MPC REPORT NO. 92-9

ENHANCEMENT OF EXISTING ENGINEERING SOFTWARE

VOLUME NO. 2

omputer-Aided Design and Drafting Library

Version 1.0

UWGRAPH C

Developed under the sponsorship
of the
Wyoming Highway Department
and
Mountain-Plains Consortium

Chad Clancy
J.A. Puckett

Department of Civil Engineering
University of Wyoming
Laramie, Wyoming 82071

July 1992

Technical Report Documentation Page

1. Report No. 2. Government Accession No.

MPC 92-9 Volume 2

3. Racipient’s Catalog No.

4, Title and Suhtitle
Enhancement of Existing Engineering Software

UWGRAPH Computer-Aided Design and Drafting Library - Version 1.0

5. Report Date

July 1992

6. Performing Organization Code

7. Author(s)

JA. Puckett and Chad Clancy

8. Performing Organization Report No.

9. Parforming Organization Name and Address

Department of Civil Engineering
University of Wyoming
Laramie, WY

10. Work Unit No. (TRAIS)

11, Contract or Grant No,

12. Sponsoring Agency Name and Address

Mountain-Plains Consortium
North Dakota State University
Fargo, ND

13. Type of Report and Period Covered

Project Technical Report

14. Sponsoring Agency Code

15. Supplementary Notes .
Supported by a grant from the U.S. Department of
Transportation, University Transportation Centers Program

16. Abstract

This documentation includes detailed information on each subroutine used fo draw the entities supported by UNGRAPH.
These descriptions include the definitions of the arguments, an example of the subroutine usage, and a graphical illustration of
the arguments. Compilation instructions are included for using UWNGRAPH with Unix and Microsoft Fortran compilers. A short
section follows with programming hints. This section outlines the errors which are most common and likely to be made by new
program developers. Several appendices are included which outline architecture, utilities, include files, and data files used by
UWGRAPH, and finally a paper which overviews the UNGRAPH lbrary is given.

17. Key Words 18. Distribution Statement

computer-aided, UNGRAPH,
software, engineering, design

19. Security Classl!. {of this report) 20. Security Classif. (of this page)

21. No. of Pages 22, Price

114

ACKNOWLEDGEMENT

This report has been prepared with funds provided by the United States
Departnient of Transportation to the Mountain-Plains Consortium (MPC). The
MPC member universities include North Dakota State University, Colorado State
University, University of Wyoming and Utah State University.

DISCLAIMER

The contents of this report reflect the views of the authors, who are
responsible for the facts and the accuracy of the information presented herein. This
document 13 disseminated under the sponsorship of the Department of
Transportation, University Transportation Centers Program, in the interest of
information exchange. The U.S. Government assumes 1o liability for the contents
or use thereof.

PREFACE

The development of graphics libraries have been undertaken by numerous
groups ranging from computer manufacturers, software developers, and user
groups, but to no one library addresses the needs of an application developer
working in the area of civil engineering. Specifically, libraries are available for
placing lines on a sereen or other device, oT perhaps viewing a model by
translationfrotation/zoom. But such libraries are severely limited in their ability
to easily produce high level entities such as dimension, notes, otc. Such entities
are the foundation of civil engineering drafting. Furthermore, most libraries
produce graphics to output devices, not directly to a CAD system. UWGRAPH
was written to address both of these limitations. The library has the entities
commonly used in drafting and will produce graphics to the screen and to drafting

gystems for editing and inclusion in production drawings.

UWGRAPH does not re-invent the wheel but rather reshapes it into a
product of greater utility. The authors are gincerely hopeful that the library will
be widely used to develop applications in civil engineering and hope that
developers will share their products with the profession at-large. For only through
a concerted effort will development efforts be most economical, There are so many
possibilities for applications using UWGRAPH, but only through sharing the fruits

of our efforts will we fully enter the realm of CADD (with two D’s).

J.A. Puckett

TOPIC PAGE
ItrOQUCHON o o o o e e e v e en s e mersr s nnmn oy 1
Using UWGRAPH CallS, oo v amr e emrn s 3
Subroutine DEfIRItions .« « .+« v v e s s eI 3
Initiahzation . . v v v ewowe sttt 9
T I 12
Ciroular ATC . « v e v on e s e m s nr s nnnnns 14
Multiple Point Line . o« vvoeevmrrsm s nnn 0t 17
General NOWe . o v o v vv v ressmr st nns 19
General Dimension . . .+ v« vvee o st ts 22
Second Dimension . . .« v o v a et 26
Subset of Second Dimension. « o v o cn oottt 30
Label . o v ea e 33
SubsetofLabel. . .o vv v v e ettt 36
Amrowhead . . v v v v v e armm s 38
Termination o « « s oo s momssor s st nnts 41
Compiliﬁg Programs
Microsoft FORTRAN L .. vvvvverms st n s 43
Unix FORTRAN, . .o vvvmvsmrrmsmn s n it ?s A4
Programming/Hnts . o o oo e oottt T 46
Output VIEWINE « . o o v o nvn e s e st T 47

Appendix A - General Programming

UWGRAPH Architecture . .« v o oot n 2007 Al
Structure of an Application . . .o w o v et A2
False Mappings . « -« v ovosmsr s om oot n s A3
callncludeFiles . o oo v v eemmr e nnn ™ Ad

Appendix B - Sample Programs

Sample Program 1 (TESTBOX).« -
Sample Program 2 (BANDSHELL)

Sample Programs on Disk...ooooearre

Appendix C - Technical Reference

UWGRAPHFiles. . . .o ccoemrernn o
BLOCK.DEF datafile , . . v v o vvmve e

Appendix D - Preprocessing

Paper-mé. .. o.oon e

STRIP Preprocessor . o v v - v v n e v s sttt

Appendix E - Higher Level Utilities
Appendix F - Paper Describing UWGRAPH
Appendix G - Glossary

iii

LIST OF FIGURE

PAGE
UWLINE Sample Output . . oo v o vccemes et mn o 13
UWARC Sample OUtput. . . o v vesemmessnnnnn 0 16
UWMPLINE Sample Qutput .« « oo vees st 0007 18
UWNOTE Sample Output . o o« vvveveee s st nnn 21
UWDIM Sample Output . « ¢ v v vmsssees st n T 25
UWDIM2 Sample OUIPUL .« v vsses sttt m 00T 29
HDDIM2 Sample Output . . o v voveveers st n 0 32
HDLABEL Sample Qutput . « « « v v rverse ot 000 37
UWARROW Sample Output . o vovveeremn o n 20 m 0 40
UWGRAPH Architecture . « o v« vvevessms st tn 0007 Al
Structure of an Application . .+« v e A2
TESTBOX OUIPUE . « 4 v v ssvms st n s ntnmn 0y B13
QHELLOUIPUL. « v v svw s evesem s s n st n i n sy Bl4

1V

LIST OF TABLES

PAGE
Example PrOGram . . o o v v vvvnnovm s nnnsts 6
UWINIT Example Program . . . o« v o veermeonmme s nt s 11
UWLINE Example Program oo oo eemerern e 13
UWARC Example Program . . .« oo veeneeemmee st s 16
UWMPLINE Example Program . . .« oo oo erre e 18
UWNOTE Example Program ., , . . .« v cvvemoemrsse 21
UWDIM Example Program oo o v vvevcmenmnen s 25
UWDIM2 Example Programo+ oo ve v vmemmmn et 29
HDDIM?2 Example Program . . .« «ovvveererems st 32
HDLABEL Example Program ovoovvveeeser o 37
UWARROW Example Program ,o o ooeeerse s 40
UWTERM Example Programo oo vvve v orem s 42

INTRODUCTION

Often a traditional procedure is used where a designer sketches results
which are based on computer applications and transmits this snformation via
hardcopy to a drafter, who reenters it into a CAD system. The inefficiencies of
this are clear and an obvious opportunity exists for productive gain by linking
design applications directly with CAD. Recent work by the Wyoming Highway
Department has shown that by doing this, productivity ratios can exceed 20:1.
UWGRAPH is a FORTRAN subroutine library to facilitate this linkage.

UWGRAPH is used in conjunclion with an application which performs
engineering calculations and/or drawing parameterization. The flexibility and
familiarity of FORTRAN is combined with the tools necessary to produce graphics
files automatically. The library is based on the graphics entities required for
structural drafting. Many existing graphic systems are difficult to learn and
implement. UWGRAPH simplifies and unifies the qubroutine calls of three
commonly used systems (DXF, Micro-CSL, and GKS) by combining low-level calls
to produce graphical entities useful in engineering drawing, €.8., dimensions,
notes, ete. There has been much effort to standardize computer graphics, but
creating an all-encompassing graphics format that suits every application, type of
drawing, and computer gystem is a difficult, if not impossible task. Hence, the
UWGRAPH scope is directed to structural engineering but easily spans other
disciplines.

The UWGRAPH library links to three graphic libraries commonly used in

UWGRAPH LIBRARY - 1

engineering. The purpose of the library is to allow the use of DXE, Micro-GSL and
GKS libraries through one application program. Graphics can be created in one or
more of these formats from a single set of subroutine calls. The graphical output
of the application program can then be used by anyone who can display graphics
in any one of the systems. The application programmer is relieved of the burden
of learning more than one graphics system because the initialization, drawing
definition, and termination is all consistently defined by the UWGRAPH library.
Further, the application developer can use CKS to review drawings n
development without accessing the CAD system.

UWGRAPHs first link is to AutoCad’s Data Exchange Format (DXF), a
standard commonly used for exchange of CADD information in both PC and
workstation environments. The ASCI DXT file created by an application using
UWGRAPH can be translated into the native format of many CADD systems.

The second link is to a graphics format supported by Intergraph using the
MicroStation Customer Support Library (Micro-CSL). Micro-CSL is a workstation-
based product and used with the Intergraph CADD software. A FORTRAN
binding allows an interface to the capabilities of Micro-CSL. The output from this
link to the library is an Intergraph design file which can be edited with
Intergraph’s MicroStation.

The third link is to the Graphical Kernal System (GKS) which was accepted
by the I nternational Organization for Standardization as a two-dimensional

graphics standard in 1985. GKS has FORTRAN bindings for numerous

UWGRAPH LIBRARY - 2

hardware/software platforms including most all engineering workstations and
DOS-based computers. GKS is used by some CAD systems for graphics display.
CGKS is different from the other graphics systems used by UWGRAPH because the
output is sent directly to the screen as opposed to an output file. After the output
ig displayed on the screen, a metafile can be created and sent to a plotted used in
conjunction with a metafile interpreter.

The UWGRAPH library supports the basic entities needed to create and
dimension a drawing. These entities include lines, arcs, multiple point lines,
labels, arrowheads and several types of dimensions. In creating these entities
UWGRAPH does not fully use the capabilities of any one graphical system, but in
general uses the capabilities common to all three systems. The result is a
practical graphics link between an application and the three graphics libraries.
This saves time and simplifies development.

The documentation which follows includes detailed information on each
subroutine used to draw the entities supported by UWGRAPH. These descriptions
include the definitions of the arguments, an example of the subroutine usage, and
a graphical illustration of the arguments. Compilation instructions are included
for using UWGRAPH with Unix and Microsoft Fortran compilers. A short section
follows with programming hints. This section gutlines the errors which are most
common and likely to be made by new program developers. Several appendices
are inctuded which outline architecture, utilities, include files, and data files used
by UWGRAPH, and finally a paper which overviews the UWGRAPH library is

given.

UWGRAPH LIBRARY - 3

USING UWGRAPH CALLS

Documentation Conventions
In the documentation of the UWGRAPH library, some conventional
notation in the subroutine argument list and descriptions has been used:
1. Bold letters indicate a DXF dependency.
2. Ttalic letters indicate a Micro-CSL dependency.

3. Underlined letters indicate a GKS dependency.

4, Plain letters indicate that the subroutine argument is used by all

three systems in the same manner.

A dependency means that the argument is not used by all of the systems or
is used in a different way. For example, the argument YWMIN in the UWINIT
call is only used by GKS and is ignored by the other graphic system calls. These
highlighted arguments are system specific and can contain any value if the
argument is not required for the system being used, but MUST be properly
declared and passed in the subroutine calls. A standard include file called
VARLFOR contains all of the proper variable declarations required by an
application using UWGRAPH. This file can be included at the beginning of the
application program to ensure that the variables being passed are of the proper
type.

Required Sections

A graphics gle is created in three sections: Initialization, Entity Creation

and Termination. In the initialization section, the necessary files are opened,

defaults are read, windows are set, etc. There is only one call in the initialization

UWGRAPH LIBRARY - 4

section. In the entity creation section, the entities are written to a graphics file
(or to the screen). One call is required for each entity created so there may be
many calls in this section. The termination section closes all of the files, writes
termination information to the output file and in the case of GKS allows some
output manipulation. See the example code which follows and example
applications in Appendix B for details.

Each subroutine call is documented by defining the routine’s argument list.
Here each variable is typed and dimensioned. Next an example which illustrates
its usage is given. These examples include the code necessary to assign the
arguments and issue the call. The initialization and {ermination process is
common to all examples and is not repeated. The program in Table 1 illustrates
the program structure and the initialization and termination requirements.
Where indicated in the example code outlines, each subroutine call may be
inserted, in any order. Note that the example below is written for an Intergraph
workstation with GKS. Other installations will be required to change the

workstation type parameter as noted in the comment lines.

UWGRAPH LIBRARY -5

nan aan

naa

nnonanan

1

CD—-'IU\U'\-E-LA’MI-—‘

Table 1. Example Program

PROGRAM EXRMPLE

yARI.FOR types all variables used UWGRAPH argument lists.
Include this file in every subroutine with UWGRAPH calls.
INCLUDE 1VYARI.FOR'

Now, open up 2 file to output messages.

OUTNUM = 3
OPEN (UNIT=

OUTNUM,FILE=‘MESSBGE.OUT',STATUS=‘UNKNOWN‘)

get up the initjalization parameters.

OUTNAME
XWMIN
XWMAX
YWMIN
YWMAX
WKSID
WSCON

T I

The works

'example’
0

90

0

90

1

1

tation type is system dependent, see your GKS

documentation for details. The system is set to GKS belaw.
Note the system dependent code which is commented out in a
format which allows preprocessing.

SYS =
WSTYP
WSTYP

UNIT

IDBGO

U]

3

= 12

= 9701
‘FTi
1

Issue initialization call.
CALL UWINIT(INPUTDIR,OUTNAME,XWMIN,XWMAX,YWMIN,YWMAX,
WKSID,WSCON,WSTYP,UNIT,SYS,IDEGO)

Initialize the default flags with this call.

CALL USEDEF(ITYPl,ITYPZ,ITYP3,ITY?4,ITYP5,ITYPG,ITYPT,ITYPB,
ILEVl,ILEVZ,ILEVB,ILEV4,ILEVE,ILEVG,ILEVT,ILEVQ,
ICOLl,ICOLZ,ICOL3,1COL4,ICOL5,ICOLG,ICOLT,ICOLB,
WIDl,WIDZ,WID3,WID4,WID5,WID6,WID7,WID9,
sL4, SL5, 5L6, 517,
ROT4,ROTS, ROT6,ROTT,
SW4, 5W5, SW6, SWT,
HT4,HT5, H16,HTT,

IFONT)

Now, any graphical entity may be used.

You may insert the example code documented in each
subroutine here.

For example, dravw a multiple point line.

POLINTS=T7
x{1)=20
Y (1)=40
x1{2)=50
Y (2)=40
X1{3)=50
Y (3)=50
x{4)=40
¥ (4)=50
x{5)=40
Y (5} =60
x{6)=20
Y (6} =60
X{7)1=%x{1)
Y {1 =¥ (1)

CALL UWMPLINE(X,Y,POINTS,ITYPS,WIDS,ILEVS,ICOLS,SYS,IDBGBJ

Issue termination call to close graphical system.
CALL UWTERM(SYS,IDBGB)

UWGRAPH LIBRARY - 6

CLOSE (DQUTNUM)
STOP
END

UWGRAPH LIBRARY -7

Subroutine Descriptions
Following each UWGRAPH subroutine the arguments are defined, typed
and dimensioned. Then a chort example is given along the graphic which was
produced by the code. Last, the arguments are described graphically. The
structure for each UWGRAPH subroutine documentation is consistent, except for
the initialization and termination routines which perform no graphical drawing

function.

UWGRAPH LIBRARY - 8

INITIALIZATION - Initializes the appropriate graphics libraries
for subsequent entity calls.

CALL UWINIT (INPUTDIR, OUTNAME, XWMIN, XWMAX, YWMIN,
YWMAX, WKSID, WSCON, WSTYE, UNIT, SYS, IDBGO)

1. INPUTDIR (CHARACTER*35) - The directory name, located
in the first line of the datafile BLOCK.DEF, is read and returned
through this argnment. The BLOCK.DEF datafile can be modified
to contain the desired directory name. This directory can be used
by the application program as the directory name for the input data
files (use of this directory name is optional and the application is
responsible for its use). See Appendix C for detail on
BLOCK.DEF.

NOTE: This directory name will be echoed during the
initialization procedure for approval or modification unless the first
three characters of the directory name are 'xxx'. The 'xxx'
characters must be removed by the application.

2. OUTNAME (CHARAC’I'ER*45) + This is the filename where
the graphical data will be written. Do not use extensions.

NOTE: The output directory name located in the second line of the
datafile BLOCK DEF will be placed at the beginning of this file
name. The output directory name may be up to 35 characters long
and the total number of characters in the output directory name and
the output filename combined must be less than or equal to 45
characters.

3. XWMIN (REAL*4) Minimum X coordinate for the output
window in GKS.
* UUsed only by GKS

4, XWMAX (REAL*4): Maximum X coordinate for the output
window in GKS.
* Used only by GKS

5. YWMIN (REAL*4): Minimum Y coordinate for the output
window in GKS.
* Used only by GKS

6. YWMAX (REAL*4) : Maximum Y coordinate for the output
window in GKS.
* Used only by GKS

7. WKSID (INTEGER*4) : Workstation identifier in GKS
(similar to a file unit number in FORTRAN).
* Used only by GKS

8. WSCON (INTEGER*4) Workstation connectivity in GKS
(can be set to 1).

UWGRAPH LIBRARY -9

* Used only by GKS

9, WSTYP (INTEGER*4) + Workstation type number in GKS (for
example WSTYP=12 for IG/GKS Window. Workstation - See
K

GKS implementation specific lem
Reference Manual for applicable workstation type number).
* Used only by GKS

10. UNIT (CHARACTER*3) : String indicating the units being
used.

a) 'IN' - Inches
b) MM' - Millimeters

c) 'FT' - Feet
d) MI' - Miles
e)'M' - Meters

f) 'KM' - Kilometers

g) 'MIL' - Mils (i.e., 0.001 inch)
h) 'UM' - Microns

)'CM' - Centimeters

j) 'UIN' - Microinches

11. SYS INTEGER*2) : System number for output.
1 =DXF
- 2 = Micro-CSL
3= GKS
12. IDBGO (INTEGER) : Debug flag for UWGRAPH

initialization routine. If IDBGO = 1 each argument in the
initialization call will be written to the file debug.txt.

