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EXECUTIVE SUMMARY

Transit service is playing an increasingly vital role in maintaining and improving
the mobility and economic well-being of rural populations in the North Central region.
This has been particularly important as the decline in several small towns has led fo a
dependency on regional centers or metropolitan areas for services formerly provided
locally. While rural transit systems have become more important, higher operating
expenses and reduced federal subsidies have made state transit management, design and
funding decisions more complex. This project has developed methods and tools to aid
these important decisions.

In particular, to facilitate the task of designing and funding transit service by
transit managers and funding agencies respectively, this work explicitly includes
performance indicators in a simulation method which provides forecasts of transit system
efficiency and effectiveness over time. The method is to be used as a quick turn-around
design tool at two levels: (a) at the managerial level to provide help in service design and
operation, and (b) at the fund allocation level to help in funding decisions.

To be effective, this tool must be "transferable," i.e., it must be applicable across
rural areas without the need for substantial data collection. Techniques were developed
to improve the potential for transferability of the simulation method, to facilitate its
implementation across rural areas of the North Central region. The resulting
improvements in transit funding decisions and access of rural populations to employment
and other services can, therefore, be accomplished at low cost and with attention to the
individual characteristics of each rural area in a cost-effective manner,

A general analysis framework which describes the dynamics of causal factors over

time was used in this study. A transit system, at any given point can be characterized by




the classical economic paradigm of the supply-demand relationship, where supply and
demand share a common equilibrium point. Over time, however, environmental factors
and policy changes can cause dramatic shifts in the equilibrium point for the system. In
addition, the time needed for the system to exhibit equilibrium behavior is dependent on
the overall system delay. The magnitude of this delay depends on four individual delays,
each of which lasts from four months to one year. These delays were identified during
case studies of rural transit systems in Minnesota and elsewhere in the U.S.: Vehicle
Acquisition Delay, Schedule Change Delay, Subsidy Award Delay, and Ridership
Information Delay.

The basic interrelationships among the transit system components were identified
using information gathered from case studies and from a detailed review of the literature
on rural transit systems. Cause-effect relationships were then quantified and a computer
simulation of the system behavior over time was employed. Using the computer
simulation, of the long and short term effects of different policies on rural transit
productivity and efficiency transit decision makers can perform extensive sensitivity
analysis to determine the relative policy efforts prior to implementation., Examples of
policies that can be tested include: fuel price increases and operating and design
strategies such as fleet size, vehicle utilization and service area changes.

More specifically, the model employed in this work, SOLONZ, is broken down into
two sectors: Demand and supply. The demand sector is divided into two subsectors
according to travel mode chosen: Transit Ridership and Auto. SOLONZ2 uses previously
developed disaggregate specifications for demand estimation. One advantage of
disaggregate specifications over aggregate ones is that they use, more efficiently, the

variability present in the data. An additional advantage is that they have shown a
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transferability over time. Further, a set of differential equations is developed with the
disaggregate demand specifications as components. Variables appropriate for analyzing
and designing policies of interest to the intended clients are used, rather than descriptive
variables. It is thus possible for the model to be used directly for service design. With
the inclusion of as many endogenous policy variables as possible, a number of feedback
effects relevant to current and future policy-making in transportation can be analyzed.

Feedback effects can be analyzed in both the demand and supply sectors. In
particular, the SOLON2 supply sector includes two subsectors - services supplied and
resources. The demand sector also includes two parts - transit demand and resources for
demand. Transit demand is a function of rider resources (e.g., annual household income
and auto ownership) and transit service supplied (e.g., travel time, waiting time and fare).
As transit usage grows, users’ resources change to reflect this travel choice. If transit
usage grows for work trips, auto availability is higher for other trips made by the
household.

Transit ridership depends on the system characteristics and on the socio-economic
characteristics of the population in the service area, as described by a logit travel-demand
model. The relations that govern the transit supply sector can be conveniently altered to
represent particular managerial policies. While transit ridership expands or decays,
depending on the level of transit service available, it is limited by the system capacity.
The load factor value at which the manager is content to keep the system capacity and
supply unchanged, the "operating point," plays an important role in the total system
behavior.

