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PREFACE

The primary objective of MPC 007 is to provide a methodology to enhance
applications based on existing code. These methodologies were employed to enhance a finite
strip program for the analysis of slab-girder bridges to determine how the load distributes
to each girder and report the distribution factors necessary for design or rating. The
Intergraph version of this application illustrates the methodology while providing the bridge
engineer with a useful analysis tool. This report outlines the theory and application of the
finite strip method and illustrates the use of the application with several examples. The report
is intended for bridge engineers interested in the load distribution application and does not
focus specifically on the methodology used to develop the application’s user interface.

This application is one of several written or enhanced to illustrate the methodologies
developed as part of MPC 007. Other applications include: BRASS-Girder (bridge design
and rating), BRASS-Screed (girder profiles, screed elevations, slab thickening diagrams),
BRASS-Culvert (Reinforced Concrete Culvert Design), and BRASS-Bearing (Elastomeric

Bearing Design).



ABSTRACT

The finite strip method was used to develop an automated procedure for determining
the distribution of load on highway bridges subjected to both standard truck loads and
overload permit vehicle loads. The distribution factors obtained by this procedure are used
in the design and load rating of highway bridges. Several verification problems were used
to compare the automated procedure to dosed-form solutions available from the theory of
plates and shells. In addition, distribution factors from the numerical procedure were
compared to various simplified methods for determining load distribution in highway

bridges.
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CHAPTER 1

INTRODUCTION

1.1. GENERAL

For over sixty years the American Association of State Highway and Transportation
Officials (AASHTO) has published standard specifications for bridge-design. Throughout
the years several studies have been devoted to the distribution of wheel loads on highway
bridges. As the results of these studies became available, modified provisions were
developed for the specification. Unfortunately, this process has caused a nonuniformity in
the specification’s design criteria, and in some cases even conflicting design parameters (20).
It has been determined that the AASHTO specifications for highway bridges (Standard
Specifications for Highway Bridges, 1989) can result in overly conservative designs, which can

be directly attributed to it’s simplistic wheel ioad distribution factors (5)-

There is an obvious need to improve the criteria for the distribution of wheel loads
on highway bridges. In 1985 the National Cooperative Highway Research Program
(NCHRP) undertook a comprehensive study to consolidate, update, and improve the

criteria for wheel load distribution. The study was completed in 1991 and the results

1



were presented in NCHRP Project 12-26, Distribution of Wheel Loads on Highway
Bridges, by Imbsen and Associates, Inc. As a result of this research, a draft specification was
prepared for determining of wheel load distribution factors, and was recommended as a

replacement for the current AASHTO specifi'cations for highway bridges.

In the past few years there have been several deyelopments for simplified methods
of determining the load distribution characteristicé of highway bridges. Some of these
developments have been in defining the behavior of a bridge with a minimum number of
dimensionless characterizing parameters. Other developments have concentrated on using
a finite element approach and performing a series of parameter studies to try to develop a
simplified formula for determining distribution factors. Although a great deal of research
has been devoted to this topic, practicing U. S. engineers today are using the simplified
AASHTO method. It should be noted that the use of more complex methods has always been

an option in the AASHTO specifications, but is rarely exercised.
12. PRINCIPLES OF TRANSVERSE LOAD DISTRIBUTION

The distribution of transverse loads in highway bridges is difficult to quantify. The
load distribution in a bridge is a function of the magnitude and location of the loads and the
response of the bridge to these loads (12). A portion of the load goes into the bending of
the bridge deck, and the remaining load is distributed to the girders per their relative
rigidities, span and spacing. The problem now becomes determining how these transverse

loads are distributed to the individual girders.
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To visualize how the transverse load distribution varies along the span, a few simple
examples from Bakht and Moses (5) are used. The first example is a simple grillage analysis
of three longitudinal beams connected by a transverse beam at midspan. The system isloaded

with a point load P at midspan as shown in Figure 1.1.

GII?CI:E). D _ P, »
2 L —q b 5 —4
3 — b L& —
| L
o Plan Distribution of loads
fi_é
Girder no. 1 4
PL
_ 4
Girder no. 2 p,L
4

Girder no. 3 ‘
Bending moment
diagrams in girders

Figure 1.1. Load Distribution in Girders Connected by One
Transverse Beam {(from Bakht and Moses (5)).

If the transverse beam was not present, the entire load P would be carried by the interior
girder causing 2 maximum bending moment of PL/4, and the resulting moment diagram
would be referred to as the “free” moment diagram (5). Due to the transverse beam, some

of the load P distributes to the other two girders in proportion {0 their relative stiffnesses.

Notice in Figure 1.1 that

The bending moment diagram for any beam can be obtained by multiplying
the free moment diagram with a scalar quantity. This scalar quantity which gives a
measure of load distribution between the longitudinal beams, is also referred to as the

distribution factor (DF). (5)



For the second example, two additional transverse beams are added making a total
of three connecting beams as shown in Figure 1.2. For demonstration purposes, the torsional
stiffness of the connection beams is neglected. Notice in Figure 1.2 that by including the
additional transverse beams, the shape of the bending moment diagrams drastically changes
from the first example with only one transverse beam. In comparing the two sets of moment
diagrams in Figure 1.2, it can be shown that the fraction of the free moment diagram, Or

distribution factor, for aﬁy one of the girders varies along the span (5).

'G'u'der no.
1 p— AP Py AP/ZH
~-AP P, -AP
API2Z Py, API2

TT17

Distribution of loads

Girder no. 1 . .
—— Bending moment with three

transverse beams

Girder no. 2

— — Bending moment with only
one transverse beam

Girder no. 3

Figure 1.2. Load Distribution in Girders Connected by Three
Transverse Beams (from Bakht and Moses (5)).

In an actual highway bridge, the bridge deck responds similar to an orthotropic plate.
Conceptually this would be similar to an infinite number of transverse beams connecting the
girders. In fact, it has been shown by Bakht and Moses (5) that for this situation, the shape
of the bending moment diagrams take the form shown in Figure 1.3. In real life cases, the
girders are seldom directly loaded, and more often there are several loads along the span,

which further complicates the analysis.



Bending moment diagram for a girder not carrying direct load

Bending moment diagram for a directly loaded girder

Figure 1.3.  Shape of Bending Moment Diagrams (from Bakht
and Moses (5)).

It should be noted that while the distribution factor has been defined in terms of
bending moment, it can also be defined in terms of beam shear. In fact, a comparison between

distribution factors for both shear and moment is presented as part of this investigation.

13. TRUCK LOADS ON HIGHWAY BRIDGES

There are several different types of loads that a highway bridge must sustain, and the
distribution process for each type of load is different. Always present is the selfweight of the
bridge, known as the dead load. Providing that the girders have the same material and
sectional properties, the structure dead load is assumed to distribute equally among the
girders. This makes the analysis process relatively simple for dead load. The live loads, or

truck loads, are of complex nature, and the distribution of these live loads is the focus of this

study.

13.1. STANDARD TRUCK LOADS

The American Association of State Highway and Transportation Officials (AASHTO)
Standard Specifications for Highway Bridges has several different classes of truck loading.

Section 3.7.2 states that



There are four standard classes of highway loading: H 20, H 15, HS 20 and
HS 15. Loading H 15 is 75 percent of loading H 20. Loading HS 15 is 75 percent
of loading HS 20. If loadings other than those designated are desired, they shall be
obtained by proportionately changing the weights shown for both the standard truck
and the corresponding lane loads. (22)

An example of the HS designation is presented in Figure 1.4. The specification also states
that, “For truck highways, or for other highways that carry, or may carry. heavy truck traffic,
the minimum live load shail be the HS 15 designated herein.” (22)

CLEARANCE AKD

LOAD LANE WIOTH
i T

C
3

e

HS20-44  8.000 LBS. 42,000 LAS. 22,000 LBS.
MS15-4 5,000 LBS. 24.000 LBS, 24000 LBS. T BT rd
3
2 2 z!
o 4 @i v i
! ———
_@-—-._—..[04 P e e i ¢ ——0d w!—
| 1
| i
p——
—71_\—!..._..._40.\”,__.._._...__.__.04“‘1_

i '
W 3 COMBINED WEIGHT ON THE FIRST TWO AXLES wHICH IS THE SAME
AS FOA THE CORAESPONDING H Ml TAUCK.
¥ = WARIABLE SPACING = 14 FEET TQ 3 FEET INCLUSIVE. SPACING TO BE
USED 1S THAT WHICH PROCUCES MAXIMUM STRESSES.

Figure 1.4. Standard AASHTO HS Truck (Figure 3.7.7A from AASHTO
Standard Specifications for Highway Bridges, 13" Edition (1989)).

1.3.2. PERMIT VEHICLE LOADS

State authorities place limits on both the size and weight of motor vehicles that
operate on the highway systems within a state. When a motor vehicle is transporting an

indivisible piece of cargo that exceeds the specified limits in height, length, width or weight.
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a permit must be obtained before shipping begins. Typical shipments that require a permit
include mobile homes, construction equipment and large electrical transformers, to name a

few. An example of a permit type vehicle is shown below in Figure 1.5.

Figure 1.5. Permit Vehicle with an indivisible piece of cargo.

The primary objective of the use of permitsis to control shipments of cargo that exceed
specified limits and cargo that cannot be readily dismantled. This is done to protect the
structural integrity of the highway system and prevent such shipments from creating traffic

safety hazards or delays to other motorists (10).

Many states designate a specific route that a peymit vehicle must take on the highway
system. These routes are determined by geometric characteristics of the highway, such as
overhead structures and lane widths, and also the structural capacity of the bridges. In fact
some states issue a route map with the permit to specify in written terms the route that must

be followed.



There are several different types of overlimits for which a permit is granted. An
individual shipment may be overweight, oversize or both. An oversize load could be
overwidth, overlength, overheight, or any combination of the three. An overweight load, or
overload, typically refers to the gross overweight of the vehicle or the overweight of it's
individual axles. An example of an overload vehicle is shown in Figure 1.6. This particular
photograph was taken by the Wyoming Highway Patrol at the port of entry in Cheyenne,

Wyoming. Notice that there are eight wheels through each axle to distribute the load over

a larger area.

Figure 1.6. Overweight Permit Vehicle.

These overioad vehicles are of critical importance both in the design of new bridges

and in the evaluation of the capacity of exsting bridges. The AASHTO Standard
Specifications for Highway Bridges has special provisions for overload vehicles. Article 3.5.1

states that



...the live load [is] assumed to occupy a single lane without concurrent loading in any
other lane. The overload shall apply to all parts of the structure affected, except the
roadway deck, or roadway deck plate and stiffening ribs in the case of orthotropic
bridge superstructures. (22) :

1.4. REVIEW OF CURRENT LITERATURE

There is an enormous amount of literature devoted to the distribution of transverse
loads on highway bridges. Itis not the authors’ intent to review all of the available literature
on this topic. The literature review is limited to the available simplified methods of
determining distribution factors for slab-on-girder type bridges. For reasons that will
become obvious later, only simply supported bridges are considered. Bridges with skewed
supports on curved alignments and/or continuous over interior supports aré outside the scope
of this study. Other types of bridges, such as box girder bridges, slab bridges, multi-boxbeam
bridges or spread box-beam bridges, were not studied in thjs research. Special bridge types

like truss, arch and cable supported bridges, were also excluded.
1.4.1. AASHTO METHOD

Distribution factors allow engineers to analyze the response of a bridge by treating
the longitudinal and transverse effects of wheel loads as uncoupled phenomena (12).
Empirical distribution factors for the girders of a bridge present in the AASHTO Standard
Specifications for Highway Bridges have remained relatively unchanged since the first

publication in 1931 (12). The specifications reflected the state of the art at that time.

