User Interface Development for

Existing Engineering Applications

Enhancement of Txisting Engineering Software

Volume No. 6

by
J.A. Puckett, Professor

Chad Clancy, Research Assistant

f Civil and Architectural Engineering
University of Wyoming
Laramie, WY

Department o

March 1993

Technical Report Documentation Page

1. Report No. 2. Government Accession No.
MPC92-9 Volume 6

3. Recipient's Catalog No.

4, Title and Subtitle
Enhancement of Existing Engineering Software Volume No. 6
User Interface Development for Existing Engineering Applications

5. Report Date

March 1993

6. Parforming Organization Code

7. Author(s)
J.A. Puckett and Chad Clancy

8. Performing Organization Report No.

9. Performing Organization Name and Address
University of Wyoming
Laramie, WY

10. Work Unit No. (TRAIS)

1. Contract or Grant No.

12. Sponsoring Agency Name and Address
Mountain-Plains Consortium
North Dakota State University
Fargo, ND

13. Type of Report and Period Covered
Project Technical Report

14. Sponsoring Agency Code

15. Supplementary Notes
Supported by a grant from the U.S. Department of
Transportation, University Transportation Centers Program

16. Abstract

The principle objective of this report is to describe a methodology for the development of user interfaces that is
appropriate for existing engineering software. This methodology is appropriate for applications that are specialized
and may not command the market required for extensive broad-based commercial development. The authors are
most familiar with applications used by the bridge engineering community and this is reflected in the applications
developed to date. Application of the general concepts described are broad and appropriate for many applications

other than structural design.

17. Key Words 18. Distribution Statement
user interface, BRASS, CASE

19, Security Classif. (of this report) 20. Security Classif. {of this page)

21. No. of Pages 22, Price
22

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for
the facts and the accuracy of the information presented herein. This document is
disseminated under the sponsorship of the U.S. Department of Transportation, University
Transportation Centers Program, in the interest of information exchange. The us.
Government assumes no liability for the contents or use thereof.

PREFACE

This report is the sixth in a series involving the enhancement of existing
engineering software. Previous reports addressed the interface of engineering application
software with computer-aided drafting and applications that employed the techniques
developed in this project. The focus of this report is on the user’s interface with the
engineering application. An interesting and novel method is described of an interface that
can be developed in an extremely short time by engineers with no intimate familiarity
with interface development. This report is intentionally brief and focuses on the
methodology rather than the specifics of & particular computer-aided-software—engineering
(CASE) tool or a particular application. Specifics will be of interest to the software
engineer and can be obtained by contacting the authors. This report is written at the
executive level in the hope that managers of transportation engineering operations will
encourage development of software for their operations and the profession at large. As
development tools become friendlier and more functional, in-house
development/enhancement of sophisticated software for specialized tasks will become

possible.

TABLE OF CONTENTS

Page
INTRODUCTION .+« s eveeeenuns s sms et es s s s m i n s 1
DEVELOPMENT OBJECTIVES .. vcnvrvenmrrnememr et nn ity 2
SYSTEM ARCHITECTURE AND DESIGN .o vvvevamennssrsemmma et 5
IMPLEMENTATION QPECIFICS .\t veaneerneaneenme e n i sy 9

Application of CASE .« o oee e T 9
Abtribute EXEENSIONS « . . o rvennsseos oo snsssss s sse i nnnn i 9
Development POCESS .+« « v v v cwssererrss s tr st m s n i nn i 10
APPLICATIONS oo e esvneesessensme s st mnn i 13
SUMMARY .« + o oo e e ereeeeeesme s s s s n 16
REFERENCES . . o« envseessnsenmnssns s ss i n i 17

i1

LIST OF TABLES

Table Page
1 Applications Developed 10 DALE « o oeevrsreseomser st i 13
LIST OF FIGURES

Figure Page
System Architecture ooosoe eI 6

Architecture of User Interfaceooeoerrerorsr i mntinint 7

Typical BRASS Dialog WINAOW .. vwvvnnesrers sy 13
BRASSEDITOR .0 v vvvoenrrsesnsme st i i iy 14

Typical Help Referencec..ooooeeesrrrrsrsrrnnninniinn 15

i1l

INTRODUCTION

There exists a large body of software in the engineering design professions that is
routinely used, well tested and trusted, and is often very specialized. This software is
often developed and maintained in-house, or by those quite familiar with the engineering
aspects of the particular code but often unfamiliar with the most current advancements
and methodologies required to make the software user friendly. It is common for a
windows-based user interface to take as much or more development time than the
engineering application. The development of modern interfaces—X-windows, Microsoft
Windows, Apple Macintosh OS—require significant time and specialized expertise, but
such resources are often not available for small in-house development projects and/or
familiar to developers writing specialized engineering applications.