One additional feedback effect, particularly noticeable in rural areas, is the

importance of system awareness and acceptability by the community. Traditional ways of
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life, scarcity of convenient transportation alternatives and poor information sources for
locating transportation systems are factors that contribute to making the rural resident
reluctant to accept new alternatives. These factors are accentuated by advanced age of
rural residents, and weak economic conditions in many rural communities. System
acceptability increases the longer a transit system operates in the area, and the greater
its share is in the work population. Delays may increase in areas where previous
attempts to operate a transit system failed.

Data initialization is the first step in applying SOLON2. The data requirements
include conventional demographic, socioeconomic, and trip information, readily available
to transport planners. Additional data, associated with the dynamic nature of the
method, include the information and management time constants, and the initial values of
ridership and frequency. Performance guidelines, indicating how transit service should be
modified in response to performance changes, are declared by the user. The SOLON2
user can update this policy, if desired, after the performance evaluation results have been
reviewed.

Following the simulation, the route performance measures are determined and the
demand is estimated. A record of the ridership, frequency, and other performance
indicators is kept in the form of tables and plots. These are then available to the user
interactively over the time horizon or at any other instant specified by the user. Having
inspected the selected printouts and plots of route performance indicators for the policy
being evaluated, the user can indicate policy modifications and compare the resulting
route performance against the base case.

SOLON2 has been implemented in a way that allows easy access by decision

makers with little or no computer experience. As a result, it enables experienced policy
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analysts to examine expected performance improvements in greater depth by
experimenting with a wide range of plans prior to field application. Further, it can
substantially aid personnel training. Finally, recommendations for improvements, made
by users, are being incorporated in the current version of the method, so that it continues

to be responsive to the changing needs of transit decision malkers.
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CHAPTER 1

INTRODUCTION

Transit service is playing an increasingly vital role in maintaining and improving
the mobility and economic well-being of rural populations in the North Central region.
This has been particularly important as the decline in several small towns has led to a
dependency on regional centers or metropolitan areas for services formerly provided
locally. While rural transit systems have become more important, higher operating
expenses and reduced federal subsidies have made state transit management, design and
funding decisions more complex. This project has developed methods and tools to aid
these important decisions.

In particular, to facilitate the task of designing and funding transit service by
transit managers and funding agencies respectively, this work explicitly includes
performance indicators in a simulation method which provides forecasts of transit system
efficiency and effectiveness over time. The method is to be used as a quick turn-around
design tool at two levels: (a) at the managerial level to provide help in service design and
operation, and (b) at the fund allocation level to help in funding decisions.

To be effective, this tool must be "transferable," i.e., it must be applicable across
rural areas without the need for substantial data collection, Techniques were developed
to improve the potential for transferability of the simulation method, to facilitate its
implementation across rural areas of the North Central region. The resulting

improvements in transit funding decisions and access of rural populations to employment
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and other services can, therefore, be accomplished at low cost and with attention to the
individual charaecteristics of each rural area in a cost-effective manner.

This work addresses problems faced by both transit managers and funding
agencies. Such problems have been identified through interaction with Mn/DOT decision
makers and during a review of rural transit systems in Minnesota and elsewhere in the
Upper Midwest. These problems include determining the possible impacts of reduced
subsidies on service, ridership and other performance measures; and addressing the need
for selective service cutbacks that are due to funding restrictions,

Transit system problems may be divided into two categories depending on the time
during the system’s life that they appear - problems related to project initiation and those
related to project survival.

Initiation Problems

During the start-up period, transit managers apply for initial funding and
formulate plans based on socioeconomic and demographic characteristics of the service
area. Managers must design routes and schedules, predict ridership, seat miles and
revenues based on data such as terrain, service area and population in the service area.
These predictions are difficult to make with only the data that are generally available.

During the initial period, subsidies for rural transit projects may be allocated.
Applications are expected to present evidence of the ways in which the proposed transit
system would meet the area’s needs. In the process, the funding agency, such as
Mn/DOT, must make a judgement on the relative merit of alternative proposals. When
essential data are not readily available, Mn/DOT may use the performance of existing

systems to infer the candidate system’s future performance. However, unless the whole




spectrum of variables essential in determining the behavior of a rural transit system is
examined, such comparisons may produce misleading predictions.