The current AASHTO specifications allow for simplified analysis of bridges utilizing
the concept of a wheel load distribution factor for bending moment and shear in the interior

girders of common types of bridges (12). By using this simplified method of load distribution,
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the complex analysis of a bridge subjected to one or More vehicles is reduced to "the simple
analysis of a beam.” (5) Using this method, the maximurm load effects in a girder are obtained
by assuming the girder to be a one~dimensional beam subjected'to a load obtained by
multiplying one line of wheels of the design vehicle by a distribution factor (DF). This

distribution factor is given by

where S is the center-to-center spacing of the girders, and D is a constant that varies with
bridge type, geometry and number of lanes of traffic. The original concept of the D factor
was developed by Newmark (16) in 1948 for use in the design of I-beam bridges. Once the

value of D has been selected for the bridge, the maximum moments in a girder can be

S
Mgider = ('5) M

where M is the moment determined from a beam analysis of the loads assumed to act directly

obtained from equation (1.2).

on the girder, and D carries the units of length.

AASHTO gives several values of D for various types of bridge decks and supporting
clements. Specifically, it states that, “In the case of a span with concrete floor supported by
4 or more steel stringers, the fraction of the wheel load shall not be less than:” (22)

S

DF =
55
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This applies to a bridge designed for two or more lanes of traffic. For a bridge designed for

a single traffic lane, or one lane loaded, the distribution factor should not be less than

S

F =
b 7.0

While the current AASHTO method benefits from its simplicity of use, it has been
established that this method is too simple and cannot take into account all of the aspects of
a bridge that influence its load distribution characteristics. The National Cooperative
Highway Research Program (NCHRP) has identified several shortcomings of the current

AASHTO method of load distribution. Some of them are:

« Tt Considers only a limited number of factors affecting distribution.

« Tt doesn’t uniformity in consideration of reduction in load intensity for
multiple lane loading.

« [t has variation in format for bridges of similar construction.

1.4.2. NCHRP PROIJECT 12-26

In 1985 the Transportation Research Board undertook a comprehensive study to
consolidate, update and improve the criteria for wheel load distribution. The study was
completed in 1991 and the results were presented in NCHRP Project 12-26. The primary

objective of this study was to develop comprehensive specifications for distribution of wheel

loads on highway bridges.

The research focused on the more commonly used bridge types such as beam and slab
bridges, box girder bridges, slab bridges, multi-box beam bridges and spread box beam

bridges (12). Three alternative levels of analysis were considered for each type of bridge.
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Level one analysis included simplified formulae for predicting the distribution of transverse
~ loads. These formulae were developed for determining the distribution factors for shear and
moment in interior and exterior girders for single or multiple lane loading (12). These
formulae were based on the standard AASHTO HS family of trucks. Level two included
either graphical methods, influence surfaces, or a plane grillage analysis. Level three
involved a detailed finite element model of both the bridge deck and the supporting elements.
This was accomplished through the use of production finite element modeling software, such

as FINITE (I1) and SAP (J).

An important part in developing the siméliﬁed methods used in the level one analysis
was compilating a database of actual bridges. Bridges from various state departments of
transportation were selected at random to achieve a national representation (12). The
database included several bridges types: 365 beam and slab bridges, 112 prestressed concrete
bridges, 121 reinforced concrete box girder bridges, 130 slab bridges, 67 multi-box beam
bridges, and 55 spread boxbeam bridges (12). The database was studied to identify common
values of parameters that influence a bridges load distribution characteristics. For each
bridge type, a hypothetical bridge was created that possesses the average properties of the
bridges of that type.

In order to determine the effect of the bridge paraméters on load distribution, each
parameter in the average bridge was varied one at a time. The variation of distribution factors
with each parameter established the importance of each parameter (12). The simplified
formulae were developed to capture the variation in distribution factors with each identified

parameter (I 2').
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In the development of the simplified formulae it was assumed that the effect of each
parameter could be modeled with an exponential function of the form ax® where xis the value
of the individual parameter, and a and b are constants that represent the variation in x. It
was also assumed that parameters are independent of each other, allowing each parameter

to be considered separately (72).

The distribution factor g was modeled with an exponential formula of the form
g=(@)(SP)(LbY(¥3)(..) where a is a scale factor, §, L and ¢ represent girder spacing, span
length and deck thickness, respectively, and b1, b2 and b3 are constants that represent fhe
nonlinearity in S, L andt, respectively (12). The procedure for determining the values of a,
b1, b2 and b3 in the simplified formula was: Assume that, for only two cases, all of the bridge

parameters are the same except S, then NCHRP (/2) states that

g1 = (a)(s37)(L22)(+29) ()
g2 = (@(s)(L2)(*)(.-.)

therefore,
a_ (s
82 2 /).
or
£
b = Ingr
! Ins

If n different values of S are examined and successive pairs are used o
determine the value of b1, then (n-1) different values for b1 can be obtained. If these
b1 values are close to each other, an exponential curve may be used to accurately
model the variation of the distribution factor with S. (12) .
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Once all of the factors b1, b2, b3, etc. were determined, the value of the scale factor a for the
average bridge was obtained by

= 80

T -

Once the simplified formulae were derived, they were then applied to the bridges in
the database for which they were intended. These bridges were also analyzed with either a
level two or level three analysis to verify the accuracy of the formulae. The distribution
factors obtained by the more accurate analysis were compared to values obtained from the
simplified methods (/2). A ratio of approximate to accurate distribution factors was
examined to assess the accuracy of the simplified method (72). The standard deviation was
determined for each formula, and the method or formula with the smallest standard deviation

was considered the most accurate (12).

The following equations are the result of the extensive research performed in NCHRP
project 12-26. These equations were developed for determining the distribution factors for
shear and moment in interior and exterior girders of slab girder bridges with single or
multiple lane loading (12). The equations include the effects of girder spacing, span length,

girder inertia, and slab thickness.

The distribution factor for moment in the interior girders of slab-girder bridges

subjected to multiple lane loading is given by
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0.6 0.2 0.1
S K,
gse-m = 015+ { = 7 T3
L \Ls] (1.3)
where 4 :
S = girder spacing (3.5 < § < 16')
L = spanlength (20'sL = 200°)
t, = slab thickness {4.4" < t, = 12")
K = nll+ A¢?) (IXI0° < K, < 7x10°in}
where
n = modular ratio of girder material to
slab material, dimensionless
I = girder moment of inertia, in4
A = girder cross sectional area, inZ
¢ = girder eccentricity, distance from girder

centroid to midpoint of slab, in.

A correction factor for edge girders, to be multiplied by the distribution factor for
interior girders in equation (1.3) is given by

esG-M = 91 = 1.0 (1.4)

-----------------------

where

d, = distance in feet from center of the exterior girder to
the edge of the exterior lane. If the edge of
the lane is outside of the exterior girder, the
distance is positive; and if the edge of the lane
is to the interior side of the girder, the distance
is negative.

The distribution factor for moment in the interior girders of slab-girder bridges

subjected to single lane loading is given by

o1 f_ 0.4 i 0.3 Kg 0.1
85G-M1 . a 1 Lt;’

................. (1.5)
It was recommended that simple beam distribution in the transverse direction be used to

determine the distribution of moment to edge girders in the single Jane loading case.
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The distribution factor for shear in the interior girders of slab-girder bridges

subjected to multiple lane loading is given by

2

S S

o4+ 12)-{=
gsg-v =10 +(6) (25)

A correction factor for edge girders, to be multiplied by the distribution factor for interior
girders in equation (1.6) is given by

6 +d,
esG-v =~

The distribution factor for shear in the interior girders of slab-girder bridges

subjected to single lane loading is given by

S
gsgv1 = 0.6 + ('1—5')
(1.8)

------------------------

It was also recommended that simple beam distribution in the transverse direction be used

to determine the distribution of shear to edge girders in the single lane loading case.
1.4.3. ONTARIO HIGHWAY BRIDGE DESIGN CODE

The Ontario Highway Bridge Design Code (17) was the first comprehensive bridge
design code developed in recent years (20). The second edition, published in 1983, made
extensive use of the latest available technology and research, and was also the first to

incorporate a limit-state design for bridges in which possible modes of failure are identified

(20).
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In the Ontario code the method for determining the distribution of loads was
developed in part by Baider Bakht (2). The method was developed to include such effects
as bridge width, girder spacing, number of loaded lanes, bridge span, and strength properties

of bridge components (20).

In the development of the simplified method, a small number of dimensionless
parameters were used to characterize the behavior of a bridge (5). It was assumed that the
load distribution in a bridge could be modeled by a simply supported rectangular orthotropic
plate. The two characterizing parameters needed to define the behavior of the plate are given
by Bakht and Moses (5). The two parameters ¢ and 8 are given by

a_Dn+Dw+D1+D2

0.5
2DDY (1.9)
0.25
oo b (D
L\D
where N N R (1.10)
x = the longitudinal direction
y = the transverse direction
b5 = half width of the plate
L = span of the plate
D, = the longitudinal flexural rigidity per unit width
D, = the transverse flexural rigidity per unit length
Dy, = the longitudinal torsional rigidity per unit width
Dy = the transverse torsional rigidity per unit length
Dy = the longitudinal coupling rigidity per unit width

the transverse coupling rigidity per unit length
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A third characterizing parameter was used to represent edge stiffening in the plate,
Tt was assumed that the effects of edge stiffening could by represented by the parameter A

given by

where EI is the flexural rigidity of an individual edge beam.

The current Ontario Highway Bridge Design Code (17) employs a semi-graphical
technique for determining distribution factors. The graphical technique was originally
proposed by Bakht and Jaeger (4). The method required the calculation of the parameters
«, 6 and \. Numerical values for D and Cyare read from appropriate charts, and are then

used in equation (1.12). A typical set of design charts is shown in Figure 1.7.

These charts have been developed for several different numbers of trafficlanes. Once
the appropriate values for D and Crhave been determined, the design value of D (Dg), which
is analogous to the value of D used in the AASHTO method, is determined for each of the
internal and external girders by equation (1.12).

To account for the presence of edge stiffening, equation (1.12) is modified by a factor
C, that is obtained from the appropriate chart with the value of . This modified equation

is given by

: ,qu+ C.
= pl1+2=L =
D4 D( 100
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Figure 1.7. Design charts for determining values of D and (;
for a two lane bridge (reproduced from Ontario
Highway Bridge Design Code (1983_)).
The method employed by the Ontario code was verified by comparing the results to
those obtained from both finite element analyses and field testing: The majority of the
verification was performed as part of the research used in NCHRP project 12-26. The same

database that was compiled for the NCHRP project was used to verify the current method

used in Ontario code.