UWGRAPH LIBRARY - 10

&

Table 2. Initlalization Example

PROGRAM EXAMPLE

. (INITIALIZATION OF VARIABLES, ETC)

QUTNAME

= 'testout’

XwMIN = 0.0
XWMAX = 190.0
YyMIN = 0.0
yWwMAX = 190.0
WKSID = 1

WSTYP = 12

WsTYP = 9701
WSCON = 1
UNIT = "IN'
5Y5 = 3
IDBGO = 1

CALL UWINIT (INPUTDIR, OUTNAME, XWMIN, XWMAX, YWMIN,
YWMAX, WKSID, WSCON, WSTYE, UNIT, 5Y5, IDBGO)

ENTITY CALLS RND A TERMINATION CALL FOLLOW

UWGRAPH LIBRARY - 11

LINE - A two point line is created.
CALL UWLINE (X1, Y1, X2, y2, ITYP1, WID1, ILEV], ICOL1, SYS, IDBGI)
1. X1 (REAL*8): X coordinate of point 1.
. Y1 (REAL*8): Y coordinate of point 1.

2

3. X2 (REAL*8): X coordinate of point 2.
4. Y2 (REAL*8): Y coordinate of point 2.
5

. ITYP1 (INTEGER*Z) : Line type.

1 = Solid

2 = Dashed

3 = Phantom
4= Centcrlinq

Negative integer = use default.
6. WID1 (REAL*8): Line width.

Negative number = use default.
*N/A for DXF

7. ILEV1 (INTEGER*2) : Viewing level of the line.

Negative integer = usé default.
* N/A for GKS

8. ICOL1 (INTEGER*2) : Line color.

1 =Black

2 =Red

3 = Green

4 =Blue

5 = Yellow

6 = Magenta

7 =Cyan

8 = White

Negative integer = use default

9. SYS (INTEGER*2) : System number for output.

1 = DXF
2 = Micro-CSL
3=GKS

10. IDBG1 (INTEGER) : Debug flag for UWGRAPH line

routine. IfIDBG1 =1 gach argument in the line call will be
written to the file debug.txt.

UWGRAPH LIBRARY - 12

c

&

INITIALIZATION CALL

1DBGL = O
oALL UWLINE (X1, Yi,
s¥s, IDBG1)

TERMINATION CALL

Table 3. Line Entity Example

x2, Y2, 1TYP1, WIDL, ILEV1, ICOLL,

Figure l.a

UWUNE(XI,YI,XZ,YZ.ITYPI. WiDI,ILEVI, icoL,SYs, 108Gl

(XY

(X2.Y2)

(TYPI = Default
wiDl = Default
ILEVI = Defoult
joo = 4

Figure 1l.b

UWGRAPH LIBRARY - 13

CIRCULAR ARC - An arc is drawn given a center, radius, start angle and
an end angle. !

CALL UWARC (XCENT, YCENT, RADIUS, DRAWDIR, STANGLE,
EANGLE, ITYP2, WID2, EV2, ICOL2, SYS, IDBG2)

1. XCENT (REAL*8): X coordinate of the center of the arc.
2. YCENT (REAL*8) : Y coordinate of the center of the arc.
3. RADIUS (REAL*8): Radius of the arc.

4, DRAWDIR (INTEGER*2) : Draw direction from the start
angle to the end angle.

Negative integer = Counter clockwise

Positive integer = Clockwise
5 STANGLE (REAL*8): Start angle of the arc in degrees.
6. EANGLE (REAL*8): End angle of the arc in degrees.
7. ITYP2 (INTEGER*Z) - Arc line type.

1 = Solid

2 = Dashed

3 = Phantom

4 = Centerline

Negative integer = usc default.

3. WID2 (REAL*8): ArcC line width.

Negative number = use default.
* N/A for DXF

9. ILEY2 (INTEGER*2) : Viewing level of the arc.

Negative integer = use default.
* N/A for GKS

10. ICOL2 (INTEGER*Z) . Arc line color.

1 = Black

2 =Red

3 = Green

4 = Blue

5 = Yellow

6 = Magenta

7 = Cyan

8 = White

Negative integer = us¢ default

UWGRAPH LIBRARY - 14

11. SYS (INTEGER*2) : System npumber for output.

1 =DXF
2 = Micro-CSL
3 =GKS

12. IDBG2 (INTEGER) : Debug flag for UWGRAPH arc routine.
{f IDBG2 = 1 each argument in the arc call will be written to the

file debug.txt.

UWGRAPH LIBRARY - 15

Table 4. ALC Entity Example

o INITIALIZATION CALL
XCENT = 20.0
YCENT = 28
RADIUS = 10
DRAWDIR = -1
STANGLE = 90
EANGLE = 180
iTYP2 = 1
WID2 = -1
ILEV2 = 2
TcoL2 = 4
IDBG2 1

CALL UWARC {XCENT, YCENT, RADIUS, DRAWDIR, STANGLE, ERNGLE,
¢ 1ITYP2, WID2, 1Lev2, IcoLz, SYS, IDBG2)

C TERMINATION CALL

Figure 2.a

UWARCIXCENT, YCENT,RADIUS, DRAWDIR, STANGLE,
EANGLE,ITYPZ, wip2,ILEV2,IC0LE, SYs,/DBG2)
DRAWDIR = =}

STANGLE =
EANGLE = 180

® Yz = Default
%, wip2 = Defoult
<, jLEV2 = Default
icoLz = 4
— (XCENT,YCENT)
Figure 2.b

UWGRAPH LIBRARY - 16

MULTIPLE POINT LINE - A line string is drawn given more than two
points.

CALL UWMPLINE (X, Y, POINTS, ITYP3, WID3, ILEV3, ICOL3, 8YS,
IDBG3)

1. X(I) (REAL*8 (340)) : TthX coordinate.
2. Y(I) (REAL*8 (340)) : Tth'Y coordinate.
3. POINTS (INTEGER*2) : Number of points in the line string.
4. TTYP3 (INTEGER*2) : Line string type.
1 = Solid
2 = Dashed
3 = Phantom
4 = Centerline
Negative integer = use default.

5. WID3 (REAL*8) : Line string width.

Negative number = use default.
* N/A for DXF

6. ILEV3 (INTEGER*2) Viewing level of the line string.

Negative number = use default.
* N/A for GKS

7. 1COL3 (INTEGER*2) : Line string color.

1 =Black

2 =Red

3 = Green

4 =Blue

5 = Yellow

6 = Magenta

7 = Cyan

8 = White

Negative integer = use default

8. SYS (INTEGER":?.) : System number for output.
1 =DXF
9, = Micro-CSL
3=GKS
9. IDBG3 (INTEGER) : Debug flag for UWGRAPH multiple

point line routine. If IDBG3 = | each argument in the multiple
point line call will be written to the file debug.txt.

UWGRAPH LIBRARY - 17

C

Table 5. Multiple Point Line Entity Example

YNITTALIZATION CALL

X({1) = 10
{1} = 58
X({2) = 19
y(2} = 51
%(3) = 25
¥(3) = 57
X{4) = 30
y{a) = 51
POINTS = 4
ITYE3 = -1
§ID3 = -1
IcoL3 = 4
ILEV3 = 4

(]

IpBG3 = O
CALL UWMPLINE (X, Y, POINTS, ITYP3, WID3. 1LEV3, ICOL3,
& SYs, IDBG3} _

TERMINATION CALL

Figure 3.a

UWMPLINE(X,Y,POINT S, ITYP3,WID3,ILEV3,ICOL3, SYS,IDBG3)

ITYP3 = Defoult

(Xen, el wiD3 = Default
(3),v(3) JLEV3 = Defoult
1coL3 + 4
(x(23,y2) (X(4),Y(4))
Figure 3.b

UWGRAPH LIBRARY - 18

GENERAL NOTE - One or more strings of text are placed.

CALL UWNOTE (TCENX, TCENY, TOTCHR, NOSTR, TBUFFR, ITYP4,
WID4, [LEV4, [COL4, SL4, ROT4, [iT4, SW4, JUST, IFONT, SYS, IDBG4)

1. TCENX(D) (REAL*8 aoy: X coordinate of the T'th string of
text.

2. TCENY(D (REAL*8 aoy: Y coordinate of the T'th string of

text.

3, TOTCHR(I) (INTEGER*Z (10)): Number of characters in the
T'th string of text located in TBUFFR.

4. NOSTR (INTEGER*Z) . Number of separate strings located in
TBUFFR. Maximum of 10 strings.

5. TBUFFR (CHARACTER*’!Z) . Text buffer containing
combined text strings without spaces between the strings.

6. ITYP4 (INTEGER*2) : Line type for text.
~ 1=Solid
2 = Dashed
3 = Phantom
4 = Centerline
Negative integer = Use default.
* NIA for Micro-CSL
* N/A for GKS

7. WID4 (REAL*8): Line width for the note.
Negative number = use default.
* N/A for GK
* N/A for DXF

8. ILEV4 (INTEGER*2) : Viewing level of the note.

Negative integer = use default.
* N/A for GKS

9. ICOLA (INTEGER*2) : Text color.

1 =Black

2 = Red

3 = Green

4 = Blue

5 = Yellow

6 = Magenta

7 =Cyan

8 = White

Negative integer = use default

UWGRAPH LIBRARY - 19

10. SLA4(1) (REAL*8 (10)) : Character slant in degrees for the I'th
text string (positive = CCW, negative = C

To use the default, set to -999,
* NJA for M icro-CSL.
+ GKS uses an italic font if SL4>0.0

11. ROTA() (REAL*8 (10)) : I'thtext string rotation angle in
degrees (positive = CCW, negative = CW).

To use the default, set t0 -999.

12. HT4(D) (REAL*8 (10)) : Height of the I'th text string.
Negative number = use default

13. SW4(I) (REAL*8 (10)) : Width of the T'th string of text.

Negative number = use default.
* NIA for Micro-CSL.

14. JUST (INTEGER) :+ Text justiﬁcation for the text strings
(HORIZONTALNERTICAL

1 = LEFT/TOP

2 = LEFT/CENTER

3 = LEFT/BOTTOM

4 = CENTER/TOP

5= CENTER/CENTER
6= CENTER/BOTTOM
7 = RIGHT/TOP

g = RIGHT/CENTER
9= RIGHT/BOTTOM

15. IFONT (INTEGER) . Micro-CSL FONT NUMBER
* N/A for DXF.
* N/A for GKS.

16. SYS (INTEGER*2) : System number for output.
1 =DXF
2 = Micro-CSL
3 = GKS
17. IDBG4 (INTEGER) Debug flag for UWGRAPH general

note routine. If IDBG4 = 1 each argument in the general note call
will be written to the file debug.txt.

UWGRAPH LIBRARY - 20

Table 6. General Note Entity Example

INITIALIZATION CALL

HT4 (1} =
HT4 {2} =
TCENX (1)
TCENY {1)
TCENX (2}
TCENY {2)
NOSTR = 2
TBUFFR = 'THIS I5 A NOTEPlaced in two strings."'
TOTCHR (1} 14

TOTCHR {2) 22

ITYP4 = 1
WIpd = -1
TcoLd = 1
ILEV4 = 5
sra{1) = 0.
s14{2) = 0.
ROT4{1) = —~

.5
T4 (1)

e

14
70 + HT4{2) + 2
14
10

wunn

1pBG4 = 1

CALL UWNOTE (TCENX, TCENY, TOTCHR, NOSTR, TBUEER, ITYRA,
& Wipd, ILEV4, IcoL4, SL4, ROT4, ©T4, SWA, JuUsT, IFONT,
& SYs, IDBGA4)

TERMINATION CALL

THIS IS A NOTE
Plgced In TwO strings.

Figure 4.2

UWNOTE(TCENX, TCENY, TOTCHR, NOSTR, TBUF F R, ITY
ILEV4, 1COL4, SL4, ROT 4,HT 4, SW4,JUST, 'svs,’zggévélﬁ‘"

THIS IS A NOTE %"
(TCENX(!), TCENYI OTCHR(2) = 22

NOSTR = 2
JUST = 3

(TCEJVXVED.TTZE]DVZJ}L::>/ (:7(::EE?<:1 jb/f? 7Lt/b/(:) ‘E; 7L,’-i’/~)§;7‘5;°

Figure 4.b

UWGRAPH LIBRARY - 21

GENERAL DIMENSION CALL - A dimension with a break in the leader
line for dimension text is drawn given two coordinates parallel to the object

being dimensioned and the coordinate of the dimension's text. The value of
the dimension text can be scaled and witness lines can be extended if

XPT1,YPT1 side. 1If there is only room for the dimension text inside the
witness lines (but not the leader and arrowheads) the dimension will be
drawn with arrows out.

CALL UWDIM (DNUMX, DNUMY, XPT}, YPT1, XPT2, YPT2, ITYPS,
WwWID5, ILEVS, 1COLS, SLS, ROTS, HTS, SW5, SCALE, DIMFLAG, EXT1,
EXT2,SYS, IDBGS)

1. DNUMX (REAL*8): X coordinate of the numeric part of the
dimension.

2. DNUMY (REAL*8): Y coordinate of the numeric part of the
dimension.

3. XPT1 (REAL*8): X coordinate of the first dimension point.
4, YPT1 (REAL*8): Y coordinate of the first dimension point.
5. XPT2 (REAL*8): X coordinate of the second dimension point.
6. YPT2 (REAL*8): Y coordinate of the second dimension point.
7

. ITYPS ([NTEGER*2) . Line type for the dimension.

1 = Solid
2 = Dashed
3 = Phantom

4 = Centerline
Negative integer = use default.

8. WIDS (REAL*8) : Line width for the dimension.
Negative number = use default.
*N/A for GKS
*N/A for DXF

9. ILEVS (INTEGER*Z) . Viewing level of the dimension.

Negative integer = Usc default.
* N/A for GK

10. ICOL5 (INTEGER*Z) . Dimension text color.

1 = Black
2 =Red
3 = Green

UWGRAFPH LIBRARY - 22

4 =Blue

5 = Yellow

6 = Magenta

7 = Cyan

8 = White

Negative integer = use default

11. SL5(1) (REAL*8 (10)) : Character slant in degrees for the
dimension text (positive = CCW, negative = CW).

To use the default, set to -999.
* N/A for Micro-CSL.

* GKS uses an italic font if S1.4>0.0,

12. ROT5(1) (REAL*S (10)) : Dimension text rotation angle in
degrees (positive = CCW, negative = C

To use the default, set to -999.

13. HT5(1) (REAL*8 (10)) : Height of the dimension text.
Negative number = use default

14. SW5(1) (REAL*8 (10)) : Width of the dimension text.

Negative number = use default.
* NJA for Micro-CSL.

15. SCALE (REAL*4) : Allows for scaling of the dimension text
string value. For example: A drawing can be scaled by a factor of
10 so the desired dimension value must be divided by 10. The use
of this parameter depends upon the next argument - DIMFLAG.

16. DIMFLAG (INTEGER*2) : Flag for dimension text format.

999 = Divide dimension length by SCALE and convert to
fractional format. Applicable only if using units of feet or
inches.

888 = Divide dimension length by SCALE and leave in
floating point format.

OTHERWISE = The text string will reflect the true
dimension length in floating point format.

17. EXT1 (REAL*8) : Distance to extend the witness line for the
first point dimensioned.
NOTE: If EXT1 =-999.0 the witness line will not be
drawn on the side of the first point dimensioned.

18. EXT2 (REAL*8) : Distance to extend the witness line for the
second point dimensioned.
NOTE: If EXT2 =-999.0 the witness line will not be

drawn on the side of the first point dimensioned.

19. SYS (INTEGER*Z) . System number for output.

UWGRAPH LIBRARY - 23

1 = DXF
2 = Micro-CSL
3 = GKS

20. IDBGS (INTEGER) : Debug flag for UWGRAPH general
dimension routine. If IDBG5 = 1 each argument in the general
dimension cail will be written to the file debug.txt.

UWGRAPH LIBRARY - 24

Table 7. General Dimension Entbity Example

INITIALIZATION CALL

XPTL =
YPT1 =
Xp12 =
YPT2 =
HE5{1) = 0.8

DNUMX (XPT1 + xpt2) / 2.0
DNUMY = YBTL + 1.5 + HT5{1)

BEXT2 = 2
EXT1 = 0
WIDS = -1

TCoLS = 8

ILEVE = 3

SL5(1) = ~999

ROTS{1) = —999

sw5(1) = -1

DIMFLAG = 999

SCALE = 1.0

IpBGS = 1

CALL UWDIM (DNUMX, DNUMY, xpT1, YPT1, XPT2, YPTZ, ITYES,

¢ WID5, ILEVS, ICOL3, sL5, ROTS, HT5, SWS3, SCALE, DIMFLAG,
s EXTl, EXT2, SYS, 1IDBG5)

P
0
0

TERMINATION CALL

f—— 1~ 7 __—-\

Figure 5.a

UWDIM(DNUMX, DNUMY, XPT!,YPTI,XPT2,YPT2, ITYP5,WID5,ILEVS,

ICOL5, SLB, HT 5, SW5, SCALE,DIMFLAG,EXTI,EXT2, NEAREST,

SYS,1DBG5)

] V;tra _____‘____3
(XPTLYPTD)
I— 1 (XPT2,YPT2) DIUFLAG = 999

(DNUMX, DNUMY)

Figure 5.b

UWGRAPH LIBRARY - 25

SECOND DIMENSION TYPE - A dimension is drawn with a continuous
leader line drawn from witness line to witness line and a string of text or a
numeric dimension placed at user defined coordinates. Witness line

extensions and dimension value scaling is available with this dimension type
also.

1. ALDRX (REAL*8): Any X coordinate along the leader line.
2. ALDRY (REAL*B) : Any Y coordinate along the leader line.

3. MSGX (REAL*8) : X coordinate of the text message Of
aumeric dimension. :

4. MSGY (REAL*8): Y coordinate of the text message or
aumeric dimension.

5. XPT1 (REAL*8): X coordinate of the first dimension point.
6. YPT1 (REAL*8): ¥ coordinate of the first dimension point.
7. XPT2 (REAL*8): X coordinate of the second dimension point.
8. YPT2 (REAL*8): Y coordinate of the second dimension point.

9, TBUFFR (CHARAC’I'ER*'T?.) . Text if character string is to be

placed, ignored if numeric dimension 15 t0 be placed.