The above problems are further complicated by the tight time schedules within
which funding agencies require performance results from operating systems in order to
make funding and budget size decisions. Because of resulting time constraints, transit
decision makers may use single average values describing system performance to make
decisions about the long-term viability of rural transit operations. Such values may then
be compared at the national or state level and decisions made about whether a system’s
performance is "acceptable” or "unacceptable." Potential shortcomings of this procedure
are illustrated in Figures 1 and 2. Figure 1 is an example of data from a seemingly
unacceptable system. Figure 2 is an example of an apparently acceptable system. Notice
that Figures 1 and 2 actually describe the ridership of the same system but Figure 1
contains data from only the first seven months of system operation, while the data in
Figure 2 includes 18 months of operation. From the figures the transit system is still
expanding and its performance values continue to change with time, i.e., one year has not
been enough for them to reach equilibrium. In general, the time needed for the system to

exhibit equilibrium behavior is dependent on the overall system delay.
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The magnitude of this overall system delay depends on four individual delays, each
of which lasts from four months to one year. These delays were identified and fully
documented during case studies of rural transit systems in Minnesota and elsewhere in
the U.S. (See references (1) to (11)):

(1) Vehicle Acquisition Delay

(2) Schedule Change Delay

(3) Subsidy Award Delay

(4) Ridership Information Delay

Transition-Stage Problems

At the end of the first or second year of funding, the system’s performance is
ugually reviewed for funding continuation. The benefit-cost standards a local community
applies to the expenditure of foderal or state subsidies can be somewhat different than for
local subsidies. The former are considered to be marginally free, and thus, the accrual of
any form of benefit is a net gain to the community. In most cases, this implies that the
effectiveness of state subsidies depends heavily on an operator’s internal evaluation of the
service and/or on external evaluation and monitoring by the allocating agency.

During the transition stage in a life of a rural transit system, performance
indicators usually reach values termed acceptable by management and remain relatively
unchanged with time. Management may then consider penetrating new market segments
or increasing transit use through advertising or by improving service. Any such plans for
jimprovement or expansion depend on adequate and timely funding. Long delays,
however, impair the smooth transition from one stage to the other and result in lost time

and revenue for the transit system.




CHAPTER 2

GENERAL APPROACH

A general analysis framework which describes the dynamics of causal factors over
time was used in this study. A transit system, at any given point can be characterized by
the classical economic paradigm of the supply-demand relationship, where supply and
demand share a common equilibrium point. Over time, however, environmental factors
and policy changes can cause dramatic shifts in the equilibrium point for the system.

The types of behavior that can characterize a transit system include a downward
spiral where reduced ridership (caused by various factors, particularly increased auto
ownership) can cause transit operators to reduce level of service (e.g., longer headways,
higher fares) which, in turn, results in further ridership reductions. This downward
spiral is one type of system behavior now widely recognized by transportation system
analysts. There are, however, many other possible modes of behavior under which rural
transit systems may alternatively flourish, exist in a marginally productive state or cease
operation. High levels of capital assistance can cause over-capitalization in the near term,
with inadequate resources set aside by the operations for future capital stock replacement,
Fuel price increases could cause a dramatic increase in the viability of rural transit
systems, or, for systems operating at low load factors, could force some out of business.
(For efficient systems, higher ridership will lead to higher frequency of inefficient service
and a larger number of money-losing bus miles, and this will increase net financial

losses.)




The basic interrelationships among the transit system components were identified
in this work using information gathered from case studies and from a detailed review of
the literature on rural transit systems. Cause-effect relationships were then quantified
and a computer simulation of the system behavior over time was employed.

Using the computer simulation, of the long and short term effects of different
policies on rural transit productivity and efficiency transit decision makers can perform
extensive sensitivity analysis to determine the relative policy effects prior to
implementation. Examples of policies that can be tested include: fuel price increases and
operating and design strategies such as fleet size, vehicle utilization and service area
changes. The structure of the simulation allows easy testing of alternative policies, as
demonstrated by the example in Figure 3. This figure deseribes a subsidized system,
which is allocated more funds only if the funding agency sees a substantial amount of
ridership being attracted. Seat availability and system visibility are two of the factors
which influence ridership in the short run. Auto ownership is a long run variable. In this
example, ridership is an index of performance for the funding agency and load factor
(defined as demand/supply) is an index of performance for the system manager and riders.
Note the flexibility of the structure that allows testing of other possible measures, e.g.,
ridership-to-serviced-population ratio, revenue, and revenue per passenger.