20

C
D;=D|1+ %
........................ 1.12
where ( ! )
L= ng 11 forus. customary units

i = W.=3.3 for metric units
0.6
W, = the design lane width in feet for U.S.
customary units and in meters for
metric units.

1.4.4. OTHER METHODS

In addition to the simplified methods used today in practice, there are several other
methods to determine the distribution of loads on highway bridges. Limiting the discussion
to slab and girder bridges, Marx, et al (15), at the University of Illinois developed a simplified
formula for determining the distribution factor for moment in the interior girders of a

multi-lane loaded bridge (72). This equation is

g = S
O (1.14)
where
§ = girder spacing, ft.
S
Q = (001538 +—S—~)(—Ii—) + 426 + —
X ~ .
where 150\ A’ 30
L = span length, ft.
H = bridge stiffness ratio
- ‘EEIE
where LD
E; = pgirder modulus of elasticity, ksi.
I, = girder moment of interia, in4.
D = flexural slab stiffness parameter
E, 6
where 12(1-¥)
E, = slab modulus of elasticity, ksi.
t. = slab thickness, in.
v = Poisson’s ratio of the slab, dimensionless.

In addition to equation (1.14) a formula was also developed for determining the distribution
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factor for moment in the exterior girders of a multi-lane loaded bridge. This equation is

The parameters are same as those for equation (1.14).

Another formula for determining the distribution factor for moment in the interior
girders of a single-lane loaded bridge was developed at Lehigh University (26). This equation

I8

R LAY
1 9\ N, J\ 12N

N1 = number of design traffic lanes

N, = number of beams (3 £ N, s 17)

S = girder spacing (3’ = § < 11)

L = spanlength (30’ = L < 135')

W, = roadway width between curbs (24’ = W, =< 72")

As part of an early report presented by the National Cooperative Highway Research
Program, Sanders and Elleby (21) developed a formula based on orthotropic plate theory for
determining distribution factors for moment in the interior girders of a multi-lane loaded

bridge (12). This equation is given by
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where

S = girder spacing

2
D =5y (M), (2220 (1C)
(10) 7 3 or ¢=3
=5+(£5~) for C >3

where 10

S = girder spacing

N1 = total number of design traffic lanes

C = a stiffness parameter that depends on type of

bridge, bridge and beam geometry, and
material properties.

While not considered a simplified method, the finite element method is a viable
solution for determining the distribution of loads on highway bridges. This method was
employed by Tarhini and Frederick (23). In the development of the simplified formula, a
three—dimensional finite element analysis was used to model the behavior of a typical
slab-on-girder bridge. The concrete deck was modeled with an isotopic eight-noded brick
element (23). Both the flanges and the webs of the girders were modeled with
three-dimensional, four-noded, quadrilateral plate elements capable of simulating in-plane
and out-of-plane deformation (23). The finite element models were generated with standard

AASHTO HS 20 truck loadings (23).

Several parameters were varied in the modeling process, including the number of
girders, the span length and the number and positioning of the trucks. Finite element
modeling and post processing were performed with ICES STRUDL II (/3). The maximum

wheel load distribution factors were determined from the finite element analyses by the

following equation (23).
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(MFPEA)max
(M girder)max ( 1. 18)

-------------------------

(DF)pax =

where (Mgg4)max is the maximum moment in the girder as determined from the finite element
analysis, and (Mgider)max 18 the maximum moment in the girder as determined from a single
beam subjected to one line of wheels (typically half the axle weight). A wheel load
distribution formula relating span length and girder spacing was developed from the finite
element analyses (23). The formula is

(S+17)

DF = 0.00013L%-0.021L + 1.25/8 -
10 (1.19)

where L is the bridge span length (ft.) and § is the girder spacing (ft.).

The results obtained from this simplified formula were compared to both the
AASHTO and Ontario methods. These results were also compared to a scale model bridge
in which strain gages were mounted on both the concrete deck and the steel girders. It was
determined that the maximum experimental distribution factors were 1.04 for exterior girders
and 1.19 for interior girders (23). The AASHTO method predicted values of 1.28 and 1.36

for exterior and interior girders, respectively, and equation (1.19) predicted 1.18 (23).

1.5. OBJECTIVES AND SCOPE

There are two main objectives of the research described here. The first objective is
to develop an automated procedure for determining the distribution factors for both moment
and shear in the girders of slab-on-girder highway bridges subjected to both standard truck

loading and permit vehicle loading. The second objective is to evaluate the current simplified
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methods for determining the Jistribution of loads on highway bridges. Further, these
methods are compared to the automated approach to demonstrate the degree of
conservatism of such simplified methods.

The scope of this investigation is limited to simply supported slab—on-girder bridges.
Only bridges that are rectangular in plan are considered. The effects of skewed supports on
curved alignments and/or continuous over interior supports are outside the scope of this

study.



CHAPTER 2

GENERAL THEORY AND FORMULATION 0)3
THE FINITE STRIP METHOD

2.1 INTRODUCTION

Many of today’s civil engineering structures fall into the category of flat plate systems.
An excellent example of a flat plate system is a bridge deck. Traditionally, the analysis of what
are termed “thin plates” is based on Kirchoff assumptions (24), which require solving a
nonhomogeneous biharmonic differential equation with the appropriate boundary

conditions (I9)- Classical solutions t0 thin plate problems are limited to a few relatively

simple types.

A contemporary approach to solving these types of flat plate systems is the finite
element method (FEM){ 27). However, in order to obtain anaccurate model with the FEM,
a relatively fine mesh is required, which involves solving a large number of simultaneous
gquations. Further, the storage and computational time required for an accurate FEM
analysis of a large plate system can be exceedingly large compared to the available storage

capacity of som¢ computers (especially microcomputers).

25
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In addition, the versatility of the FEM is not required for flat plate systems with regular

geometry and continuous boundary conditions. A methodology developed by Cheung (8),
termed the “finite strip method,” is better suited for these types of flat plate systems. Because
the plan geometry of the plate is discretized in one principal direction only, the finite strip

method considerably reduces the number of equations to be solved (19).

The finite strip method can be considered a special form of the finite element method
using the displacement approach. The primary difference between the two methods is that
the FEM uses polynomial displacement functions in all directions, and model refinement is
obtained by increasing the number of elements in all directions, while the FSM uses simple
polynomials in some directions and continuously differentiable smooth series in the other
directions. The series displacement functions are more accurate than the polynomial
displacement functions, therefore model refinement is obtained by increasing the number
of elements in the polynomial direction only. One stipulation to the method is that the series
should satisfy a priori the boundary conditions at the ends of the strips (8). Essentially the
FSM reduces a two-dimensional analysis to a series of one-dimensional analyses. The
general form of the displacement function is given as a product of simple polynomials and

series:

As stated previously, the finite strip method discretizes the continuum in one direction

only. A procedure for the FSM originally developed by Cheung (8) is given as:

+



(i)

(i)

(iif)

(iv)

\)
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The continuum is divided into a finite number of strips via imaginary lines
called “nodal lines”. The ends of each strip coincide with actual boundaries of
the continuum (Figure 2.1).
Each strip is assumed to be connected with cach adjacent strip by nodal lines
which also define longitudinal boundaries of the strips. The degrees of freedom
(DOF) for the strip are assﬁmed to occur at each nodal line. These DOF are
referred to as'the nodal displacement parameters.
Both the displacement field and stress and strain fields for each element aré-
represenfed with a displacement function in terms of the nodal displacement
parameters. |
Once the displacement function is chosen, and the loads acting on the _strip are
known, strip stiffness andload matrices can be obtained from principles of virtual
work or minimum total potential energy-
The individual strip stiffness and load matrices are then assembled into a set of
system stiffness equations. These equations are then solved with typical matrix

techniques o yield the nodal displacement parameters.

Figure 2.1 Discretization of 2 continuum into 2 finite number of strips.
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2.2. CHOICE OF DISPLACEMENT FUNCTIONS

The displacement functions used in the finite strip method are a combination of
hermitian polynomials in the transverse (x) direction and continuously differentiable smooth
series in the jongitudinal (¥) direction, as shown in Figure 2.2 The choice of displacement
functions for an individual strip is oné of the most crucial parts of the analysis (§). A poorly
chosen displacement function may result in erroneous nodal displacement parameters,
otherwise known as degrees of freedom. Further, the results of the analysis might converge

to the wrong answer for successively refined meshes (8)-

Figure 2.2. Typical finite strip with simple support conditions.

One way to ensure CONVErgence to the correct answer is to place the following
restrictions on the displacement functions.
(i) Asa stipulation of the finite strip method stated:- previously, the series
part (Ym) of the displacement function must satisfy @ priori the boundary
conditions at the ends of the strips.
(i) The polynomial part (fin(x)) of the displacement function must be able to
represent a state of constant strain in the x direction.

The second condition, a state of constant strain, can be satisfied in the following manner.
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The polynomial part of the displacement function (fa(x)) takes the form A
+Bx+ Cx%+.... “..constant strain will exist if the polynomial is complete up to or above the
order in which a constant term will actually be obtained when the necessary differentiation

for computing strains are carried out.” (8)

Each part of the displacement function (Equation2.1), the polynomial part (fm (x)), and

the series part (Ym), 18 discused separately for convenience.
2.2.1. SHAPE FUNCTION PART OF DISPLACEMENT FUNCTION

Before an appropriate displacement function can be assumed for a strip, the
characteristics of the actual deformed surface should be taken into account. For simplicity,
the simply supported flat plate system will be considered, and how to incorporate different
boundary conditions is shown later. As a result of the simple support conditions, the
displacement function must produce zero deflections at the supports. Further, the bending
moments in the longitudinal direction must also equal zero at the two end supports. From
Figure 2.2, it is apparent that a transverse (x) section of the deflected surface canbe simulated

by joining a number of polynomial functions.

The assumed displacement function for a strip now takes the form

wy) = 3 fm@)¥m = D A+ Bxt O + D3 + .)¥m
m=1 m=1

where A, B, C, etc. are undetermined coefficients that may be written in terms of the

displacement parameters.
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The displacement field for a simply supported finite strip is illustrated in Figure 2.3.

The 1 is used to designate the It strip, and m represents the " harmonic. The deflection
amplitudes Wim and wjm at the two nodal lines i and j are chosen as the displacement

parameters. The deflection functions at nodal lines i and j, respectively, are

r \ ,
Wi = 2 WimYm
m=1
and S R (2.3)
’
Wj = Z W_,'mYm
m=1 }
Yy
%—— b __+-
P77 7077777 7gu T _1
i J
Wi 1 a W
e X
TTTITI777
I
Wimi
H H’jm

Oim Om
Figure 2.3. Displacement field for a simply supported finite strip.

