunittee

Prototype

Fuil
Implementation
of Application

Figure 15. Computer-based manual authoring process flow chart.

61

Definition of Application and Design Standards

The usefulness of a computer-based manual can be substantially increased
when information is effectively organized. The establishment of an application
definition and design standards can simplify the authoring process and increase the

value of the information contained in an application,

Application definition

After the expected needs of the user have been determined, the author should
meet with the advisory committee to define the application, At this point, major
objectives and goals should be set. Effectively defining the application can simplify

the authoring process as well as ensure that a useful product is created.

Design standards

Establishing consistent design standards helps keep a compuierized document
uniform and easy to understand. Within a computer-based document, it is as
important as within a book or other printed document that a certain style and look be
maintained. Fonts, font sizes, color, topic sizes, margins, and spacing should be
kept consistent throughout the entire document. Topics should be arranged so that
they are consistent and easy for the user to understand. Viewer can control which
topic or subtopic a given jump can access, but cannot jump to specified locations

within a topic. Topics should therefore be organized small enough to allow jumps to

62

access desired information found within the topic. When information is effectively
linked within a document, the user can find desired information more quickly.
Related topics can be cross referenced, allowing the user to quickly access related
information.

Multimedia elements should also be presented in a uniform manner that fits in
well with the rest of the document. Inconsistent use of these elements can detract
from the informational content of the document and can be confusing for the user
(Microsoft Corporation, 1994).

Large amounts of time and effort can be saved if design standards are
identified at the beginning of the authoring process and strictly followed throughout

the entire process.

Selection of Development Tools

After the users’ needs have been analyzed and the application has been
defined, development tools must be evaluated and selected. These development tools
include both the software and hardware the author will use to create the application.
Several factors play an important role in this selection process. Tools must be
selected which are capable of providing the functionality defined by the application
objectives. Cost, and software and hardware requirements, as well as ease of use,
also play an important role in this decision. The authoring tools used to develop the

Drainage Library are described within the Development Tools section of this report.

63

The hardware and software used to develop the Drainage Library are outlined in the
following paragraphs.

The hardware and software requirements of authoring systems often differ
from those of the system a user can use to view a document. The Drainage Library
was authored to run on an IBM compatible microcomputer using the Microsoft
Windows platform. In order to efficiently ron this system, a computer should
contain at least the following hardware and software (Microsoft Corporation, 1993):

80386 or better processor running at a minimum of 33 MHz
6 MB RAM

30 MB hard-disk storage

VGA + (256 color) monitor

16- or 32-bit digital audio device (Sound Card)

Speakers and/or Headphones

Windows 3.1 or later

The Drainage Library was authored using a computer that contained the
following hardware and software:

80486 based computer running at 66 MHz

16 MB RAM

430 MB hard-disk storage

VGA + (256 color) monitor

16- or 32-bit digital audio device (Sound Card)
Video Capture Board (Video Blaster or Targa Board)
CD-ROM Drive

Speakers and/or Headphones

Microsoft Windows 3.11

Microsoft Multimedia Viewer

Microsoft Word for Windows (6.0)
RoboHELP (2.6)

Flexpert

Borland C++ 4.0

Paintbrush, Corel Draw, and WinGif
Digitizing Software

64

Applications that do not contain audio segments do not require a sound card
or speakers. The Drainage Library could be run on a system that does not contain a
sound card or speakers, but the user would obviously not be able to hear the sound
associated with the audio and movie clips. Other hardware that was used to author
the Drainage Library is shown below:

Color Scanner

Home Video Camera (SVHS or Hi8)

Zap Shot Camera

Slide Scanning Device

Microphone

The author must take into account how the application he creates will appear
on the computer that the user will actually be using. Authors often have supetrior

equipment that make certain aspects of an application appear better on his system

than they may on the user’s.

Knowledge Acquisition and Representation

Acquiring the knowledge to place in a computer-based document can be one
of the most important, difficult, and time consuming phases in the development
process. Knowledge can be acquired from many sources, the most common being
experts on the subject and published reference materials. The user group often
contains experts on the given subject, and can be very useful in the knowledge

acquisition process.

65

Knowledge in the Drainage Library application was represented using logic
control, hypertext, and numerical modules as previously defined. It is important that
knowledge be represented in a manner that is easy for the user to access and
understand. Effective use of multimedia elements can greatly facilitate this process.

Use of a previously defined structural outline can help the author organize
material consistently so that it is easy for the user to understand. The structural
outline used for the development of the Drainage Library is outlined in Table 2.
Terminology was adopted to represent the levels of information of the structural
outline for the hypertext modules. Since written documents are a familiar medium
through which information is conveyed, this terminology was compared to that of a
texthook. This terminology is summarized in Table 2.

Table 2. Structural outline and terminology used for the development of
computer-based manuals

Level Computer-based Terminology Printed Copy Equivalent

1 Library Group of books or manuals
2 Document Book or manual

3 Segment Chapter

4 Topic Page or section

5 Subtopic Subsection

6 Element Paragraph, table, figure,

definition, bitmap, video
clip, etc.

66

A “library” is a body of information about a subject like a group of books or
manuals related to a specific topic. The application developed for this project could
be called a library since two separate manuals, The AASHTO Drainage Manual and
The Methods for Estimating Peak Discharge and Flood Boundaries of Streams in
Utah Report, are incorporated into the computerized document. Volumes of
information equivalent to a book, manual, or report will be referred to as a
«document.” Documents may be divided into “segments,” equivalent to chapters of
a book. A “topic” would be similar to a page within a chapter and can be further
divided into “subtopics.” Subtopics contain a single concept or operation that can be
represented at one time on the computer screen. “Flements” are used to create
subtopics and consist of paragraphs of text, tables, graphics, video clips, etc.

Consistent use of a defined structural outline (Table 2) will aid the author in
organizing the information contained in a document and will also help the user
effectively navigate within the document. Topics should be arranged so that they are
consistent and easy for the user to understand. Viewer can control which topic or
subtopic a given jump can access, but cannot jump to specified locations within a
topic. Topics should therefore be organized small enough to allow jumps to access
desired information found within the topic. When information is effectively linked
within a document, the user can find desired information quicker. Related topics can

be cross referenced, aflowing the user to quickly access related information.

67

Prototype Development

Before an entire application is developed, a prototype should be constructed.,
A critical review should be performed on the prototype by the advisory committee
and the user group. The purpose of this evaluation should be to determine any
changes or modifications which should be made to the authoring process before final
implementation occurs. This helps to ensure that the users are provided with a

useful and effective tool.

Debugging Process

After an application has been fully implemented and developed, debugging
must be performed. Figure 16 shows a flow chart of the debugging process that was
followed for the Drainage Library. The advisory committee and user group were
provided with the alpha version of the application and asked to test it for any errors.
Upon their recommendation, problems and errors were corrected and they were
presented with the beta version of the application. Debugging continued until they
were satisfied with the application. After this debugging process, final distribution
of the application took place. The entire Drainage Library Application took up

approximately 20 megabyies of space.

68

Full
Implementation
of Application

Advisory
Committee

Debugging

User : : Beta : : Advisory

Group Testing Committee

| ﬂ
Final
Distribution

Figure 16. Debugging process.

Updating of Manuals

After final implementation of an application occurs, updates and changes
must often be made. As design procedures, policies, regulations, and other
information contained within manuals of instruction change, they must be updated.

This process can be very time consuming and expensive for written manuals.

69

Security can also be an important issue because individual users should be prohibited
from making changes to existing manuals. After updates are made, it is also
important that the revised version be distributed so that everyone is using the
corrected version. Computer-based manuals can be updated quickly and relatively
inexpensively, can provide the necessary security, and can be redistributed to
individual users quickly and effectively.

Updates can be made to hypertext modules by making the desired changes to
the RTF files and recompiling the document using the Viewer Compiler. These
changes can only be performed by an individual who has the original source files
(RTF files) and the necessary software. After this person makes the desired changes
to the manual, he would then compile the files. Changes cannot be made to a
compiled Viewer file by the individual users. The person with the source files and
Viewer software would be the only person with the capabilities of making changes to
and updating a Viewer file. Individual users can, however, add bookmarks and
annotations, as well as print topics.

After desired changes and updates are made, the network manager could
replace the version of the manual on the network with the revised version. This
would ensure that everyone was using the same updated version of the manual and

could be performed very easily and quickly.

71
EVALUATIONS

An evaluation was performed to compare the effectiveness of the Drainage
Library computer-based manual to the printed version of the same manual. This
evaluation included two phases. The first phase consisted of a user evaluation that
was performed by several Utah Department of Transportation professionals. The
second phase of the evaluation was performed by the authors of the Drainage
Library. The results of both phases of this evaluation are discussed within this

section.

User Evaluation

A demonstration of the Drainage Library and the features it contains was
given to fourteen professionals at the Utah Department of Transportation (UDOT).
The application was also installed on several computers to which they had access.
Each of the evaluators was each asked to fill out an evaluation form which was
designed by the author with the approval of the UDOT advisory committee. A copy
of this form is shown in Appendix F. Since the purpose of this project was to
evaluate the use of computer-based manuals, the evaluators were asked to use the
Drainage Library as an example and base their evaluations on the overall concept of
computerized manuals.

The first question on the questionnaire asked the evaluators to rate the

importance of each of the features of a computer-based manual and the usefulness of

72

each feature for training, reference, and decision support. Training would include
the use of the computer-based manual to teach or instruct a user that is not proficient
in the subject matter. Reference describes the process that a user, already
knowledgeable about the subject, goes through to look up values, data, procedures,
or other desirable forms of information. Decision support characterizes the ability of
the computerized manual to aid the user in the process of making a decision. The
features evaluated for each of these three criteria included; the browser, hypertext,
popup windows, search capabilities, glossary, history list, bookmarks, annotation,
multimedia effects, equation solvers, extermal program links, HyperCalc, and
decision support system. Those evaluating the system were asked to rate the
importance of each feature between 0 and 3 as defined below.

0 = not important

1 = little importance

2 = important

3 = very important

The replies to this question are displayed in Appendix G along with
confidence intervals calculated for each rating. Table 3 contains a summary of these

results, the average response for each category and feature. Figures 17 and 18 show

graphical representations of these data.

73

Table 3. User importance ratings of the computer-based manual features (0 = not
important, 1 = little importance, 2 = important, 3 = very important)

Decision
Feature Training Reference Support Average
Browser 2.64 2.79 1.54 2.32
Hypertext 2.86 2,79 1.85 2.50
Popup Windows 2.38 2.62 2.17 2.39
Search 2.43 2.93 2.15 2.50
Glossary 2.79 2.50 1.54 2.27
History List 1.86 1.79 1.46 1.70
Bookmarks 2.21 2.50 1.62 2.11
Annotation 2.15 2.54 1.92 2.20
Multimedia 2.57 2.14 1.15 1.96
Equation Solvers 2.36 2.29 2.85 2.50
External Program Links 2.14 2.21 2.62 2.32
HyperCalc 2.21 2.21 2.46 2.30
Decision Support System 2.14 2.21 3.00 2.45
Average 2.37 2.42 2.02 2.27

RATING (0 - 3)

0 .,
Browser Hyperiext PopUp Search Glossary History Bookmarks
Windows List
= Training g Reference Dec. Support

Figure 17. Users evaluation of computer-based manuals features (0 = not
jmportant, 1 = little importance, 2 = important, 3 = very
important).

74

w

N
o
}

-
(8)] N

RATING (0 - 3)

HyperCal

Annotation Multimedia Equation Externa
Solvers Program Links

Dec. Support

=) Training g Reference

Figure 18. Users evaluation of computer-based manuals features continued
(0 = not important, 1 = little importance, 2 = important, 3=
very important).

It can be noted in Table 3 and Figures 17 and 18 that all of the features
evaluated were thought to be important in at least one of the three categories. It is
also apparent from the wide range of replies received from the evaluators (Appendix
G) that the features will most likely have varying degrees of importance to different
users. Depending on what the purpose of a computer-based manuai is (training,
reference, or decision support), the author should focus his efforts on the features
determined to be most important in that category.

The second question of the questionnaire asked the user to compare the

computer-based Drainage Library to the printed version of the AASHTO Drainage

75

Manual. The evaluators were asked to compare these two forms of the manual for
each of the following aspects: speed, accuracy, navigation (ability to maneuver and
find information), overall ease of use, level of information, comprehension of the
information, and unit conversions (using conversion table and a calculator versus
HyperCalc and Equation Solvers). To accomplish this, the evaluators were asked to
decide which version (computer-based or printed) they thought was better and rate
how much better they felt it was using the following scale:

0 = about the same

1 = slightly better

2 = significantly better

3 = much better

The evaluators felt that the computer-based version of the manual was
superior in every one of the aspects. These results are displayed in Table 4, which
contains the average response, the standard deviation, and the 95 percent confidence
interval for each aspect. Figure 19 shows a graphical representation of the data.