10. TOTCHR(1) (INTEGER*2 10)) : Number of characters in
TBUFFR. Toplace a numeric dimension, set TOTCHR(1) = -1.

11. ITYP6 (INTEGER*2) : Line type for the dimension.
1 = Solid
2 = Pashed
3 = Phantom
4 = Centerline
Negative integer = use default.
12. WID6 (REAL*8): Line width for the dimension.

Negative number = use default.
* N/A for DXF

13. ILEY6 (INTEGER*?.) . Viewing level of the dimension.

Negative integer = use default.
* NJA K

UWGRAPH LIBRARY - 26

14. ICOL6 (INTEGER*2) : Dimension color.

1 =Black

2 =Red

3 = Green

4 =Blue

5 = Yellow

6 = Magenta

7 = Cyan

8 = White

Negative integer = usc default

15. SL6(1) (REAL*3 (10)) : Character slant in degrees for the
dimension text string (positive = CCW, negative = CW).

To use the default, set to -999,
* N/A for Micro-CSL.
* GKS uses an italic font if SL.4>0.0,

16. ROT6(1) (REAL*8 (10)) Text string rotation angle in
degrees (positive = CCW, negative = CW).

To use the defauit, set to -999.

17. HT6(1) (REAL*8 (10)) : Height of the dimension text string.
Negative number = use default

18. SW6(1) (REAL*8 (10)) Width of the dimension text.

Negative number = use default.
* N/A for Micro-CSL.

19. SCALE (REAL*4) : Allows for scaling of the dimension text
string value. For example: A drawing can be scaled by a factor of
10 so the desired dimension value must be divided by 10. The use
of this parameter depends upon the next argument - DIMFLAG.

0. DIMFLAG (INTEGER*2) : Flag for dimension text format.

999 = Divide dimension length by SCALE and convert tO
fractional format. Applicable only if using units of feet or
inches.

888 = Divide dimension length by SCALE and leave in
floating point format.

OTHERWISE = The text string will reflect the true
dimension length in floating point format.

71. EXT1 (REAL*8) : Distance to extend the witness line for the
first point dimensioned.
NOTE: If EXT1 =-999.0 the witness line will not be
drawn on the side of the first point dimensioned.

UWGRAPH LIBRARY - 27

72, EXT2 (REAL*8) : Distance to extend the witness line for the
second point dimensioned.
NOTE: If EXT2 =-999.0 the witness line will not be
drawn on the side of the first point dimensioned.

23.SYS (INTEGER*2) : System number for output.
1=DXF
2 = Micro-CSL
3 =GKS
24. IDBG6 (INTEGER) : Debug flag for UWGRAPH second

dimension routine. If IDBG6=1 each argument in the second
dimension call will be written to the file debug.txt.

UWGRAPH LIBRARY - 28

Table 8. gecond Dimension Entity Example

INITIALIZATION CALL

xp1l = 10
ypPT1 = 110
xpT2 = 22
ypT2 = 114

4.0
ALDRX = (¥PT1 + xpr2) / 2.0 - (4/12.65) « 2 * HT6(1)
ALDRY = (YPT1 + ypT2) / 2.0 - {12/12.65) x o * HT6(1}
MSGK = ALDRX
MSGY = ALDRY + SPALED t HT6{1) /7 2.0
TBUFFR = 1pimension Text®
TDTCHR(l) = 16
EXT2 0.0
EXT1
WiDé
icoL6 =
ILEVE =
sLe{l) = -9%9
ROT6 (1} = -999
sW6 (1} = -1
1DBG6 = 1
CALL yWDIM2 {BLDRX, ALDRY, MSGX, MSGY, XPT1, YpTl, XPT2,
« wp12, TBUFFR, nOTCHR, ITYR6, WIDE 11EV6, 1COL6, SLS,
. ROT6, HTE, SWE SCALE, DIMFLAG, EXT1, EXT2, SYS, 1DBG6)

(]

0.0

w o -

TERMINATION CALL

Figure 6.a

UWDIM2(ALDRX, ALDRY, MSGX, MSGY, xPT!,YPTL XPTZ, yPT2,TBUFER,
TOTCHR.ITYP6.WID6, !LEV6,ICOL6,SL6.ROT6.HT6.SW6.SCALE.
DIMFLAG,EXT!, EXT2,NEAREST, SYs,10BG6)

‘“SGX-“SZ:’ ‘:ﬁ e 18 rorcHri = 14

Figure 6.b

LWVGRAPHIJBRARY-29

SUBSET VERSION OF UWDIM2 - Similar to UWDIM2, but allows more
than one text string to be placed.

CALL HDDIM2 (ALDRX, ALDRY, TCENX, TCENY, XPT1, YPT1, XPT2,
YPT2, TBUFFR, TOTCHR, NOSTR, ITYP6, WID6, ILEY, ICOLS, SLG,
ROTS6, HT6, SW6, EXT1, EXT2, SYS, IDBG6)
1. ALDRX (REAL*8): Any X coordinate along the leader line.
ALDRY (REAL*8): Any Y coordinate along the leader line.
. TCENX(I) (REAL*8) : X coordinate of the T'th text string.

_ TCENY(D) (REAL*8): Y coordinate of the I'th text string,

2.

3

4

5. XPT1 (REAL*8): X coordinate of the first dimension point.

6. YPT1 (REAL*8): Y coordinate of the first dimension point.

7. XPT2 (REAL*8) : X coordinate of the second dimension point.
8. YPT2 (REAL*8): Y coordinate of the second dimension point.

9. TBUFFR (CHARACTER*72) . Contains combined character
strings is to be placed.

10. TOTCHR(I) AINTEGER*2 (10)) : Number of characters in I'th
string of TBUFFR.

11. NOSTR (INTEGER*2) : Number of strings to be placed.
12. ITYP6 (INTEGER*2) : Line type for the dimension.

1 =Solid

2 = Dashed

3 = Phantom

4 = Centerline

Negative integer = use default.
13. WID6 (REAL*8) : Line width for the dimension.

Negative number = use default.
* N/A for DXF

14, ILEY6 (INTEGER*2) : Viewing level of the dimension.

Negative integer = use default.

* N/A for GKS
15. ICOL6 (INTEGER*2) : Dimension color.

1 = Black

UWGRAPH LIBRARY - 30

2 =Red

3 = Green

4 = Blue

5 = Yellow

6 = Magenta

7 = Cyan

8 = White

Negative integer = use defaunlt

16. SLO(1) (REAL*8 (10)) : Character slant in degrees for the
dimension text string (positive = CCW, negative = CW).

To use the default, set to -999.
* N/A for Micro .
* (GKS uses an italic font if SL4>0.0.

17. ROT6(1) (REAL*8 (10)) : Text string rotation angle in
degrees (positive = CCW, negative =

To use the default, st to -999.

18. HT6(1) (REAL*8 (10)) ¢ Height of the dimension text string.
Negative number = use default

19. SW6(1) (REAL*8 (10)) - Width of the dimension text.

Negative number = use default.
* N/A for Micro-CSL.

20, EXT1 (REAL*8) : Distance t0 extend the witness line for the
first point dimensioned.
NOTE: XT1 =-999.0 the witness line will not be
drawn on the side of the first point dimensioned.

21. EXT2 (REAL*8): Distance to extend the witness line for the
second point dimensioned.
NOTE: If EXT2 = -999.0 the witness tine will not be
drawn on the side of the first point dimensioned.

22.SYS (INTEGER*Z) . System number for output.

1 =DXF
2= Micro-CSL
3 = GKS

23, IDBG6 (INTEGER) : Debug flag for UWGRAPH subset
dimension routine. If IDBG6 = 1 each argument in the subset
dimension call will be written to the file debug.xt.

UWGRAPH LIBRARY - 31

Table 9. Subset Dimenslon Entity Example

C INITTALIZATICN CALL
XPT1 = 10
YPT1l = 132
XPT2 = 22
YpT2 = 136

HT6 (1) = 0.75

HT6{2) = HT6{1}

SPALED = HT6(1) / 4.0

ALDRX = (XPT1 + XPT2) / 2.0 - {4/12.65) * 4 * HT6 (1}
ALDRY = (YPT1 + ¥YPT2)} / 2.0 - {12/12.65) * 4 * HTG (1}

TCENX (1) = ALDRX

TCENY (1} = ALDRY + SPALED + HT6{l) / 2.0
TCENX{2) = TCENX{1)

TCENY (2} = ALDRY - SPALED - HT6{1) / 2.0
TBUFFR = 1pimensionText®

TOTCHR {1} = 9

TOTCHR {2) = 4

NOSTR = 2

EXT2 = 0.0

EXT1l = 0.0

WIDG = -1

1COLe = 8

ILEVE = 3

sL6{1) = -999

ROT6 (1} = 18.4

sWe {1} = -1

sLE({2) = —-999

ROTG {2} = 18.4

sWe(2) = -1

IDRGE = 1

CALL HDDIM2 (ALDRX, ALDRY, TCENX, TCENY, XPT1, YPT1, XPT2,
¢ YpT2, TBUFFR, TOTCHR, NOSTR, ITYPG, WID6, ILEVE, ICOLS,
¢ SL6, ROTS, HTE, SW6, EXT1, EXT2, SYS, IDRGE)

c TERMINATION CALL

pimensic
Tox!

Figure 7.a

HDDIM2(ALDRX, ALDRY, TCENX, TCENY, XPT], YPTI,XPT2,YPT2,TBUFFR,
TOTCHR, NOSTR, ITYP6,WID6,ILEVSE, ICOLG, SL6,ROT6,HTE,SWE,
SCALE,DIMFLAG,EXTI,EXT2,NEAREST, SYS,1DBG6)

(TCENX(D, TCENY(]))
' of
{xgéﬂﬁ

= t (XPT2,YPT2) TOTCHR(l) = 9
TOTCHR(2) = 4
(TCENX(2), TCENY(2))
(XPT1,YPTI)
Figure 7.b

UWGRAPH LIBRARY - 32

LABEL - A two segment leader is placed with an arrowhead at the tip and up to
three text strings at the leader end.

CALL UWLABEL (TCENX, TCENY, TOTCHR, NOSTR, TBUFER, TIPX, TIPY,
MIDX, MIDY, ENDX, ENDY, 1TYP7, WID7, 1LEV7, ICOL7, SL7,ROTT, HT7,SW7,
JUST, SYS, IDBGT)

1. TCENX(®D (REAL*8 ao): X coordinate of the T'th string of text.

2. TCENY(D) (REAL*8 aomy: Y coordinate of the T'th string of text.

3. TOTCHR() (INTEGER*2 10y : Number of characters in the I'th
string of text located in TBUFFR.

4. NOSTR (INTEGER*2) : Number of separate strings located in
TBUFFR. Maximum of 10.

5. TBUFFR (CHARACTER*"IZ) . Text buffer containing combined text
strings without spaces between the strings.

6. TIPX (REAL* g): X coordinate of the tip of the leader line (side where
arrow is to be placed).

7. TIPY (REAL* : Y coordinate of the tip of the leader line (side where
arrow is to be placed).

8. MIDX (REAL*8) : X coordinate of the middle point on the leader line.
9. MIDY (REAL*8): Y coordinate of the middle point on the leader line.
10. ENDX (REAL*8): X coordinate of the end point on the leader line.
11. ENDY (REAL*8) Y coordinate of the end point on the leader line.
12. 1TYP7 (INTEGER*2) : Line type for the label.

1 = Sotid

2 = Dashed

3 = Phantom

4 = Centerline

Negative integer = use default.

13. WID7 (REAL*8): Line width for the label.

Negative number = use default.
* N/A for DXF

14, ILEVT (INTEGER*?.) . Viewing level of the label.

Negative integer = use default.
* N/A for GK

UWGRAPH LIBRARY - 33

15. ICOL7 (INTEGER*2) : Label color.

1 =Black

2 =Red

3 = Green

4 = Blue

5 = Yellow

6 = Magenta

7 =Cyan

8 = White

Negative integer = use default

16. SL7(I) (REAL*3 (10)) : Character slant in degrees for the T'th text
string (positive = CCW, negative = CW).

To use the default, set to -999.
* N/A for Micro-CSL.
* GKS uses an italic fontif SL4>0.0.

17. ROT7() (REAL*3 (10)) : T'th text string rotation angle in degrees
(positive = CCW, negative = CW

To use the default, set to -999,

18. HT7() (REAL*8 (10)) : Height of the I'th text string.
Negative number = use default

19. SW7(I} (REAL*8 (10)) : Width of the I'th string of text.

Negative number = use default.
* NfA for Micro-CSL.

20. JUST (INTEGER) : Text justification for the text strings
(HORIZONTAL[VERTICAL).

1 = LEFI/TOP

2 = LEFT/CENTER

3 = LEFT/BOTTOM

4 = CENTER/TOP

5 = CENTER/CENTER
6 = CENTER/BOTTOM
7 = RIGHT/TOP

8 = RIGHT/CENTER

9 = RIGHT/BOTTOM

21. SYS (INTEGER*2) : System number for output.
1 =DXF

2 = Micro-CSL
3=GKS

UWGRAPH LIBRARY - 34

. Debug flag for UWGRAPH label routine. If

22. IDBG7 (INTEGER)
nt in the label call will be written t0 the file

IDBG7 = 1 each argume
debug.txt.

See the example following the subset yersion of label description.

UWGRAPH LIBRARY - 35

SUBSET VERSION OF LABEL - This label call has the same arguments as the first
label call, but a text bracket is drawn automatically. Refer to the previous call for
variable descriptions.

CALL HDLABEL (TCENX, TCENY, TOTCHR, NOSTR, TBUFFR, TIPX, TIPY,
MIDX, MIDY, ENDX, ENDY, ITYP7, WID7, ILEVZ, ICOL7, SLZ, ROT7, HT7, SW7,
JUST, SYS, IDBG7)

UWGRAPH LIBRARY - 36

Table 10. Subset Label Entity Example

C INITIALIZATION CALL

TRUFFR = 'This is a LabelWith A Text Bracket'

TOTCHR (1) = 15

TOTCHR (2} = 19

NOSTR = 2

HT7(1} = 1.25

BT7{2) = HT7(1)

SPALED = HT7(1) /4.0
TIFPX 10

TIPY 160

MIDX TIPX + 5.0 ¥ HT7 (1)

powouonn

MIDY TIPY + 3.5 * UT7(L}
ENDX MIDX + 11.0 * HTT {1}
ENDY MIDY

TCENX (1} = ENDX + pT7(1} / 2.0

TCENY {1} = ENDY + SPALED / 2.0
TCENX(2) = TCENX {1}

TCENY (2) = EWDY - SPALED/2.0 - BT7 (2}
JusT = 3

IcoL? = 4

ILEV? = 3

sLT{1) = ~999

ROT7{1) = -999

sW1 (1) -1

sL7(2) = -999
ROTT(2) = -999

s@7(2) = -1
ITYRP? = 1
Wip? = -1

CALL HDLABEL (TCENX, TCENY, TOTCHR, NOSTR, TRUFFR, TIEX,
¢ TIPY, MIDX, MIDY, ENDX, ENDY, t1Typ?, WID7, ILEV7, ICOL7,
s 5L7, ROTY, HT7, swi, JUST, SYS, TDBGT)

o} TERMINATION CALL

ﬁ'm's is g Label

/ \With A Text Bracket

Figure B.a

HDLABEL(TCENX, TCENY, TOTCHR,NOSTR,TBUFFR, T/ PX,TIPY,
MIDX, MIDY, ENDX, ENDY, ITYP7,WID7,ILEVT,ICOLY,
SL7,ROTT,HTT,SW7, JUST,SYS,I1DBGT7)

:EHDX.EN@CT his is a Label

(MIDX, MIDY) With A Text Bracket
CENX,TCENY}
(TiFx,TIFY)
Figure 8.b

UWGRAPH LIBRARY - 37

ARROWHEAD - Given the coordinates of a line arrowhead(s) are
placed at the end(s) of the line.

CALL UWARROW (P1X, P1Y, p2x, P2Y, HT, SIDE, ITYPY, WID9, ILEY9, ICOLY,
SYS, IDBGY)

1. P1X (REAL*8): X coordinate of point 1 on the line.
n P1Y (REAL*8): Y coordinate of point 1 on the line.
3. P2X (REAL*8): X coordinate of point 2 on the line.
4. P2Y (REAL*8): Y coordinate of point 2 on the line.

5. HT (REAL*B): Character height (used to scale the arrowhead; the
arrowhead is drawn 1.5 characters long and 0.5 characters high)

6. SIDE (INTEGER) - Code for which side of the line to place the
arrowhead.

1 = Side of point 1
2 = Side of point 2
3 = Both sides

7. ITYP9 (INTEGER*2) : Line type.

1 = Solid

n = Dashed

% = Phantom
4 = Centerline

Negative integer = use default.
NOTE: UWARROW uses the same defaults as UWLABEL

3. WID9 (REAL*8): Line width.

Negative number = use default.
* N/A for DXF

9. ILEV9 (INTEGER*Z) . Viewing level of the line.

— Negative Integer = use default.
' * N/A for GKS

10. ICOL9 (INTEGER*2) : Line color.

1 = Black
2 =Red

3 = Green
4 =Blue

5 = Yellow

UWGRAPH LIBRARY - 38

6 = Magenta

7 = Cyan

8 = White

Negative integer = use default

11. SYS (INTEGER*2) : System number for output.

1 =DXF
2 = Micro-CSL
3 =GKS

12. IDBGY (INTEGER) : Debug flag for UWGRAPH arrowhead routine.
If IDBGY = 1 each argument in the arrowhead call will be written to the

file debug.txt.

UWGRAPH LIBRARY - 39

Cc

Table 11.

INITIALIZATION CALL

élx 10

ply = 180
p2X = 35
p2y = 185
HT = 3.00
SIDE = 2
ITYP9 = 1
WIip9 = -1
ILEVY = 3
ICOLY = 5

Arrowhead Entity Example

CALL UWARROW (P1X, piY, P2X, P2Y, ut, SIDE, ITYP9, WIDY, TLEV9, ICOL3, 5Y5,

& IDBGY)

TERMINATION CALL

'UWAHROW(PTX,P‘!Y,PZX,

(PIX,PIY]

Figure 9.2

P2Y,H7}SIDE,ITYP9, WID9,ILEVS, ICOL

{P2X.P2Y)

Figure 9.b

UWGRAPH LIBRARY - 40

9,5YS,IDBGY)

TERMINATION CALL:

CALL UWTERM(SYS, IDBGS)
1. SYS (INTEGER*2) : System number for output.

1=DXF
2 = Micro-CSL
3 =GKS

2. IDBGS (INTEGER) : Debug flag for UWGRAPH termination routine.
If IDBGS = 1 each argument in the termination call will be written to the

file debug.txt.

UWGRAPH LIBRARY - 41

Table 13.