The displacement field implies that, for two adjacent strips sharing a common nodal
line i, the deflection amplitude Wim is the same for any harmonic m. However, this does not
insure slope continuity across the strip boundaries and hence a smooth deflected surface does

not exist for the entire continuum (14). In order to insure slope continuity, it is necessary to
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specify two additional unknown parameters, namely the transverse slope amplitudes 6; and
Ojm as shown in Figure 2.3. The transverse slope functions at nodal lines i and j, respectively,

are

As a stipulation of satisfying continuity of slope, it is necessary to employ only a
third—order polynomial. The polynomial part of the displacement function now takes the
form

fm(x) = A+ Bx + Cx2 + Dx°
The constants A, B, C and D can now be written in terms of the four unknown displacement
parameters Wim, 8> Wim and Gm. This is accomplished by applying the following

compatibility conditions

At x=0,
ofm(0
£ ) =wim 22D g,
, ax
Atx=b,

fm(b) = Wim 9%521 = Uim

Using equation 2.5 and invoking the compatibility conditions, it follows that
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A= Win
B = Oim
................................... (2.6)
A + Bb + Cb* + Db* = Wim
B + 2Cb + 3Db* = Ojm
The solution of equation 2 6 for the constants A, B, C and D and substitution of the values
into equation 2.2 results in a new form of the displacement function
r (). a2 2w X
w(x,y)-—" 2 l-—7+ 73 Wim + x-—*t1 -3 Oim
m=1{( N b b
3 20 P
+ (-E'?'-—-B“J—)ij + (-Ei--z- Gjm Yo
................. .27
In matrix form, equation 2.7 can be written as:
, Wim
Bim
W(x,}’) = z [vaNZ!N:!’N“'] Wim Ym
m=1 :
) P (2.8)
or more simply,
r
wix,y) = 2, NI {Omlt Y
e A 2.9)

where [N]ris a matrix containing shape functions for I'" strip and {5} contains the various

displacements for It strip.

A shape function is a polynomial that defines the displacement field resulting from

2 nodal displacement. For the simply supported strip shown in Figure 2.3, there are four

displacement parameters Wim, Oim> Wim and &m. The shape function for each one of these
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degrees of freedom (DOF) is derived by allowing an individual DOF to displace a unit

amount while restraining all other DOF at zero. The shape functions associated with the four

DOF are shown in Figure 2.4.

x=0 x=b _tAtx=0 At x=b

.l«———‘ b /" N; Nix N; Nix

S N1=1*1;‘;+-b7*’;i 10 o 0
WA 2 2

Figure 2.4. Shape functions of a third—order polynomial fitted to
ordinates and slopes at x=0 and at x=b.

22.2. SERIES PART OF DISPLACEMENT FUNCTION

The second part of the displacement function (equation 2.1) is the series part (Ym)-

One of the most commonly used series is the eigenfunctions derived from the solution of the

spatial portion of the beam vibration differential equation (8).

----------------------------------------

where a is the length of the beam, in this case the length of 2 strip, and P is a general

parameter.

The solution to the differential equation shown in equation (2.10) is

Y@y) = C1 sin(—“ﬁy—) + Czcos(ﬂ) + Cs sinh(&) + C4cosh(—”-)—))
a a a a (2.11)

---------

The unknown coefficients C1, Ca, C; and C4 are determined by applying appropriate
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boundary conditions. For the case where the strips are simply supported, the boundary
conditions require that both the displacement (Y(y)) and the bending moment (Y"'()) equal
zero at the two ends of the strip. Invoking the following boundary conditions

(YO0)= Y(0)=0, Y(@)= Y (a)=0), the form of the series function becomes
Y, = sin(-”%"’f—) m =123
For the case where the strips are assumed to be simply supported on one end and fixed

on the other end, the boundary conditions require that (Y(0) =Y"(0)=0, Y@)=Y'@= 0).

The form of the series function becomes

Y y) = sin(ﬁz”g—) -Qm sinh(ﬁa”g—)

B (2.13)
sinh gm
4m + 1

pm =——7

For the case where the strips are assumed to have both ends fixed, the boundary

conditions require that (Y(0)=Y'(0)= 0, Y(a)# Y'(a)=0). The form of the series function

becomes
Hmy MY Umy My 1
i) = sin{£22) - am sint (422 - cos{ 22 - cosh(22)
a a a a
o = sin ppm = Sinh fm b e (2.14)
m = "c0S fim —~ COSh Hm
_2m + 1 .
bm =T J

The primary reason for using the basic tanctions as the series representation is the fact

that they are orthogonal, of stated mathematically
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These relationships are of great importance, particularly in the finite strip method.
For a model containing 7 nodes in which m terms are to be considered in the summation,
the m sets of n nodal parameters for each term can be solved separately and then
superimposed (25). If orthogonality is not present, the simultaneous solution of m x n sets
of parameters would be required. Orthogonality has even more importance in the
formulation of the strip stiffness matrix. As will be observed, the integralsin equation (2.15)
appear several times in subsequent formulations.  The orthogonality relationships
dramatically simplify the strip stiffness matrices, and using these relationships reduces the

computational effort significantly.

For the purpose of this investigation, only simply supported flat plate systems aré
considered. With the inclusion of different boundary conditions, equations (2.13) and (2.14),

the set of strip stiffness equations do not uncouple as they do when using equation (2.12).

2.3. MATRIX FORMULATION

All of the equations and matrix formulations to this point have been devoted to
relating the nodal displacement parameters to the displacement function of the individual
strip. The following sections concentrate on the relationships between the displacement

functions and the generalized strains, the relationship between stresses and strains, and
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formulation of the strain energy of the finite strips. The individual strip equations are

assembled into an overall set of system equations that define the behavior of the entire

continuum.
2.3.1. DISPLACEMENT FUNCTIONS

Recall the form of the displacement function for an individual strip, equation 2.1)

f=wxy) = 2 ful)¥m
m=1

The general form of the displacement functions can be defined as

--------------------------------------

The m=1,2,.. .7 refers to the number of harmonics included in the series, and k=1, 2, .

., s refers to the number of nodal lines used to discretize the continuuin.

The expressions in eduation (2.16a) can be simplified by combining both the series

and the shape functions in the following way

{f = E;_‘, sz[Nk]m[ak\m

m=1 k=1
r
= z [N]m{‘ﬂm
m=1
CINIB) e (2.16b)
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2.3.2. STRAINS
Once the displacement functions are known, the generalized strains are obtained

through differentiation with respect to the coordinatesx andy. These “...generalized strains

include normal and shear strain as well as bending and twisting curvatures.” (8). The

generalized strains are

(¢ = (B1¢)

il
1~
=
3
O
3

I
1~
Nl

5
=
A

On
=

3

For a bending strip, the strains are

(%W )
% ¢
4 = {"”} =177 L
Sl 7
ZB0Y) e (2.18a)

The strain matrix then becomes

'_aZ[N'JT
&N
=[5
#[N]
2

| ™ oxdy |

-------------------------------------------
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23.3. STRESSES

The stresses (bending moments) are related to the strains by 2 property matrix

containing material properties of the strip

M,
(o} = {My} = [Dlg = IDNiB1Y)

My

- D] 21[Blm{élm

= [D] i i[Bk]m{ak}m

m=1 k=1

-----------------------------------

elasticity matrix. Foran orthotropic

The property matrix [D] used here is referred to as the

plate in bending, the elasticity matrix is

DxDl 0

0 0 Dul e e (2.20)

D, and Dy) are defined as the

The individual elements of the elasticity matrix (Dy, Dy

orthotropic plate constants given by

EL

D=
* T 12(1-vay)

___EF
12(1 - V)

D = vELS v,EL
LT vy 12(1-v)

Dy
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E, = Modulus of elasticity in the x direction
E, = Modulus of elasticity in the y direction
v, = Poisson’s ratio in the x direction

vy = Poisson’s ratio in the y direction
¢t = Plate strip thickness
G = Shear modulus

23.4. MINIMIZATION OF TOTAL POTENTIAL ENERGY

(a) Strain energy

The strain energy of an elastic body is defined as

-------------------------------------------

Using the equations developed for strains (2.17) and stresses (2,19), equations, equation

(2.21a) can be rewritten as

o =1 wrerusie v
v 2.21b)

-----------------------------------

(b) Potential energy

The potential energy due to the external loads {q} acting on the individual strips is

given by

W=~ il

--------------------------------------------

and substitution of equation (2.16b) into (2.22a) gives
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(2.22b)

---------------------------------------

(c) Total potential energy

The total potential energy (¢) of an elastic body is defined as the sum of the internal

stain energy (U) stored in the body and the potential energy of the loads (W).

p=U+W

= %]V{alT[B]T[D][B]{rS} dv - L'lal".rlNlT{fﬂ dd

-------------------

(d) Minimization procedure

The principle of minimum total potential energy, also known as stationary potential

energy, is used quite often in structural mechanics. The principle states that
those that satisfy the

Among all admissible configurations of conservative sysiem,
with respect to small

equations of equilibrium make the potential energy stationary
admissible variations of displacement. ).

Mathematically the principle of stationary potential energy requires that

Substitution of the expression for total potential energy, equation (2.23), into equation (2.24)

and performing the required partial differentiation gives

------------------

{EB%T} - JV[B]T[D][B]{(S] dv - L (NY"lg) a4 ={0)
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(e) Stiffness matrix

In matrix notation equation (2.25) can be rewritten as

IO -1F) = (00 e

is the nodal displacement vector and {F} is the load

where [S] is the stiffness matrix, {8}

vector. The stiffness matrix takes the form
151 = | DB

which can be rewritten as

[ShilS1z - Sl
_ | ShalSka - [S12r

15} |
(ST 1Sh2 o ITmd e (2.27a)
with
(Shon = [ (BIHDUBLS) Y
e A (2.27b)
because of the property of orthogonality, equation (2.27a) takes the form
Sy 0 ... 0O
0
0 0 ISl e (2.276)

By-comparing equations (2.27a) and (2.27c) the value of the orthogonality relationships can
be readily seen. Asa result of the orthogonality relationships, the individual model stiffness
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matrices are grouped on the matrix diagonal, which in turn results in a significantly reduces
computational etfort. It should be noted that this decoupling effect is result of the simply

supported boundary condition and does not occur in general.

(f) Consistent load matrix

From equation (2.25) the 1oad matrix is interpreted as
A = | (1) 24
B R (2.28)
for the m'™ term in the series, the load matrix becomes
(Pl = | INThla) A
D AR (2.29)
For a uniformly distributed load over the entire area of the strip
-b a
(o = a |, W] Yoy
(D]
2
b2
Tl [
= Y,
) L) mdy
2
_b?
U12) e PR (2.30)

For a uniform patch load of magnitude Qo jocated on the strip at coordinates (X1, Y1)

and (X2, ¥2)» equation (2.29) becomes
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I+
P a
Fip =0 2 20 Y »ja Y ndly

2_x
20
Ealigd
L 4b% 3b
where ©° T A (2.31)

For a concentrated load Fe located on the strip at coordinates x =X¢, Yy =Y equation

(2.29)is simplified by the fact that the coordinates of the load can be substituted directly into

the equation without the need for evaluating the integral. Therefore for a concentrated load,

the load matrix becomes

(1-3% + 253)

x(1-2% + %)
{F ]m =Py Ym ‘ (3)?2 62i_3) ‘
¢ T &

xc(f% - fc)

& = 2t
where % =7 ettty (2.32)

2.4, STIFFNESS CONTRIBUTION OF AN ELASTIC BEAM

For the purpose of this investigation it was necessary to incorporate both the axial and

the flexural stiffnesses of elastic beams to the stiffness of the individual strips t0 which they

p has already been established in the

are attached. The stiffness of an individual bending stri

of an elastic

previous sections, and it will be shown that both the axial and flexural stiffness

beam can be directly added to the strip stiffness matrix.
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An example of an individual bending strip supported by an elastic beam is shown

below in Figure 2.5.