Table 4. User comparison of computer-based manual to printed version (0 =

about the same, 1 = computer version slightly better, 2 = computer
version significantly better, 3 = computer version much better).

Standard 95% Confidence
Average Deviation Interval
Speed 2,78 0.44 3.03-2.53
Accuracy 2.33 0.87 2.82-1.84
Navigation 2.44 0.73 2.86 - 2.03
Ease of Use 1.89 1.17 2.55-1.23
Information Level 2.33 0.87 2.82-1.84
Information Comprehension 1.56 1.33 2.31-0.80

Unit Conversions 2.78 0.44 3.03-2.53

76

RATING (0 - 3)

Accuracy Ease of Use Info. Comp.

1 El 1
Speed "Navigation ‘Info. Level "Unit Conv,

Figure 19. User comparison of computer-based and printed manuals (0 =
about the same, 1 = computer version slightly better, 2 =
computer version significantly better, 3 = computer version
much better), average reply and confidence intervals are
shown.

The evaluators were also asked to list what they felt the advantages and
disadvantages of the computer-based manual were. Table 5 summarizes their
responses to these questions. They generally agreed that the computer-based
manuals let users access more information much more quickly than conventional
manuals would allow. The evaluators also thought that the computerized manual

offered more flexibility and would be easier to update and maintain. The major

disadvantages that the evaluators mentioned were cost, both development and

77

hardware costs, and the need for computer knowledge to be able to use the system

effectively.

Table 5. Advantages and disadvantages of the computer-based manual perceived
by the evaluators

Advantages Disadvantages
Easy to update Cost of development
Offers interesting learning Cost of required hardware

environment
Potential to achieve quick solutions ~ Required computer knowledge
Better use of resources Learning curve

Faster for obtaining information Accessibility - can carry a book with you,
but won’t always have a computer

Multimedia useful for explaining
concepts

Easy to find desired data
Search capabilities
Flexibility

Manual, equations, and software
packages can all be bound together

The evaluators suggested that a training session or tutorial be prepared (o
instruct users not familiar with the Windows platform on how to use the manual.
They also felt that a help file would be useful and that all of the features and
enhancements within the manual should be authored to perform in the same manner
as all Windows applications. For example, they suggested that a user should be able

to access the features using the mouse or through keystroke combinations.

78
Author Evaluation

The author of the Drainage Library used the same evaluation questionnaire as
the UDOT professionals to evaluate the effectiveness of the Drainage Library and
computer-based manuals in general. The results obtained from that questionnaire are
contained within this section.

Figures 20 and 21 show the authors’ response to the first question of the
questionnaire, This question asked the evaluator to rate the importance of each of
the features of the computer-based manual for training, reference, and decision

support purposes.

Rating (0 - 3)
o

Hyperiest Search Glossary Bookmarks
Windows List

] Reference Dec. Support

Figure 20. Author evaluation of computer-based manuals features (0 = not
jmportant, 1 = little importance, 2 = important, 3 = very
important).

79

Rating (0 - 3)
o

=l |
Annotation Multimedia Equation External HyperCale
Solvers Program Links

= Training _ -Reference Dec. Support

Figure 21, Author evaluation of computer-based manuals features continued (0
= not important, 1 = little importance, 2 = important, 3 = very
important).

As can be seen in Figures 20 and 21, the authors’ response was quite similar
to that of the UDOT professionals. It is also apparent that features built using the
hypertext authoring system (hypertext, popup windows, searches, bookmarks,
annotation, etc.) rank higher in the training and reference categories than the
decision support category. On the other hand, the equation solvers, external
program links, HyperCalc, and decision support systems ranked very high in the
decision support category. These trends were also apparent in the user evaluation.

The second question of the questionnaire asked the evaluator to compate the

computer-based version of the Drainage Library to the printed version of the same

80

manual. Figure 22 shows the author’s response to this question. The author also

felt that the computer-based version of the manual was superior in each one of the

aspects evaluated.

Rating (0 - 3)
o

Figure 22. Author comparison of computer-based and printed manuals (0 =

about the same, 1 = computer version slightly better, 2 =
computer version significantly better, 3 = computer version

much better).
The author felt that using the computer-based version of the manual was
quicker. Equation solvers, search capabilities, the browser, and hypertext allow
calculations to be performed and information accessed very quickly. He aiso felt that

the accuracy of the computer-based manua!l was superior because the equation

solvers, HyperCalc, and the decision support systems perform exact calculations in

81

place of estimations using charts and nomographs. Hypertext, bookmarks, the
history list, and search capabilities make navigation in the computer-based manual
preferable to that of the printed version. These same features also make the
computerized manual easier to use. The addition of multimedia enhancements and
external programs increases the amount of information contained within a manual
and the level a user can comprehend. The HyperCalc applications greatly simplifies

and increases the accuracy of performing unit conversions.

83
SUMMARY AND CONCLUSIONS

Technical reference manuals are important engineering tools that provide
information necessary to perform design procedures and calculations correctly and
accurately. Reference materials can be easier to access and become more useful
when presented in a computer-based format. Computer-based reference manuals can
be developed using tools intended for the development of rule-based decision support
systems (DSS). By incorporating decision support systems, hypertext, multimedia,
and other features into computer-based design manuals, very powerful and useful
tools can be authored. These tools allow users t0 access more information more
quickly than conventional hard copy manuals. They also offer the user the versatility
of performing searches for desired information, running related programs or models,
and performing important design calculations.

Decision support system development techniques were implemented in this
project to create a computer-based manual. Chapter 9 of the American Association
of State Highway and Transportation Officials (AASHTO) Model Drainage Manual
titled “Culverts” and the United States Geological Survey Water-Resources
Investigations Report 83-4129 titled “Methods for Estimating Peak Discharge and
Flood Boundaries of Streams in Utah” were incorporated into this computerized
manual referred to as the Drainage Library. The Drainage Library was implemented
on IBM compatible microcomputers operating under Microsoft Windows. The

following tasks were accomplished during the development of the Drainage Library:

84

1)

2)

3)

4)

5)

A decision support system was developed for the design of culverts using
the procedures and policies outlined in the AASHTO manual. This DSS
was complemented with another DSS for estimating peak discharges and
flood depths based on the methods described in the USGS manual.
Commercial hypertext authoring tools were analyzed to determine which
tool best met desired needs for organizing the contents of the manual.
Microsoft Multimedia Viewer was chosen and subsequently used to create
the hypertext of the computer-based manual. Over 200 pages of text were
converted to hypertext topics and integrated with the DSS.

The manual was directly linked with other computer programs, allowing the
user to access these programs from within the drainage manual application.
The Drainage Library was linked with the decision support systems, Federal
Highway Administration drainage software, and commercial software
products such as WordPerfect, Quattro Pro, and Auto Cad.

Multimedia enhancements were implemented into the manual. Pictures,
video, and audio were added to the text of the manual to clarify concepts
and increase the informational content of the manual.

Equation solvers were developed which simplify the performance of
necessary calculations and allow the user to perform them directly within
the manual. Fifteen equation solvers were added to section 9.5, “Design

Equations,” of the AASHTO manual. Fifty-nine equation solvers were used

85
to replace the design charts and nomographs found in Appendix D of the

same manual. Six equation solvers were implemented into the USGS
portion of the manual to aid the user in the calculation of peak discharges
and flood depths.

6) A table of contents (browser) was created with hypertext jumps to provide
easy access of desired information within the manual.

7) Search capabilities were added to allow the user to find desired topics or
words and quickly access related information.

8) A unit conversion package, HyperCalc, was developed and linked with the
Drainage Library to allow a user to effortlessly perform unit conversions
and design calculations.

9) An easy-access glossary was organized which can be used to define
unknown terms. Popup windows were incorporated within the main body
of the manual to explain or define unclear concepts and terms.

10) Tables and graphs were displayed quickly and concisely.

The accomplishment of these tasks proves that computer-based manuals can
be effectively authored to contain features and enhancements that make them very
powerful reference materials and design tools. This was also confirmed by the
evaluations performed by the Utah Department of Transportation professionals and

the author of the Drainage Library. The tools and procedures used to develop the

86

Drainage Library can also be used to create tutorials and a wide variety of other

useful applications.

87
REFERENCES

Baffaut, C., and J.W. Delleur. 1989. Expert system for calibrating SWMM.
American Society of Civil Engineering, J ournal of Water-Resources Planning and
Management 1153:78-298.

Blakemore, E.T., and K.L. Lindskov. 1983. Methods for estimating peak
discharge and flood boundaries of streams in Utah. Water-Resources
Investigations Report 83-4129. U.S. Geological Survey. Salt Lake City, Utah.
77 p.

Borland International. 1990. Turbo C+-: Getting started. Borland International,
Inc., Scotts Valley, California. 268 p.

Borland International. 1993. Borland object windows for C++: Progammer’s
guide. Borland International, Inc., Scotts Vailey, California. 418 p.

Brown, B.W., and R.A. Shelton. 1986. TVA’s use of computers in water resource
management. American Society of Civil Engineering, Journal of Water-
Resources Planning and Management 112(3):409-418.

Camara, A.S., C. da Silva, A. C. Rodrigues, J.M. Remedio, P.P. Castro, M.J.
Soares de Oliverira, and T.F. Fernandes. 1990. Decision support systems for
estuarine water-quality management. American Society of Civil Engineering,
Journal of Water-Resources Planning and Management 116(3):417-430.

Davis, Michael W. 1988. Applied decision support. Prentice Hall, Inc., Englewood
Cliffs, New Jersey. 256 p.

Davis, R.J., P.M. Nanninga, J. Riggins, and P. Laut. 1991. Prototype decision
support system for analyzing impact of catchment policies. American Society of
Civil Engineering, Journal of Water-Resources Planning and Management
117(4):399-414.

EXSYS. 1988. EXSYS professional demo: Building an expert system. EXSYS Inc.
38 p. '

Geselbracht, J.J., and D.M.\Johnston. 1988. Issues in rule base development.
American Society of Civil Engineering, J ournal of Water-Resources Planning and
Management, 114(4):457-468.

88

Gonzalez, A.J., and D.D. Dankel. 1993. The engineering of knowledge-based
systems: Theory and practice. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey. 523 p.

Grenney, W.J. 1992, Computer implementation of the cost allocation process for
the Nile River Basin, Egypt. Final report, Irrigation support project for Asia and
the Near East, U.S. Agency for International Development. Utah Water
Research Laboratory, Logan, Utah. 172 p.

Grenney, W.J., W.W. Wallace, and T. Senti. 1993. A decision support system to
assist stakeholders evaluate a water resource project, p. 145-151. In knowledge
based systems for civil and structural engineering. Civil-Comp Press.
Edinburgh, Scotland.

Hu, David. 1989. C/C++ for expert systems: Unleashes the poser of artificial
intelligence. Management Information Source, Inc., Portland, Oregon. 565 p.

Johnson, L.E. 1986. Water resource management decision support systems.
American Society of Civil Engineering, Journal of Water-Resources Planning and
Management, 112(3):308-324.

Keen, P.G.W., and M.S. Scott-Morton. 1978. Decision support systems, an
organizational perspective. Addison-Wesley, Reading, Massachusetts. 264 p.

Koch, R.W., and R.L. Allen. 1986. Decision support system for local water
management, American Society of Civil Engineering, Journal of Water-
Resources Planning and Management 112(3):527-540.

Labadie, J.W., and C.H. Sullivan. 1986. Computerized decision support systems
for water managers. American Society of Civil Engineering, Journal of Water-
Resources Planning and Management 112(3):299-307.

Liong, S.Y., W.T. Chan, and L.H. Lum. 1991. Knowledge-based system for
SWMM runoff component calibration. American Society of Civil Engineering,
Journal of Water-Resources Planning and Management 117 (5):507-524.

Maybury, M, T. 1994, Knowledge-based muitimedia: The future of expert systems
and multimedia. Expert Systems With Applications 7(3):387-396.

Microsoft Corporation, 1993. Microsoft multimedia viewer: Authoring guide.
Microsoft Corporation. 400 p.

89

Microsoft Corporation. 1994, Microsoft developer network: Development library.
Microsoft Corporation. 312 p.