The principal :objective of this report is to describe a methodology for the
development of user interfaces that is appropriate for existing engineering software. This
methodology is appropriate for applications that are specialized and may not command
the market required for extensive broad-based commercial development. The authors are
most familiar with applications used by the bridge engineering community and this is
reflected in the applications developed to date. Application of the general concepts

described are broad and appropriate for many applications other than structural design.

DEVELOPMENT OBJECTIVES

The two principal objectives for this project were to:

Formulate a methodology for the development of user interfaces for existing
engineering software.

Formulate a methodology to interface existing engineering software with CAD.

The first objective is the focus of this report. Methodology is described for
development of user interfaces for engineering applications.

The second objective was addressed in two MPC reports titled, Linking Computer
Aided Engineering Procedures with Computer Drafting (Puckett and Clancy, 1991) and
[UWGRAPH Computer Aided Design and Drafting Library (Puckett and Clancy, 19913,
1991b). The first report was a short description of the architecture, application
development, and a FORTRAN library for creating CAD files directly from existing
procedures. The second was programmer documentation for the library. This information
is not reiterated here.

The first objective was initially addressed by focusing on the functional
requirements rather than with the implementation of computer/software platforms.
Several functional requirements for the system and its development are outlined below
with a brief discussion:

Consistent Interface Behavior: The architecture is the same for all applications.
This required a library of functions to be written which offers the same "ook and feel" for
all applications.

Menu-based operation: The system is able to accommodate many input screens

(over one hundred) and a menu system is the best method for accessing screens.

Large number of input screens: Many important applications in the
transportation/structural engineering fields require several commands for the data
definition.

CASE Development: Hundreds of input screens are planned or have been
developed, therefore a computer-aided-software engineering (CASE) tool is required to
draft the screens. It is impractical, if not impossible, to create all these screens with a
low-level library such as X-lib (Nye, 1990).

Graphical orientation: Engineering data are often best defined with the use of a
graphical representation of the system being described. Dimension data are examples.

On-line help: The help system incorporates all the information contained in the
hard-copy documentation. Access to this information is context sensitive and/or uses
systematic indexing and search procedures. For example, keyword searching is employed.

Modular design: The user interface is completely separate from the application
that performs the engineering calculation. Communication is by way of data files and/or
commands created by the interface. Separation of data definition and subsequent use of
data allow the development and maintenance of the user interface to proceed with little
collaboration by the engineering application developer. This simplifies development and
maintenance and allows each type of developer (interface and engineering) to focus on
their area of expertise. Of course, one individual may be the developer of both interface
and engineering applications.

Minimal or né code development: Using current development tools, an interface is
developed with minimal amount of new code. The interface developer is literally able to
draft the interface with little or no effort in a high-level language.

Opportunities for network computing: The system accommodates the use of a
network, allowing the machine where the interface resides to commmunicate with another

machine where the engineering application resides. This function allows the interface

4

machine {graphical device) to pass data to the application machine that may not be
graphically oriented. The two machines may be the same machine.

Portability of methodology: The architecture is "portable” to different computer
platforms. This does not imply portability of code or the library, but the methodology

developed is the same across operating environments.

SYSTEM ARCHITECTURE AND DESIGN

The system architecture has three distinctive parts as illustrated in Figure 1 - the
interface code, the application code, and the graphics application. Typically, the
communication between all these programs is with ASCII files. The information is
initiated by using the interface code. The interface produces a data file and/or interactive
commands to the engineering application, These commands are the same commands
typically entered by typing or processing batch data files. The application passes data to
a graphics application that creates a CAD file which is interpreted by the CAD system.
Such files include DXF (Autocad) and IGDS (Intergraph) formats. The architecture of the
interface code is the focus of this report. The engineering application is the responsibility
of the developer and is not described. The graphics applications incorporating UWGRAPH
are described in detail elsewhere (Puckett and Clancy, 1991a).

The interface code architecture is illustrated in Figure 2. The core of the system is
a function library that performs initialization of the system, interprets menu commands,
displays input screens, and interprets the internal commands from the input screens, and
finally issues commands to the engineering application. The menus, input screens, and
help files are contained in an abstraction termed the application resource. Application
resources are different for each application and are created using a CASE tool that allows
the developer to literally draft the input screens and menus. Intergraph /FORMS
(Intergraph 1992) and Borland C++ with Application Framework (Borland 1992) were
used in this project. The particular CASE tool used is an important issue in the
development and maintenance of the software, but is not directly relevant to the

discussion of the system architecture and implementation.