¢ = eccentricity from strip middle
surface to beam centroid.
y E = Modulus of elasticity
/ 1 = Moment of inertia
e A = Cross sectional area

Bt |

Figure 2.5. Typical finite strip supported by an elastic beam.

Recall the form of the displacement function for an individual finite strip in bending

is

----------------------------------------

1 (F ( 0w )2
= — EJ — | dy -
: L’ o (2.34)

----------------------------------------

The stiffness of the beam can be derived by using the following relationship

A ol 72 W i
o =52 7, (37) aam( ),z)

Combining equations (2.33) and (2.34) into (2.35a), the stiffness of the beam becomes

L oo
0
=E| — Z B \6,,d
J’o ™ (mE 1sm ; )6 aam(aynglsm ) Y
(2.35b)

------------
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By performing the partial differentiation, and noticing that

30m n=1

3 (ﬁ. sfnﬁyz.)am= 5

the beam stiffness equation can be reduced to

L 2,2 *® 2.2 2 ;
m°s . m n ., nmy
EI [0 (-—-—F—- 2‘15111 ;ry ém) (—- 7 lem-—l—-—) dy
- n=l ) (2.35¢)
which can be written in an expanded series format
24 L]
EILn——er—[ in ™61 + sin 2L by + sin 2.6y + ...
l 0 l l l
L
sin-?’“ + sin?—l-@- + sin-a,—?- + ...]dy
T R (2.35d)

Recall the orthogonality property of sine functions

0 form#n

L
. om . n
[ on™Rain™P g
0 ! “form=n
2
iffness of the beam reduces

Using this relationship while performing the integration, the st

to

The axial strain energy of the beam is defined as
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where u is the axial displacement. Equation (2.36a) reduces to

Comparing the similarities between equation (2.34) and (2.36b), it should be noted that the
same process can be used to derive at the added stiffness due to the beam eccentricity -

4, 4
2m.7'!.'

k,, = EAe
" L e (2.37)

The two stiffnesses, equations (2.35¢) and (2.37), can be combined to form the total flexural

stiffness.

Km

Il
E)
+
:
—

Notice that the terms within the parenthesis can be combined to form an equivalent flexural

stiffness, Elgg.
m4.71'4
k,, = EI .
m=EIEQT7S e (2.38b)

Through direct superposition, the flexural stiffness foran elastic beamis added to the stiffness

matrix of the finite strip to which the beam is attached.
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2 5. APPLICATION OF THE FINITE STRIP METHOD
The finite strip method lends itself to plate continua with regular geometry and
continuous boundary conditions. Due to the fact the geometry of a bridge deck is fairly
regular and the boundary conditions do not vary along the width, the FSM is very well suited

for the analysis of bridge decks.

The numerical operations given in this chapter were incorporated in a computer
program based on the compound strip algorithm described by Puckett (78). In 1986 Wiseman
(25) expanded the program to include the analysis capability for folded plate structures. This
revised program was designed primarily to test algorithms and equations and lacked many

of the features common in production software.

For the purpose of this investi gation, a problem oriented language system (POL) was
used for an enhanced user interface. The program was adapted primarily to be used by bridge
engineers. Several of the procedures for the FSM were automated such as nodal definition
and mesh generation. This makes it possible for a bridge to be defined in engineering terms

such as span, deck thickness, girder spacing, etc.

An algorithm for the revised program is presented in Appendix A, Tt is the author’s
intent that this revised program will be incorporated into BRASS (Bridge Rating and Analysis
of Structural Systems) version 5. “BRASS is a system of computer programs developed to
assist the bridge engineer in the designing and determining the load capacity of highway
bridges.” (6) The revised program was named BRASS-DISTRIBUTION FACTOR

(BRASS-DIST for short) and the software documentation is presented in Appendix B.



CHAPTER 3

VERIFICATION PROBLEMS

To ensure that the finite strip method program was accurately representing the
behavior of a thin plate, it was necessary perform a series of verification problems. These
particular problems were chosen to test various boundary conditions and load types. These
problems were also used to test the sensitivity of the solution to both the number of terms,
or harmonics, included in the summation and the number of strips used to discretize the
domain. The various solutions obtained by the computer program were compared with

closed-form solutions developed by Timoshenko in Theory of Plates and Shells (24)-
3.1, RECTAN GULAR PLATE SIMPLY SUPPORTED ON TWO EDGES

The first verification problem is a uniformly loaded rectangular plate, simply

supported on two edges with the other two edges free as shown in Figure 3.1.

43
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240 inches
120 inches
5

inches

1 psi.

30 x 10° psi.
0.3

=
R

2 mo >R &
oo

I L LU

X

Figure 3.1. Rectangular pla

The flexural rigidity (D) of the plate is defined as

3
D= ___@__-
12(1-+)

N 0x 108 psi. (6in)’
12(1- (03%)

= 593,406,593 1brin
The maximum deflection (Dmax) for this problem 0€

and 1s defined as

4
71
Arax = 0y

. .\
_ 0.01377 1psi.(240in) '
503,406,593 1b"1n
= 0.07698 in.

te simply supported on two edges.

curs at the plate center (x

=bi2,y=al2)
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where o is 2 numerical factor depending on the ratio b/a of the sides of the plate given by

Timoshenko (29).

The maximum bending moments, taken about both axesx andy, also occur at the plate
center and are defined as
(Mx)max = ﬁlqaz

= 0.1235(1psi.)(240in.)2
= 7113 lbtin

(My)max = ﬁl’ﬁl’ﬂ2 .
= 0.0122(1psi.)(240in.)2
= 702.7 1brin

The numerical values of the factors pi and By’ (see footnote) are also given by Timoshenko
(24).

The verification problem was then analyzed using the computer program. The number
of strips used to discretize the plate was first set at tem, and then allowed to increase. Both
maximuin deflection (Amax) and maximum bending moments (My)max and (My)max WET®
determined at the middle surface of the plate. In the analysis the number of terms included

in the summation started at one and was increased until convergence was reached.

The numerical value for Bi' given above
of By for ali other aspect ratios weré confirmed gnd it was determine
in the referenced value of i for this particular aspect ratio.

s not verified with Timoshenko, however values
d that an error exists
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Convergence is the property exhibited when a solution parameter, in this case
deflection and bending moment, ceases to change as the finite strip model is refined.
Although convergence is necessary, it in itself is not sufficient to fully verify solution accuracy.
1t is very possible to converge to the wrong solution. Therefore, in addition to convergence,

it is also necessary to CONVeIge to the correct OT “exact” solution.

The first solution parameter that was verified was maximum deflection. This is shown
graphically in Figure 3.2. It is instructive to note that with only including the first harmonic,
the deflection obtained by the FSM has less than one half of one percent error as compared
to Theory of Plates and Shells (24). Itis also jmportant to note the rate of convergence for
maximum deflection is very fast. Within the first four terms, the maximum deflection has

converged to the correct solution (within 0.04% error).
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The next solution parameter that was verified was the maximum bending moments
in the plate. The bending moment (M) is defined as the bending moment that causes a
flexural bending stress in the y-direction, and conversely, (M,)causesa flexural bending stress
in the x—direction. The convergence of maximum bending moments is demonstrated in
Figure 3.3. It is readily observed that the solution convergence is not monotonic, but rather
oscillatory in nature. Monotonic convergence would result if by increasing the number of
terms, the percent error consistently decreased until some final value. Note that the even
terms do not contribute in this problem due t0 the symmetry of both structure and load about

y =120 inches.

Comparing both (My)max and (My)max 1D Figure 3.3, the convergence rates are
approximately the same, but the convergence toward the correct solution is different. Recall
that the displacement tunctions used in the FSM are a combination of hermitian polynomials
in the transverse (x) direction and continuously differentiable smooth series in the

jongitudinal () direction. The assumed displacement tunctions used for simply supported

strips are

f m(x)Ym(}')

1

@+m+ahﬂﬂm@?)
1

wix,y) =

r
m=

>
m=
where A, B, C and D are arbitrary constants defined in the previous chapter.

The expressions for determining both bending moments are given as
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where D is the flexural rigidity of the plate defined earlier. Notice that in equation (3.2), M;
is determined predominantly by the first term, the second partial of the displacement function
with respect to x. Likewise, My is determined predominantly by the second partial of the

displacement function with respect to y.

The series function in the y~direction is a better approximating function than the
polynomial function in the x-direction. For this reason My, the bending moment that causes
a flexural bending stress in the x-direction, has a greater error associated with it than M,,and

this is evident in Figure 3.3.
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While the solution is sensitive to the number of terms, itis also sensitive to the number
of strips used to discretize the plate. A comparison between (My)max 38 determined from two
different analyses is presented in Figure 3.4. In the first analysis the number of strips used
was set at ten, and in the second analysis the number of strips was increased to fifty. Notice
that in Figure 3.4 the two curves lie on top of one another, which implies that ten strips is

sufficient for the determination of (My)max:

A similar comparison was made for (My)max, the results of which are presented in Figure
3.5. Itis important to notice that the solution for (My)ma 1 sensitive to the number of strips
used to discretize the plate. Thisis also a result of My being determined by the second partial
of the displacement function with respecttoy (equation 3.2). To insure conver gence had been
reached with the number of strips, a third analysis was performed with one hundred Strips
through the plate. Notice that in Figure 3.5 there is no significant increase in solution

acCUracy in increasing the number of strips from fifty to one hundred.
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32. SQUARE PLATE SIMPLY SUPPORTED ON TWO EDGES WITH THE
OTHER TWO EDGES SUPPORTED BY ELASTIC BEAMS

The second verification problem is shown in Figure 3.6. This problem was used to

test the composite action of the plate with the elastic beams, 2 situation more closely

resembling a bridge deck supported by girders.

mrmﬂ?‘rrmm
[un e 1
y elastic beams
1L'/“_—.!,-
_______ 2 = 120 inches
”””””””” b p = 120 inches
'5’ bla =1
x h = 6 inches
N b q = 1 pSi.
— E = 30 x 10° psi.
g y =03

e ——

Figure 3.6. Square plate simply supported on two edges with the
other two edges supported by elastic beams.

To test the relationship between the plate and the supporting beams, the flexural

rigidity of the clastic beams (ET) was varied from zeroto infinity. Inorder to relate the ﬂexural'

rigidity of the supporting beams (EI) to the flexural rigidity of the plate (D), it was necessary

to define a parameter (\) given as

EI
aD
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Fortunately, the solution to this problem has been previously established and can be
¢ound in Theory of Plates and Shells (24). Maximum deflections and bending moments for

several different values of A have been determined and are summarized in Table 3.1

Table 3.1. Maximum plate actions as a function of beam flexural rigidity.

A parameter Flexural rigidity Deflection Bending momenis
El EI A M M
A= 'a-ﬁ max ( x)ma.x ( y)ma.x

w© © 0.0014 689.7 689.7

100 7.121E+12 0.0014 692.6 636.8

10 7.121E+11 0.0015 720.0 669.6

) 7.121E+10 0.0021 925.9 . 5414

0 0 0.0045 1764 390.2

This problem was then analyzed using the computer program with several different
values of . The first solution parameter that was verified was maximum deflection. The
convergence for the maximum deflection in the plate is shown in Figure 3.7. With the
addition of supported beams to the plate, the first nine harmonics are required for

convergence, compared to four harmonics in the first verification problem.