Narasimhalu, A.D. 1994. A framework for the integration oof expert systems with
multimedia technologies. Expert Systems With Applications, 17(3), No. 3: 427-
439.

Scott-Morton, M.S. 1971. Management decision systems: Computer-based support
for decision making. Division of Research, Harvard University, Cambridge,
Massachusetts. 216 p.

Turban, Efraim 1990. Decision support and expert systeins: Management support
systems, Macmillan Publishing Company, New York. 846 p.

Vanegas, J.A., and N.C. Baker. 1994. Multimedia in civil engineering. Civil
Engineering. May:71-73.

APPENDICES

91

Appendix A.
Equations Implemented In
Eguation Solver

93

The equations, nomographs, charts and relationships which were

implemented into equation solvers are listed below.

AASHTO Drainage Manual section 9.5

Total Head Loss (Equation 9.1)
Continuity (Equation 9.2)

Velocity Head (Equation 9.3)

Entrance Loss (Equation 9.4a)

Friction Loss (Equation 9.4b)

Exit Loss (Equation 9.4c)

Barrel Losses (Equation 9.5)

Total Energy (Equation 9.6)

Head Water - Flowing Full (Equation 9.7)
Head Water - Partly Full Flow (Equation 9.8)
Overtopping Flow Rate (Equation 9.9)
Culvert Length Formula (Equation 9.10)

HyperCalc

Continuity

Mannings

Hazen-Williams

Darcy-Weisbach

Hydraulic Radius

Friction Factor for Laminar Flow
Friction Factor for Turbulent Flow
Rational Method

Reynold’s Number

AASHTO Drainage Manual Design Charts eadwater Depth

Control
Chart # Shape Section Material Type
1 Circular Inlet Concrete
2 Circular inlet Metal
3 Circular Iniet Metal Beveled Ring Control
Control

Chart # Shape Section Material Type

95

96

= OO ~NoOU s

11
12
13

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

Chart #

Circular
Circular
Circular
Circular
Box
Box
Box

Box
Box
Box

Box
Box
Box
Box
Box
Box
Box
Box

Box

Box
Box
Box
Box
Box

Box
Elliptical
Elliptical
Elliptical
Elliptical
Elliptical
Pipe Arch

Pipe Arch
Pipe Arch

Shape

Critical Depth

Qutlet Concrete
Qutlet Metal
Qutlet Metal
iniet Concrate
Inlet Concrete
inlet Concrete
inlet Concrete
inlet Concrete
inlet Concrete
Critical Depth

Outlet Concrete
Inlet Metal
Inlet Metal
Inlet Metal
Inlet Metal
Critical Depth

Qutlet Metal
Quitlet Metal
Qutlet Metal
QOutlet Metal
Qutlet Metal
Rise/Span < 0.3

Quitlet Metal
Qutlet Metal
Qutlet Metal
Intet Concrete
Inlet Concrete
Critical Depth Concrete
Critical Depth Concrete
Qutlet Concrete
Inlet Metal
inlet Metal
Inlet Metal
Control

Section Material

n=0.012
n=0.024
n=0.0328 - 0.0302

Wingwalls 18° - 33.7°, 45°
90° Headwall, Beveled
Edges

Skewed Headwalls, Beveled
Edges

Flared Wingwalls

Normal and Skewed

Offset Flared Wingwals,
Beveled Edges

n=0.012

Rise/Span < 0.3

0.3 <= Rise/Span < 0.4
0.4 <= Rise/Span < 0.5
Rise/Span >= 0.5
Concrete Bottom
Concrete Bottom,
Rise/Span < 0.3
Concrete Bottom,

0.3 <= Rise/Span < 0.4
Concrete Bottom,

0.4 <= Rise/Span < 0.5
Concrete Bottom,
Rise/Span >= 0.5
Metal Bottom,

Metal Bottom,

0.3 <= Rise/Span < 0.4
Metal Bottom,

0.3 <= Rise/Span < 0.4
Metal Bottom,

0.4 <= Rise/Span < 0.5
Horizontal

Vertical

Horizontal

Vertical

Horizantal and Vertical

18 in. Corner Radius
31 in. Corner Radius

Type

97

37 Pipe Arch Critical Depth Standard
38 Pipe Arch Critical Depth Structural Plate
39 Pipe Arch Qutlet Metal n=0.024
40 Pipe Arch Outlet Metal 18 in. Corner Radius
41 Arch Inlet Metal 0.3 <= Rise/Span < 0.4
42 Arch Inlet Metal 0.4 <= Rise/Span < 0.5
43 Arch Inlet Metal Rise/Span >= 0.5
44 Arch Critical Depth
45 Arch Outlet Metal Concrete Bottom,
0.3 <= Rise/Span < 0.4
46 Arch Outlet Metal Concrete Bottom,
0.4 <= Rise/Span < 0.5
47 Arch Outlet Metal Concrete Bottom,
Rise/Span >= 0.5
48 Arch Qutlet Metal Earth Bottom,
0.3 <= Rise/Span < 0.4
49 Arch Outlet Metal Earth Bottom,
0.4 <= Rise/Span < 0.5
50 Arch Qutlet Metal Earth Bottom,
Rise/Span >= 0.5
51 Long Span inlet Metal Circular or Elliptical
52 Long Span inlet Metal High and Low Profile Arch
53 Long Span Critical Depth Metal Circular or Elliptical
54 Long Span Critical Depth Metal High and Low Profile Arch
55 Circular Intet Throat Control, Side Tapered
56 Circular Intet Face Control, Side Tapered
57 Box inlet Concrete Throat Control, Side Tapered
58 Box intet Concrete Face Control, Side Tapered
59 Box Inlet Concrete Face Control, Siope Tapered

USGS Survey Methods for Estimating Peak Discharge and Flood Boundaries of
Streams in Utah Peak Discharge and Flood Depths for the following regions

Northern Mountains High Elevation
Northern Mountains Low Elevation
Uinta Basin

High Plateaus

Low Plateaus

Great Basin High Elevation

Appendix B,
Culvert Design Decision Support
System Rule File

99

[Title} COMMAND

Set Master Layer: MASTER LAYER

Query Variable: DUMMY

Set Master Layer: MASTER LAYERI

Set a variables value: Ok To Change = False
Set a variables value: Change Q = False

[Units] CASE BASED

Conditions: Unit Check

Case 0: Set a variables value: Units = 1
Case 1: Set a variables value: Units = 2

[Check Reset Q] HUERISTIC
Conditions: Ok To Change

THEN: Continue

ELSE: Goto: FEMA

[Reset Q] COMMAND

Set Variable Flags:
Set Variable Ilags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:
Set Variable Flags:

Flow Check
Enter/Calc

Flow Enter

Flood Region
Map

North Mount
Great Basin North
Great Basin South
No Region

Flow

Region Elev.
Region Area
FlowDLL

Flow Print

Qdl

Set variable flags: Head Inlet

Set variable flags: Head Outlet
Set variable flags: Tail Water

Set variable flags: Critical Depth
Set variable flags: Outlet Velocity
Set variable flags: Flow Area

[FEMA] HUERISTIC

Conditions: FEMA
THEN: Set a variables value: Qd = 100

101

102
ELSE: Continue:

[Road Type] CASE BASED
Conditions: Road Type

Case O Set a variables value: Qd = 30
Case 1: Set a variables value: Qd =
Case 2: Goto: Qd2

Case 3' Set a variables value: Qd = 25
Case 4: Set a variables value: Qd = 10

[Qd Reset] HUERISTIC

Conditions: FEMA

THEN: Set a variables value: Qd = 100
ELSE: Goto: Flow Check

[FEMA Flow Check] HUERISTIC
Conditions: FEMA, FEMA Flow Check
THEN: Goto: Enter/Calc

ELSE: Goto: Qd2

[Flow Check] HUERISTIC
Conditions: Flow Check
THEN: Goto: Enter/Calc
ELSE: Continue

[Qd2] CASE BASED

Conditions: Qdl1

Case O Set a variables value: Qd = 10
Case 1: Set a variables value: Qd = 100
Case 2 Set a variables value: Qd = 2
Case 3: Set a variables value: Qd = 25
Case 4: Set a variables value: Qd = 5
Case 5: Set a variables value: Qd = 50

[Enter/Calc] HUERISTIC
Conditions: Enter/Calc
THEN: Continue

ELSE: Goto: USGS

[USGS] CASE BASED

Conditions: Flood Region

Case 0: Execute Activity: GBH Region
Case 1: Execute Activity: GBL Region

Case 2: Execute Activity: HP Region
Case 3: Execute Activity: LP Region
Case 4: Continue

Case 5: Execute Activity: NMH Region
Case 6: Execute Activity: NML Region
Case 7: Execute Activity: U Region

[Map] CASE BASED

Conditions: Map

Case 0: Continue

Case 1: Execute Activity: U Region
Case 2: Execute Activity: HP Region
Case 3: Execute Activity: LP Region
Case 4: Execute Activity: LP Region
Case 5: Execute Activity: LP Region
Case 6: Goto: GBN Region

Case 7: Goto: GBN Region

Case 8: Goto: GBS Region

Case 9: Continue

North Mnt Det.] CASE BASED
Conditions: North Mount

Case 0: Execute Activity: NMH Region
Case 1: Execute Activity: NML Region

{GBN Region] HUERISTIC
Conditions: Great Basin North

THEN: Execute Activity: GBH Region
ELSE: Goto: No Region 6

[GBS Region] HUERISTIC
Conditions: Great Basin South

THEN: Execute Activity: GBH Region
ELSE: Continue

[No Region 6] CASE BASED
Conditions: No Region

Case 0: Continue

Case 1: Execute Activity: LP Region
Case 2: Quit

[Flow Enter2] HUERISTIC
Conditions: Flow

103

104

THEN: Goto: Flow Print
ELSE: Goto: Flow Print

[Get Area/Elev] HUERISTIC
Conditions: Region Elev, Region Area
THEN: Continue

ELSE: Continue

[Get Flow DLL] HUERISTIC

Conditions: FlowDLIL,

THEN: Set variables equal: Flow = FlowDLL
ELSE: Set variables equal; Flow = FlowDLL

[Flow Print] CASE BASED
Conditions: Flow Print

Case 0: Goto: Check Reset Emb
Case 1: Goto: Reset Q

Case 2: Continue:

[Round] HUERISTIC

Conditions: Round

THEN: Set variables equal: Flow = Round
ELSE: Set variables equal: Flow = Round

[Reset Emb] COMMAND

Set Variable Flags: Elevl

Set Variable Flags: Length
Set Variable Flags: Slope

Set variable flags: Tail Water
Set variable flags: Cover

Set variable flags: Overflow
Set variable flags: OverRoad
Set variable flags: Head Inlet
Set variable flags: Head Outlet
Set variable flags: Outlet Velocity
Set variable flags: Control

Set variable flags: Check

Set variable flags: Ht

[Emb Data] HUERISTIC
Conditions: Elevl
THEN: Continue:
ELSE: Continue:

[US Data] HUERISTIC
Conditions: Length
THEN: Continue
EISE: Continue

[Negative Slope] HUERISTIC
Conditions: Slope

THEN: Continue

ELSE: Goto: Check Reset Channel

[Negative Slopel] CASE BASED Conditions: Negative Slope Case
Case 0: Quit
Case 1: Goto: Reset Emb

[Check Reset Channel] HUERISTIC
Conditions: Ok To Change, Change
THEN: Continue

ELSE: Goto: Channel Data

[Reset Channel] COMMAND
Set variable flags: EL1

Set variable flags: Channel n

Set variable flags: Channel Slope
Set variable flags: Fix Tail Water
Set variable flags: Tail Water

Set variable flags: Outlet Velocity
Set variable flags: Control

Set variable flags: Check

Set variable flags: Overflow

Set variable flags: OverRoad

Set variable flags: Ht

[Channel Data] HUERISTIC
Conditions: EL1

THEN: Continue:

ELSE: Continue:

[Channel n and S} HUERISTIC
Conditions: Channel n, Channel Slope
THEN: Continue

ELSE: Continue

105

106

[Tail Water Check] HUERISTIC
Conditions: Tail Water

THEN: Continue

ELSE: Goto: Check Reset General

[Overflow] CASE BASED
Conditions: Fix Tail Water
Case 0: Goto: Reset Channel

Case 1: Quit

[Check Reset General] HUERISTIC
Conditions: Ok To Change, Change

THEN: Continue

ELSE: Goto: Check Reset Generall

[Reset General] COMMAND

Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags.
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:

Material Test
Critical Depth
Head Inlet
Head Outlet
Critical Depth
Cover

Outlet Velocity
Control

Check

Outlet Velocity
Control

Check
Overflow
OverRoad

Ht

Diameter
Material

[Check Reset Generall] HUERISTIC
Conditions: Ok To Change, Change

THEN: Continue

ELSE: Goto: Culvert Charact,

[Reset Generall] COMMAND

Set variable flags:
Set variable flags:
Set variable flags:

Entrance Loss
CM Inlet Type
Conc Inlet Type

Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:
Set variable flags:

Check n
Critical Depth
Enter n

Inlet Type
Head Inlet
Head OQutlet
Critical Depth
Cover

Qutlet Velocity
Control

Check

Outlet Velocity
Control

Check
Overflow
OverRoad

Ht

[Culvert Charact.] HUERISTIC

Conditions: Diameter, Entrance 1L.oss
THEN: Continue:
ELSE: Continue:

[Charact Cont.} HUERISTIC
Conditions: Material Test

THEN: Execute Activity: Concrete
ELSE: Execute Activity: CM

[CM Inlet Name] CASE BASED
Conditions: CM Inlet Type

Case O: Set a variables value: Inlet Name Print = Headwall
Case 1: Set a variables value: Inlet Type Print = Mitered to Conform to Slope
Case 2: Set a variables value: Inlet Type Print = Projecting

[CM Culvert Char] CASE BASED
Conditions: CM Inlet Type

Case 0: Execute Activity: Inletl
Case 1: Execute Activity: Inlet2
Case 2: Execute Activity: Inlet3

[Conc Inlet Name] CASE BASED
Conditions: Conc Inlet Type

Case O: Set a variables value: Inlet Type Print = Square Edge with Headwall

107

108

Case 1: Set a variables value: Inlet Type Print = Groove End with Headwall
Case 2: Set a variables value: Inlet Type Print = Groove End Projecting

[Conc Culvert Char] CASE BASED
Conditions: Conc Inlet Type

Case 0: Execute Activity: Inletl
Case 1: Execute Activity: Inlet2
Case 2: Execute Activity: Inlet3

[Critical Depth] HUERISTIC
Conditions: Critical Depth
THEN: Continue

ELSE: Continue

[Head Inlet Datal HUERISTIC
Conditions: Head Iniet
THEN: Continue

ELSE: Continue

[Head Outlet Data] HUERISTIC
Conditions: Head Outlet
THEN: Continue

ELSE: Continue

[Control] HUERISTIC

Conditions: Control

THEN: Set a variables value: Control Name = INLET Control
FLSE: Set a variables value: Control Name = OUTLET Control

[Checkl] HUERISTIC
Conditions: Check
THEN: Message Box
ELSE: Continue

[Check2] HUERISTIC
Conditions: Check
THEN: Message Box
ELSE: Continue

[Overflow Check] HUERISTIC
Conditions: Overflow

THEN: Goto: Outlet Velocity
ELSE: Continue

[Surface Type] CASE BASED
Conditions: Surface Check

Case 0: Set a variables value: Surface = 2
Case 1: Set a variables value: Surface =

[

[Ht] HUERISTIC
Conditions: Ht
THEN: Continue
ELSE: Continue

[Overflow Calculation] HUERIST 1IC

Conditions; OverRoad

THEN: Set variables equal: Overflow = OverRoad
ELSE: Set variables equal: Overflow = OverRoad

[Outlet Velocity] HUERISTIC
Conditions: Outlet Velocity, Flow Area
THEN: Continue

ELSE: Continue

[Cover] HUERISTIC
Conditions: Cover
THEN: Continue
ELSE: Continue

[Reset Change] COMMAND
Set variable flags: Change

Set variable flags: Print English
Set variable flags: Print Metric

C [Print Unit Check] HUERISTIC
Conditions: Units

THEN: Continue:

ELSE: Goto: Print Metric

[Print English] COMMAND
Set variable flags: Print English
Query Variable: Print English
Goto: Change

[Print Metric] COMMAND
Set variable flags: Print Metric
Query Variable: Print Metric

109

110

[Change] CASE BASED
Conditions: Change
Case 0: Quit:

Case 1: Continue

Case 2. Continue

[Reset Print] COMMAND

Set variable flags: Cover Print

Set variable flags: Head Print

Set a variables value: OK To Change = True

[Change!] CASE BASED
Conditions: Change

Case 0: Goto: Reset Q

Case 1: Goto: Reset Emb
Case 2: Goto: Reset Channel
Case 3: Goto: Reset General
Case 4: Goto: Reset Generall
Case 5: Continue

[Junk] HUERISTIC
Conditions: Unit Check
THEN: Execute Activity:
ELSE: Continue

[Startup}] COMMAND
Set Master Layer: MASTER LAYER

i11

Appendix C.

Culvert Design Decision Support

System Variable File

[DUMMY] PRESENTATION
Query Method: Flexpert Query Engine (Default)

[Elevl] REAL

Query Method: User Defined Method
Function: Query Variable, DLL.: culvert, DLL
-Embankment Cross Sectional Data

[Elev2] REAL
Query Method: Flexpert Query Engine (Default)
: Embankment Cross Sectional Data

[Elev3] REAL
Query Method: Flexpert Query Engine (Default)
. Embankment Cross Sectional Data

[Elev4] REAL
Query Method: Flexpert Query Engine (Default)
. Embankment Cross Sectional Data

[Stal] REAL
Query Method: Flexpert Query Engine (Default)
. Embankment Cross Sectional Data

[Sta2] REAL
Query Method: Flexpert Query Engine (Default)
. Embankment Cross Sectional Data

[Sta3] REAL
Query Method: Flexpert Query Engine (Default)
- Embankment Cross Sectional Data

[Stad] REAL
Query Method: Flexpert Query Engine (Default)
: Embankment Cross Sectional Data

[ST1] REAL
Query Method: Flexpert Query Engine (Defauit)
. Downstream Channel Cross Sectional Data

[ST2] REAL
Query Method: Flexpert Query Engine (Default)
- Downstream Channel Cross Sectional Data

113

114

[ST3] REAL
Query Method: Flexpert Query Engine (Default)
- Downstream Channel Cross Sectional Data

[ST4] REAL
Query Method: Flexpert Query Engine (Default)
: Downstream Channel Cross Sectional Data

[EL4] REAL
Query Method: Flexpert Query Engine (Default)
 Downstream Channel Cross Sectional Data

[EL3] REAL
Query Method: Flexpert Query Engine (Default)
- Downstream Channel Cross Sectional Data

[EL2] REAL
Query Method: Flexpert Query Engine (Defauit)
- Downstream Channel Cross Sectional Data

[EL1] REAL

Query Method: User Defined Method - Function: Query Variable, DLL: culvert
DLL

» Downstream Chamnel Cross Sectional Data

[Ok To Change] LOGICAL
Query Method: Flexpert Query Engine (Default)
Static Text: Ok To Change?

[Units] INTEGER
Query Method: Fiexpert Query Engine (Default)
: Variable Units used in DLL's

{Unit Check] SINGL.E

Query Method: Flexpert Query Engine (Default)

Static Text: Would you like to work in English or Metric units?
Gray Shade

[FEMA] LOGICAL

Query Method: Flexpert Query Engine (Default)

Static Text: Is the area where you wish to place the culvert regulated by FEMA (The
Federal Emergency Management Agency)?

Gray Shade

115

[Data Check] MULTI

Query Method: Flexpert Query Engine (Default)

Static Text; The following data is necessary for the culvert design process.
Choose one of the selections. navycSOhnaSdter] LOGICAL

Query Method: Flexpert Query Engine (Defauit)

Static Text: Have all of the environmental constraints outlined in the AASHTO
Model Drainage Manual been met?

[Flood Region] SINGLE

Query Method: Flexpert Query Engine (Default)

Which USGS region is the culvert going to be placed within?
Gray Shade

[Map] VISUAL

Query Method: Flexpert Query Engine (Default)

Static Text:(To scroll within the map, simply hold down the left mouse button and
move the mouse)

. Place the mouse pointer over the approximate location where the culvert will be
placed and double click the left mouse button.

[Great Basin North] LOGICAL

Query Method: Flexpert Query Engine (Default)

Static Text: Is the mean basin elevation greater than 6000 feet and the study site
datom greater than 5000 feet?

Gray Shade

[Great Basin South] LOGICAL

Query Method: Flexpert Query Engine (Default)

Static Text: Is the mean basin elevation greater than 8000 feet and the study site
datum greater than 7000 feet?

Gray Shade

[North Mount] SINGLE

Query Method: Flexpert Query Engine (Default)
Static Text: The approximate elevation of the site is:
Gray Shade

[No Region] SINGLE

Query Method: Flexpert Query Engine (Default)

Regression equations were not developed for the Great Basin Low Elevation
Subregion (GBLER) do to the extremely variable flood characteristics

116

[Region Elev] REAL
Query Method: Flexpert Query Engine (Default)
Static Text: Please enter the mean basin elevation of the site (in thousands of feet or

meters
Gray Shade

[Round] REAL

Query Method: Flexpert Query Engine (Default)

Static Text w/ Embedded Values: The calculated [Qd] year design flow is [Flow] for
the [Region Name] Region. What would you like to round this value to?

[Region Area]REAL

Query Method: Flexpert Query Engine (Default)

Static Text: Please enter the drainage area {(in square miles or kilometers).
Gray Shade

[FlowDLL] REAL

Query Method: User Defined Method - Function: Query Variable, DLL:
culvert, DLL

. Get USGS Flow Calculations from DLL

[Tail Water] REAL

Query Method: User Defined Method - Function: Query Variable, DLL.:
CULVERT.DLL

- Determine tail water - My DLL

[Fix Tail Water] SINGLE

Query Method: Flexpert Query Engine (Default)

- The design flow used in this problem will exceed the banks of the downstream
channel which was entered. Choose one of the following options.

[HWoi] REAL

Query Method: User Defined Method - Function: Query Variable, DLL: Culvert
DLL

. Contains the value calculated for HWoi in the DLL

[Control]INTEGER

Query Method: User Defined Method - Function: Query Variable, DLL: Culvert
DLL

. Contains value which tells whether inlet or outlet is the controlling headwater.
1 = Inlet

117

{Control Name] STRING

Query Method: User Defined Method - Function: Query Variable, DLL: Culvert
DLL

. Tells whether inlet or outlet is the controlling headwater.

[Head Control] REAL

Query Method: User Defined Method - Function: Query Variable, DIL: Culvert
DLL

. Controlling Headwater Value - My DLL

[Head Inlet] REAL

Query Method: User Defined Method - Function: Query Variable, DLL: Culvert
DLL

. Determine inlet control headwater depth - My DLL

[Slope] REAL

Query Method: User Defined Method - Function: Query Variable, DLL: Culvert
DLL

: Determine slope

[Length] REAL

Query Method: User Defined Method - Tunction: Query Variable, DLL: Culvert
DLL

: Determine Length

[Negative Slope] SINGLE

Query Method: Flexpert Query Engine (Default)

Static Text w/ Embedded Values: A slope of [Slope] was calculated for the culvert
using the cross sectional embankment entered. The slope of the

Gray Shade

[Material] INTEGER

Query Method: Flexpert Query Engine (Default)
: Material

1 = Concrete

2 =CM.

[Flow Area] REAL

Query Method: User Defined Method - Function: Query Variable, DLL:
culvert. DLL

Static Text: Flow Area Calculation - culvert DLL.

118

[Check] INTEGER

Query Method: User Defined Method - Function: Query Variable, DLL:

culvert. DLL

. Checks to make sure assumptions used to determine controlling headwater are met

[Cover] REAL

Query Method: User Defined Method - Function: Query Variable, DLL:
calvert. DLL

Static Text: Cover Calculation - culvert. DLL.

[Outlet Velocity] REAL

Query Method: User Defined Method - Function: Query Variabie, DLL:
culvert. DLL

Static Text: Outlet Velocity Calculated - culvert. DLL

[Overflow] REAL

Query Method: User Defined Method - Function: Query Variable, DLL: culvert
DLL

Static Text: Determines whether flow over the roadway (Qr) exists. - Culvert DIL

[OverRoad] REAL

Query Method: User Defined Method - Function: Query Variable, DLL:
culvert. DLL

Static Text: Over the road flow value-Culvert DLL

[Surface] INTEGER

Query Method: Flexpert Query Engine (Default)
: Roadway Material

1 = Paved

2 = Gravel

[Surface Check] SINGLE

Query Method: Flexpert Query Engine (Default)

: In order to compute the discharge over the roadway (Qr), the roadway surface must
be known.