INITIALIZATION CALL

ENTITY CALLS

sYS = 3

IDBGY = O

CALL UWTERM{SYS, TDBG8)}
STOF

END

Termination Example

UWGRAPH LIBRARY - 42

COMPILING PROGRAMS

The following examples show the procedure for compiling and linking the first example
program (TESTBOX FOR) using three different compilers:

1. Microsoft FORTRAN Optimizing Compiler Version 4.01
2. Unix FORTRAN

MICROSOFT FORTRAN EXAMPLE

FL /c /4Nt /412 /FP1 TESTBOX.FOR
LINK TESTBQX,, , UWGRAPHF

Note: To use the Microsoft Codeview debugger, include the options /Zi /Od in the
compiling procedure and /CO in the linking procedure.

Required files:

TESTBOX.FOR

VARLFOR

BLOCK.DEF
UWGRAPHF.LIB

* cal subroutine call include files

Il e

File unit numbers used by the UWGRAPH system:

UNIT = 10 Opened in UWGRAPH.FOR (debug.txt file)
UNIT = 22 Opened in UWGRAPH.FOR (Defaults file)
UNIT = 100 DXF output file

UWGRAPH LIBRARY - 43

UNIX FORTRAN EXAMPLE: (Using the GKS & CSL Libraries)

Note: All files in this example are located in the current working directory. The
commands below form a UNIX makefile which is used to compile and link only the files
which have been changed since the makefile was last run or when the object codes do not
yet exist.

If this makefile is called 'makefile’ the make is invoked by the command 'make’. If
another filename is used the command 'make -f makefilename' must be used.

The following makefile also contains a m4 pre-processing section. The
preprocessor is used to remove any system dependant comments that may reside in the
source code. The source code naming conventions are as follows: source_name.F is the
un-preprocessed code with the system dependent code commented out; source_name.f is
the processed code (specific to a particular system) which has been created by the m4
preprocessor. The command: include(m4_commands) must appear at the top line of the
source_name.F file. The md_commands file contains the system dependent comments
that will be striped out by m4. See Appendix D on preprocessing code.

FILES = testbox.f

0BJ = testbox.o

LSUFFIXES :

.SUFFIXES : .o .f .F

EDIR = f

LFLAGS =

FFLAGS =

MAIN = testbox.exe

LIBS = -1fgks -1hdl -1gks ~ltools_s -lc_s -lmcsl ~lm
#

linker

#
$ (EDIR) 5 (MRIN) : $ (OBJ}

$ (LFLAGS) f77 % (OBJ) uwgraphf.lib §(LIBS) -o ${EDIR) % (MAIN)
§ note: there must be a tab at the beginning of the preceding line

#
$ compile to objects
¥

${0BJ)
£77 4 (FFLAGS) *.o $<
4 note: there must be a tab at the beginning of the preceding line

¥
$ mi preprocessor
#

.F .f: 4{(FILES)

mid 57 > §*.[
4 note: there must be a tab at the beginning of the preceding line
3

Required files:

1. testbox.F

2. uwgraphf.lib
3, m4_c0mma;}ds

4, VARILFOR

5. BLOCK.DEF

6. The GKS Library «
7. *cal subroutine call include files

*

UWGRAPH LIBRARY - 44

*Note: These files should be symbolically linked to the directory from which the compile is executed to
avoid using up disk space. This can be done with 2 command similar to the one below which links the
uwgraph FORTRAN library to the current directory:

1n -s fusrfuwgraph/libfuwgraph.lib .
File unit numbers used by the UWGRAPH system:

UNIT

10 Opened in UWGRAPH.FOR (debug.txt file)
UNIT

22 Opened in UWGRAPH.FOR (Defaults file)

ol

UWGRAPH LIBRARY - 45

Programming/Hints

Dimensioning:

Often the dimensioning text size on a sheet must remain constant even
though various parts of the drawing must be to different scales. This must be
taken into consideration when writing a program to create automated drawings.
Perhaps the best way to provide this flexibility is to have separate scale factors for
text and drawing entities. The text and whitespace between dimengion lines and
the drawing can be multiplied by a text scale factor which will be a function of the
sheet scale. The drawing (excluding text) should use a different scale factor which
might be a function of the available space on the sheet for the drawing or some
other specified scale. Tt is wise to keep track of how much test space and white
space is required by a particular drawing so there is enough space left for the rest
of the drawing.

When using UWDIM to create small dimensions, if the text will not fit
between the witness lines, the test coordinates are automatically changed by the
dimensioning routine. The new text coordinates lie outside the witness lines on
the side of the first point dimensioned. If it appears that the text for a dimension
will not fit between the witness lines, leave some space for the text and/or
arrowheads on the side of the first point dimensioned.

GKS Window Sizing

The initialization of GKS requires that the minimum and maximum X and
Y window coordinates be specified. These coordinates should be set to the
absolute minimum and maximum coordinates expected to be generated by the

application. If the window height and width are not equal, the output will be

UWGRAPH LIBRARY - 46

distorted, therefore a square window size i8 recommended.
GKS Initialization

After GKS has been initialized, program execution must not be interrupted
before termination. Within the GKS environment GKS has "full control” and a
read from the keyboard or some other form of program interruption will not
transfer program control external to GKS and will cause a loclkup (unless input
can be entered through another window). Therefore, all keyboard-type input must
be completed before initialization or after termination.
Using an INTERPRO (Intergraph) Digitizer in GKS

When rotating or translating the output in GKS, digitizer input is required.
The data button is used to select a point on the screen. The button should be
pressed "erisply” because the screen may go blank if the button is pressed for too
long. If the screen does go blank, a carriage return or an Esc key should return

the display.

UWGRAPH LIBRARY - 47

DXF

OUTPUT VIEWING

(Site Specific Details)

The process for converting a DXF file to the native format of a CADD

system varies depending on the system being converted to. See the appropriate

vendor supplied documentation for specific details.

Micro-CSL

Once a design file has been created, it can be viewed with the following

procedure:
1.

2.

GKS

Login to a workstation.

From the directory where the design file is located type: mce
filename.dgn

If using a digitizer, you must first activate the menu by typing: 'am =
menu,cm’

Place the crosshairs on the origin of the digitizer and press the data
button.

To fit the view to the window, select fit by pushing the inside red
button while the crosshairs are over FIT on the digitizer pad. Locate
a point on the screen and press the data button twice.

The window and zoom functions can be invoked with the digitizer
with the command button and by locating screen points with the data
button.

GKS output is displayed directly on the screen. The output can be

manipulated by selecting a menu option from the screen menu. To select an

option press the data button when the arrow is over the desired function. The

available functions are:

UWGRAPH LIBRARY - 48

- WINDOW (select window corners with pointing device)

- SCALE (input scale factors from menu or keyboard)

- TRANSLATE (input points with the pointing device)

-ROTATE (input an angle from the keyboard and a fixed point from the

pointing device)

- PLOT (creates a GKS metafile with .plt extension)

- EXIT

If plot is selected, a metafile is created under the output filename and the
user is returned to the menu, Plots can be made by using a plotter with a GKS
metafile interpreter (such as IPLOT). The image as shown in the GKS window
will be plotted. To create a plot, position the drawing so all of it can be seen and

do the scaling at the plot menu level.

UWGRAPH LIBRARY - 49

AP PIENIDIOC

SPLICATION PROGRAM |

: Link at Compile Time

UWGRAPH |

/ l\:utput Format
GDS GKS

l

DXF

Figure Al UWGRAPH Architecture

Structure of an Application Program

1. Inltialization Call

L]
-
»

2. Entity Call(s)

3, Termination Call

initlalization assignments

L
L]

CALL UWINIT (...)

L 4

Calculations, assignments, etc.
CALL UWLINE (...)
CALL UWDIM (...)

L 4
L]

CALL UWTERM (...)

Figure A2 Structure of a typical application program

FALSE MAPPINGS

GKS does not support the use of phantom lines and centerlines so these types of
lines are mapped to line styles that are available in GKS. The false mappings are as such.

Phantom line I ———
is mapped to
T L

Centerline
is mapped to
Dotdash liNe cesrmrmrmrmrmrmet e

The default color lookup table was used to select colors in Micro-CSL so the
Intergraph color mappings are:

BLACK is mapped to WHITE
RED is mapped to RED
GREEN is mapped to GREEN
BLUE is mapped to BLUE
YELLOW is mapped to YELLOW
MAGENTA is mapped to VIOLET
CYAN is mapped to BLUE
WHITE is mapped to WHITE

If the colors do not map as shown, the reason may be that the colors are being displayed
according to the level in which the entity was placed. Turning off the level symbology
will remedy this problem.

Black is also mapped to white in the DXF system.

* cal INCLUDE FILES

The following include files may pbe used in an application program to avoid having
to make multiple changes to an argument 1ist in the event of an argqument list
modification. The system dependankt syntax of the include statement can be handled as
shown in the following example {Microsoft, apollo, VAX/VMS and Green Hills Fortran syntax
for a uwinit.cal include) :

CMSFSINCLUDE:'uwinit.cal‘
CAPLYINCLUDE 1ywinit.cal'
CVAX TNCLUDE Tuwinit.cal'
CGHE INCLUDE 1gwinit.cal’

nfter preprocessinq, Lhe source code will contain the appropriate syntax for the
include statement .

uwinit.cal:
CALL UWINIT(INPUTDIR,OUTNAME,XWMIN,XWMAX,YWMIN,
& YWMAX,WKSID,WSCON,WSTYP,UNIT,SYS,IDBGO)

usedef.cal:

CALL USEDEF(ITYPI,ITYPZ,ITYPB,ITYP4,ITYPS,ITYPG,ITYPT,
1 ILEVl,ILEVZ,ILEV3,ILEV&,ILEVS,ILEVG,ILEVT,
ICOLl,Ic0L2,ICOLS,ICOLA,ICOLS,1C0L6,IC0L7,
WIDl,WID2,WID3,WID4,WID5,WIDG,WID?,

siL4,sLS, sL6,SL7,

ROTA, ROTS, ROTE, ROTT,

SWd,SW5, SW6, SWT,

HT4,HT5,HTG,HT?)

A n o

uwline.cal:
CALL UWLINE(Xl,Yl,XZ,YZ,ITYPl,WIDl,ILEVl,ICOLl,
1 sYs, IDBG1)

uwarc.cal
CALL UWARC(XCENT,YCENT,RADIUS,DRAWDIR,STANGLE,
1 EANGLE,ITYPZ,WIDZ,ILEVZ,ICOLZ,SYS,1DBG2)

uwmpline.cal
CALL UWMPLINE(X,Y,POINTS,ITYPB,WID3,ILEV3,
1 10013, SYS, IDBG3)

uwnote.cal

CALL UWNOTE(TCENX,TCENY,TOTCHR,NOSTR,TBUFFR,

1 ITYPq,w1D4,ILqu,ICOLA,SL4,R0T4,HT4,SW4,
2 JUST,SYS,IDBGQ)

uwdim.cal
CALL UWDIM(DNUMK,DNUMY,XPTl,YPTl,XPTZ,YPTZ,
1 ITY?S,WIDS,ILEVS,ICOLS,SLS,ROTS,HTS,SWS,
2 SCALE,DIMFLAG,EXTI,EXTZ,NEAREST,SYS,IDBGS)

uwdim?.cal
CALL UWDIMZ(ALDRX,ALDRY,MSGX,MSGY,XPTl,YPTl,XETZ,YPTZ,

1 TBUFFR,TOTCHR,ITYPG,WIDG,ILEVG,ICOLG,SLG,ROTG,
2 HTG,SWG,SCALE,DIMFLAG,EXTl,EXTZ,NEAREST,SYS,
3 IDBG6)

hddim.cal
CALL HDDIMZ{ALDRX,ALDRY,TCENX,TCENY,XPTI,YPTl,

1 XETZ,YPTZ,TBUFFR,TOTCHR,NOSTR,ITYPG,WIDG,ILEVG,
2 ICOLG,SLG,ROTG,HTG,SWG,EXTI,EXTZ,SYS,IDBGG)

uwlabel.cal

cALL UWLABEL(TCENX,TCENY,TOTCHR,NOSTR,TBUFFR,TIPX,

1 TIPY,MIDX,MIDY,ENDX,ENDY,ITY?T,WIDT,ILEVT,ICOL?,
2 SL?,ROT?,HT?,SWT,JUST,SYS,IDBGT)

hdlabel.cal

CALL HDLABEL(TCENX,TCENY,TOTCHR,NOSTR,TBUFFR,TIPX,

1 TIPY,MIDX,MIDY,ENDX,ENDY,ITYP?,WIDT,ILEUT,ICOL?,
2 SLT,ROTT,HT?,SWT,JUST,SYS,IDBGT)

awarrow.cal
CALL UWARROW(PlX,PlY,PZX,P2Y,HT,SIDE,ITYPQ,WIDQ,
1 ILEV9,ICOL9,SYS,IDBG9)

uwterm.cal

CALL UWTERM({SYS, IDEGH)

APPENIDIDC

SAMPLE PROGRAMS

This appendix contains listings of two sample programs which demonstrate the

UWGRAPH library. These programs must be preprocessed before being compiled.

comments that are to be stripped out, If you are using the STRIP preprocessor a

STRIP.DAT file must be created and the first line of each program should be removed.
See the appendix section on preprocessing and *.cal include files for more det

TRSTROX PROGRAM

include(m4_commands)
PROGRAM TESTBOX

First, declare the working variables with this statement.

C

o] This program draws a DOX and dimensions it using the

C UWGRAPH library of graphics calls.

C

[NOTE: Key to system dependent comments:

o]

C MSF = MICROSOFT FORTRAN (IF USING, REPLACE CMSF WITH NOTHING)
c VAX = VAX FORTRAN (IF USING, REPLACE CvVAX WITH NOTHING)

C GHF = Green Hills-FORTRAN (IF USING, REPLACE CGHF WITH NOTHING)
o] APL = APOLLO FORTRAN {IF USING, REPLACE CAFPL WITH NOTHING)

C 165 = IGES LIBRARIES BEING USED {REPLACE ¢I1GS WITH NOTHING)
o] 176 = 1GDS LIBRARIES BEING USED (REPLACE CITG WITH NOTHING)

C gks = GKS LIBRARIES BEING USED (REPLACE WITH NOTHING})

Cc

C

Cc

CMSF$INCLUDE:'VBRI.FOR'
CAPL%INCLUDE *VARI.FOR'

CVAX INCLUDE ¢YARI.FOR'
CGHF INCLUDE "YARI.FOR'
REAL WIDSCALE
c
C get debug flags.
C
ipBGO = 1
ipBGl = 1
pBe2 = 1
IpeG3 = 1
IpBGAe = 1
IDBG5 = 1
1DBGE = 1
ipeG7 = 1
IpBGE = 1
c
C Now, open Up 2 file to ocutput messages.
c
OUTNUM=41 ‘
OPEN(UNITsOUTNUM,FILE='MESSAGE.OUT',STATUS='UNKNOWN‘)
Cc
C set up the inittalizatien parameters.
c
QUTNAME = tBOXOUT'
XWMIN =0
XWMAX = 90
YWMIN =0
YWHMAX = 90
WKSID =1
wscoN =1
WSTYP = 12
UNIT = LFT'
cIGS SYS =1
CITG SYS = 2
CGKS SYS =3
c CALL UWINIT(INPUTDIR,OUTNAME,XWMIN,XWMAX,YWHIN,

c YWMAX,WKSID,WSCON,WSTYP,UNIT,SYS,IDBGO)
CMSF$INCLUDE:‘uwinit.cal'

CAPL%INCLUDE 1uwinit.cal’

CVAX INCLUDE 'uwinit.cal‘

CGHF INCLUDE tywinit.cal’

ails.

m4 is being used as a preprocessor you must create the file m4_commands to indicate the

Initialize the default flags with this call.

cALL USEDEF (ITYP1, ITYPZ, ITYP3, ITYP4,ITYPS, ITYP6, ITYP7,
ILEVl,ILEVZ,ILEV3,ILEVQ,ILEVS,ILEVE,ILEVT,
IcoLl, IcoLZ, ICOL3, ICOL4, ICOLS5, ICOL6, ICCLT,
WID1,WID2,WID3,WID4, WID5, WIDE,WID7,
sL4,SLS, 5L6,5L7,
ROT4,ROT5, ROT6, ROTT,
&W4, SWS, SWE, SWT,
HT4,HTS, HT6, HT7}

CMSFSINCLUDE: 'usedef.calt

CAPL%INCLUDE ‘usedef.cal'

CVAaX INCLUDE ‘usedef.cal'

CGHF INCLUDE ‘'usedef.cal!

anoaaaea0onNnnNa

-1 O LN QI B

set the drawing scale.
SCALE = 1.0

Initialize colors.

aan ann

ICOL3
ICOL4

8
8
ICOLS 5

IR

Set linewidth scale.

a0

WIDSCALE = 0.3
Now, some graphles calls can be made.