¢ User)

Interface Code
Interface mman
Code Data Flle
Appllcation
Graphics
Data Text Output
Graphlcs ication
(Using UGFC—?RAPH)
- CAD System

Figure 1. System Architecture

Application Requirements

*

AppIlccr'r\lﬂoel'lnLlfseSOUl'ce Application Specific
Input Screens Source Code
elp System

= —

Use Interface Executable

Y

Application Commands

Y

Englneering Application

Figure 2. Architecture of User Interface

The interface functions are organized in a library and are independent of the
application. The key to this set of functions is that the library must accommodate all
applications and all input screens. This important aspect requires that cach application
resource contain the screen information necessary for resource definitions for the user
interface, and all the information required for the interface library to produce the
command data to the application. Because all engineering application data are unique to
the application, the application command data must be defined during the screen drafting
process and be contained in the application resource rather than included in the interface
code. Most CASE tools are not designed to directly support this functionality.

The application commands are defined by mapping the user input fields to a C
format string. For this project, the format was stored in a "hidden field" default value in
the case of VFORMS and in the string description attribute in Borland C++. Both CASE
tools permit runtime access to these data and the process is totally transparent to the end
user. The code proceeds sequentially as described below:

1. The library addresses the application resource to obtain the screen

descriptions and uses these data to display the screen.

2. The library controls the user interaction.
3. The user enters the data in a manner consistent for all screens,
4. Upon a written request or an acceptance, the library addresses the hidden

format, data, check bounds, etc. and maps the user data to the format and issues the

application command to application or data file.

IMPLEMENTATION SPECIFICS

Application of CASE

Many CASE tools are available for application development under Microsoft
Windows (Microsoft 1992), Macintosh OS (Apple Computer 1992) and X-Windows (OSF
1991, Nye 1990). As expected, the CASE-tool functionality varies greatly, sometimes
requiring the programmer to handle the important but mundane tasks by writing code in
a relatively hard-coded manmer. Such tasks include checking default values, checking
minimum and maximum bounds, illustrating relationships between data, maintaining the
order of field access, and controlling context-sensitive help. Some tools handle much of
this functionality at the screen drafting stage and store these data in the application
resource while other tools require that the interface application handle these issues by
writing code specific to a particular application. Without elaborating on the specifics of
various CASE tools, it is justified to state that the way tools address these issues 18
extremely important and varies widely. Because of these variations, some objects require

enhancement by extension of the objects’ attributes. This is described in the next section,

Attribute Extensions
In the two CASE tools used to date, both were extremely useful but are very
different in the level of developer support. The important CASE feature that the present
methodology must possess 1s the ability to store string data in the application resource
and extract that data at runtime, With this function, the interface developer can define a
host of attributes that may not be directly supported by the CASE tool and associated
library. For example, a "string attribute” associated with each field could contain the

following string:

type = float; max = 10; min = 0; message = "data exceeds bounds”; default = 1.6;
where

type is the data type indicator,

max is the maximum value for the field entry,

min is the minimum value for the field entry,

message is the string to be displayed upon error detection, and

default is the value initially displayed.

A "screen attribute" which controls the output of all fields within a screen might
contain the format string:

format = "command string %s, %d, 9of\n next command %d, %d \n"

format is the string passed to the library that is used in format editing the
application command data.

The attribute extensions given are examples, and clearly, more attributes can be
added as necessary. This approach allows the interface library to effectively handle
attributes that are not directly supported by the CASE tool. Furthermore, the command
format string is available to the interface library and this is a necessity in order for a
single library to support interfaces for multiple applications that require unique

commands.

Development Process
Interface development begins by planning the appearance of each data input
screen. This is facilitated by the engineering application documentation. One or more
commands can be combined on one data input screen. Next, the screens are organized
into groups and mapped to menus. For example, a command for uniform dead load would
be located on the loads:dead:uniform menu. The developer then drafts the input screens

10

11

and creates the menu using the CASE tool. All extended attributes are included in the
input screen at this time. Any application-dependent code is written. Such code is
typically minimal and usually deals with the grouping commands to be displayed in a
logical order. For example, perhaps it is logical to display the concentrated load screen
immediately after the uniform load screen, but these loads are defined on separate input
screens. Another case for system dependent code is to display input screens for an entire
type of input file or system. For example, display all the screens needed to define a multi-
span steel plate girder and associated loading. Those displayed many represent only a
fraction of the total possibilities, therefore input is greatly simplified by leading the user

through the appropriate data entry.

APPLICATIONS
Several applications have been developed with the methodology described. The

applications, their function, and other statistics are given in Table 1.