[Hwr] REAL
Query Method: Flexpert Query Engine (Default)

[Ht] REAL

Query Method: Flexpert Query Engine (Default)
Static Text: t

Static Text: h

119

Gray Shade:

Bitmap: CHART60.BMP

: Please enter the value of ht.
(HWr = [HWr])

Gray Shade:

[Inlet Type Print] STRING
Query Method: Flexpert Query Engine (Default) Static Text
- Inlet type name, too be printed.

[Material Test] SINGLE
Query Method: Flexpert Query Engine (Default)
What type of material do you wish to design the culvert for?

[Flow Print] SINGLE

Query Method: Flexpert Query Engine (Default)

Static Text w/ Embedded Values: The calculated [Qd] year design flow is [Flow] for
the [Region Name] Region.

[Print Metric] PRESENTATION

Query Method: Flexpert Query Engine (Default)

Static Text: Output:

Static Text w/ Embedded Values: [Qd]

Q= [Flow] cms

Ke = [Entrance Loss]

Manning's n = [Mannings]

Culvert Diameter = [Diameter] m

Culvert Length = [Length] m

Inlet Type = Static Text w/ Embedded Values: Tail Water = [Tail Water] m

Headwater:
Intet Control (HWi) == [Head Inlet] m
Outlet Control (Hwoi) = {Head Outlet] m
Controlling Headwater = [Head Control}

[Print English] PRESENTATION

Query Method: Flexpert Query Engine (Default)

Static Text w/ Embedded Values: [Qd]

Static Text w/ Embedded Values: Outlet Velocity = [Outlet Velocity] ft/s
Flow Area = [Flow Area] ft"2

Cover = [Cover] ft

Overflow = [Overflow]

Q = [Flow] cfs

Ke = [Entrance Loss]

120

Manning's n = [Mannings]
Culvert Diameter = [Diameter] {1

121

Appendix D.
Culvert Design Decision Support
System Activity File

123

FEMAI
Set a variables value: QD = 100
Goto: Check Reset Q

FEMA
Message Box: Backwater due to the constriction must be held to 1 foot for the 100
year Q Backwater surface profiles can be determined using the Wespro

No Channel Data
Message Box: The downstream channel cross section must be obtained before the

culvert can be designed.

No Emb Data
Message Box: The cross sectional embankment data must be obtained before

continuing with the design process.

Quit

No Emb/Chan Check

Message Box: The down stream channel cross sectional data must be obtained before
continuing with the design process.

Message Box: The roadway cross sectional embankment data must be obtained
before continuing with the design process.

Quit

LP Region

Set a variables value: Region = 4

Set a variables value: Region Name = Low Plateaus
Goto: Get Area/Elev

HP Region

Set a variables value: Region = 3

Set a variables value: Region Name = High Plateaus
Goto: Get Area/Elev

U Region

Set a variables value: Region = 2

Set a variables value: Region Name = Uinta Basin
Goto: Get Area/Elev

NMH Region

Set a variables value: Region = O

Set a variables value: Region Name = Northern Mountains High Elev.
Goto: Get Area/Elev

124

NML Region

Set a variables value: Region = 1

Set a variables value: Region Name = Northern Mountains Low Elev.
Goto: Get Area/Elev

GBL Region

Set a variables value: Region = 6

Set a variables value: Region Name = Great Basin Low Elev.
Goto: No Region 6

GBH Region

Set a variables value: Region = 5

Set a variables value: Region Name = Great Basin High Elev.
Goto: Get Area/Elev

Concrete

Set a variables value: Material = 1

Set a variables value: Mannings = 0 012
Goto: Conc Inlet Name

Overflow
Message Box: The calculated tailwater exceeds the banks of the entered downstream

channel.

Quit

CM

Set a variables value: Mannings = 0 024
Set a variables value: Material = 2
Continue

Inletl
Set a variables value: Inlet Type = 1
Goto: Critical Depth

Inlet2
Set a variables value: Inlet Type = 2
Goto: Critical Depth

Inlet3
Set a variables value: Inlet Type = 3
Goto: Critical Depth

BackUp
Backup: 1 variable(s)
Set Master Layer: MASTER LAYERI

125

127

Appendix E,
Equation Solver C Code

129
EQUATN.CPP

11
// ObjectWindows - (C) Copyright 1991, 1993 by Borland International
/!
#include <owl\owlpch.h>
#pragma hdrstop

#include <owl\window.h>
#include "equatn.h"
#include <stdlib.h>

#include "eqat.rh" // Definition of all resources.
#include "nfuncdig.h”

#include "charts.h"
#include "eqcalc.h”
#include "eqdefs.cpp”

#define MaxDlg 5

static TModule *pM, *MainMod;
static TWindow *pW;

static NFuncDlg *Dlg[MaxDlg];
static int LDIg = 0;

int far pascal LibMain(HINSTANCE ins, WORD ,WORD ,LPSTR CmdLine){
if (IpM) {
pM = new TModule(0,ins,CmdLine);
#if defined(WIN32)
MainMod = new TModule("BWCC32.DLL", TRUE);
f#else
MainMod = new TModule("BWCC.DLL", TRUE}),
#endif
BOOL FAR PASCAL(*bweclntlInit)(UINT),
(FARPROC)bweclntlInit = MainMod-> GetProcAddress("BWCClntlInit"};
if (bwccIntlInit)
bwcelntlInit(0);
BOOL FAR PASCAL(*bwccRegister)(HINSTANCE),
(FARPROC)bwccRegister = MainMod-
> GetProcAddress("BWCCRegister™);
if (bwecRegister)
bwccRegister(pM- > Getlnstance());
}

return 1;

}

130
void pascal far _export EQUATIONDLG(HWND pHW, char far *who){

if(IpW){
TWindow *pW = GetWindowPtr(pHW);// check if an OWL window
if (IpW)
pW = new TWindow(pHW, pM);
}
if(DIgLDIg]){
Dlg[LDlg]-> CloseWindow(),
delete Dlg[LDlg];

}
if(who[0] == 'C' || who[0] == '¢'){

char tmp[10];

for(int i = 5,j = 0; who[i] != "\0%i++,j++)
tmp(j] = wholil;

tmp[j] = "0

i = atoi(tmp);

switch(i){
case(1): SHOWCHART1(pM, DIg[LDIlg], pW); break;
case(2): SHOWCHART2(pM, Dig[LDlgl, pW); break;
case(3): SHOWCHART3(pM, DIg[LDlg], pW); break;
case(d): SHOWCHART4(pM, DIg[LDlg], pW); break;
case(5): SHOWCHARTS(pM, DigiLDIg], pW); break;
case(6): SHOWCHARTS6(pM, Dlg[LDlg}, pW); break;
case(7): SHOWCHART7(pM, DIlg[LDlg], pW); break;
case(8): SHOWCHARTS(pM, DIg[LDlg], pW); break;
case(9): SHOWCHARTI(pM, DIg[LDlg], pW); break;
case(10): SHOWCHART10(pM, DIg[I.Dlg], pW); break;
case(11): SHOWCHART11(pM, DIg[LDIg], pW); break;
case(12): SHOWCHART12(pM, Dig[LDlg], pW); break;
case(13): SHOWCHART13(pM, Dig[LDlg], pW); break;
case(14): SHOWCHART14(pM, Dig{LDlg], pW}; break;
case(15): SHOWCHARTI15(pM, Dig[LDlgl], pW); break;
case(16): SHOWCHART16(pM, DIg[LDlg], pW); break;
case(17): SHOWCHART17(pM, DIg[LDIg], pW); break;
case(18): SHOWCHARTI18(pM, DIg[LDIlg], pW); break;
case(19): SHOWCHART19(pM, Dig[LDlg], pW); break;
case(20): SHOWCHART20(pM, Dig[LDlg], pW); break;
case(29): SHOWCHART29(pM, Dlg[LDlg], pW); break;
case(30): SHOWCHART30(pM, DIg[LDlg}, pW); break;
case(31): SHOWCHART31(pM, Dig[LDlg], pW); break;
case(32): SHOWCHART32(pM, DIg[LDlg], pW); break;
case(34): SHOWCHART34(pM, Dlg[LDIlg], pW); break;
case(35): SHOWCHART35(pM, Dlg[LDlg], pW); break;
case(36): SHOWCHART36(pM, Dlg[LDlg], pW); break;
case(37): SHOWCHART37(pM, Dig[L.Dlg}, pW); break;
case(38): SHOWCHART38(pM, Dig[L.Dlg], pW); break;
case(41): SHOWCHART41(pM, DIg[LDIg], pW); break;

131

case(42): SHOWCHART42(pM, Dig[LDIgl, pW); break;
case(43): SHOWCHART43(pM, Dlg[LDlg], pW); break;
case(44): SHOWCHART44(pM, Dig[LDlg], pW); break;
case(51): SHOWCHARTS51(pM, Dlg[LDlg], pW); break;
case(52): SHOWCHART52(pM, Dlg[LDIg], pW); break;
case(53): SHOWCHARTS3(pM, Dig[1.Dig], pW); break;
case(54): SHOWCHARTS4(pM, Dlg[LDlg], pW); break;
case(55): SHOWCHARTS5(pM, DIg[LDlg], pW); break;
case(56): SHOWCHARTS6(pM, DIg[LDlg], pW); break;
case(57): SHOWCHARTS57(pM, Dig[LDlg], pW); break;
case(58): SHOWCHARTS8(pM, DIg[LDlg], pW); break;
case(59): SHOWCHARTS9(pM, DIg[LDlg], pW); break;
default: SHOWCHART21(pM, Dig[LDlg], pW,i);

}
Yelse if(who[0] == 'E' || who[0] == 'e"}{
char tmp{10];
for(int i = 2,j = 0; who[i] != "\0' && wholi] > = "0" && who[i] <=
"9Uik R+ +)
tmp[j] = who[i];
tmpfj] = "\0';
int chpt = atoi(tmp);
for(i++,j = 0; who[i] = "\0' && who[i] > = '0" && wholi] <=
"9i++,j++)
tmplj] = wholil;
tmpfj] = "\0";
int eqn = atoi(tmp);
if(who[i] I= "\0")
i = toupper(who[i]}-'A';
if(chpt == 9)
switch(eqn){
case(1): SHOWEQY 1(pM, DIg[LDlg], pW); break;
case(2): SHOWEQ9 2(pM, DIg[LDlg], pW); break;
case(3): SHOWEQ9 3(pM, DIg[LDIg], pW); break;
case(4): switch(i){

case(0): SHOWEQ9 4A(pM, Dlg[LDlg], pW); break;
case(1): SHOWEQ9 4B(pM, Dlg[LDlg], pW); break;
case(2): SHOWEQ9 4C(pM, DIg[LDIg], pW); break;
default: SHOWEQ9 4D(pM, Dlg[LDlg], pW); break;
} break;

case(5): SHOWEQSY S(pM, Dig[LDlg], pW); break;
case(6): SHOWEQ9 6(pM, DIg{LDIg], pW); break;
case(7): SHOWEQ9 7(pM, DIg[LDIg], pW); break;
case(8): SHOWEQ9 8(pM, Dlg[LDlg], pW); break;
case(9): SHOWEQ9 9(pM, DIg[LDlg], pW); break;
default: SHOWEQY 10(pM, DIg[LDlg], pW); break;
¥

132

lelse if(who[0] == 'F' || who[0] == "y
char tmp[10];
for(int i = 4,j = 0; who[i] != "\0' && whol[i] > = 'O && wholi] <=
"9+ +,j++)
tmp{j] = wholil;

tmp[j] = "0';

i = atoi(tmp);

SHOWELOW(pM, DIg[LDlg], pW,i);

}
if(++LDlg > = MaxDIg}
LDIlg = 0;

}

EQDEFS.CPP

#include "eqat.rh" /! Definition of all resources.
#include "nfuncdlg.h”

#include "charts.h"
f#include "eqcalc.h”

void SHOWEQ9 4B(TModule *pM, NFuncDlg *Dlg, TWindow *pA){
Dlg = new NFuncDlg(pA,IDD_BASE,pM);
Dlg-> SetCaption("EQ9-4B");
Dlg- > setFunc(calcE9_4B);
Dlg-> AddVar(0,0,5,505),
Dlg- > AddVar("Hf = Friction loss (ft)","Hf = Friction loss (m)");

Dlg-> AddVar("L = Length of culvert barrel (ft)","L = Length of culvert barrel

(m)");
Dlg-> AddVar("R = Hydraulic radius (ft)","R = Hydraulic radius (m)");
Dlg- > AddVar("V = Velocity (ft/sec)","V = Velocity (m/sec)");

133

Dlg- > AddVar("n = Manning's Rougness Coefficient”,"n = Manning's Rougness

Coefficient",4);

Dlg-> AddCombo("Concrete Pipe Smooth walls 0.020-0.13",0.0113);

Dlg-> AddCombo("Concrete Boxes Smooth walls 0.012-0.15",0.0133);

Dlg- > AddCombo("Corrugated Metal 2 2/3 by 1/2\" 0.022-
0.027",0.0245);

Dlg- > AddCombo("Pipes and Boxes 2 2/3 by 1/2\" 0.022-

0.027",0.0245);

Dlg-> AddCombo("Annular or Helical 6x1\" corrugation 0.022-
0.026",0.0235);

Dlg- > AddCombo(" pipes and boxes 5xI\" corrugation 0.027-
0.028",0.0255);

Dlg- > AddCombo("(n varies by barrel 3x1\" corrugation 0.027-
0.028",0.0275);

Dlg-> AddCombo(" size) 6x2\" corrugation 0.033-0.035",0.034);
Dlg- > AddCombo(" 9x2\" corrugation 0.033-0.037",0.035);

Dlg-> AddCombo("Corrugated Metal 2 2/3x1/2\" corrugation 0.012-
0.024",0.018);

DIg-> AddCombo("Spiral Rib Metal ~ Smooth walls 0.012-
0.013",0.0125);

Dlg- > Make();

}

134
NEUNCDLG.CPP

/* Project test

Copyright © 1993. All Rights Reserved.