As another example, consider the effects of a possible energy price increase on
transit ridership (Figure 4). While it is not clear whether an alternative method would be
able to model this exogenous effect, it can be modeled in a straightforward manner by a
closed loop dynamic model as long as its occurrence is hypothesized within the model’s

time horizon.
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CHAPTER 3

A DYNAMIC MODEL FOR THE DESIGN OF RURAL TRANSIT OPERATIONS

The model employed in this work, SOLONZ, is broken down into two sectors:

A, Demand sector

B. Supply sector
The demand sector is divided into two subsectors according to travel mode chosen:

(a)  Transit ridership

(b) Auto users

SOLON2 uses previously developed disaggregate specifications for demand
estimation. One advantage of disaggregate specifications over aggregate ones is that they
use, more efficiently, the variability present in the data. An additional advantage is that
they have shown a transferability over time. However, they are usually applied in a
static framework. Since this model will be used to analyze transportation services as they
change through time, a dynamic structure is needed. To accomplish this, a set of
differential equations is developed with the disaggregate demand specifications as
components in the overall structure. The approach used here is based on selecting
acceptable causal a priori hypotheses. It draws on credible theories of consumer behavior
rather than exploiting simple correlations among variable.s Supply, resource and demand
sectors are included in a time-dynamic framework.

Variables appropriate for analyzing and designing policies of interest to the
intended clients are used, rather than descriptive variables. It is thus possible for the

model to be used directly for service design. With the inclusion of as many endogenous
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policy variables as possible, a number of feedback effects relevant to current and future
policy-making in transportation can be analyzed. As a result, there is not a need for
compromising model building toward self-equilibrating recursive progressions. Instead,
the causal dynamics are used for continuous forecasting through time,

SOLON? has potential applications for policy design at two levels: (a) at the
managerial level to provide help in system design and operation, and (b) at the fund
allocation level to help in funding decisions. It is useful as a quick turn-around policy
design tool.

A Feedback Dynamic Representation of Supply-Demand-Resource Interactions

The basic problem for the transit decision maker is the prediction of equilibrium in
the transportation system, which is determined by the pattern of flow in the network.
The general structure for predicting the flow pattern is the equilibrium between supply
and demand. Depending on the variables that are of interest and the assumptions made,
this may be a short-term equilibrium, a long-term equilibrium, or something between the
two. For example, the interaction between transportation service and ridership is realized
over a shorter period of time than is the interaction between these factors and resources
(subsidies). A time-dimension, then, has to be taken into account by the decision maker
who intends to capture these interactions in a model. The way in which this time-
dimension is conceived is a matter of considerable strategic significance. The choice
ranges from comparative statics at one extreme, through various types of recrusive
progression, to analytical dynamics at the othé,r extreme.

Self-equilibration is not a necessary assumption for analytical dynamics, an
approach which focuses attention on the processes of change rather than on the emergent

state of the system at a specific future date. Implementation of a dynamic model requires
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only specification of its structural parameters and the "initial conditions” of its variables.
Thereafter, all processes are endogenous except time, and the time path of any variable
can be continuously traced. The state of the system can be evaluated at any point in
time. If the system is self-equilibrating, the values of its variables should converge on
those indicated by analogous comparative statics; but without self-equilibrating
properties, the system may fluctuate cyclically, explode, or degenerate.

The model employed here, SOLONZ, is a dynamic representation of the supply-
demand-resource interactions in a transportation system. The structure of SOLONZ2 can
be analyzed at several levels of detail. At the most general level, it may be viewed as a
simple demand-supply model (see Figure 5). Given the transportation services provided
by the supply sector, the demand sector reacts and expresses a need for transportation
services. The demand sector reacts to supply changes relatively quickly, but the reaction
time of the supply sector to demand changes may be much longer.

At a more detailed level, the supply sector includes two subsectors - service and
resources (see Figure 6). As transit demand grows, supply resources also grow, but
transit service degrades {(ceteris paribus). Service may improve, however, if appropriate
managerial action is taken. As more service is supplied by the transportation system, its
resources are depleted unless increased subsidies or increases in farebox revenue are
received. As resources are depleted, the service supplied decreases and demand for

transit also decreases.
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The demand sector also includes two parts - transit demand and resources for
demand. Transit demand is a function of rider resources (e.g., annual household income
and auto ownership) and transit service supplied (e.g. travel time, waiting time and fare).
As transit usage grows, users’ resources change to reflect this travel choice. If transit
usage grows for work trips, auto availability is higher for other trips made by the
household.