Draw a multiple point line.

aaoana

POINTS=1

X (1) =20

¥ (1)=40

X{2}=50

Y {2)=40

X{3)=50

¥ (3)=50

X (4)=40

Y{4)=50

X {5)=40

Y {S)=60

X (e}=20

Y{6)=60

X{7)y=x{1)

Y{7)=Y{1)

WID3 = 0.01458 * WIDSCALE
c CALL UWMPLINE (X, Y, POINTS, ITYP3,WID3, ILEV3, ICOL3, 5YS, IDBG3)
CMSFSINCLUDE: 'uwmpline.cal'
CAPL%INCLUDE ‘uwmpline.cal’

CVAX INCLUDE ‘uwmpline.cal’
CGHF INCLUDE ‘uwmpline.cal’
Cc
C Place dimension at left side.
c

DNUMX=14

DNUMY=50

XPT1=20

YPT1=40

XPT2=20

YPT2=60

HTS (1) =1

ROT5{1) = 90.0

EXT1 = 0.0

EXT2 = 0.0

DIMFLAG = 999
WID5 = 0.00B833 * WIDSCALE

c CALL UWDIM(DNUMX,DNUMY,XPT1,YPT1,XPT2,YPT2, ITYPS,WIDS,
c 1 ILEVS, ICOL5, SL5, ROTS5, HT5, SW5, SCALE, DIMFLAG, EXT1,
c 2 EXT2, NEAREST, SY5, IDBGS)

CMSF$INCLUDE: 'uwdim.cal!
CAPL$INCLUDE ‘uwdim.cal®

CVAX INCLUDE ‘'uwdim.cal®

CGHF INCLUDE ‘'uwdim.cal'

C

C Place dimension at top-left.
DNUMX=30

pNUMY=64

KPT1=20
YPT1=60
¥PT2=40
YPT2=60
ROTS (1) = 0.0
c CALL UWDIM(DNUMX,DNUMY,xPTl,YPTl,XPTZ,YPTZ,ITYES,WIDS,
c 1 ILEUS,ICOLS,SLS,ROTS,HT5,SW5,SCALE,DIMFLAG,EXTl,

c 2 EXTZ,NEAREST,SYS,IDBG5)
CMSFSINCLUDE:‘uwdim.cal'
CAPLEINCLUDE ywdim.cal’

CVAX INCLUDE rywdlm.cal’
CGHF INCLUDE tywdim.cal’
C
[Place dimension at top-right.
c
DNUMX=45
DNUMY=64
¥PT1=50
¥PT1=60
XpT2=40
YPT2=60
EXT1 = 10.0
c CALL UWDIM(DNUMX,DNUMY,XPTl,YPTl,XPTZ,YPTZ,ITYE5,WIDS,
c 1 ILEV5,ICOLS,SLS,ROTS,HT5,SW5,SCALE,DIMFLAG,EXTl,
2 EXTZ,NEAREST,SYS,IDBG5)

[o]
CMSF$INCLUDE:‘uwdim.ca1'
CAPL%TNCLUDE Tuwdim.cal'

CVBX INCLUDE Tuwdim.cal'
CGHF INCLUDE rywdim.cal'
C
[Place dimension on the right side.
C
DNUMX=55
DNUMY=45
XPT1=50
YPT1=50
XPT2=50
ypT2=40
ROTS (1} = 90.0
c CALL UWDIM(DNUMX,DNUMY,XPTI,YPTI,XETZ,YPT2,ITYPS,WIDS,
c 1 ILEVS,ICDLS,SLS,ROTS,HTS,SW5,SCALE,DIMFLAG,EXT1,
c 2 EXTZ,NEAREST,SYS,IDBGS)
CMSF$INCLUDE:‘uwd1m.cal'
CAPL%INCLUDE tuwdim.cal'
cVAX INCLUDE ‘uwdim.cal'
CGHF INCLUDE tywdim.cal’
[
C place a note.
C

TCENX{1) =33
TCENY (1) =72
TOTCHR {1) =9

NOSTR=1
TBUFFR='TESTBOX 1’
HTA{1)=4
JusT = 3
WID4 = 0.00833 * WIDSCALE
¢ CALL UWNOTE(TCENX,TCENY,TOTCHR,NOSTR,TBUFFR,ITYPﬂ,WIDQ,ILEvd,
1 ICOLq,SLq,Romq,HT4,swq,JUST,srs,IDBGq)

c
CMSFsINCLUDE:‘uwnote.cal'
CcAPL&INCLUDE uwnote.cal'

CVAX INCLUDE ‘ywnote.cal’
CGHF INCLUDE tywnote.cal'
c
o c Now, terminate graphlcs creation.

CALL UWTERM(SYS,IDBGB)
CMSF$INCLUDE:'uwterm.cal'
CAPLYINCLUDE tuwterm.cal’
cvax INCLUDE ‘uwterm.cal'
CGHF INCLUDE 'uwterm.cal'

STCF '
END

BAND SHELL PROGRAM

BAND i o ——

include(m4_commands)
PROGRAM SHELL

First, declare the working variables with this include statement.

c

C This program draws two views of a bandshell demonstrating

C the use of UWGRAPH library of graphilcs calls.

o4

C NOTE: Key to system dependent comments:

Cc

o4 MSF = MICROSCFT FORTRAN (IF USING, REPLACE CMSF WITH NOTHING}
c yAX = VAX FORTRAN (IF USING, REPLACE CVAX WITH NOTHING)

c GHF = Green H111s-FORTRAN (IF USING, REPLACE CGHF WITH NOTHING)
C APL = APOLLO FORTRAN (IF USING, REPLACE CAPL WITH NOTHING)

o] 165 = IGES LIBRARIES BEING USED {REPLACE CIGS WITH NOTHING)

C ITG = IGDS LIBRARIES BEING USED (REPLACE CITG WITH NOTHING}

C GKS = GKS LIBRARIES BEING USED (REPLACE WITH NOTHING)

Cc

o4

C

CM5F$INCLUDE:‘VARI.FOR'
CAPL%INCLUDE 1YART.FOR'

CVAX INCLUDE 1YART.FOR'
CGHF INCLUDE 1YARI.FOR'
REAL WIDSCALE
o4
C set debug flags.
o4
IDBG0 = 1
IDBGl = 1
IDBG2 = 1
IDRG3 = 1
IDRGA = 1
IDBGS = 1
IDBG6 = 1
IDBG7 = 1
IDBRGS = 1
o4
C Now, open up a file to output messages.
Cc
QUTNUM=51 .
OPEN(UNIT=OUTNUM,FILE='MESSAGE.OUT',STATUS=‘UNKNOWN')
Cc
[o set up the ipitialization parameters.
o4
QUTNAME = 'shellout’
XWMIN =0
XWMAX = 110
YWMIN = 0
YWMAX = 110
WKSID =1
WSCON =1
WSTYP = 12
UNIT = 'FT?
CIGS 5¥Y5 =1
CITG 5YS = 2
CGKS 5YS = 3
c CALL UWINIT(OUTNAME,XWMIN,XWMAX,YWMIN,YWMAX,WKSID,
c 1 WSCON,WSTYE,UNIT,S!S,IDBGO)

CMSF$INCLUDE:'uwinit.cal'
CAPL%INCLUDE Tywinit.cal'
[o417:%4 INCLUDE tuwinit .cal'
CGHF INCLUDE ‘uwinit.cal'

Tnitialize the default flags with this call.

CALL USEDEF(ITYPI,ITYP2,ITYP3,ITY94,ITYPS,ITYPG,ITYPT,
ILEVl,ILEVZ,ILEV3,ILEU4,ILEV5,ILEVG,ILEV?,
ICOLl,ICOLZ,ICOL3,ICOL4,ICOL5,ICOL6,ICOLT,
WInl,w102,w1n3,WID4,WID5,WIDG,WID1,
sL4,sL5,5L6, SL7,

ROTA4, ROTS5,ROT6, ROT?,
SwW4, SW5, SWE, SHT,
gT4,HTS,HT6, HTT)

CMSF$INCLUDE:'usedef.cal'

CAPL$INCLUDE 1ysedef . cal’

cvax INCLUDE 'usedef.cal'

CGHF INCLUDE tusedef.calf

QOQOOQOOOOO

oD ko

aon

Initlalize some colors.

ICOL1=B
ICOL2=-8
IC0L3=8
ICOL4=5
ICOL7=2
c
o] Set linewldth scale
C
WIDSCALE = 0.15
C
WID1 = 0.01458 * WIDSCALE
WID2 = 0.01458 * WIDSCALE
WID3 = 0.01458 * WIDSCALE
WID4 = 0.00833 * WIDSCALE
wIDS = 0.00833 * WIDSCALE
WIDG = 0.00833 * WIDSCALE
WID7?7 = 0.00833 * WIDSCALE
C
o Now, some graphics calls can be made.
c
C PLACE LOWER LEFT CORNER
c
X{l)=8
Y (1)=20
X({2)=8
¥{2}=16
X{3)=10
Y (3)=16
POINTS=3
c CALL UWMPLINE (X,Y,POINTS,

CMSF$INCLUDE: ‘uwmpline.cal’
CAPLSINCLUDE ‘'uwmpline.cal!

ITYP3,WID3,ILEV3,ICOL3,SYS,IDBG3)

CVAX INCLUDE 'uwmpline.cal’
CGHF INCLUDE ‘uwmpline.cal!
C
C PLACE LOWER RIGHT CORNER
C

X{1)=60

Y(1l)=16

X{2)=62

Y(2)=16

X{3)=62

¥ {3)=20

POINTS=3
c CALL UWMPLINE(X,Y,POINTS,ITYPS,WIDS,ILEVS,ICOLS,SYS,IDBG3)

CMSFSINCLUDE: 'uwmpline.cal'
CAPLYINCLUDE 'uwmpline.cal!

CVAX INCLUDE ‘'uwmpline.cal!
CGHF INCLUDE 'uwmpline.cal’

C

[PLACE B

c
X{1)=10
Y{l)=16
X{2)=10
Y (2)=20
X{3}=60
Yi3)=20
X{4) =60
Y(4)=16
X{5)=XI{
T{5)=Y(
PQINTS=

c CALL UWMPLINE (X,Y,POINTS,

ASE OF

1)
1)
5

SHELL

CMSFSINCLUDE:‘uwmpline.cal'
CAPL%INCLUDE ‘ywmpline.cal’

CVAX INCLUDE 'uwmpline.cal!'
CGHF INCLUDE 'uwmpllne.cal'
Cc
C PLACE LEFT STAIRS
cl

Xi=10

Y1=16.8

X2=16

¥Y2=16.8
c CcALL UWLINE (X1, Y

CMSFSINCLUDE:‘leinE.cal'
‘uwline.cal'

CAPLSINCLUDE

ITYP3,WID3,ILEV3,ICOL3,SYS,IDBG3)

1,%2, Y2, ITYP1,WID1, ILEV1, ICOLL, SYS, IDBG1)

CVAX INCLUDE 1ywline.cal’

CGHF INCLUDE tgyline.cal’
c2
X1=10
Y1=17.6
X2=16
¥2=17.6
c CALL UWLINE(XI,YI,XZ,YZ,ITYPl,WIDl,ILEVl,ICOLl,SYS,IDBGl)

CMSFSINCLUDE:'uwline.cal'
CAPL$INCLUDE tuwline.cal?

cVAX INCLUDE Tywline.cal!'
CGHF INCLUDE uwline.cal'
c3
X1=10
¥1=18.4
X2=16
¥2=18.4
c CALL UWLINE(XI,Yl,XZ,YZ,ITYPl,WIDl,ILEVl,ICOLl,SYS,IDBGl)

CMSF$INCLUDE:'uwline.cal‘
CAPLSINCLUDE iywline.cal’

CVAX INCLUDE fuwline.cal'
CGHF INCLUDE tywline.cal’
c4
¥1=10
¥1=19.2
xX2=16
¥2=19.2
¢ CALL UWLINE(Xl,Yl,XZ,YZ,ITYPl,WIDl,ILEVl,ICOLl,SYS,IDBGl)

CMSF$INCLUDE:‘uwline.cal'
CAPL% INCLUDE 1ywline.cal'

CVAX INCLUDE ywline.cal'
CGHF INCLUDE tywline.cal’
ch

X1=16

¥1=20

¥2=16

¥2=16

c CALL UWLINE(Xl,Yl,XZ,YZ,ITYPl,WIDl,ILEVl,ICOLl,SYS,IDBGl)
CMSF$INCLUDE:‘uwline.cal' .
CAPLSINCLUDE tuwline.cal'

CVAX TNCLUDE tywline.cal’
CGHF INCLUDE tuwline.cal'
c
C PLACE RIGHT STAIRS
cl
X1=54
Y1=16.8
X2=60
¥2=16.8
¢ CALL UWLINE(xl,Yl,xZ,YZ,ITY?l,WIDl,ILEVl,ICOLl,SYS,IDBGl)
CMSF$INCLUDE:'uwline.cal‘
CAPLSINCLUDE ruwline.cal’
CcVAX INCLUDE lywline.cal!
CGHF INCLUDE 1awline.cal?
c2
¥1=54
¥1=17.6
%x2=60
¥2=1T7.6

CALL UWLINE(Xl,Yl,XZ,YZ,ITYPl,WIDl,ILEVl,ICOLl,SYS,IDBGl)
CMSF$INCLUDE:'uwline.cal‘
CcAPL%INCLUDE tuwline.cal’

CVAX INCLUDE tuywline.cal’
CGHFE INCLUDE uywline.cal'
c3
X1=54
¥1=18.4
¥2=60
y2=18.4
c CALL UWLINE(XI,Yl,XZ,YZ,ITYPI,WIDl,ILEVl,ICOLl,SYS,IDBGl)

CMSFSINCLUDE:'uwline.cal'
CAPL$INCLUDE tuwline.cal'

CVAX INCLUDE tuwline.cal'
CGHF INCLUDE tgwline.cal’
c4

x1=54

¥1=19.2

*2=60

y2=19.2

CALL UNLINE(XI,Yl,X2,Y2,ITY?1,WID1,ILEV1,ICOLl,SYS,IDBGl)
CMSF$INCLUDE:'uwline.cal'

CAPL%INCLUDE tywline.cal’

CVAX INCLUDE tuwline.cal®
CGHF INCLUDE tuwline.cal’
Cc5
X1=54
Y1=20
X2=54
Y2=16
c CALL UWLINE(Xl,!l,XZ,YZ,ITYPl,WIDl,ILEVl,ICOLl,SYS,IDBGl)

CMSF$INCLUDE:'uwline.cal'
CAPL3INCLUDE tuwline.calt

CVAX INCLUDE Tywline.cal’
CGHF TNCLUDE tywline.cal’
C
C DRAW INNER ARC
C

XCENT=35

YCENT=20

RADIUS=25

DRAWDIR=-1

STANGLE=U.0
EANGLE=180.0
c CALL UWARC(XCENT,YCENT,RADIUS,DRAWDIR,STANGLE,EANGLE,ITYPZ,
C 1 WIDZ,ILEVZ,ICOLZ,SYS,IDBGZ)
CHSF$INCLUDE:‘uwarc.cal'
CAPLSTNCLUDE tywarc.calf

CVAX INCLUDE tuwarc.cal’
CGHF INCLUDE luwarc.cal’
C
C DRAW OUTER ARC
C
RADIUS=27T
o CALL UWARC(XCENT,YCENT,RADIUS,DRAWDIR,STANGLE,EANGLE,ITYPZ,
c 1 WIDZ,ILEVZ,ICOLZ,SYS,IDBGZ)

CMSF$INCLUDE:'uwarc.cal‘
CAPL3INCLUDE ywarc.cal’
CVAX INCLUDE tuwarc.cal'
CGHF INCLUDE tywarc.cal’
Cc
c DRAW PODIUM WITH TWO LINE STRINGS
Ccl
®(1y=34
Y {1)y=20
X(2)=34
Y(2)=23.2
%(3)=34.4
Y{3)y=23.2
X{4)=34.4
y(4)y=22.8
X{5)=35.6
Y(5)=22.8
X{6)=35.6
Y (6)=23.2
%{7)=36
¥(1)=23.2
X{8)=36
Y (8)=20.0
POINTS=8
c CALL UWMTLINE(X,Y,POINTS,ITYPB,WID3,ILEV3,ICOL3,SYS,IDBG3}
CMSFSINCLUDE:'uwmpline.cal‘
CAPL$INCLUDE tywmpline.cal®

CVAX INCLUDE tywmpline.cal'
CGHF INCLUBE tywmpline.cal’
Cc
c2

X{11=34.4

Y{1)=23.2

x{2)=34.4

Y{2)=24

X(3}=35.6

Y {3)=24

X(4)=35.86

¥{4)=23.2

POINTS=4
c CALL UWHPLINE(X,Y,POINTS,ITYP3,WIDE,ILEV3,ICOL3,SYS,IDBG3)

CMSFslNCLUDE:'uwmpline.cal
CAPL%INCLUDE "ywmpline.cal’

CVAX INCLUDE tuwmpline.cal®
CGHF INCLUDE tuwmpline.cal’

Cc

C DRAW HIDDEN popIUM IN VIEW 2

ITYP3:=2

X(1y=18

Y{1}=20.0

X{2)=78.0

Y{2)=23.2

X(3)=79.2

Y (3)=23.2

X{4)=79.2

Y{4}=20.0

POTINTS=4

ICOL3=5
c CALL UWMPLIME (X,Y,POINTS,TTYP3,WID3, ILEV3, 1coL3, 5¥s, IDBG3)
CMSFSINCLUDE: 'uwmpline.cal®
CAPLYTNCLUDE 'uwmpline.cal'
CVAX INCLUDE ‘'uwmpline.cal’
CGHF INCLUDE ‘'uwmpline.cal!
c

X(1)=78.6

Y(1)=23.2

x{2)=179.2

Y{2)=24.0

X(3)=179.2

¥Y{3)=23.2

POINTS=3
c CALL UWMPLINE (X, Y,POINTS,ITYP3,WID3, ILEV3, ICOL3, SYS, IDBG3)
CMSF$INCLUDE: 'uwmpline.cal!
CAPLY¥INCLUDE ‘'uwmpline.cal'
CVAX INCLUDE 'uwmpline.cal!
CGHF INCLUDE 'uwmpline.cal!
o

ICOL3=8

ITYP3=1

DRAW LINE STRING FOR PERIMETER OF SIDE VIEW

nnaoao

X{(1)=102
Yi{1)=20
X{2)=102
Y(2)=16
X{3)=T70
Y{3)=16
X (4)=70
Y{4)=16.8
¥{5)=71
Y{5)=16.8
X(6}=71
Y({6)=17.6
X{7)=72
Y{7)=17.6
X(0)y=72
Y(8)=18.4
X{9)=73
Y{9)=18.,4
X(10)=73
¥{10)=19.2
x(11}=74
Y(11)=19.2
X({12)=174
Y{12)=20
X{13)=175
¥ (13)=20
X(14)=75
Y{14)=47
POINTS=14
o] CALL UWMPLINE(X,Y,POINTS,ITYP3,WID3,ILEV3,ICOL3,SYS,IDBG3)
CMSFS$ INCLUDE : 'uwmpline.cal'
CAPLSTINCLUDE 'uwmpline.cal'

CVAX INCLUDE ‘'uwmpline.cal'
CGHF INCLUDE ‘uwmpline.cal’
C
C DRAW THE OUTER ARC FOR THE SIDE VIEW
C
XCENT=T75
YCENT=20
RADIUS=27
DRAWDIR=-1
STANGLE=0.0
EANGLE=90.0
o CALL UWARC(XCENT,YCENT,RADIUS,DRAWDIR,STANGLE,EANGLE,ITYP2,

B-8

c 1 WIDZ,ILEVZ,ICOLZ,SYS,IDBGZ)
CMSFSINCLUDE:'uwarc.cal'
CAPLSINCLUDE tuwarc.cal'

CVAX INCLUDE uwarc.cal’
CGHF INCLUDE tuwarc.cal’
C
C DRAW THE INNER ARC FOR THE SIDE VIEW
C
RADIUS=25
ITYP2=2
1C0L2=5
[CALL UWARC(XCENT,YCENT,RADIUS,DRAWDIR,STANGLE,EANGLE,ITYPZ,
c 1 WIDZ,ILEVZ,ICOLZ,SYS,IDBGZ)

CMSFSINCLUDE:'uuarc.cal'
CAPL$INCLUDE tywarc.cal'

CVAX INCLUDE Tuwarc.cal'
CGHFE INCLUDE tywarc.cal’
c
C DRAW BOTTOM DASHED LINE oN THE SIDE VIEW
C

X1=75

¥1=20.0

¥2=100

¥2=20.0

ITYP1=2

1COL1=5

CALL UWLINE(Xl,Yl,XZ,YZ,ITYPl,WIDl,ILEVI,ICOLl,SYS,IDBGl)
CMSFSINCLUDE:'nwline.cal'
caPLYINCLUDE vuwline.cal'