SUBSYSTEM.: test.exe Application
FILE: nfuncDlg.cpp
AUTHOR: Newell Crookston

OVERVIEW

Source file for implementation of NFuncDlg (TDialog).
*/

#include <owlhowlpch.h>
#pragma hdrstop

#include "nfuncdlg.h”
#include "Ctl3d.cpp”

/! Vstatic
/f
void VStatic::DispText(float £){

size t Len = Text. GetltemsInContainer();

for(size ti= 0;1 < Len; i++)

if(f > = Valuel[i] && f <= Value2[i])
SetText(Textfi].c_str());
ki

void VStatic:: AddText(const char far *t, float V1, float Vh){
Text. Add(t);
Valuel.Add(VD);
Value2. Add(Vh);

}

void VStatic::SetValue(int pos,const char far *t, float Vi, fioat Vh){
if(pos < Text.GetltemsinContainer()){
Textlpos] =,
Valuel[pos] = VI,
Value2[pos] = Vh;
}
}

// NumList function defs.

135
EEREEEE R EEEEERE RN
NumList *NumList::addNum(NumList *L, float £){
for(NumList *t = L; t->next != 0; t = ->next); // finds the last link
t->next = new NumList(f, t->which+1); // adds a new link
return t->next; // returns the new link

}

int NumList::getSize(){ // returns the pumber stored in the link
int num = 0;
for(NumList *t = next; t 1= 0; t = t->next, num++); // goes thru the links
refurn num,

}

float NumList: : getNum(int who){ // returns the number stored in the link
if(which == who) //checks if the first link has the number
return data;
for(NumList *t = next; t != 0; t = t->next) // goes thru the links
if(t- > which == who) //checks if this link has the needed number
return - > data;
return O;

}

void NumList: :setNum(int who, float f){ //Puts a number into the given link
if(which == who}{
data = f;
return;

}
for (NumList *t = next; t != 0; t = t->next)
if(t-> which == who){
t->data = f;
return;

}

/
/! GBoxs function defs.

//************

GBoxs *GBoxs::addBox(GBoxs *GL, TWindow *p,TModule *m, int Id, const char far ¥t =
0,intx = -1,inty = 1,int w = -1, int h = -1){
GBoxs *v, *nw = new GBoxs();
if(x == -1}
nw->GB = new NGroupBox(p,Id,m);
else {
nw->GB = new NGroupBox(p,Id,t,x,y,w,h,m);
nw- > setSize(x,y, x+w,y+h);

}

136

if(GL){
for(v = GL; v->next != 0; v = v->next);
v->next = nw;

} else
GL = nw;

return nw;

}

NGroupBox *GBoxs::getGrp(int i){
ifG==1
return GB;
GBoxs *v = nexi;
for(intj = 2;j < i && v 1= 0; j++, v == v->next);
if(v)
return v-> GB;
return O;

}

void GBoxs: :setSize(int who, int x, int y, int w, int h){
if(who == 1)
setSize(x,y, x +w.,y-+h);
else {
GBoxs *v = next;
for(intj = 2; j < who && v 1= 0, j-++, v = v->next);
if(v)

}

v->setSize(x,y, x+w,y+h);

}

void GBoxs;:setBox(){
if(A)
GB- > MoveWindow(*A, TRUE);
if(next)
next- > setBox();
}

!
/{ Va ~bl function defs.
//*****************
Varbl:: ~Varbl(}{ //cleans up after a variable is done
/! if(Eng) delete Eng;
1 if{Metric) delete Metric;

if(Btext) delete Btext,

if(val) delete val;

if(ClearB) delete ClearB;

if(type == 3 || type == 4)

delete Ecombo;
else if {type > 10)

delete Rbut;
else if(type == 5)

delete Bitmap;
else

delete Efield;
if(next) delete next;

}

void Varbl: :setldClr(TDialog *p,TModule *m, int b, int ofs, int sp = 0§
if (sp)
ClearB = new NButton(p, b,m);
else

}

ClearB = new NButton(p, b, "",4,0fs+3,12,18,m);

void Varbl: :setldBit(TDialog *p,TModule *m, int b, int ofs, int wide, int sp = 0)4

IdEdit = b;
if (sp)

ClearB = new NButton(p, b,m);
else

ClearB = new NButton(p, b, "",(DLGW-wide)/2,ofs+3,12,18,m);

ClearB-> Atir.Style | = BBS_BITMAP;
ClearB- > Attr.Style “= WS_VISIBLE;

}

void Varbl: :setldBitmap(TDialog *p,TModule *m, int b, int ofs, int wide, int sp = 0){
IdEdit = b;
if (sp)

Bitmap = new NButton(p, b,m};
else

Bitmap = new NButton(p, b, " * (DLGW-wide)/2,0fs+3,12,18,m);

Bitmap- > Attr.Style | = BBS_BITMAP;

}
void Varbl::setldEdit(TDialog *p,TModule *m, int b, int ofs, int sp = 0){
IdEdit = b;
if (sp)
Efield = new TEdit(p, IdEdit, 9,m);
clse

Efield = new TEdit(p, IdEdit, "",31,0fs,80,25,10,FALSE, m);
Efield- > SetValidator (new TNumValidator);

}

137

void Varbl::setldRadB(TDialog *p,TModule *m, int b, int ofs, NGroupBox *G, int sp =)2

IdEdit = b;

138

if(sp)
Rbut = new NRadioButton(p, IdEdit, G,m);
else
Rbut = new NRadioButton(p, IdEdit, "",10,0fs+5,DLGW-30,18, G,m);
}
void Varbl::setldCombo(TDialog *p, TModule *m, int b, int ofs, int/* sp = 0*/) {
IdEdit = b;
Ecombo = new NCombo(p,b,"",4,0fs,107,25,m,DLGW-126,120,new
TNumValidator),
}
void Varbl::setldText(TDialog *p,TModule *m, int b, int ofs, int sp = 0, int t = 0)4
if{sp)

Btext = new VStatic(p, b, 20,m);

else if(t == 6){
Btext = new VStatic(p, b, "",5,0fs+3,DLGW-25,18,0,m);

Btext-> Attr.Style | = SS_CENTER,;

lelse
Btext = new VStatic(p, b, "",116,0fs+3,DLGW-130,18,0,m),

}

/*char far */ void Varbl::Disp(int w) { //Displays the info about the variable
/¥ char *t;

if(w)
t = Metric;
else
t = Eng;
)
if(Btext)

Btext- > ShowText(w);
if(type == 5 && varnum)
if(w){
Bitmap- > Show(SW_HIDE);
ClearB-> Show(SW_SHOW);
}else{
ClearB- > Show(SW_HIDE);
Bitmap- > Show(SW_SHOW);
}

It return t;
} // returns the info to display next to the var box.

void Varbl::setValidate(char far *s){ //Not used at this time!!!!
if(val)
delete val;
val = new char[strlen(s)+ 1];
strepy(val,s);

139

void Varbl::setEnglish(char far *s){ //Enters the englich info about the variable
/ #

if(Eng)
delete Eng;
Eng = new char[strlen(s)+1];
strepy(Eng,s);
*/
Btext- > SetValue(0,s,0,0);
}

void Varbl;:setMetric(char far *s){ //Enters the metric info about the variable
/ &
if{Metric)
delete Metric;
Metric = new char[strlen(s)+1];
strepy(Metric, s);
*/
Btext- > SetValue(1,s,0,0);
}

Varbl *Varbl::addVarbl(Varbl *v){ //Create a new variable and add it to the [ist
for(Varbl ¥t = v; t->next != 0; t = t->next);
t->next = new Varbl;
refurn t- > next;

}

int Varbl::GetInput(){ //Gets the input from the edit fields and convers it to a float
if(type == 3)
data = Ecombo-> GetData(Ecombo- > GetSellndex(});
else {
char t[20];
getText(t,10);
if(t[0] == "\0")
return 0;
data = atof{(t);
t

return 1;

}

int Varbl::SetInput(){ //Convers a float to a string then puts it in the edit field
if(type == 1T)
Btext- > DispText(data);
else{
char t§20];

140

sprintf(t," %f", data);
i[9] = "0,
setText(t);

return 1;

}

// END of Varhl function defs.

I/
// Tuncdef function defs.
//**************
Funcdef:: Funcdef(}{
VarList = 0;
DlgBox = 0,
Modg = 0;
Grps = 0,
form = varSolv = NoVar = IsPar = rNum = 0;
1Pos = 5;
Ltype = 0; //Last type.
Grpos = 0; //The top row of the groupbox.
numG = 0; //The number of vars in a group.
Lset = 0;

}

int Funedef:: AddVar(char far *e, char far *m, int Id = 1, int va = 0, float d=0,intt =0,
int spl = 0, long Type = 0){ //Adds a variable to the list and its attributs
Varbl *vimp;

if(!VarList)
VarList = vtmp = new Varbl;
else
if((vimp = VarList->addVarbl(VarList)) == 0){
MessageBox((HWND)NULL, "Out of
memory","Error" ,MB_SYSTEMMODAL);
exit(-1};
}
vimp- > setType(t);
vtmp- > setVarNumber(vn);
vtmp- > setData(d};

if(t > 10){
GBoxs *Gt;
if(t t = Ltype)
if(spl)
if{ Grps)

Gt = Grps-> addBox(Grps,
DigBox,Modg, IDC_P2G1+t-11};

141

else
Gt = Grps = Grps->addBox(Grps,
DlgBox,Modg,IDC_P2G1 +t-11);
else
if(Grps){
Grps- > setSize(Ltype-10,5,Grpos, DLGW-
19,20%numG +7);
rPos + = 25;
Gt = Grps->addBox(Grps,
DlgBox,Modg,IDC P2G1+t-11,"",5,(Grpos = 1Pos), DLGW-19,10);
numG = 0;
Yelse
Gt = Grps = Grps->addBox(Grps,
DlgBox,Modg,IDC_P2G1+t-11,"",5,(Grpos = rPos),DLGW-19,10);
vtmp- > setldRadB(DlgBox,Modg, MinRad+rNum, rPos,Gt-> GBptr(}, spl);
vimp- > setldText(DlgBox,Modg, MinRad +1Num+ +, rPos,1);
vtmp- > AddText(e,0,0);
vtmp- > AddText(m,0,0);

tPos + = 20;
numG -+ +;
else{
if(Ltype > 10)
if(1spl){
Grps- > setSize(Ltype-10,5,Grpos, DLGW-19,20*numG +7);
rPos += 30,
}
if(e && m){
vtmp- > setldText(DlgBox,Modg, MinText-201-+Id, rPos, spl, t);
char Tdisp = 0,
if{ Type & 32)
if(t == 0)
Tdisp = '*';
else if(t == 1)
Tdisp = 'l';
if(Tdisp){
char T1[200],T2[200];
T1[0] = Tdisp; T1[1] = ' *; T1[2] = "\0';