In the next sections, a further breakdown of these sectors illustrates the

relationships among their variables and parameters in greater detail.




CHAPTER 4

TRANSIT SECTORS

(A) Demand Sectox: Transit Ridership Subsector

The primary assumption of the transit demand sector is that transit service
characteristics and transit ridership are fundamentally interrelated. Transit ridership
depends on the system characteristics and on the socio-economic characteristics of the
population in the service area, as described by a logit travel-demand model.

The multinomial logit formulation itself is described in many references and is

expressed as follows:

PA)-——F (1)
Y eb
Jed,
where:
P(i:A) = the probability of behavioral unit t selecting alternative i from its
choice set A,
Xy = 4 vector of independent variables for alternative i and behavioral

unit t. The coefficients b are estimated using the maximum likelihood method.
The variables included in the work trip logit model are listed in Table 1. The
model was tested and shown to be transferable to areas of differing characteristics. Using

the logit model, choice probabilities may be computed, given the two alternatives of auto
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and transit. The number of trips demanded per week is then found as a function of

information delay, according to the following equation:

Estimated Demand - Demand 2)
Work Trip Rider Information Delay

d
LAf)) =
t( emand)

Table 1

Work Mode Choice Model: Definition of Variables

Variable Code Definition

1. IVT_A = One way trip in-car travel time (in minutes)

2. IVT_B = One way trip in-bus travel time (in minutes)

3, OVT_B = One way trip out-of-bus travel time (includes wait time and walk

time, in minutes)

4, EGRESS_C = Egress time for car users (includes walk time, in minutes)

5. EGRESS_T = Egress time for bus users (includes walk time, but does not include
wait time, in minutes)

6. PARKCOST C = Daily parking cost for car users (in dollars)

7. AUTOPH = Number of cars per household
8. PERSPH = Number of persons per household
9. INCOME = Annual household income

where Estimated Demand is directly computed from the choice probabilities and the
number of people in the market segment under consideration. Because of the Rider
Information Delay, however, actual demand approaches but does not necessarily equal

Estimated Demand.
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(b) Auto Subsector

The differential equation that computes the number of people using auto is:

Estimated Auto Users — Auto Users (8)
Work Trip Information Delay

—% (Autc Users) =

(¢) Supply Sector

The relations that govern the transit supply sector can be conveniently altered to
represent particular managerial policies using this model. In simplified form, the
differential equation for transit service frequency, as a function of the policy management

follows regarding frequency of service, is:

Desired Frequency — Frequency (4)
Freguency Change Delay

—g; (Frequency) =

where Desired Frequency is a managerial decision, limited by the number of buses and
the travel time and dependent on the Load Factor or some other performance indicator,

through a non-linear relationship specified when running the model.
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CHAPTER 5

APPLICATION TO A RURAL TRANSIT SERVICE

5.1 Service Characteristics and Transit Demand Growth

Transit ridership is controlled in part by the level of service offered in relation to
other modal alternatives. As service improves, ridership increases and significant
improvements may cause dramatic changes in ridership. Past a critical point, however,
indicated by the logistic form of the demand model, service improvements are no longer as
effective. Furthermore, the increase in ridership eventually results in service degradation
because crowding on the vehicle tends to slow ridership growth.

Level of service is a general term which encompasses the major service
characteristics. Some of these characteristics are used as variables and some as
parameters. The choice depends on (1) the importance of the relationship between
independent and dependent characteristics, (2) the insights gained by choosing a
particular representation, and (3} the relative rate of change of a characteristic during the
time period under consideration.

The causal relationships described above are illustrated in Figure 7. By breaking
down Figure 7 into is component loops, one can recognize the important causal
relationships more easily (see Figures 7.1 - 7.4).

In Figure 7.1, high transit demand causes the transit system manager to offer
more service which may attract increased demand. Conversely, low demand causes the
manager to decrease service frequency, which results in lower demand. If not controlled,

this loop will drive the system toward continuing expansion or decay, although at a slow
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pace due to the two delays present, For example, previous work indicates that it takes
approximately five months for demand to form in response to some fransit service offered
(see references (1) to (11)). The control needed is provided by the loop in Figure 7.2, Le.,
the transit system capacity.