CcVAX INCLUDE tuwline.cal’

CGHFE INCLUDE tuwline.cal’
ICOL1=8
1COL2=8

[

c

C PLACE THE TITLE

[

TCENX (1} =50
TCENY {1} =62
TCENX (2)=50
TCENY {2) =58
TOTCHR (1) =10
TOTCHR {2} =26

NOSTR=2
TRUFFR="'BAND gHELLFor the Cheyenne orchestra'
HT4 (1) =4
HT41{2)=2
JusT = 5
c CALL UWNOTE(TCENX,TCENY,TOTCHR,NOSTR,TBUFFR,ITYPq,WID4,
c [1 ILEV4,ICOL4,SL4,ROT4,HT4,SW4,JUST,SYS,IDBGA)

CMSF$INCLUDE:'uwnote.cal‘
CAPL%INCLUDE 1uwnote.cal’

CVAX TNCLUDE 1ywnote.cal’
CGHF INCLUDE 1yunote.cal’
C

C PLACE THE LABEL

[

HT7{1) = 1.5

TOTCHR (1)=14

NOSTR=1

TBUFFR="'Quarter sphere’

TIP%=35

TIPY=47

MIDX=38

MIDY=50

ENDX=40

ENDY=50

JusT = 2

TCENX (1) ENDX + HTT(1} / 2.0

TCENY{1) ENDY
c CALL UWLABEL(TCENX,TCENY,TOTCHR,NOSTR,TBUFFR,TIPX,
c & TIPY,MIDX,MIDY,ENDX,ENDY,ITYP?,WIDT,
c & ILEVT,ICOL?,SLT,ROTT,HT?,SWT,JUST,SYS,IDBGT)
CMSF$INCLUDE:‘uwlabel.cal‘
¢APL$INCLUDE 'uwlabel.cal‘

o

cvAax INCLUDE tuwlabel.cal’

CGHF INCLUDE ‘ywlabel.cal®

C

c DIMENSICN sTAIRS ON MAIN VIEW
ALDRX=13

ALDRY=14

MSGX=13

MsGY=14.3

XPT1=10

YPT1=16

XPT2=16

YPT2=16

TBUFFR='Stalrs - 6 Ft.*
TOTCHR(1)=14

uT6 (1)=.4
@ CALL UWDIMZ(ALDRX,ALDRY,MSGX,MSGY,XPTI,YPTI,XPTZ,
c & YPTZ,TBUFFR,TOTCHR,ITYPG,WIDS,ILEVG,ICOLG,
c & SLG,ROTG,HTG,SWG,SCALE,DIMFLAG,EXTl,ExTZ,
¢ & FEAREST, SYS, LDBG6}

CMSF$INCLUDE:'uwdim2.cal'
CAPL%INCLUDE tuwdim2 .cal'

CVAX INCLUDE tuwdim2.calt
CGHF INCLUDE vuwdim2.cal!
c
[PLACE BOTTCM DIMENSTONS ON MAIN VIEW
c
DNUMX=35
DNUMY=14
XPT1=16
¥pT1=16
XPT2=54
¥YpT2=16
HT5{1}=.5
c CALL UWDIM(DNUMX,DNUMY,XPTl,YPTl,XPTZ,YPTZ,ITYPS,
c & WIDS,ILEVS,ICOLS,SLS,ROTS,HTS,SWS,SCALE,

c & DIMFLAG,EXTl,EXTZ,NEAREST,SYS,IDBGS)
CMSFSINCLUDE:'uwdim.cal'
CAPL%INCLUDE tuwdim.cal!

CVAX INCLUDE suwdim.cal’®
CGHF INCLUDE tuwdim.cal’
c
DNUMX=38
DHUMY=10
XpT1l=8
YPT1=16
XPT2=60
¥YPT2=16
c CALL UWDIM(DNUMX,DNUMY,XPTI,YPTl,XPTZ,YPTZ,ITYPS,
c & WIDS,ILEVS,ICOLS,SLS,ROTS,HT5,SW5,SCALE,

c & DIMFLAG,EXTl,EXTZ,NEAREST,SYS,IDBGS)
CMSF$INCLUDE:'uwdim.ca1'
CAPLSINCLUDE uwdim.cal’

cvax INCLUDE tuwdim.cal’
CGHF INCLUDE tywdim.cal!
C
DNUMX=61
DNUMY=10
XPT1=62
YPT1=16
XPT2=60
YPT2=16
c CALL UWDIM(DNUMX,DNUMY,XPTl,YPTl,XPTZ,YPTZ,ITYPS,
c & WIDS,ILEVS,ICOLS,SLS,ROTS,HTS,SHS,SCALE,

c & DIMFLAG,Ele,EXTZ,NEAREST,SYS,IDBGS)
CMSF$INCLUDE:'uwdim.ca1'
CAPL%INCLUDE ywdim.cal'

CVAX INCLUDE tuwdim.cal®
CGHF INCLUDE tywdim.cal'
C
c
DNUMX=173
DNUMY=13
XPT1=70
YPT1=16
XPT2=15
YPT2=16
c ChLL UWDIM(DNUMX,DNUMY,XPTI,YPTl,XPTZ,YPTZ,ITYPS,
c & WIDS,ILEVS,ICOLS,SLS,ROTS,HTS,SWS,SCALE,

e & DIMFLAG,EXTl,EXTZ,NEAREST,SYS,IDBGS)
CMSF$INCLUDE:‘uwdim.ca1‘
CAPL%INCLUDE tuwdim.cal’

cvax INCLUDE ‘uwdim.cal'
CGHF INCLUDE yuwdim.cal'
DNUMX=89
DNUMY=13

XPT1=75

YPT1=16
XPT2=102
¥YPT2=16
c CALL UWDIM(DNUMX,DNUMY, XBT1,YPTL,XPT2, YPT2, TTYP3,
c & WIDS, ILEVS, ICOLS5, 5L5,ROTS5 HT5, SWS, SCALE,
c & DIMELAG, EXT1, EXT2, NEAREST, SYS, IDBGS)

CMSFS$ INCLUDE: 'uwdim.cal'
CAPL3INCLUDE fuwdim.cal'

CVAX INCLUDE ‘'uwdim.cal’

CGHF INCLUDE ‘uwdim.cal'

C

C Now, terminate graphlcs creation.
[

o] CALL UWTERM(SYS,IDBGS)
CMSF4INCLUDE: fuwterm.cal’
CAPL%INCLUDE ‘ywterm.cal'

CVAX INCLUDE ‘ywterm.cal'
CGHFE INCLUDE 'uwterm.cal'
c

CLOSE {OUTNUM)

STOP

END

SAMPLE PROGRAMS ON DISK

The following list of sample programs residing on a DOS formatted floppy disk
are distributed with the UWGRAPH software. These programs must be preprocessed
before compiling. See the appendix on compiling programs and preprocessing for details

on creating executables from these programs.

LIST OF SAMPLE PROGRAMS:
1. TESTBOX.F

2. BANDSHELL.F
3. UWTEST.F

B-12

TESTBOX |

20- 0”

2 O/__ O//

/ O/_ Ol/

r‘—

I O/__ O/J

Figure B1. Testbox Output

-13

BAND SHELL

For the Cheyenne Orchesira

Quarter sphere

Figure B2. Band Shell Output

APPRENDD G

TECHNICAL REFERENCE TO UWGRAPH FILES

LIST OF DXF SPECIFIC SUBROUTINES:

1. DXINIT
FUNCTION: Initializes the appropriate header table and block sections
and opens the DXF output file.

CALLS: HEADER, TABLES, BLOCKS

2. DXLINE
FUNCTION: Creates a two point line in DXF

CALLS: DXFCOL

3, DXFARC
FUNCTION: Creates a circular arc in DXF given the center, radius,
starting angle and ending angle.

CALLS: DXFCOL

4, DXMPLINE
FUNCTION: Creates a DXF line string

CALLS: DXFCOL

5. DXNOTE
FUNCTION: Places one or more strings of text in DXF

CALLS: DXFCOL

6. DXDIM
FUNCTION: Draws a DXF dimension with a break in the leader line for
the dimension text

CALLS: LASTC, DXLINE, ARROW, DXNOTE

7. DXDIM2
FUNCTION: DXF routine to draw a continuous dimension line and place
the dimension value or text at user defined coordinates.

CALLS: LASTC, DXNOTE, FTINSYM, DXLINE, ARROW

8. DHDIM2 _
FUNCTION: Similar to DXDIM2, but allows the user to place more than
one text string

9, DXLABEL

CALLS: DXNOTE, DXLINE, ARROW

FUNCTION: Creates a two segment leader, an arrowhead, and up to three

text strings at the end
CALLS: DXLINE, DXNOTE, ARROW

10. DHDLBL
FUNCTION: Similar to DXLABEL, but draws a bracket around the text

CALLS: DXLINE, DXMPLINE, DXNOTE, ARROW

11. DXTERM
es and closes DXEF file

FUNCTION: Terminat
CALLS: None

12. DXFCOL
FUNCTION: Maps UWGRAPH colors to DXF colors

CALLS: None

13. HEADE
and drawing limits to default values

R
FUNCTION: Sets border
CALLS: None

14. TABLES
FUNCTION: Sets standard line types and styles
CALLS: None
15. BLOCKS
FUNCTION: Writes the DXF Block section

CALLS: None

LIST OF Micro-CSL, SPECIFIC SUBRQUTINES:

1. GETCOL
APH colors to Micro-CSL colors.

FUNCTION: Maps UWGR
CALLS: CSL System

2. GETYPE
FUNCTION: Maps UWGRAPH line types t0 Micro-CSL line types.
CALLS: CSL System

3, ITARC

FUNCTION: Map uwgraph arc arguments to Micro-CSL arguments and
call CSL system routines.

CALLS: GETCOL, GETYPE, CSL System

. ITDIM
FUNCTION: Create dimension using Micro-CSL calls
CALLS: FTINSYM, ITLINE, UWARROW, ITNOTE, LASTC

. ITDIM2
FUNCTION: Create second dimension type with Micro-CSL calls
CALLS: FTINSYM, ITLINE, UWARROW, ITNOTE, LASTC

. ITINIT
FUNCTION: Initialize Micro-CSL graphics system
CALLS: FILECHK, LASTC, CSL System

. ITIUST
FUNCTION: Map UWGRAPH text ju stification to Micro-CSL text
justification
CALLS: None

. ITLABEL
FUNCTION: Create a label in the using Micro-CSL elements
CALLS: ITNOTE, ITLINE, UWARROW

. ITLINE
FUNCTION: Create a two point line using Micro-CSL calls
CALLS: GETCOL, GETYPE, CSL System

10. ITMPLINE
FUNCTION: Create a multiple point line using Micro-CSL calls
CALLS: GETCOL, GETYPE, CSL System
11. ITNOTE

FUNCTION: Create a text note using Micro-CSL System calls
CALLS: ITJUST, GETCOL, CSL System

C-3

12. ITTERM
FUNCTION: Terminate Micro-CSL graphics
CALLS: CSL System

13. THDIM2

FUNCTION: Create subset of dimension two dimension using Micro-
CSL calls

CALLS: ITNOTE, LASTC, ITLINE, UWARROW
14, THDLBL

FUNCTION: Create bracketed label using Micro-C
SL calls

CALLS: ITNOTE, ITMPLINE, ITLINE, UWARROW

LIST QF GKS SPECIFIC SUBROUTINES:

1. ARROW

2. GHDIM2

3. GHDLBL

4. GKARC

5. GKCOL

7. GKDIM2

8. GKINIT

9, GKJUST

FUNCTION: Create an arrowhead using GKS calls

CALLS: GKLINE

FUNCTION: Create gecond dimension type using GKS calls
CALLS: GKLINE, GKNOTE, ARROW

FUNCTION: Create 2 bracketed label using GKS calls
CALLS: ARROW, GKLINE, GKMPLINE, GKNOTE

FUNCTION: Create a circular arc using GKS calls

CALLS: GKCOL, GKTYP, GKS System

FUNCTION: Map UWGRAPH colors to GKS colors
CALLS: GKS System

FUNCTION: Create first dimension type using GKS calls
CALLS: FTINSYM, ARROW, GKLINE, GKNOTE, LASTC

FUNCTION: Create second dimension type using GKS calls
CALLS: FTINSYM, ARROW, GKLINE, GKNOTE, LASTC

FUNCTION: Initialize GKS System

CALLS: GKS System

10.

11.

12.

13.

14.

15.

FUNCTION: Map UWGRAPH text justification to GKS text justification
CALLS: GKS System
GKLABEL
FUNCTION: Create a label using GKS elements
CALLS: ARROW, GKLINE, GKNOTE
GKLINE
FUNCTION: Draw a two point line in GKS
CALLS: GKCOL, GKTYP, GKS System
GKMPLINE
FUNCTION: Draw a multiple point line in GKS
CALLS: GKCOL, GKTYP, GKS System
GKNOTE
FUNCTION: Draw a text note in GKS
CALLS: GKCOL, GKJUST, GKS System
GKTERM
FUNCTION; Provide user interface to GKS and terminate GKS
CALLS: LASTC, FILECHK, GKS System
GKTYP
FUNCTION: Map UWGRAPH line types to GKS line types
CALLS: GKS System

LIST OF RQUTINES USED BY MORE THAN ONE SYSTEM:

1. FILECHK

FUNCTION: Checks for the existence of the filename located in the
variable FILEIN. The directory name must also be specified in the
FILEIN variable or the local directory is assumed.

CALLS: None
2. FTINCH

FUNCTION: Converts a distance in feet residing in a REAL*4 typed
variable to a character string. NEAREST is used to round the distance to a
the nearest value as specified in this variable name (also in feet). The
format of the character string is: # -# #i##

CALLS: ROUNDIT,ROUNDUP,LASTC

3, FTINSYM
FUNCTION: Converts a distance in feet residing in a REAL*4 typed
variable to a character string. NEAREST is used to round the distance toa
the nearest value as specified in this yariable name (also in feet). This
routine builds the distance string with’ and " symbols. The format of the
character string is: # -# #/##"
CALLS: ROUNDIT,ROUNDUP,LASTC

4, LASTC

FUNCTION: Counts the number of characters in a string before any
trailing blanks.

CALLS: None

5. READDIR

FUNCTION: Reads the directory names located in the first three lines of
the data file BLOCK.DEF.

CALLS: none
6. ROUNDIT
FUNCTION: Rounds ROUNDED to the nearest NEAR.
CALLS: None
7. ROUNDUP
FUNCTION: Rounds up ROUNDED to the nearest NEAR.

CALLS: none

8. READDATA
FUNCTION: Reads data using free format from a text file which has been
opened under the first argument. Lines in the text file may be commented
out with a special character in the first column, other lines will be read into
an array of reals, The number of items read is specifed by the third
argument.
CALLS: None

9. REALIN

FUNCTION: REAL*8 function to convert character string to REAL*8
value

CALLS: None
10. SWITCH
FUNCTION: Switch two reals
CALLS: None
11. SYSNUM
FUNCTION: Write error message 1o file if wrong system number given

CALLS: None

MISCELLANEOQUS FILES REQUIRED BY THE UWGRAPH LIBRARY:

1. BLOCK.DEF: Data file containing directory names and entity attribute defaults. This
file is required by all three systems.

2. DEFAULT.FOR: Include file containing default variable declarations.
3. TTCOM.FOR: Include file containing unit conversion variable declarations.
4. seed.dgn, seed.cel, fontlib: Files required by Micro-CSL initialization.

5. prdfpilnk: one line text file required for Micro-CSL structure mapping

BLOCK.DEF Defaults Data File

xxx~/input/

i

iusr/ip32/mstation/

#NOTELl: The first two of the above directory names are the default
#input and output directories, respectively.

#The input directory must contain input data files for applications
#{if the application requires the data files to be in that directory).
#The output directory is where the graphics file will be sent.

#The third directory is used in csl routines for the seed cell/dgn
#file to be attached to the design file. 1If ¢sl routines

#are not being called the third directory name will be ignored.
#Three x's in the first three columns will flag.the directory reading
$program not to echo this directory name when read (this is useful if
#the application does not use this the input directory name}

#These directory defaults may be modified by the user and must

#end with a trailing /.

#

#The data listed below is for the default entity attributes

#and is separated for each of the three systems. There is one
#comment indicating the graphics system followed by a one line
#entity header for each entity and the data for that entity. The
torder of the data is as follows:

#

4 Line Type, Line Width, Level, Color, Char. Slant, String Rotation,
4 Char. Height, String Width

#Each default attribute must be on one 1ine. Use care in modifying this
4file. Adding or subtracting lines can have a detrimental effect on
#the ability for UWGRAPH to run properly.

#
Fo—m———— > SYSTEM NUMBER ONE: DXF <——m=—=mT
#DXF LINE DEFAULTS NEXT B8 LINES
1.000000
1.750000E-01
1.000000
8.000000

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
#DXF ARC DEFAULTS NEXT 8 LINES
1.000000
1,750000E~01
1.000000
8.000000
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
#D¥XF MULTIPLE POINT LINE DEFAULTS NEXT 8 LINES
1.000000
1.750000E~01
1.000000
§.000000
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
#DXF GENERAL NOTE DEFAULTS NEXT 8 LINES

C-10

1.000000
1.750000E-01
3.000000
8.000000
.000000E+00
.000000E+00
.190000E-01
.000000E+00
$DXF DIMENSION DEFAULTS NEXT 8 LINES
1.000000
1.000000E-01
3.000000
8.000000
0.000000E+00
0.000000E+00
1.560000E-01
0.000000E+00
$DXF DIMENSION DEFAULTS NEXT 8 LINES
1.000000
1.000000E-01
3,000000
8.000000
0.000000E+00
0.000000E+00
1.560000E~-01
0.000000E+0Q0
P > GYSTEM NUMBER TWO: IGDS <==——m=7~
#IGDS LINE DEFAULTS NEXT 8 LINES
1.000000
2.500000E-03
1.000000
8.,000000
0.000000E+00
0.000000E+00
0.000000E+00
0
5

oo O

.000000E+00
ARC DEFAULTS NEXT 8 LINES
1.000000
1.460000E-03
1.000000
8.000000
0.000000E+0Q0
0.000000E+00
0.000000E+00
0.000000E+00
§ MULTIPLE POINT LINE DEFAULTS NEXT 8 LINES
1.000000
2.500000E~03
1.000000
8.000000
0.000000F+00
0.000000E+00
0.000000E+00
0.000000F+00
S5 GENERAL NOTE DEFAULTS NEXT 8 LINES
1.000000
2.500000E-03
3.000000
8.000000
0.000000E+00
0.000000E+00
1.8200008-02
0.000000E+00
5

#1GDS DIMENSION LINE DEFAULTS NEXT 8 LINES

c-11

1.000000
1.750000E-03
3,000000
8.000000
.000000E+00
.000000E+00
.300000E-02
.000000E+00
GENERAL LABEL DEFAULTS NEXT 8 LINES
1.000000
.750000E-03
3.000000
8,000000
0.000000E+00
0.000000E+00
1.300000E-02
0.000000E+00
Fo—m———— > SYSTEM NUMBER THREE: GKS <—=————==
#GKS LINE DEFAULTS NEXT 8 LINES
1.000000
1.460000E-03
1.000000
8.000000
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
#GKS ARC DEFAULTS NEXT 8 LINES
1.000000
1.460000E-03
1.000000
8.000000
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
#GKS MULTIPLE POINT LINE DEFAULTS NEXT 8 LINES
1.000000
1,460000E-03
1.000000
B.000000
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
#GKS GENERAL NOTE DEFAULTS NEXT B LINES
1.000000
1.460000E-03
3.000000
8.000000
0.000000E+00
0.000000E+00
1.820000E-02
0.000000E+00
#GKS DIMENSION LINE DEFAULTS NEXT 8 LINES
1.000000
8.340000E-04
3.000000
8.,000000
.000000E+00
.000000E+00
.300000E-02
.000000E+00
#GKS GENERAL LABEL DEFAULTS NEXT 8 LINES

¥IGD

| d oo

(=l e R

C-12

noRroo

#IGD
24

1.000000

.340000E-04

3.000000
8.000000

.000000E+00
.000000E+00
.300000E-02
.000000E+00

DEFAULT FONT NUMBER NEXT LINE

C-13

APPENDIX D

APPENDIX D - PREPROCESSING

Although every effort has been made to write system independent FORTRAN code, some
system dependencies were required. Two preprocessing procedures have been used to
maintain the UWGRAPH library in a system independent fashion. System dependencies
are ‘commented’ out with special character string starting with the character 'C’, for
example, CVAX. The preprocessor removes the string basedon a developer-defined file
which instructs the preprocessor. The first procedure Jescribed is based on the UNIX m4
utility. The second preprocessor described, called STRIP.FOR is FORTRAN based and
js more portable, but less powerful than its m4 counterpart.