The convergence of maximum bending moments in the plate (My)max and (My)max 15
presented in Figures 3.8 and 3.9, respectively. If the supporting beams are absolutelylrigid,
2 = o ,the problembecomesa square plate simply supported on four edges. Thisis evident
in the equality of bending moments (My)max and (My)max iD Table 3.1for A = . In Figures
3.8 and 3.9, the two are noticeably different. This is a direct result of the displacement

function having a different approximating function in the tWo different directions, X and y.
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33. SIMPLY SUPPORTED SINGLE STRIP WITH A CENTRALLY LOCATED
BEAM

In order to arrive at the load distribution factor for the individual girders of a bridge,
it is necessary to know the response of the bridge to the loads. A verification problem was
devised to resemble the actions of the girder in response to a load imposed on the surface

of the bridge deck.

As shown in Figure 3.10, an individual finite strip with a longitudinal beam attached
at the strip center was used as the test problem. The strip was loaded with a concentrated
point load at one quarter span, and the numerical values for deflection (A), bending moment

(M,) and shear (V) in the beam were compared to the values obtained from elastic beam

theory.

:::::::::::::::\__{. E = 3600 Ksi.
lP"SOk l y = 0.15 .
—_— i
% h=6" TF = 29000 ksi.
', l' y =03
l p=1' 1 = 1000in*
1L A = 100in2

L=10
Figure 3.10. Simply supported single strip with a centrally located beam.

The results from the analysis of the problem ar¢ presented graphically in Figure 3.11.
The deflection along the beam, which corresponds to the deflection along the strip, is

determined from equation (2.9) which states

wiey) = 3 INJonsin ™
m=1
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where [N] is a matrix containing the shape functions for the strip and {8,} contains the

various displacement amplitudes for the strip.

Equation (3.3) is the function used to represent the elastic curve of the both the strip
and the beam. The second derivative of the function w(xy) is referred to as the curvature.

The bending moment (M) in the beam is related to the curvature by

d*w
Mx—EIdyz

where EI is the combined flexural rigidity of the strip and the beam. The shear (V) in the

beam is related to the third derive of the function w{x,y) by

------------------------

It should be noted that in order to achieve the shear illustrated in Figure 3.11(c) using the
FSM, it was necessary to use one hundred terms in the summation. Trying to approximate
the shear in the beam with a Fourier series (equation 3.3) poses an interesting problem.
Figure 3.12 shows that at points where Vis continuous, the partial sums do approach V(y)
as m increases. However, in the area of points of discontinuity, directly under the point load,
the partial sums do not converge smoothly to the mean value. Instead the partial sums tend
to overshoot V{y) at the ends of the jump, as they cannot acc;)mmodate the sharp transition
at this point. This behavior is typical when using Fourier series to represent points of

discontinuity, and is known as the Gibbs phenomenon, named after Josiah Willard Gibbs

(1839-1903) (7).
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Comparison between the finite strip method and elastic beam
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3.4, CONVERGENCE OF DISTRIBUTION FACTORS
It was of primary importance to ensure the finite strip method could accurately model
a “thin plate” system with elastic supporting elements. A bridge deck supported by girders
is an excellent example of this type of “thin plate” system. The response of a bridge deck
to a set of loads s difficult to quantify. Thus, it was ﬁeces_sary to be certain that the numerical

values obtained by the program had sufficiently converged to the correct solution.

The load distribution factor (DF) for any individual girder is determined by

_ Mrpsm

DF =
M beam

where Mpsas is the moment determined from the finite strip method, and Mpeam 18 the moment
determined from elastic beam theory assuming the loads to act directly on the girder. Itis
the moment determined from the finite strip method, MEsp, 18 considered to be the more
accurate representation of the actual moment in the beam. Since Mrsm is the only parar;l ter
that changes with successive model refinement, the distribution factor (DF) converges at the

same rate as Mpsp. 1O properly quantify the distribution factors for both moment and shear

in the beam, a default of 100 terms with 50 strips was selected.



CHAPTER 4

COMPARISON OF DISTRIBUTION FACTORS
FOR AN ILLUSTRATTVE EXAMPLE

The illustrative example used to compare the distribution factors obtained by the
methods described in Chapter 1 is shown in Figure 4.1. The example problemisa single span
composite bridge composed of a reinforced concrete slab supported by steel girders. The
top flanges of the girders are embedded in the concrete slab, and it was assumed that this

results in a fully composite flexural response.
4.1. EFFECTS OF SLAB THICKNESS AND SPAN LENGTH

Program BRASS-DIST was used to perform the analysis. BRASS-DIST computes
distribution factors for both moment and shear at girder tenth points. The method for
determining these distribution factors uses the entire weight of the individual truék axles.
The distribution factors for each girder are then multiplied Ey the gross weight of the truck

to determine the distribution of load to a specific girder.

69
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35

25 | 1 10 10 | 2.5
Il | +
girder no. 1 2 3 4
Typical Transverse Section
Deck Properties . Girder Properties
Eq = 3600 ksi. E, =29000 ksi.  Ag =62.23 in?
vy =015 v, =03 1, =86770in
eg =50in. L =934in’

Figure 4.1. Single Span Composite Bridge.

This method differs from the traditional method of load distribution in which the distribution
factors are determined from half of the axle weight or wheel line. The method employed‘by
BRASS-DIST was used to accommodate permit vehicles where a single line of wheels cannot
by readily defined. For comparison purposes, the distribution factors obtained by BRASS-DIST
have been multiplied by a factor of two in all subsequent graphical representations. This permits

convenient comparisons with traditional methods.

An input file was created for the bridge shown in Figure 4.1, and this file is presented
in Appendix B. The structure was loaded with a standard AASHTO HS 20 truck located

directly over girder 3 and the rear axle was positioned at a distance y=55" (refer to Figure
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4.2). The thickness of the slab (¢) was varied from four inches to twelve inches in increments
of two inches to illustrate the effects of the relative stiffness of the deck and girders. The
results of the analyses are presented in Figure 4.3. Notice that the distribution factor for
moment in girder 3 decreases with increasing slab thickness. Intuitively, as the slab thickness
increases, the relative stiffness of the slab increases compared to the overall stiffness of the
girders. In other words, as the siab thickness increases, the load distributes more evenly to
the girders. Notice also in Figure 4.3 that for a slab thickness of four inches, the maximum
distribution factor occurs ata distance y=60’, and for a slab thickness of twelve inches, the
maximum distribution factor occurs at a distance y=75". This demonstrates the

unpredictable nature of load distribution.

35

1
1 * Plan View

Figure 4.2 Truck Positioning for a Single-lane Loading Case.

In addition to slab thickness, the effect of span length on distribution factors was aiso
studied. The span length of the bridge in Figure 4.1 was varied from 100’ to 200’ by
increments of 10’ and the slab thickness was held at six inches. The relative position of the
truck with respect to the span length was held constant. The maximum distribution factor

for moment in both the interior and exterior girders was determined. The resuits of these
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analyses are presented in Figure 4.4. Notice that the maximum distribution factors for
interior girders decrease with increasing span length while the maximum distribution factors
for exterior girders increase with increasing span length. This relationship indicates that, for
this particular bridge, as the span length increases, the slab becomes stiffer compared to the

girders and better load distribution is achieved.
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42. EFFECTS OF SINGLE AND MULTIPLE LANE LOADING

The effects of lane loading on distribution factors is of great importance. Recall that
in the AASHTO method of load distribution, the distribution factor for slab-girder bridges
is §/7.0 for one traffic lane and $/5.5 for two or more traffic lanes. The Ontario Highway
Bridge Design Code (17) accounts for the number of loaded lanes by providing separate
design charts for one, two, three and four lane pridges. Inthe simplified methods developed
by NCHRP project 12-26 (12), two different sets of equations exist for determining

distribution factors, one for single-lane loading and one for multi-lane loading.

The bridge in Figure 4.1 was used to compare distribution factors obtained by
BRASS-DIST to those obtained by various simplified methods. The first comparison was
made for the single lane loading case. A standard AASHTO HS 20 truck was positioned
directly over girder 3 at a distance y=55' (refer to Figure 4.2)- The results obtained by
BRASS-DIST were compared to the AASHTO and NCHRP project 12-26 methods. These
results are presented in Figure 4.5. It is important to note that the AASHTO method does
not distinguish between interior and exterior girders in the determination of its distribution

factors. This feature increases the degree of conservatism of an already conservative method.

There are very few simplified methods for determining distribution factors for single
lane loading. Most of the developments in recent years have been devoted to the multi-lane
loading case. To simulate a multi-lane loaded bridge, tWo standard AASHTO HS 20 trucks
were superimposed on the bridge as shown in Figure 4.6. This load case was analyzed with

BRASS-DIST and the results were compared to various other simplified methods. A
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& Interior Girders [ Exterior Girders

L6

14

Maximum
Disriburon Factor 8.8
for Bending Moment '

0.6

0.4

2.2

AASHTO NCHRP Project 12-26 BRASS-DIST.

Figure 4.5. Comparison of Maximum Distribution Factors for

Moment for the Single-lane Loading Case.
compilation of the results obtained from these methods is presented in Figure 4.7. In
comparing the various methods, the degree of conservatism for each method can be
deternined. The numerical values for almost every method are below those of AASHTO's,
with the exception of Tarhini and Frederick (23) and Marx, etal. (15). ltwas observed during
the literature review that the simplified formula developed DY Tarhini and Frederick (23) did

not specify an upper sound on the span length. As part of their investigation they considered
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span lengths up to 119’. This may be a contributing factor to the overconservative nature
of this simplified formula. It should be stated that average distribution factor for moment
as determined from the simplified method developed by NCHRP project 12-26 (equation
1.3) was 1.378. This average number was determined from the parametric studies performed

on all of the slab-girder bridges contained in the NCHRP database.

_._—___._.__.-._-_-_—..—-_—..—.—--—

)
1 * Plan View

Figure 4.6. Truck Positioning for 2 Multi-lane Loading Case,

A second method of comparing distribution factors was also used . This method
involved varying the girder spacing. Girder spacing is the one variable common to all the
simplified methods for Jetermining distribution factors. The relationship between maximum
distribution factor for moment and girder spacing for the various methods is presented in
Figure 4.8. Notice that the AASHTO method has the largest slope, ot largest rate of increase

for distribution factor. This is another example of the oversimplistic representation of the

AASHTO method.
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B Interior Girders 3 Exterior Girders

Mazximum
Distriburion Factor
for Hending Moment

AASHTO NCHRP BRASS- OHBDC  Sarders & Tarhini & Marx e ol
Project!2- DIST Eilleby Frederick
24

Figure 4.7. Comparison of Maximum Distribution Factors for
Moment for the Multi-lane Loading Case.

previous to NCHRP project 12-26,n0 research has been devoted to the developmeﬁt
of a simplified formula for determining distribution factors for shear in the girders of highway
bridges. Equations ‘(1.6) and (1.8) were developed specifically for this purpose. A
comparison be.tween BRASS-DIST and these twO equations for the illustrative example is

presented in Figure 4.9.
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43. DISTRIBUTION FACTORS FOR A PERMIT VEHICLE
The formulae developed in NCHRP project 12-26 were based on the standard
AASHTO “HS” family of trucks. In a limited parametric study it was concluded that
yariations in the truck axle configuration of truck weight did not significantly effect the
distribution factors (12). It was also recommended' that with some caution these formulae

could be applied to «other” trucks.