T2[0] = Tdisp; T2[1] = ' ; T2[2] = "0
strcat(T1,e);
streat(T2,m),
vtmp-> AddText(T1,0,0);
vtmp- > AddText(T2,0,0);
} else {
vtmp- > AddText{e,0,0);
vtmp- > AddText(m,0,0);
}

142

if(t == 7 && lvimp-> GetText())

vtmp- > setldText(DlgBox,Modg, MinText-201+1d, 1Pos, spl, t);
ifit ==3||t==4)

vimp- > setldCombo(DlgBox,Modg, MinText+399+1d,rPos,spl);
else if(t == 5){

int hi = 0;
try{
TDib *bitm = new TDib(Modg- > GetInstance(),1d + 1000);
vtmp- > setldBitmap(DlgBox,Modg,Id,rPos,bitm-
> Width(),sph);
hi = bitm- > Height();
delete bitm;
catch(TGdiBase:: TXGdi) {
return (Grps !== 0);
}
if(vn){
try{

TDib *bitm = new TDib(Modg- > Getlnstance(),vn+ 1000);
vtmp- > setldBit(DigBox,Modg,vn,rPos,bitm- > Width(),spl);
if(bitm->Height() > hi)
hi = bitm-> Height();
delete bitm;
1
catch(TGdiBase:: TXGdi) {
return (Grps | = 0);
}

rPos + = hi- 15;
Yelse if(t 1= 6 && t 1= T){
vtmp- > setldBdit(DlgBox,Modg, MinText-101+1d, rPos, spl);
if(t = 2)
vtmp- > setldCIr(DlgBox,Modg, MinText-1+1d, rPos, spl);
}

rPos += 30,
}
ifit == 2)
NoVar = [;
Ltype = ;
return (Grps != 0);

}

void Funedef: :addCombo(char far *s, float d)}{

for(Varbl *v = VarList; v->n{) != 0; v = v->n());
if(!v-> addStrCombo(s, d))

ErrorBox("Can\'t add string, must have Combo Box",DlgBox);
i

void Funcdef::addText(char far *s, float VI, float Vh){
for(Varbl *v = VarList; v->n() = 0; v = v->n()),
v-> AddText(s, VI, Vh};

}
void Puncdef::setRad(){
int Ltype = 0O;
if(Grps){
Grps- > setBox();
for(Varbl *v = VarList; v != 0; v = v->n())
if(v-> Type() > 10)
if(v->Type() != Ltype}{
v- > ChkRad();
Ltype = v->Type();
}
}
}

void Funcdef::Display(){//Displays the i~ fo about all the variables in the function list
for(Varbl *v = VarList; v != 0; v = v->n())
if(v->Type() != 7)
v-> Disp(form);
}

int Funcdef::ChkVars(){//Checks the variable to see if the data has been entered corectly
char msg[256];
int slvnum = 0;
varSolv = 0;
for(Varbl *v = VarList; v != 0; v = v->n())
if(v->Type() < 11 && v->Type() 1= 2 && (v->Type() > =5 && v-
>Type() <=)
slvnum+ +;
if(!v- > GetInput())
if(v->Type() == 1){
sprintf(msg,"You must enter a value for:\n%s",v-
> GetDispText(});
ErrorBox(msg,DlgBox);
return O;
lelse if(varSolv){
ErrorBox("You can only Solve for one
variable",DlgBox);
return O;
}else
varSolv = slvnum,;

ifONoVar && tvarSolvy{

143

144
ErrorBox("You must leave one variable cell empty",DlgBox);
return 0;

}

return 1;

}

int Funcdef:: UpdataVars(){//Updatas the edit fields for all the variables in the function
for(Varbl *v = VarList; v!= 0; v = v->n())
if(v->Type() < 11 && v->Type() t= 5 && v->Type() != 6 && v-
>Type() 1= 3)
v- > Setlnput(};
return 1;

}

void Funcdef::Clear(int IdE){ //Clears all the edit fields of the variables in the function
IdE = IdE - 100;
for(Varbl *v = VarList; v != 0; v = v->n())
if({dE == v-> GetldEdit())
v->Clear();

}

int Funiedef:: Comput(){ //Solves the function using the variable entered
NumList *n = new NumList(DigBox);
for(Varbl *v = VarList; v != 0; v = v->n()
if(v->Type() < 11 && v->Type() 1= 5 && v->Type() = 6)
n- > addNum(n,v- > Data());

if(Grps){ // Checks to see if there is a special set of radio buttons.
int ltype = 0, i;
for(Varbl *v = VarList; v {= 0; v = v->n())
if(v-> Type() > 10){
if(ltype | = v->Type()){

i=1;
Itype = v->Type(),
}

if(v-> CKD(}))
n- > addNum(n,(float)i); // prepairs info from the
radio buttons to be sent.
i++;
}
i

if{IsPar)

Calc(form+1, sPar, n);
else

Calc(form+1, varSolv, n);

int i;
for(v = VarList, i = 0; v!=0; v = v->n())
if(v->Type() < 11 && v->Type() |= 5 && v->Type() |= 6)
v->setData(n- > getNum(i+ +));

delete n;
return 1;

}

void Funcdef::Make3d(){
TControl *c;
for(Varbl *v = VarList; v != 0; v = v->n(){
if((c = v->GetEdit()) 1= 0)
ForceControl3d(c- > HWindow);

if((c = v->GetBut()) 1= 0)
ForceControl3d(c- > HWindow);
if((c = v->GetText()) 1= 0)
ForceControl3d(c- > HWindow);
}

}

char *Funcdef::GetWorkText(}{
for(Varbl *v = VarList; v-> GetldEdit() ! = Lastld && v 1= 0; v = v->1();

if(v 1= 0){
char t[20];
v-> getText(t,10);
return €,
}
return 0;
}

void Funcdef::SetWorkText(char #){
for(Varbl *v = VarList; v-> GetldEdit() != Lastld && v I=0; v = v->n(});

if(v- > GetldEdit() == Lastld)
v- > setTexi(t);
t

/! end of Funcdef's function definitions.

i
/1 IsValidInput function Def for Validate Number
//****************

BOOL TNumValidator::IsValidinput(char far* str, BOOL){ //Checks the data entered to see

if it is a valid float
BOOL t = TRUE;

146
for(inti = 0, p = 0, 1 = strlen(str); i < I; i++)
if(i =0 || strfif t= "-")
if(str[i] == "."}{

if(p)
t = FALSE;
p++;
lelse if(str[i] < 0" || str[i] > '9")
t = FALSE;
return t;
}

1

// Build a response table for all messages/commands handled

/! by the application.

/!

DEFINE RESPONSE_TABLE1(NFuncDlg, TDialog)

/I{{NFuncDIgRSP_TBL BEGIN}}

EV_BN_CLICKED(IDC_COMP, BNCalc),

EV_BN_CLICKED(IDC DONE, BNContinue),
EV_BN CLICKED(IDC_HELP, BNhelp),
EV_BN_CLICKED(IDC_PUSHBMisc, BNMisc),
EV_BN_CLICKED(IDC _RADIOBUTTONE, BNEnglish),
EV_BN_CLICKED(IDC_RADIOBUTTONM, BNMetric),

{{{{NFuncDIgRSP_TBL_END}}

END RESPONSE_TABLE;

//{{NFuncDlg Implementation}}

NFuncDlg::NFuncDlg (TWindow* parent, TResld restd, TModule* module, char far *who,
long FuncType):
TDialog(parent, resId, module){

/{ Constructor code here.
Func.setDlg(this,module);
nVars = 0;
RBm = 0;
Bdone = 0,
Bhelp = 0;
Bmisc = 0;
/ Gbox = new TGroupBox(this,IDC_GBOX,module);
1/ BEnglish = new NRadioButton(this,IDC_RADIOBUTTONE,Gbox,module);
/! BCompute = new NButton(this,IDC_COMP,module};
Gbox = 0;
BEnglish = 0;
BCompute = 0;

147

X=5Y=35
Name = who;
Type = FuncType;

HelpFile = 0O;
HelpID = 0;
}

NFuncDlg:: ~ NFuncDig(}{
Destroy();

/I INSERT > > Your destructor code here.
if(BEnglish) delete BEnglish,;
if(BCompute) delete BCompute,
if(Bdone) delete Bdone;
if(Bhelp) delete Bhelp;
if(Bmisc) delete Bmisc;
if(RBm) delete RBm;
if(Gbox) delete Gbox;

if(HelpFile) delete HelpFile;
}

void NFuncDIg::SetupWindow(){
TDialog::SetupWindow();
int R,B;
if(sDIg){
TRect Da = GetClientRect();
R = Da. Width();
B = Da.Height()+35;
}else{
R = DLGW;
B = Func.rowlnc(77);
}
if(Type & 16){
if(Parent){
TRect Pa = Parent-> GetWindowRect();
X += Pa.left;
Y + = Pa.top;
¥
telse{
X = (GetSystemMetrics(SM_CXSCREEN) - R)/2 +4;
Y = (GetSystemMetrics(SM_CYSCREEN) - B)/2;
}
MoveWindow(X,Y,R,B,TRUE);
for(int i = 0; i < nVars; i+ +)
Func.Clear(MinText+1i);
BEnglish- > SetCheck(BF_CHECKED);

148

Func.setRad();

Func.Display();

Func.Make3d();

SetWindowPos(HWND TOPMOST, 10,10,10,10,SWP_NOSIZE |
SWP_NOMOVE);

}

void NFuncDlg::BNContinue (}{ // There are done with the dialog.
CloseWindow(};

}

void NFuncDlg::BNhelp(){ //Someone wants help
WinHelp(HelpFile, HELP CONTEXT,HelpID),

void NFuncDlg::BNEnglish (){ // English Units were chosen.
Func,setForm(0);
Func.Display();

}

void NFuncDIlg::BNMetric (){ // Metric units were chosen.
Func.setForm(1);
Func.Display();

}

void NFuncDlg::BNCalc (}{ // ~he botton for the calculation was pushed.
if(1IFunc.ChkVars())
return;

Func.Comput();
Func.UpdataVars();

}

void NFuncDlg::Make(){
if(!sDlg){
if(BEnglish)
delete BEnglish;
if(BCompute)
delete BCompute;
if(Gbox)
delete Gbox;
int pos = (DLGW - 4*70 - 80)/5;
Gbox = new TGroupBox(this,IDC_GBOX,"",pos/2-
2,Func.rowlnc(15),80,39,Func.GetModl()),
ForceControl3d(Gbox->HWindow);

149

BEnglish = new
NRadioButton(this,IDC_RADIOBUTTONE, "En&glish",pos/2+1,Func.rowPos()+1,70,17,
Gbox,Func,GetModl());
ForceControl3d(BEngtish- > HWindow);
RBm = new
NRadioButton(this,IDC_RADIOBUTTONM, "&Metric",pos/2-+1,Func. rowPos(}+18,70,17,
Gbox,Func. GetModl());
RBm- > Attr.Style = BS AUTORADIOBUTTON | WS_CHILD |
WS_VISIBLE;
ForceControl3d(RBm- > HWindow);
if({(Type & 8)){
BCompute = new
NButton(this,IDC_COMP,"&E",1.5*pos+80,Func.rowPos(), 50,35,Func.GetModl(), TRUE)

3

ForceControl3d(BCompute- > HWindow);

if(I(Type & 4)){
Bmisc = new
NButton(this,IDC_PUSHBMisc, "Mi&sc",2.5%pos+ 150,Func.rowPos(),50,35,Func. GetMod
10);
ForceControl3d(Bmisc- > HWindow});

if((Type & 2)){
Bhelp = new
NButton(this, IDC_HELP,"&h",3.5%pos+220,Func.rowPos(),50,35,Func.GetModl1());
ForceControl3d(Bhelp- > HWindow);
}
if({(Type & 1)){
Bdone = new
NButton(this,IDC_DONE,"&d",4,5%pos +290,Func.rowPos(),50,35,Func.GetModl());
ForceControi3d(Bdone- > HWindow),
}
}
Create();

}

void NFuncDIg::BNMisc (){ // ~he botton for the calculation was pushed.
CopyDlg Cdlg(Bmisc,26,Func.GetModl());
Cdlg.Execute();

}

LRESULT CopyDlg::DefWindowProc (UINT msg, WPARAM wParam, LPARAM

IParam){
LRESULT result;
result = TDialog::DefWindowProc(msg, wParam, [Param);