UNIX UTILITIES

m4: A processor provided in SysV and BSD Unix Environments. Functionality
includes: arguments, conditional testing, arithmetic capabilities, string and substring
functions, and file manipulations.

make: A utility which automates the many activities of program development. The

development information, such as inter-file dependencies and command sequences,
is stored in a file which make interprets.

TYPE CONVENTIONS

The textual information is set in helvetica which is the same type as this line is
printed.

The example commands and code are set in Courier which 1s the
same type as this line is printed.

The program names, utilities, etc. are set in italics which is the same type as this line
is pnnted.

INTRODUCTION

Programming languages such as FORTRAN and C have become
standardized through national efforts and the standardized language specifications
are readily available. Hence the programmer should make every effort to conform
to the standards so the resulting code can be easily ported to a variety of
operating systems. Most computer vendors support additional language features
not included in the standard language specifications. Such features include: file
access procedures, system calls to operating system procedures, special calls to
hardware such as the system clock, ete., and special features related to hardware
such as vectorization/parallelization commands.

Often it is simply not possible (or very convenient) to develop an application
without the use of language or commands which are specific to a particular
operating system. If such features are employed then the appropriate language
must be substituted when the code is ported to a new operating system.
Sometimes the equivalent function is not available on a target system and
significant re-coding must be performed. This leads to multiple versions of the
program and the multiple versions lead to increased effort in maintenance, tests,
and verification.

The procedures outlined here allow the programmer to form one version of a
program source code which includes all the system dependencies. This source code
has special syntax which is interpreted by a preprocessor (m4) to produce the
system dependent code. The operational procedures of the preprocess compile, and
link has been automated with the Unix make utility. The process is illustrated in
Figure 1. The development level of source code which included only those

dependencies for a particular system is referred to as source_2.

PROCEDURES

The procedure for maintaining a system independent code and the conversion to a
system dependent code is outlined below.

1. The source_1 program and associated subroutines are written with system
dependencies "eommented out" with special strings, such as cunx, cvms, and cibm.
When m4 interprets the special strings then it will "un-comment" the appropriate lines
and leave the other lines commented to be ignored by the compiler. For example:

c The underscode represents blanks, see below.
cunx WRITE (ounit, 100)

cunx___100 FORMAT (10x, 'This line is written in the Unix
Ccunx & Version')

In the above, the cunx string will be removed allowing the compiler to include this
statement. The special strings are defined in a file called m4_commands. As many
search and replace operations may be included as necessary. For example, special
strings such as end-of-line comments and embedded comment delimeters may be
included and modified by m4 to the system dependent syntax.

Special note: m4 does not replace a special string with blanks, therefore blanks may
be inserted in the source_1 code to hold the blank after string removal. For example,
insert blanks after the special string (same number of blanks as special string iength)
so when the string is removed the source code is shifted by the appropriate number
o{) spaces. The spaces are represented by the underscores () in the example
above.

5 The source_1 is preprocessed by m410 give the system dependent code
source_2. Thisis achieved by:

m4 source 1 > source_ 2

3. The source_2 code is transferred to the target system to be compiled and linked
in the usual manner.

The above procedure may be described with a makefile created for the source_1
code. An example of how to code this makefile is given in the following section.

EXAMPLE

This section contains an example of how to manually perform the procedures
outlined previously by typing commands at the command line. This example is
followed by the automated approach using the make utility.

1. There are three source_1 programs required for this example. These are:
main.F, sub1.F, and sub2.F. Note that the convention suggested and used later in
the makefile is source_1 has an extension of .F and source_2 have an extension of
f. These programs are listed below and are contained on the DOS format floppy
included at the back of this report.

main.F
include(m4_commands)
c the above include places the contents of the file
c m4 commands in this file prior to mé4 processing.
ol These do not appear in the source_2 code.
program main
print *, ' starting test program !
cvms print *, t this statement should print *, in vms
cvmsé& version '
cunx print *, ' this statement should print *, in Unix
cunxzé version '
print *, ' this statement should print *, in any
& version '
c simple subroutines for illustration
c note eol is a special string for in-line comments
call subl _eol comment goes here
call sub2
stop
end

sub1.F

include(m4“pommands)
subroutine subl

print *, ' called subroutine subl ‘'
return
end

sub2.F

include (m4 commands)
subroutine sub?2

print *, ' called sﬁbroutine sub2 ‘!
return
end

m4_commands

define (cunx,)
define{_eol, !)

2. Use m4 to interpret the source_1 file into source_2 files. At the command line
type:

m4 main.F > main.f
m4 subl.F > subl.f
md sub2.F » sub2.f

3. Review the contents of main.f, sub1.f and sub2.f. Note the "cunx" has been
translated to blanks and the "_eol" string has been translated to the comment
delimeter "I".

4. Compile and link these programs in the usual manner.

The above procedure has been automated with the makefile main.mak which serves
as an example of how to write similar makefiles for other programs.

main.mak

source_1 code must have an extension of .F
source 2 code is assigned an extension of .f
objects have an extension of .o

executable has the file name assigned in MAIN

S 3 ok e S

FILES = main.f\
subl.f\
sub2.f

FILES2 = main.F\
subl.F\
sub?2 .F

OBJECTS = main.o\
subl.o\
sub?.o

EDIR =

LFLAGS =

FFLAGS = —~C
MAIN = main.exe

.SUFFIXES
.SUFFIXES : .o .f .F

linker
$ (EDIR) $ (MAIN) : S (OBJECTS)
f77 ${(LFLAGS) $ (OBJECTS) =-o $ (EDIR) $ (MAIN)
compile to objects
.f.o: 5 (OBJECTS)
£77 $(FFLAGS) *.o $<
m4 preprocessor

FUE: 5 (FILES)
m4 2 > §*.f

This procedure is invoked by typing:
make -f main.mak

at the command line. This makefile will cause the make utility to check the
dependencies and date/time stamps on all the files required to produce the source_2

D-7

code in an executable form. Only operations which are required due to a source_1
modification will be performed.

For example, assume the file sub1.F was edited and saved. The make utility,
combined with the main.mak file, detects that only this file has changed and performs
m4 processing to produce sub1.f. The sub1.f is recompiled to produce sub1.0 and
finally, the main.o, sub1.0 and sub2.¢ is linked to produce the executable.

In order to modify the main.mak file for another code, change the file names in the
appropriate macros. For large systems, this list ot files is easily created at the Unix
command level. For example,

ls -1 *.F > temp_file

then edit temp_file as necessary and merge with the new makefile.

MODIFICATION OF PREPROCESSING

The preprocessing with m4 is controlled by the special string defined to m4 in the file
m4_commands. The m4_commands file contains the m4 processing commands
which are included at the start of the source_1 files via the m4 include statement.
The include inserts the file m4_commands prior to m4 processing. Hence, once the
include statement has been included in all source_1 files, then only the
md4_commands file must be altered to invoke different m4 processing, i.e. to create
codes with difference system dependencies. For example, the m4_commands file
given above causes m4 to replace the string "cunx” with " " which results in a Unix
version of the code. To create a VMS version, change "cunx” in the m4_commands
file to "cvms”. Other m4 commands are available for a variety of purposes. These
commands should be described in detail in the Unix documentation.

STRIP.FOR PREPROCESSOR

STRIP.FOR is a preprocessor written in FORTRAN designed to process
FORTRAN source code containing system dependencies. This preprocessor can be
used in any environment where a FORTRAN compiler is available (the m4
preprocessor is a UNIX specific utility). The strip program will strip out the
system dependent comments at the beginning of the line. These comments are
located in the file STRIP.DAT and can be up to 7 characters long. The last line in
the STRIP.DAT file must contain an asterisk in the first column to indicate the
end of the datafile. For example the STRIP.DAT file might look something like
this:

CUNX

CGKS
CDEBUG

*

NOTE: The maximum number of strip strings is 20 and the strings are only striped if
they reside at the beginning of a line. The strings will be replaced with " (nothing) so the
source code should be written accordingly.

Upon execution of the STRIP program the user is prompted for input and output
filenames. The following is an example of source code before and after STRIP
preprocessing: (assume the example STRIP.DAT datafile is being used)

Before preprocessing:

PROGRAM TESTSTRIP
[

CVAX THIS LINE WOULD CONTAIN VAX/VMS CODE
CUNX THIS LINE WOULD CONTAIN UNIX CODE
C
CIGS 5Ys = 1
cITG 5Y5 = 2
CGKS 5Ys = 3
¢ .
CDEBUG WRITE{*,*) ' SYSTEM NUMBER = ', 5Y5
C
STOP
END
After preprocessing:

PROGRAM TESTSTRIP

CVAX THIS LINE WOULD CONTAIN VAX/VMS CODE
THIS LINE WOULD CONTAIN UNIX CODE
c
CIGS 5YSs = 1
CITG 5YS = 2
SYs = 3
c
WRITE(*,*) ' SYSTEM NUMBER = ', S5YS
c
5TOP
END

Note: A program called STRIPS.FOR is also available which strips comments from
multiple files. Recent work has also been completed to provide the filter type string

D-9

searching and replacement functionality of m4 with a C program. This program can be
compiled in any environment and works well in makefiles. This program is called mdr.c
and will be put on UWGRAPH's standard distribution file set. Instructions on it's use are

contained in the source code.

D-10

APPIRINIDIDK 18

STRIP.FOR PREPROCESSOR

STRIP.FOR is a preprocessor written in FORTRAN designed to process
FORTRAN source code containing system dependencies. This preprocessor can be
used in any environment where a FORTRAN compiler is available (the m4
preprocessor is a UNIX specific utility). The strip program will strip out the
system dependent comments at the beginning of the line, These comments are
located in the file STRIP.DAT and can be up to 7 characters long. The last line in
the STRIP.DAT file must contain an asterisk in the first column to indicate the
end of the datafile. For example the STRIP.DAT file might look something like
this:

UTILITY 1: SUBROUTINE USEDEF

UTILITY DESCRIPTION: The following subroutine assigns negative values into
the variables (that can be defaulted) so the defaults are used unless otherwise
changed after the call.

INCLUDE FILES: none
LOWER LEVEL CALLS: none

ARGUMENT LIST: (ITYP1,ITYP2,ITYP3,ITYP4ITYP5 ITYPSITYP7,
ILEV1,ILEV2,JLEV3,ILEV4,ILEVSILEV6,ILEV7,
ICOL1,ICOL2,ICOL3,ICOLA4,ICOL5,ICOL6,ICOL7,
WID1,WID2,WID3,WIiD4,WID5,WID6,WID7,

S1.4,SL5,SL6,SL7,
ROT4,ROT5,ROT6,ROT7,
SW4,SW5,5W6,SW7,
HT4,HT5,HT6,HT7)

ARGUMENT DESCRIPTION: (for arguments not previously defined)

See the subroutine definitions section

UTILITY 2: SUBROUTINE DRAWNUT

UTILITY DESCRIPTION: This utility uses lines and arcs to draw an elevation of
a nut of width NW and of height NH. The nut can be drawn with the flat side
down or the flat side up.

INCLUDE FILES: VARLFOR
LOWER LEVEL CALLS: UWLINE, UWARC

ARGUMENT LIST: (NH, NW, ISECT, XC, YC, DIR, ITYP1, WID1, ILEV1,
ICOL1, ITYP2, WID2, ILEV2, ICOL2, SYS)

ARGUMENT DESCRIPTION: (for arguments not previously defined)

NH (REAL*4): Height of the nut,
NW (REAL*4): Width of the nut.
ISECT (INTEGER*2): Number of visible sections for the nut elevation.
DIR (INTEGER*2): Flag for direction to draw the nut.
1 = flat side down
-1 = flat side up
XC (REAL*4): X coordinate of the left side of the nut.
YC (REAL*4): Y coordinate of the flat of the nut.

UTILITY 3: SUBROUTINE DRAWTHR

UTILITY DESCRIPTION: This utility uses lines to draw a bolt threads of width
TW and of height TH. The threads can be drawn with a taper at the top, a taper at
the bottom or with no taper. This utility will draw the threads with a vertical axis
only.

INCLUDE FILES: VARLFOR
LOWER LEVEL CALLS: UWLINE, UWMPLINE

ARGUMENT LIST: (TH, TW, XCT, YCT, DIRT, ITYP1, WIDL, ILEV1,
ICOL1, SYS)

ARGUMENT DESCRIPTION: (for arguments not previously defined)

TH (REAL*4): Height of the threads.
TW (REAL*4): Width of the threads.
DIR (INTEGER*2): Flag for placement of bolt taper.

1 = place taper on the top

0 = no taper

-1 = place taper on the bottom
XC (REAL#*4): X coordinate of the left side of the bolt.
YC (REAL*4): Y coordinate of the bottom of the bolt.

UTILITY 4: SUBROUTINE BOXCOORD

UTILITY DESCRIPTION: This subroutine fills the X and Y arrays with the
coordinates to draw a rectangle with lower left.

INCLUDE FILES: VARLFOR

LOWER LEVEL CALLS: NONE

ARGUMENTLIST; (XLL, YLL,L,H, X, Y) |
ARGUMENT DESCRIPTION: (for arguments not previously defined)

XLL (REAL*4): X coordinate of the left side of the rectangle.
YLL (REAL*4): Y coordinate of the bottom of the rectangle.
L (REAL*4): Length (horizontal dimension) of the rectangle.
H (REAL*4); Height (vertical dimension) of the rectangle.

UTILITY 5: SUBROUTINE BLDDIM

UTILITY DESCRIPTION: This subroutine builds two or three part dimensions
separated by 'x' in a fractional format. For example: 1'-63/4" x 10 5/16" x 2"

INCLUDE FILES: NONE

LOWER LEVEL CALLS: LASTC, FTINCH, FTINSYM
ARGUMENT LIST: (M1, M2, M3, CBLD)

ARGUMENT DESCRIPTION: (for arguments not previously defined)

M1 (REAL*4): First dimension value in feet.

M2 (REAL*4): Second dimension value in feet.

M3 (REAL*4): Third dimension value in feet (or 0.0 if two part
dimension to be created).

CBLD (CHARACTER*65): Serves as both an input and output variable.
The first three characters of this variable are significant in its role as an
input argument. If the first character is an 'X' then the first part of the
dimension is created without " or ' symbols. The second and third
characters of this variable are used in the same way. CBLD is also used to
return the dimension string.

APPENDIX §

APPENDIX - F UWGRAPH OVERVIEW PAPER

The following paper was presented at the FHWA Bridge Engineering Conference held in
May of 1991 at Denver, CO. It provides an overview of the capabilities and architecture
of UWGRAPH. It is reproduced with the permission of the Transportation Research
Board.

LINKING COMPUTER AIDED ENGINEERING PROCEDURES WITH COMPUTER

DRAFTING
J.A. Puckett Chad Clancy
Associate Professor Research Assistant
Dept. of Civil Engr. Dept. of Civil Engr.
University of Wyoming University of Wyoming
Laramie, WY 82071 Laramie, WY 82071
David Pope

State Bridge Engineer
Wyoming Department of Transportation
Cheyenne, WY 82002

ABSTRACT

Often a traditional design procedure is used where a designer sketches
results which are based on computer applications and transmits this information
via hardcopy to a drafter, who reenters it into a CAD system. The inefficiencies
are clear and an obvious opportunity exists for productive gain. Recent work by
the Wyoming Department of Transportation (WDT) has shown that productivity
ratios ‘can greater than 20:1 by linking design applications directly with CAD. A
graphics library (UWGRAPH) has been developed to facilitate this linkage.

UWGRAPH is used in conjunction with a design application which performs
engineering calculations and/or drawing parameterization. UWGRAPH links to
three graphic formats commonly used in engineering DXF (AutoCAD), MICRO-CSL
(Intertgraph) and GKS (screen graphics) in one application program. The flexibility
and familiarity of FORTRAN is combined with the tools necessary to produce
graphics files automatically. The library is based on the graphics entities required
or structural drafting,. UWGRAPH simplifies and unifies the subroutine calls by
combining low-level calls to produce graphical entities useful in engineering
drawing, e.g. dimensions, notes, etc. The UWGRAPH scope is directed toward
bridge engineering but easily spans other disciplines.

INTRODUCTION

Often a traditional procedure is used where a designer sketches results
which are based on computer applications and transmits this information via
hardcopy to a drafter, who reenters it into a CAD system. The inefficiencies are
clear and an obvious opportunity exists for productive gain. Recent work by the
Wyoming Department of Transportation (WDT) has shown that productivity ratios
can exceed be greater than 20:1 by linking design applications directly with CAD.
A graphics library (UWGRAPH) has been developed to facilitate this linkage,

UWGRAPH is used in conjunction with a design application which performs
engineering calculations and/or drawing parameterization. The flexibility and
familiarity of FORTRAN is combined with the tools necessary to produce graphics
files either to the computer screen or to a drafting/design file which can be used
by a CAD system. The library is based on the graphical entities required for
structural drafting.