One of the main reasons for developing BRASS-DIST was to be able to quantify
distribution factors for.permit-—type vehicles with jrregular axie configurations. An actual
permit vehicle that was encountered by the Wyoming Department of Transportation was an
MX transporter with a stage 1 missile on carriages. The axle configuration and load

distribution for this vehicle is shown in Figure 4.10.

Axle Weight 21k 24% 24 30% 30k 30 30k 30

7T 1T EEEEEL

Figuré 4.10. Axle Configuration and Load Distribution for
an MX Transporter.

This vehicle was modeled on the composite bridge in Figure 4.1. The vehicle was
centered on the bridge width and the rear axle was positioned at a distance y=40". Due to
the symmetry of both load and structure atx=17.5", only the distribution factors for girders
3 and 4 were calculated. The results of the BRASS-DIST analysis are presented in Figure

4.11. Girder 3 is an interior girder which attracts more of the load than an exterior girder.
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This is becomes evident by comparing the distribution factors for girders 3 and 4. 1tis
interesting to note that the location of the maximum distribution factor for both moment and
shear varies with the girder position. Further, the sum of the factors for the interior and
exterior girders is unity, indicating that 100 percent of the wheel line load is carried by these

+wo elements. In other words, this is a check on equilibrium.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1. SUMMARY

There are several simplified methods available for determining distribution factors
for the girders of highway bridges. These methods differ in the number of parameters used
to define a bridge and its properties, and in their ease of use. While the AASHTO method,
for example, is extremely easy to use, it has been determined that this method s to0 simplistic
and cannot account for all the aspects of a bridge influening its load distribution
characteristics. The objective of this research was to develop an automated procedure for

accurately determining distribution factors.

The finite strip method proved to be a valuable tool in the development of an
automated procedure for determining the distribution factors on highway bridges. The fact
tﬁat typically a highway bridge has regular geometry and continuous boundary conditions,
was the main reason for selecting the FSM as the modeling procedure. In Chapter 3 it was

demonstrated that various solution parameters responded differently to the number of terms

84
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included in the summations and the number of strips used to discretize the bridge deck.
Several verification problems were used to test solution convergence to correct values
established from elastic beam theory and the theory of plates and shells. Once convergence
had been established for all of the solution parameters, the corresponding numbers of strips
and terms were used as the default parameters in the BRASS-_—DIST program. In addition
to verifying convergence of solution parameters, every offort was made to check both global
and element equilibrium.where appropriate. This was done to check the various loading

routines and the superposition of different loading routines.

Once all of the convergence tests were performed on BRASS-DIST, the program was
used to model an actual highway bridge subjected to truck loading. Several parameters were
varied to further understand the sensitivity of distribution factors to both the geometrlc

characteristics of the bridge and the magnitude and location of the loads.

5.2. CONCLUSIONS

The overconservative nature of the AASHTO method of load distribution was
demonstrated by several of the comparisons discussed in Chapter 4. Because of the extensiQe :
research conducted in NCHRP project 12-26 (finite element modeling, compilation of a
database of actual bridges, parametric studies and statistical analyses), it was assumed that
these equations could accurately determine the distribution factors to the girders of a
slab—-on—gifder bridge. In all the comparisons made for the illustrative example, it was
observed that the distribution factors obtained by BRASS-DIST were slightly below those
obtained by the 51mphf1ed formulae developed by NCHRP project 12-26. As part of the

literature review, it was determined that the mmphﬁed formulae given in NCHRP prolect
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12-26 (12) were developed using variational methods and were then modified to assure
slightly conservative results. It should be noted that the distribution factors obtained by

BRASS-DIST are also slightly conservative because of the original simply-supported
assumption.

In comparing the various simplified methods for determining distribution factors, the

simplicity of use for each method was also evaluated. The results of this evaluation in order

of increasing complexity of use is given below

AASHTO (22)

Tarhini and Frederick (23 )
NCHRP project 12-26 (12)
Marx et al. (I5)

Sanders and Elleby (23)
OHBDC (I7)

The Ontario Highway Bridge Design Code (OHBDC) method of load distribution was
the most difficult to use. The method requires the calculation of longitudinal and transverse
flexural and torsional equivalent plate properties. A set of dimensionless characterizing
parameters are determined from the equivalent plate properties. Numerical values are
determined from design charts with the characterizing parameters, and these numerical

values are used in a simplified formula to determine the distribution factor.

The method developed by Sanders and Elleby (23) is the next most difficult to use.
The difficulty arisesin the calculation of an individual stiffness parameter requiring numerical

values for both the moment of inertia and the torsional constant about two axes for a

composite member.
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Similar to Sanders and Elieby, the method developed by Marx et al. (I5) requires the

calculation of a flexural slab stiffness parameter, but it is not based on a composite member,

which simplifies the calculations.

The simplified formulae developed in NCHRP project 12-26 (21) were found to be
relatively simple to use. The equation parameters consist of quantities that are familiar to
a bridge engineer such as girder spacing, span length, deck thickness, girder moment of

inertia, girder cross sectional area, and girder eccentricity.

Both the AASHTO method and the method developed by Tarhini and Frederick (23)
are very simple to use. The AASHTO method is based on girder spacing and the number
of traffic lanes, and the method developed by Tarhini and Frederick is dependent on girder

spacing and span length.

It is important to note that the comparison of distrib;Jtion factorspresentedin Chapter
4 is applicable only to the bridge in Figure 4.1, and does not in general apply to similar bridge
types. One of the most important distinctions that should be made is that the distribution
of load in a highway bridge is a function of the magnitude and location of the loads and the

response of the particular bridge to these loads.
5 3. RECOMMENDATIONS FOR FUTURE RESEARCH

In the development of BRASS-DIST it was assumed that the bridge had a simply
supported boundary condition on both ends. The next logical step for improving
BRASS-DIST would be the inclusion of several boundary conditions, the most important of
which being the fixed-fixed condition and the fixed—pinned condition. The actual boundary

conditions for a bridge are neither pinned-pinned nor fixed-fixed, but are somewhere
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between the two. By analyzing the same bridge with these two different boundary conditions,
an upper and lower bounds could be placed on the distribution factors, and it would be left
to the discretion of the bridge engineer to estimate the amount of rotational stiffness
provided by the bridge to get an accurate assessment of the distribution factors. The
fixed—fixed boundary condition would be extremely helpful in the evaluation of a single span
of a two span bridge. This particular boundary condition would more accurately represent

the behavior of a two span bridge with an interior support.

The series formulations for the two boundary conditions mentioned above were
inciuded in Chapter 2 (equations .13 and 2.14). To incorporate these additional boundary
conditions into BRASS-DIST, it would be necessary to rewrite the equation solver, Currently
for a model containing n nodes, in which m terms are to be considered in the summation,
the m sets of n nodal parameters for each térm are solved separately and then superimposed.
For the added boundary conditions, the integrations required for the strip stiffness matrices
do not uncouple. This requires the simultaneous solution of m xn sets of parameters. For
a typical model with 50 strips and 100 terms, there are 51 nodal lines with 4 degrees of
freedom per line and 100 terms. This system contains over 20,000 degrees of freedom that

would need to be solved simultaneously.

Another limitation of BRASS-DIST is that it can only analyze bridges that are
rectangular in plan. In order to accommodate bridges that are curved in plan, a coordinate
transformation would be required for the finite strip method. This adaptation is handled

quite easily in the FSM. Almost of the formulations for transforming a rectangular
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coordinate system (x and y) to a polar coordinate system (r and 9) are given in Finite Strip
Method in Structural Analysis (8). Once this coordinate transformation is made, the geometry

of a curved bridge could be specified in terms of its radial linesr and the angle 0 that it sweeps.

In addition to curved bridges, modern construction also requires some bridges have
skewed supports. Transformations for both interior and exterior skewed supports are also
given in Finite Strip Method in Structural Analysis (8). With these modifications, BRASS-DIST
would become a very versatile program, as there are no simplified methods for determining

distribution factors for highway bridges that are curved in plan, or have with skewed supports.
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COMPUTER ALGORITHM
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[Read (POL) Input Data |
l

Generate Nodal Coordinates
and Structure Mesh
|
Perform Integrations for Strip
Stiffness Calculations

1 Loop for each Mode |

|

—————{ Loop for each Strip |
|

Form Strip Stiffness Equation
(Slon = | (PEODBLLS) 2V
\

Requested
Evalutions

Loop for each

Evaluation Location

Calculate Displacements and
Internal Actions in the Plate or
the Beams at Requested Location

'Add Stiffnesses for Longitudinal Beams

mint

ZLJ

kn = Elgg

Requested
Distribution
Factors

Loop for each

Apply Rotation Transformation to
Augmented Strip Stiffness Matrix

Feed Augmented Strip Stiffness
Matrix into Global Stiffness Matrix

Requested Beam

Calculate Distribution Factors at
Tenth Points Along the Beam

Form and Feed Strip Load Vector
(Pl = | IN1Bl) 4

Solve for Nodal Displacement Parameters

[s18} - {F) = (0]

Figure A.1. Sequ

®

ence of operations in the finite strip computer algori

| Stop l

thm.



APPENDIX B

BRASS-DISTRIBUTION FACTOR DOCUMENTATION

The software documentation for BRASS-DIST consists of a set of command
descriptions for each command including command name, purpose, command parameters,

and example and any figures applicable to the command.

The command name is a six character string that defines the data that proceeds it.

Typically the meaning is determined from context. The typical format for an individual

command is

COMMAND DATA, DATA, DATA, DATA

An example command file for a single span composite bridge supported with four

girders and loaded with an AASHTO HS-20 truck is given below.

TITLE  EXAMPLE COMMAND FILE
OUTPUT 10

GEOMET 150, 35

DCKPRP 3600, 3600, 0.15, 0.15, 6, 0.15
GRDMAT 29000, 0.3, 0.490

GRDPRP 50, 62.25, 86770, 9.34, 25
GRDPRP 30, 62.25, 86770, 9.34,9
GRDPRP 50, 62.25, 86770, 9.34, 9
GRDPRP 30, 62.25, 86770, 9.34,9
TRUCKP 1,195, 55

TRUCKL 1,3,6,0,326,20,326 14,8
GIRDEV 3,1 111
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10 | BRASS | coMmano OESCRIPTION

COMMAND NAME

TITLE

PURPOSE

This command is used to give a project a specific title.

COMMAND PARAMETERS

Enter the job title




-

|EXAMPLE]|

94

'noTES |
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| BR ASS | commanp DESCRIPTION R}

rCOMMAND NAME \ | COMMENT \ \

This command is used t0 place a comment in the
X PURPOSE input file.