Table 1. Applications Developed to Date

Application Function Number | Engineer-days
of Interface
Screens' | Development?
BRASS-Girder Bridge rating and analysis of 99 45
structural systems
BRASS-Bearing Bridge Bearing Design and Analysis | 5
BRASS-Dist Load distribution in Slab-Girder 16
Bridges
BRASS-Culvert Culvert Design 14 7
1. All applications have been developed with both Intergraph LFORMS and Borland Ct++.
2. Times are approximate, The development of the library was performed at the same time and this made time and effort

quantilication dilficult.

A typical input screen from BRASS-Girder is illustrated in Figure 3. This screen
is functioning under Microsoft Windows and has all the functionality of a windows
application, such an iconification, cut/copy, and paste across applications, etc. An editor
is supported in the interface library which allows the user to edit command data after, or
in conjunction with, the input screens. The edit screen is illustrated in Figure 4. Note
support of features such find, replace, cut, copy, paste, over type, insert, and delete. On-
line help is available by way of table of contents, index, and/or context-sensitive

activation. An example of an on-line help page is illustrated in Figure 5.

12

.. . BRASS-Girder-

|”Eilc Edit S.enr-.d;“ ﬂindﬁ\i .Qnmmands Execute ﬂ"'ﬁ

- Crass Section Efements

Figure 3. Typical BRASS Dialog Window

13

14

o BRASS-Girder
Eile Edit Search Window Commands Execute Help

BRASS-Girder - ebgirdeiifiexelbre3d.dat

TLEP-12 SS 58.03 UPRR & HAM'S FORKR LL

COM BRE3.DAT: BRE3 MODIFIED TO BE NON-COMPOSITE
COM THICK WEB VERSION

COM SY1 4,1

COM SY29

ANL 1,0.3

COM ANL.1,0,5

XSA 1 33.0000, 33.0000, 33.0000

COM XSB .375, .375, 16.4750. 16.4750, 1.2600, 1.2600
xXSB .7650, .7650, 16.4750, 16.4750, 1.2600, 1.2600
COM XSC 96,8.0

ASA 2 33.0000, 33.0000, 33.0000

COMXSB .375, .375, 16.4750, 16.4750, 1.2600, 1.2600
X88 .7650, .7650, 16,4750, 16,4750, 1.2600, 1.2600
COM XSC 96.0000, 8.0000, .0000.6,.375,0

SPA 1, 64.0000,1, 135.8800, 35.8800

SPC 1, 22.0000,1,2

SPD 42.0000, 2, 1, 54.0000,1.1

PS1 490.0000,29000.0000, 3.0000

PS2 10,30
DLD 1, 1.0240

* .

Figure 4. BRASS-EDITOR

.
.‘

1

Command Parameters:
1. SPAN
Enter the number of the span for which the layout is being described.

2. ROW
Enter the number of the row being described. The rows must be qumbered consecutively bottom to top.

3, Number of strands
Enter the number of strands in this row,

4, Area
Enter the area of each strand in square inches.

5 D1
Enter the distance from the top of the girder to the centroid of the row of strands at the left end of the

span, in inches.

8. D2 ' |
Enter the distance from the top of the girder to the centroid of the row of strands at the low point of the

drape, in inches.

Figure 5. Typical Help Reference

15

SUMMARY
A methodology for the development of user interfaces for existing engineering
applications is described. The architecture is described and key features are elaborated.
A detailed description of adding attributes—and hence functionality to CASE-tool support
for development—is given. Applications have been developed using this methodology and

these applications have been used in a production environment.

16

REFERENCES

Puckett, J.A. and Clancy, C., Linking Computer Aided Engineering Procedures with
Computer Drafting, Final Report, Mountain Plains Consortium, No. 007, Vol. No.
1, 1991.

Puckett, J.A. and Clancy, C., UWGRAPH Computer Aided Design and Drafting Library,
Final Report, Mountain Plains Consortium, No. 007, Vol. No. 2, 1991.

Nye, Adrian, X-lib Programming Manual for Version 11, Release 4, O'Reilly and Assoc.
Sebastopoel, CA, 1990.

Intergraph Corp., I/F ORMS Programmer’s Reference Manual, Huntsville, AL, 1991

Borland International, Inc., Borland C++ with Application Framework, Programmer’s
Guide, Version 3.0, Scotts Valley, CA, 1992,

Microsoft Corp, Microsoft Windows User’s Guide, Version 3.0, Redmond, WA, 1990.
Apple Computer, Macintosh Reference 7, Palo Alto, CA, 1991.

Open Software Foundation, OSF/Motiff Rev. 1.1, Prentice Hall, Englewood, NJ, 1991.

17