The difficulty with many existing graphic systems is they are often difficult
to learn and implement. UWGRAPH simplities and unifies the subroutine calls by
using low-level calls, combined with intermediate calculation, to produce
graphical entities useful in engineering drawing, e.g. dimensions, notes, etc.
Thus, only one call is used in UWGRAPH for each entity, for example, a
dimension. All the calculations and decisions involved with leader type and
placement, text justification and location, etc. are automatically performed in the
desired graphical format. Hence, UWGRAPH performs a great eal of work for the
program developer.

STANDARDIZATION EFFORTS AND OBJECTIVES

There has been much effort to standardize computer graphics. CORE, GKS,
PHIGS, DXF are examples of standardized graphics library and file formats (6).
But the creation of an all-encompassing graphics format that suits cvery
application, type of drawing, and computer system is difficult. Further, a single
system which adequately supports the development environment may not support
the production environment. For example, a library is used which produces an
DXF file which must be interpreted by a CAD system prior to viewing the results,
Because the file is converted to the native CAD format, this approach is well
suited for production. However, it offers the development engineer an extremely
cumbersome approach.

A library based solely on a screen/plot presentation system, like GKS or
PHIGS, produces fine screen graphics, almost instantaneously, upon execution of
the application. This approach is amenable to both development and the

roduction engineers who wish to rapidly iterate desi%)n programs. However these
ibraries produce drawing files in formats required by only screen and Flottjng
devices, and can not be easily edited by a drafter for inclusion in a set of plans.
This is a major limitation of this programming approach as the greatest
productivity potential lies with linking the application to CAD directly.

The intent of the UWGRAPH library is to merge both of the favorable attributes of
the screen/presentation libraries with libraries which automate the linkage to
CAD. Specifically, the objectives of the UWGRAPH development effort is to
develop a graphic library to:

O Produce structural drafting which can be extended to other disciplines.
O Provide an environment for rapid program development.

O Provide an environment fast enough for the design engineer iterating on
design solutions.

O Produce a file which can be interpreted or used directly in CAD systems.

l'_'lb Use existing standardized graphics and CAD formats linked to a commaon
library.

LIBRARY ARCHITECTURE

The UWGRAPH library links to three grgFI'nc libraries commonly used in
engineering. The purpose of the library is to allow the use of DXF, MICRO-CSL
and GKS libraries through one application program. The library architecture is
illustrated in Figure 1. Graphics can be created in one or more of these three
formats from a single set of subroutine calls. This is helpful in that the graphical
output of the application program cail be used by one who has the capability of
displaying graphics in any or all of the systems. A simple software switch is
available to direct the application to the desired format. The application

rograminer is relieved of the burden of learning morc than one graphics system

ecause the initialization, drawing definition, and termination is consistently
defined by the UWGRAPH library. Further, the application developer can use
GKS to review drawings in development without accessing the CAD system. This
permits program development on inexpensive graphics devices and can help to
eliminate scheduling conflicts on the CAD systems.

APPLICATION PROGRAM

t Link at Compile Time

UWGRAPH

Qutput Format

Y
DXF IGDS GKS

Figure 1. UWGRAPH Architecture

F-4

The first link is to the Data Exchange Format (DXF), a defacto standardized
file format used by the popular AutoCAD sgrstem. UWGRAPH links to a graphics
library to create an ASCII file in the DXF format. Most CAD systems have DXF
interpreters to convert the DXFT file into their native format. Once in the native
format, the drawing can be edited in the usual manner. Thus, atypical and site
specific details can be easily added and merged with other drawings as required.

The second link is to a graphics format supported by Intergraph using the
Microstation Customer Support Library (MICRO-CSL) (4). MICRO-CSL is a
workstation-based product and used with the Intergraph CAD software. A
FORTRAN binding interfaces the capabilities of MICRO-CSL. The output from
this link to the library is an MICRO-CSL design file which can be edited with an
Intergraph CAD system. Approximately forty State DOTs, including WHD, use
Intergraph systems. Hence, the MICRO-CSL was selected for UWGRAPH because
of this important constituency.

The third link is to the Graphical Kernel System (GKS) which was accepted
by the International Organization for Standardization as a two-dimensional
graphics standard in 1985 (4,5). FORTRAN GKS bindings are available for
numerous hardware/software platforms including most all engineering
workstations and DOS-based computers. GKS is used by some CAD systems to
display graphics. GKS is different from the other graphics systems used by
UWGRAPH because the output is sent directly to the screen as opposed to an
output file. Alternatively, the graphical output can be displayed on the screen,
then a metafile can be created and sent to a plotter used in conjunction with a
metafile interpreter.

ENTITY SPECIFICS

The UWGRAPH library supports the basic entities needed to create and dimension
a drawing. These entities include lines, arcs, multiple point lines, labels, text,
and several types of dimensions. In the creation of these entities UWGRAPH does
not fully use the capabilities of any one graphical system, but in general uses the
capabilities common to all three systems. Extended capabilities have been
included by programming within {JWGRAPH. For example, the DXF dimension
entity is not used but is created using line and text entities common to all
systems. This approach results in a practical graphics link between an
application and the three graphics libraries. This functionality saves time and
simplifies development. Table 1 illustrates the basic entities/ procedures available
in UWGRAPH.

Other higher level utilities have been developed using the basic entities. These
utilities are included and described in Table 2.

It is hopeful that many agencies will use UWGRAPH to develop applications which
can be shared. In application development is it inevitable that programmers will
develop other high level utilities which can be properly documented and also
shared with others.

Table 1. Procedures in UWGRAPH (1)

INITIALIZATION: Initializes the appropriate graphics libraries for subsequent
entity calls.

LINE; Creates a two point line.

CIRICULAR ARC: Creates an arc given a center, radius, start angle and an end
angle.

MULTIPLE POINT LINE: Draws a line string given more than two points.

GENERAL NOTE: Places strings of text.

GENERAL DIMENSION CALL: Creates a dimension with a break in the leader to
lacej the dimension text. (if there is enough room for the text between witness
ines

||SECOND DIMENSION TYPE: Creates a dimension which has a leader arrow drawn
from witness line to witness line with no break and a string of text or a numeric
dimension placed at user defined coordinates.

SUBSET VERSION OF UWDIM2: Creates a dimension similar to UWDIM2, but
allows more than one text string to be placed.

LABEL: Creates a text label with a two segment leader with an arrowhead at the
tip and up to three text strings at the leader end. Text justification is controlled in
several ways.

SUBSET VERSION OF LABEL: Creates same label as above but automatically
draws a bracket around the text associated with the label.

TERMINATION: Terminates all drawing processes.

Table 2. High Level Utilities (1)

DRAWNUT: Uses lines and arcs to draw an elevation of a nut of width NW and of
height NH. The nut can be drawn with the flat side down or the flat side up.

DRAWTHR: Uses lines to draw bolt threads of width TW and of height TH. The
threads can be drawn with a taper at the top, a taper at the bottom or with no
taper. This utility will draw the threads with a vertical axis only.

BOXCOORD: Fills the X and Y arrays with the coordinates to draw a rectangle.

BLDDIM: Builds two or three part dimensions separated by 'x' in a fractional
format. For example: 1' -6 3}3 "x 10 5/16" x 2".

F-6

EXAMPLES

Two examples are presented. The first is a simple example which illustrates
the usage of UWGRAPH. The example, called testbox, performs most of the
operations required in a typical drawing, The FORTRAN listing of testbox is given
in the Appendix and the output is illustrated in Figure 2. The drawing process
has three distinct parts: initialization, drawing, and termination. The
initialization is performed with a single call of UWINIT. This initializes the target
system. The termination is also pe ormed with a call to UWTERM. In between
initialization and termination, any drawing entity may be called. The testbox
program uses line, text, and dimemsion entities.

TESTBOX 1
. 20.000 ——= l-g— 10.000

20.000

10.000

Figure 2. Output From Program Testbox

The second example is the bearing detail shown in Figure 3. This design
detail was selected for automation because of its limited scope and the existence
of application to perform the design. This was the initial effort to test UWGRAPH
in a production environment. In this application, a few design parameters are
entered to a design program which gencrates the details necessary for drafting.
The library is uséd to automatically generate the drafting file. This illustration
was developed from an MICRO-CSL (Intergraph CAD) file. The generation of the
design and drawing took approximately five minutes plus ten minutes for cleanup
and mergin%)with the project plans. If the design was erformed with the same
application but the drawing was "manually" illustrated in the CAD system the
time required is approximately 4.5 hours, which gives a productivity ratio of
approximately 18.

i
E Girdar
i
[Ind H i
=T
+
2 34~ 74 i 7 ¥
t i oS ey
- - W X MUl
;/"E‘ x 14~ Siot | 4+ Ineood (Typt
don s, e -
X
% 5 Washers (Typ) l
| L~ @ -» Hola (Typi |
mn [; -]
. iy L . I
Solo B ijai-T s I-10" N + iR ! g
tiii i * 1. | s
- - 2 . i N ’
Koapor Bar 1-10 x §x 4° (Typt lw'_ e |] i i Y
e MM L : Fih
L v LN A ! A
4 ZA VR N I 1
H . [
Keaper Bar 1-10 x § x 1* (Typ) b [(11°x 24x 19 Elostoaeric ' t
: a‘__//ti/ 5§ i 54 24" ew% ‘ngf Imnr#md wﬁ; aj ’ a4 ; zi-
Mosorvy £ Hx I-4 a2 =i | - ins. Floce outslde | L
shims §° from fop € botlom - 104~ N [y -
-4~ : r-io Pnformd LM : & faco a‘nd remamlng snlms af £ J I £ 14
abric Bearing P ! | o/ space. |
| |
ELEVATION END VIEW

Figure 3. Bearing Details

PRESENT WORK

Presently UWGRAPH is being used to create design and graphical illustrations for
reinforced box culverts, bridge geometry, screed elevations tables and web cutting
diagrams. The initial work on the box culvert application was performed using
the IGES format(30) and is implemented in the BRASS system (2). The bridge
geometry program is presently under development. Code writing is underway at
the time of this writing. This program includes: general plan/elevation drawings
and substructure la%out. The screed elevation and web cutting diagram program
is completed and is being tested by WDT engineers.

ACKNOWLEDGEMENT AND AVAILABILITY

The UWGRAPH library was devel?ed under the sponsorship of the Wyoming
De{){artment of Transportation and the Mountain Plains Consortium at North
Dakota State University which is sponsored by the United States Department of
Transportation. The items presented in this paper do not necessarily reflect the
viewpoint of the project sponsors.

' The UWGRAPH source code is available upon request. The code has been
sucessfully tgorted to two version of Unix, Intergraph CLIX 3.1 and Apollo Domain
SR10.3. Other ports are presently being investigated at the time of this writing.

REFERENCES

1. Clancy, C. and Puckett, J.A., UWGRAPH Graphics Library, Wyoming Highway
Department, Cheyenne, WY. May 14, 1990.

2. Puckett, J.A. and Guenther, P.W., Linking Civil Engineering Design and
Drafting Software via IGES, Journal of Computing in Civil Engineering, ASCE,
Vol.3, No. 3, July, 1989, pp. 228.

3. National Bureau of Standards, Initial Graphics Exchange Specification,
Publication PB86-199759, Version 3.0, 1986.

4. Intergraph Corp., Intergraph GKS/C Reference Manual, DSYS027, Third
Edition, Huntsville, AL, August, 1988,

5. Hopgood, F.R.A., Duce, D.A., Gallop, J.R., and Sutcliffe, D.C., Introduction to
the Graphical Kkernal System (GKS), Second Edition, Academic Press, Harcourt
Brace Jovanovich, London, New York, 1986.

6. Dewey, B.R., Computer Graphics for Engineers, Harper and Row, New York, NY,
1988.

APPENDIX -- Program Listing

PROGRAM TESTBOX

This program draws a box and dimensions it using the
UWGRAPH library of graphics calls.

First, declare the working variables with this include statement.

QOO0

CMSF$INCLUDE: 'VARI.FOR'
Cvax INCLUDE 'VARI.FOR'
CUNX INCLUDE 'VARI.FCR'
cC
c Now, open up a file to output messages.
C
CUTNUM=5
OPEN (UNIT=0UTNUM, FILE='MESSAGE.OUT', STATUS="'UNKNOWN")

Set up the initialization parameters.

a0

'BOXOUT'
0

S0

0

S0

1

1

12

IFTI

OUTNAME
XWMIN
XWMAX
YWMIN
YWMAX
WKSID
WSCON
WSTYP
UNIT

CDXF SYS

CITG SYS 2

CGKS SYS 3
CALL UWINIT (QOUTNAME, XWMIN, XWMAX, YWMIN, YWMAX, WKSID,
1 WSCON, WSTYP, UNIT, IDBGO, SYS}

[O T IO O

1

U

Initialize the default flags with this call.

aaa

CALL USEDEF{ITYP1,ITYP2,ITYP3,ITYP4,ITYP5,ITYP6,ITYP7,
ILEV1, ILEV2, ILEV3, ILEV4, ILEV5, ILEV6, ILEV7,
ICOL1, ICOL2, ICOL3, ICOL4, ICOL5, ICOL6, ICOL?,
WID1,WID2,WID3,WID4,WID5,WID6,WID7,
SL4, SL5,SL6, SL7,
ROT4, ROT5, ROT6, ROT7,
SW4, SW5, SW6, SW7,
HT4,HT5,HT6,HT?)

SN ds Wk

Now, some graphics calls can be made.

Draw a multiple point line.

QOO0 n

POINTS=7
X{1}=20
Y{1)=40
X(2)=50
Y(2)=40
X({3)=50
Y (3)=50
X(4)=40
Y{4)=50
X(5)=40
Y (5)=60
X(6)=20
Y(6)=60
X(7)=X(1)
Y(7)=Y{1)
CALL UWMPLINE (X,Y,POINTS, ITYP3,WID3,ILEV3, ICOL3, IDBG3,5YS)

cC Place dimension at left side.

F-10

aan

Qo

Q00

OO0

[eReRe

DNUMX=14

DNUMY=50

XPT1=20

YPT1=40

XPT2=20

YPT2=60

HTS (1) =1

CALL UWDIM (DNUMX,DNUMY,XPT1,YPT1,XPT2,YPT2, ITYPS5,WIDS,
1 ILEVS, ICOLS, SLS, ROTS, HTS, SWS, IDBGS, SYS)

Place dimension at top-left.

DNUMX=30

DNUMY=64

XPT1=20

YPT1=60

XPT2=40

YPT2=60

CALL UWDIM (DNUMX,DNUMY,XPT1,YPT1,XPT2,¥YPT2, ITYPS,WIDS,
1 ILEV5, ICOLS, SLS, ROT5, HTS, SW5, IDBGS, SYS)

Place dimension at top-right.

DNUMX=45

DNUMY=64

XPT1=50

YPT1=60

XPT2=40

YPT2=60

CALL UWDIM (DNUMX,DNUMY,XPT1,YPT1,XPT2,YPT2, ITYP5,WIDS,
1 ILEVS, ICOLS, SL5, ROT5, HT5, SW5, IDBGS5, SYS)

Place dimension on the right side.

DNUMX=55

DNUMY=45

XPT1=50

YPT1=50

XPT2=50

YPT2=40

CALL UWDIM (DNUMX,DNUMY,XPT1, YPT1,XPT2,YPT2, ITYPS5,WID5,
1 ILEV5, ICOL5, SL5,ROT5, HT5, SW5, IDBG5, SYS)

Place a note.

TCENX {1)=32

TCENY (1) =172

TOTCHR (1) =9

NOSTR=1

TBUFFR="'TESTBOX 1°'

HT4 (1) =4

CALL UWNOTE (TCENX, TCENY, TOTCHR, NOSTR, TBUFFR, ITYP4,WID4, ILEV4,
1 ICOLA4, SL4,ROT4, HT4, SW4, IDBG4, SYS)

Now, terminate graphics creation.
CALL UWTERM (IDBGS, SYS)

STOP
END

F-11

1 I T

application program: a program which uses the UWGRAPH library to produce
automated drawings.

argument: a variable that is passed to a subroutine through a list.

compiler: a program which interprets source code and creates object and/or
executable code.

dependency: an entity attribute that is specific to a particular system.

default: an entity attribute read in from a datafile which is used if flagged to do
SO.

design file: (DGN file) the type of graphics file created by the Intergraph CAD
system.

digitizer: an electromagnetic sensitive tablet and a puck with crosshairs and
buttons used as a computer input device.

drawing parameterization: the process of determining the dimensions and the
attributes of a drawing.

" entity: a graphical element, such as a line or text

entity creation: the section of an application program where one or more entity
calls are made.

GKS: Graphical Kernal System, an international standard for two dimensional
graphics accepted by the International Organization for Standardization.
high level utility: an application subroutine which uses the UWGRAPH library

and is generic enough to be useful in several applications.
initialization: the first section of an application program which initializes the
graphic system; this section opens files, reads defaults and sets window sizes

among other functions,

G-1

leader line: a line used both for dimensions and labclé; the leader line associated
with a dimension spans between witness lines; the leader line associated with
labels goes from the label text to the tip of the arrow.

library: a collection of related object modules which have been combined in one
file.

m4: a UNIX utility used as a preprocessor for the source code; this processor can
be used to strip out system dependent comments.

make: a UNIX based utility used to keep object and executable code up to date;
the make utility checks the date stamps on files to determine wether or not
they need to be compiled before the link operation.

metafile: atext file created by GKS which can be interpreted and converted to
numerous formats used by output (graphics) devices.

Micro-CSL: MicroStation customer support library: the graphics library used to
create MicroStation graphics primitives.

termination: the last section of an application program which closes the graphics
file.

witness line: a line used in dimensioning to show an endpoint of the dimension.

architecture of UWGRAPH, A1l
BLDDIM, E3
BLOCK.DEF, C10
BOXCOORD, E3

call include files (.cal), A4
compiling, 43

conventions, 4
dependency, 4
DRAWNUT, E2
DRAWTHR, E2

DXF, 2

entity creation section, 4
false mappings, A3
Graphical Kernal System (GKS), 2
HDDIM2, 37

HDLABEL, 45

higher level utilities, E1
Initialization Section, 4

m4, D1

makefile, 55, D2

Microsoft FORTRAN example, 54
output viewing, 47
preprocessing, D1
programming/hints, 46
STRIP.FOR, D8

structure of an application, A2
technical reference, C1
termination section, 4

Unix FORTRAN example,55
USEDEEF, E1

utilities,E1

UWARGC, 16

UWARROW, 48
UWDIM, 27

UWDIM2, 32

UWINIT, 10

UWLABEL, 41
UWLINE, 13
UWMPLINE, 20
UWNOTE, 23
UWTERM, 52

INDEX