/{ INSERT > > Your code here,

150

if(wParam == 107){
Parent- > Parent- > PostMessage(msg, wParam,[Param);
CloseWindow();

lelse if(wParam == 106){
CloseWindow();
Parent- > Parent- > PostMessage(msg, wParam,|Paramy);
}

return result;

}

void CopyDlg::SetupWindow(){
TRect pR = Parent-> GetWindowRect();
int Lh = 93;
int y = pR.bottom;
if(y+Lh > GetSystemMetrics(SM_CYSCREEN))
y = pR.top-Lh;
MoveWindow(pR.left,y,75,Lh, TRUE);
}

BOOL NWCcopy(char *Ctext, HWND winHan){
void *IptstrCopy;
HGLOBAL hglbCopy;

OpenClipboard(winHan);
if (EmptyClipboard()) {

/* Allocate a global memory object for the text. */
hglbCopy = GlobalAlloc(GMEM_DDESHARE, sizeof(Ctext));
if (hglbCopy == NULL) {

CloseClipboard();
return FALSE,;
t

/* Lock the handle and copy the text to the buffer. */
IptstrCopy = GlobalLock(hglbCopy),
int Ing = strlen{Ctext}+1;
memepy(IptstrCopy, Ctext, Ing);

GlobalUnlock(hglbCopy);

/* Place the handle on the clipboard. */
SetClipboardData(CF_TEXT, hglbCopy});
CloseClipboard();
return TRUE;

}
return FALSE;

}

151

void NWCpaste{char *Ctext, HWND winHan){
HGLOBAL hgib;
void *Iptstr;

1 TClipboard& Cbrd;
OpenClipboard(winHan});
if(IsClipboardFormatAvailable(CE_TEXT)){
hglb = GetClipboardData(CF_TEXT);
if (hglb 1= NULL) {
Iptstr = Globallock(hglb);
if (Iptstr == NULL){
memcpy(Ctext, Iptstr, 10);
GlobalUnlock(hglb);
}
}
CloseClipboard();

}
}

LRESULT NFuncDlg::DefWindowProc (UINT msg, WPARAM wParam, LPARAM
{Param}{

LRESULT result;

result = TDialog::DefWindowProc(msg, wParam, 1Param);

/I INSERT > > Your code here.
if(wParam > = MinText-101 && wParam < = MaxText-101)//
Func.SetLID{wParam);
else if(wParam > = MinText+399 && wParam < = MaxText-+399)//
Func. SetLID(wParam);
else //if(msg == BN_CLICKED){
if(wParam > = MinText && wParam < = MaxText) // Checks if a clear button was
pushed
Func.Clear{(wParam);
else if(wParam == 107){//Copy Item
char ctmp[24];
strepy(ctmp,Func. GetWorkText(});
NWCcopy(ctmp,this- > HWindow);
Yelse if(wParam = = 106){//Paste item
char ctmp[24];
NWCpaste(ctmp,this- > HWindow);
TNumValidaior NVald;
if(NVald.IsValidInput(ctmp, TRUE)}
Func.SetWorkText(ctmp);
}
I}
return result;

152
EQ9-4.h

#include < stdlib.h>
#include <stdio.h>
#include < math.h >
float calcE9_4B(int i, //English or Metric
inf j, NumList *n){//the list of data
to transfer
int wN = 0,
float fHf = n-> getNum(wN+ +);// Disharge (cfs or cms)
float fLL = n-> getNum(wN+ +);// length of culvert barrel (ft or m)
float fR = n-> getNum(wN + +);// hydraulic radius (ft or m}
float fV = n-> getNum(wN+ +);// velocity (ft/sec or m/sec)
float fit = n-> getNum(wN + +);//Manning’s Rougness Coefficient

float fg = 32.2, fTemp,
if (i==2)
{
fHf = {Hf * 3.28084;
fLL = fL * 3.28084;
fR = fR * 3,28084;
fV = fV * 3.28084,
¥
switch(j)
{
case 1:
if(fR)
fHE = ((29 * (pow(fn,2)) * fL * (pow(fV,2))) / ((pow(iR,1.33)) * 2 * fg));
else
ErrorBox("A value of 0 has been entered for a variable in the
denominator!" ,n- > GetWnd());
break;
case 2:
H(n*fV)
fLL = (fHf * (pow(fR,1.33)) * 2 * fg) / (29 * (pow(fn,2)} * (pow(fV,2)));
else
ErrorBox("A value of 0 has been entered for a variable in the
denominator!",n- > GetWnd());
break;
case 3.
if(fg*{Hf)
fR = pow(((29 * (pow(fn,2)) * L * (pow(fV,2))) / (2 * fg * fH{)),0.75188);
else
ErrorBox("A value of 0 has been entered for a variable in the
denominator!",n- > GetWnd());
break;
case 4:

153

if(fn*fL)
{
fTemp = (fHf * 2 * fg * (pow(fR,1.33))) / (29 * (pow(in,2)) * fL);
fV = pow(fTemp,0.5);
}

ErrorBox("A value of 0 has been entered for a variable in the
denominator!*,n- > GetWnd());

else

break;
defauli:
ErrorBox("BUG ! | 1" n- > GetWnd());
}
if (i==2)

fHf = fHf / 3.28084;
L. = L. / 3.28084,
fR = fR / 3.28084;
vV = fV / 3.28084,

}

wN = (;

n->setNum(wN+ +, fHf);// Disharge (cfs or cms)
n->setNum(wN+ +, fL);// length of culvert barrel (ft or m)
n->setNum(wN + +, fR);// hydraulic radius (ft or m)

n- > setNum(wN + +, fV);// velocity (ft/sec ot m/sec)

n- > seiNum(wN + +, fn);//Manning's Rougness Coefficient
return 1;

}

155

Appendix F.
Computer-based Manual Evaluation Form

157

Computer-based Manuals

Evaluation

Utah Department of Transportation
Utah Transportiation Center
Utah State University

September 1994

How skilled are you at using Windows based computer programs (check one)?
Very skilled Average Below average Have never used
Windows before

Thank you for your help!!!

158

1) Rate the importance of each of the following features for each of the categories.

3 = Very Important

2 = Important

1 = Little Importance 0 = Not Important

Feature

Training
(0-3)

Reference
(0-3)

Decision
Support
{0-3)

Comments

Browser

Hypertext

PopUp Windows

Search

Glossary

History List

Bookmarks

Annotation

Multimedia
{Video, bitmaps)

Equation
Solvers

External
Program Links

HyperCalc

Decision
Support System

159

2) Compare the printed version to the computer-based version of the AASHTO Drainage
Manual for each of the following categories. Mark which version of the manual is better in
each category and then rate it using the following scale:

3 = Much Better 2 = Significantly Better 1 = Slightly Better 0 = About the Same

Printed | Compute | Rating
Version | rVersion (0-3) Comments

Speed

Accuracy

Navigation

Overall Ease of Use

Level of Information

Comprehension of
Information

Metric Conversions
{Hypercalc vs.
Manual)

3) What do you think the advantages and disadvantages of the computer-based design
manual are?

4) What did you most like or dislike about the computerized manual?

5) What could be done to make the computer-based manual easier to use?

6} Other comments:

161

Appendix G

Computer-based Manual Evaluation Results

Table C-1. Results from the Utah Department of Transportation evaluation of the computer-based manual features(0 = not
important, 1 = little importance, 2 = important, 3 = very important)

Browser Hypertext PopUp Windows Search
Evaluator Train. Ref. D.S. Train. Ref. D.S. Train. Ref. . D.S. Train. Ref. D.S.
1 3 3 3 3 3 3 3 3 3 3 3 3
2 3 3 i 3 3 1 3 3 ! 3 3 1
3 1 3 3 3 3 2 2 3 3 1 3 3
4 3 3 0 3 3 1 3 3 1 2 3 1
5 3 3 3 3 3 3 3 3 2 3 3 3
6 3 3 2 2 2 1 2 2 1
7 °2 2 2 2 2 2 2 2 2 2 3 2
8 3 2 1 3 3 1 2 3 1 2 3 2
9 3 2 1 3 3 2 3 -3 -3 2 3 1
10 3 3 1 3 3 2 2 2 2 2 3 3
11 2 3 0 3 3 3 3 3 3 3 3 3
12 3 3 2 3 3 2 2 2 3 3 3 3
13 3 3 3 3 2 2 3 3
14 2 3 1 3 2 i 1 2 2, 3 3 2
Avg. 2.64 2,19 1.54 2.86 2,79 1.85 2.38 2.62 2.17 2.43 2.93 2,15
STD 0.63 0.43 1.05 0.36 0.43 0.80 0.65 0.51 0.83 0.65 0.27 0.90
95% C.L 2.97-1.96 3.01-2.56 2.09-0.99 3.05-2.67 3.01-2.56 2.27-1.43 2.73-2.04 2.88-2.35 2.60-1.73 2.77-2.09 3.07-2.79 2.62-1.68

€91

Table C-1. Continued

Glossary History List Bookmarks Annotation
Evalnator ‘Frain. Ref. D.S. Train. Ref. D.S. Train. Ref. D.S. Train. Ref. D.S.
1 3 3 3 3 3 3 3 3 3 3 3 3
2 3 3 1 3 3 1 1 .3 1 1 3 1
3 2 1 1 0 1 1 3 1 1 3 2 2
4 3 3 1 2 1 1 2 3 1 3 3 3
5 2 3 2 2 2 2 2 3 2 1 3 3
6 3 3 1 1 1 1 2 2 1 2 2 1
7 2 2 2 1 1 1 2 2 2 1 3 2
8 3 2 2 0 1 0 2 2 0 2 2 1
9 3 3 2 1 1 3 1 3 3 2 2 2
10 *3 3 1 3 2 1 3 3 1
11 3 1 0 3 3 3 3 3 3 2 2 1
12 3 3 2 2 2 2 3 "3 "2 3 3 3
13 3 2 3 2 : 2 2 3 2
14 3 3 2 2 2] 2 2 1 2 3 1
Avg. 2.79 2.50 1.54 1.86 1.79 1.46 2.21 2.50 1.62 2.15 2.54 1.92
STD 0.43 0.76 0.78 1.10 0.80 1.05 0.70 0.65 0.96 0.80 0.52 0.90
95% C.L 2.43-1.28 2.21-1.37 2.01-0.91 2.58-1.85 2.84-2.16 2.12-1.11 2.57-1.73 2.81-2.27 2.39-1.45

3.01-2.56 2.90-2.10 1.95-1.13

¥o1

Table C-1. Continued

Multimedia Equation Solvers External Program Links HyperCalc

Evaluator Train. Ref. D.S. Train. Ref. D.S. Train. Ref. D.S. Train. Ref. D.S.

1 3 3 3 3 3 3 3 3 3 3 3 3

2 1 3 1 3 1 3 2 2 3 1 1 3

3 3 3 1 3 3 3 3 1 1 2 1 1

4 3 2 2 3 3 3 2 3 3 3 3 3

5 3 3 1 3 3 3 2 3 1 2 2 2

6 3 3 1 3 2 1 2 2 2 2 2 2

T 3 2 1 3 2 3 3 1 3 2 2 3

8 2 2 1 0 2 3 1 3 3 2 2 3

9 2 2 1 2 1 3 2 2 3 3 3 2

10 T2 | 0 1 2 3 2 2 3 2 2 2

11 3 1 3 3 3 3 3 3 3 3 3 2

12 2 1 0 3 3 3 2 3 3 3 3 3

13 3 3 2 3 3 2 2 2

14 3 1 0 | 1 3 0 i 3 1 2 3
Avg, 2.57 2.14 1.15 2.36 2.29 2.85 2.14 2.21 2.62 2.21 2.21 2.46
STD 0.65 0.86 0.99 1.0 0.83 0.55 0.86 0.80 0.77 0.70 0.70 0.66
95% C.1. 2.91-2.23 2.60-1.69 1.67-0.64 2.89-1.83 2.72-1.85 3.14-2.56 2.60-1.69 2.630- 3.02-2.21 2.58-1.85 2.58-1.85 2.81-2.12

1.79 '

¢o1

l

Table C-1. Continued

_Evaluator

Decision Support System

Train. Ref. D.S.

O 00 =1 N LA B WD e

Avg,
STD
95% C.1.

e L3 B L B B e B LI R L R e W
BB W W o BB B R W R e W
bl LY LD LD L L LW L W W e

w

2.14 2.21 3.00
0.77 0.70 0.00
2.55-1.74 2.58-1.85 3.00-3.00

991