COMMAND PARAMETERS

COMM Enter the comment




—

EXAMPLE|

| FiGURES |

\iNOTES_\
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30 | BRASS | COMMAND DESCRIPTION |

(COMMAND NAME \ OUTPUT \ \

This command is used to control the amount of output

PUR PO SE provided by the progranl.

COMMAND PARAMETERS

ISOD Ourput of distribution factors (SoverD ratios)
. toggle(()—-off 1-on)
1IFWRIT Full ourput of program information including individual strip
properties and calculated constanis.
toggle (0 - off 1-on)




i

98

rNOTESJ
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» | BRASS |

COMMAND DESCRIPTION J

COMMAND NAME \

GEOMET \

|

-

PURPOSE

This command is used to set the geomerry of the bridge.

COMMAND PARAMETERS

ALEN

BW

Enter the bridge span length, feet.

Enter the width of the bridge. feet.
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5 L
' |

[EXAMPLE]|
=

GEOMET 40,20

FIGURES

NOTES
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| 50 | BRASS | COMMAND DESCRIPTION |

TCOMMAND NAME \ GRDMAT \ \
This command is used to set the girder material properties.
( PUR POSE The specified material properties are used for all girders.
i COMMAND PARAMETERS |
GIRDE Enter the girder moduius of elasticity (E), ksi.
GIRDV Enter Poisson's rago (v) for the girder, dimensionless.

GIRDD Enter the girder density, kef.




[EXAMPLE]

GRDMAT  29000.0.3.04
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@ | BRASS |

COMMAND DESCRIPTION J

rCOMMAND NAME \ GRDPRP

||

J—1

This command is used to set the cross sectional properties

for each individual girder.

Note: Each girder requires a command.

COMMAND PARAMETERS

|1

GIRDEC

GIRDA

GIRDI

GIRDJ

GIRDS

Enter the girder eccentricity from the centriod of the deck
to the centriod of the girder in inches. See figure.

Enter the cross sectional area (A) of the girder, in2.
Enter the moment of inertia (I) of the girder, in*.
Enter the torsional constant (J) of the girder. in*.

Enter the center to center distance from the left adjacent
girder (or edge) in feet. See figure.
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-
\EXAMPLEJ \

(for the left girder)

GRDPRP 9. 8.84, 170, 0.62, 1

~and-

GRDPRP 9. 8.84. 170, 0.62,2 (for the right girder)

| FIGURES |

B0

1’_0', ‘\
T GRDS GIRDS
| NOTES |
v-—'—':' fe
e .
=
by - by + bt + byt)
| i
=
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70 |

BRASS |

COMMAND DESCRIPTION |

\'COMMAND NAME

\ DCKPRP

|

This command is used to set the properties

and the boundary condirions for the bridge.

for the deck,

( PURPOSE

COMMAND PARAMETERS

_—

EX

EY

DEN

Enter the modulus of elasticity for the deck in the
X direction, ksi. See figure.

Enter the modulus of elasticity for the deck in the
Y direction, ksi. 3ee figure.

Enter Poisson’s rano for the deck in the X direcrion,

dimensionless. See figure.

Enter Poisson’s ratio for the deck inthe Y direction.

dimensionless. See figure.
Enter the deck thickness. inches.

Enter the density of the deck. kcf.
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}
[EXAMPLE]| \
DCKPRP 3600, 3600, 0.15, 0.15, 6, 0.150
‘I
| FIGURES |
 — —)
prasy pra s
- Width
X (transverse) direction
Span
Y (longitudinal) direction
- - S

Deck coordinate system

| NOTES |
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80 | BRASS | coMmano DESCRIPTION |

rCOMMAND NAME UNIFML \

This command is used to impose a uniform area load over

PURPOSE the entire deck.

A maximum of 1 load may be entered.

COMMAND PARAMETERS

Enter the magnitude of the uniform area load, kst.

Q1
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[EXAMPLE]
UNIFML ~10(]
\-F] GU RES_} Q1= 100 ksf.
fffllilllllllllllilllllllllllllllililllll
c— —
Imposed uniform ;.1rea load over entire deck

| NoTES |
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o0 | BR ASS | coMManD DESCRIPTION
V COMMAND NAME \ PATCHL \ \
P URP 0 SE This command is used to impose a uniform patch load on
the deck.
COMMAND PARAMETERS ‘\
QPO Enter the magnitude of the uniform patch load, ksf.
XP1 Enter the starting X location of the uniform patch load, feet.
See figure.
YP1 Enter the starting Y location of the uniform patch load, feet.
See figure.
XP2 Enter the ending X location of the uniform patch load, feet.
See figure.
YP2 Enter the ending Y locaton of the uniform patch load, feet.

See figure.
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| X AMPLE|

PATCHL 100 5,20, 15,30

E’-]GU RES__\ QPQ 100 ks, _
_ [T _
[ 30-0" _:tx-;} ¢
- g 1
1507
xP2

Yl’lr—\
of

m‘_o“
Yr!

Imposed uniform patch load on deck

[ NOTES |

This comménd could be used 10 mode! curb loads.
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. 100 | BRASS | comman DESCRITION |

FCOMMAND NAME \ POINTL \ \
PUR POSE This command is used to impose a concentrated point load
on the deck.
\' COMMAND PARAMETERS ‘\
PNTL Enter the magnitude of the concentrated point load. kips.
PNTLX Enter the X location of the concentrated point load, feet.
See figure.
PNTLY Enter the Y location of the concentrated point load, feet.
See figure.
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L . |
[EXAMPLE] 4\
pOINTL 5. 10 25
F‘ GY REﬂ PNTL 5 kips l -
— )
lw
PNTLX
o |
PNTLY !
o Imposed c nnnnn trated point load on deck

[ NOTES |
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| \ 10| BR ASS | commanD DESCR\PTIONJ

rCOMMAND NAME \ TRUCKP \ \

PUR =Yg SE This command is used to position a truck on the bridge.

COMMAND PARAMETERS

||

Enter the truck number t0 be positioned.
Enter the X location of the left rear axie of the mruck, feet.
See figure.
TRKY " Enter the Y location of the rear axle of the truck, feet. .
See figure.
Note: One TRUCKP command is mmifgx_@am truck.
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[EXAMPLE] \

TRUCKP 1,6 10
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[ 120 |

BRASS |

COMMAND DESCRIPTION ‘X

V COMMAND NAME

e

|

PURPOSE

This command is used to define a typical axie configu-

ration, where there are two wheels per axle.

|

L\

ITRKNO
NAXLE

XDIS

YDIS

WAXLE

COMMAND PARAMETERS

Enter the truck number used t0 identify the individual truck.
Enter the number of truck axies.

Enter the width of each individual truck axie, feet.
See figure.

Enter the longitudinal Jocation of each individual truck axie
with respect to the previous axle, feet. See figure.

Enter the weight of each individual truck axle. kips.
See figure.

Repeat XDIS, YDIS, and WAXLE as necessary.
Maximum number of axles is twenty.

Maximum number of trucks is ten.




-

‘EXAMPLE\

TRUCKP

TRUCKL

10, 30
axle 1 ade 2 axle 3

| 1T, L 1
1,3,6.0,32,6 20, 32, 6, 14, 8

e

| F16U RES |

axle 1 axle 2 axle 3

WAXLE 32 kip 32kip  3kip

F T

| w0 | w0n |

“—~p15__ ! YDIS '

Typical HS-20 truck load

116

| NOTES |

Note: The vaiue of YDIS for axle 1 is equal to zero

Note: TRUCKP command positions the truck on the bridge.
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130 | BR ASS | commano DESCRIPTION |

COMMAND NAME

]

|

PURPOSE

This command is used to define a permit vehicle that
has non-standard axles.

Note: One command is required for each axle.

COMMAND PARAMETERS

|

ITRKNO
NAXLE
WAXLE
YDIS

NTIRES
XDIS

IWT

XTDIS (if needed)

TEAC (if needed)

Enter the truck number used to identify the individual truck.
Enter the axle number t0 be defined.
Enter the total weight of the axle, kips. See figure.

Enter the longitudinal location of the axie referenced from
the previous rear axle, feet. See figure.

Enter the number of wheels in the axle.
Enter the width of the axle, feet. See figure.

Flag for assigning percent load to each wheel
{0 - equal distribution of axie weight to uniformly spaced wheels)
(1 - varying distribution of axle weight to wheels)

Enter the distance from the prewous left wheel, feet.
See figure.

Enter the percent of total axie load to be distributed to the
wheel. See figure.

Repeat command as necessary.




Ex AMPLE|

TrRUCKP 10 30

118

of bridge ¢ =0) TRKY

TRUCKT 1,1, 40.0, 4,8,0 (for axle 1)
—and- whee! number
1 2
| L) . 0 1
TRUCKT 1, 2, 40, 15, 4,8, 1, 0. 0.1, 1, 0.4, 6,04, 1, 0.1 {for axle 2)
| Fiures | :
starting location
of bridge (x=0)
i axe 1 axde 2
0| waaE @ Kip WAXLE 40 kip
wheel.
10 kip yg” 4 kip= (40%0.1)
10 ki 16 kip= (40)(0.4)
B-0" P xTDIS 60
XD1s 10 kip .
) o 16 kip= (40)0.4)
10 kip 4 kip= (40X0.1)
starling location 00" 15'-0"
YDIS

[ noTES |

Note:
Note:

e: The value of YDIS for axie
e: TRUCKP command positions

1 is equal to zero

the truck on the bridge.




119

140 | BRASS | COMMAND DESCRIPTION \

COMMAND NAME EVALPT \

This command is used to set the location of an evaluation

PUR POSE point in the deck.

COMMAND PARAMETERS

EPGX Enter the X location of the evaluation point, feet.

EPGY Enter the Y location of the evaluation point, feet.

Note: Not required for girders.




-

EXAMPLEJ

EVALPT 10,25

FIGURES

10°-0"
EPGX
SR
25'_0“ L
EPCY I

Location of evaluation point on deck

NOTES

120
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| 150 B RASS | OMMAND DESCRIPTION J\

rCOMMAND NAME EVLINE \

used to set the location of a longitudinal

This command is
the deck in which tenth points are

P U R P o) S E evaluation line in

evaluated.

“OMMAND PARAMETERS _\

XGLIN Enter the X jocation of the evaluation line, feet.
Note: Not required for girders.




-
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[EXAMPLE|
EVLINE 10
F] G U R E S 100 101 102 103 104 105 106 107 108 0o 110
| - maed
1]..——
100"
XGLIN
—,r——— - - . * - » 3
T ation of longitudinal evaluation line in the deck

NOTES
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160 \ BRASS | COMMAND DESCRIPTIONJ

i COMMAND NAME

GIRDEV \

PURPOSE

distmibution factors for shear and moment at tenth

This command is used to retrieve both girder actions and

points.

COMMAND PARAMETERS

IGEVAL

ITRUCK

- 1GSOD

™M

Enter the girder number to be evaluated.

Enter the truck number to pe used for evaluation.
Flag for calculation of distribution factors (S over D ratios)
toggle (0-off 1-on)

Flag for calculation of shear S over D ratios
toggle (0-off 1-on)

Flag for calculation of moment S over D ratios
toggie (O-off 1-on)}
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