The loop in Figure 7.2 controls the system expansion or decay. The transit
manager changes the transit frequency as a result of a change in some performance

indicator, e.g., the Load Factor, where:

Ridership Demand Seat Miles (5)
Capacity Seat Miles

Load Factor =

It may take six months for a transit system to obtain permission to bring about a radical
schedule change.

The loop in Figure 7.8, if acting alone, causes continuous system expansion or
decay. AS RPBM increase, transit travel time also increases, and transit demand
decreases. This causes a decrease in transit supply offered and a further RPBM increase.
This effect would become more important for mixed ridership, shopping and work trips or
general and elderly clientele riding on the same bus. The loop presented in Figure 7.4
acts together with the previous loop to bring the system to an equilibrium.

5.2 Managing Capacity and Supply

While transit ridership expands or decays, depending on the level of transit service
available, it is limited by the system capacity. It is, therefore, necessary to consider the
rules governing management decisions for changing that capacity. These policies are
highly dependent on the individual manager, but, in general, the Load Factor is taken

into consideration through one or more non-linear relationships. A high load factor
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influences management to expand the system capacity. This, in turn, affects the loaf
factor and tends to make further expansion unnecessary. The load factor value at which
the manager is content to keep the system supply unchanged, the “operating point," plays
an important role in the total system behavior. For example, the operating point in
Figure 8 is 50 percent. The manager usually sets a Lower Limit under which Frequency
is not allowed to fall. The Lower Limit is dependent upon the number of buses which are
in running condition. Capacity changes usually take about six months to take effect.

This delay has been observed in rural programs across the country, including Minnesota.




24
Table 2

Transit Service Variables and Parameters

Service Variabl reviation
Transit: Frequency FREQ
Riders per Bus Mile RPBM

| Service Parameters Abbreviation
Transit Out-of-Pocket Travel Cost TOPTC
Transit Walking Time TWLKT
Number of Stops per Mile | | STOPPM -
Stop Time per Rider STPR

~ Transit ~
+Deme_1_nd
+
+ Transit
F,ﬁEQ\ /R'D..BM | Ridership
+
Miles
| = +
Load Factor
Figure 7

Service Characteristics and Transit Demand Growth




* Transit
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9 , Demand
Load #
Factor
Figure 7.1
+ Bus -
FREQ — Miles — RPEM
Load Transit
Factor + - . Demand
Figure 7.3

FREQ
+*

+*
Load ; Bus
FactOf: Miles
Figure 7.2
 Transit * Transit
Demand Ridership
RPBM ".
Figure 7.4

Breakdown of Figure 7
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5.9 Rural Way of Life and Community Acceptance

One additional feedback effect, particularly noticeable in rural areas, is the
importance of system awareness and acceptability by the community. Traditional ways of
life, scareity of convenient transportation alternatives and poor information sources for
locating transportation systems are factors that contribute to making the rural resident
reluctant to accept new alternatives. These factors are accentuated by advanced age of
rural residents, and weak economic conditions in many rural communities. System
acceptability increases the longer a transit system operates in the area, and the greater
its share is in the work population. Delays may increase in areas where previous
attempts to operate a transit system failed.

The acceptability delay is crucial to effective transit service design in rural areas.
Failing to take it into account will result in over-optimistic ridership demand estimates.
Funding agencies are also aware of this delay when considering the reduction of funding
in systems that do not show quick progress.

5.4 Performance Indicators in SOLON2

Previous sections in this chapter and a detailed software listing in the Appendix
describe how the dynamic model uses initial input data to determine the behavior of rural
transit operations across time., The final section of the model is a synthesis of the
variables with values forecast. The final output of the model is presented in terms of
performance measures. A list of indicators available by the present version of the

software is found in Table 3, following:
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TABLE 3

Performance Indicators for Transit - Weekly

Headway
Ridership
Load Factor
Frequency
Cost
Revenue
Profit

Revenue/Cost




CHAPTER 6

APPLICATION: POLICY EVALUATION AND DESIGN

The basic process for evaluating and selecting route performance policies using
SOLON?2 is now illustrated through application of the dynamic method to peak-period
work trips on a radial route along a rural corridor south of a town central business
district. This route is characterized by local stops at the two ends of the trip and virtually
no stops in the middle portion. Census data and traffic information are routinely
available to transit decision makers who are potential users of the method.

Data initialization is the first step in applying the policy decision method. The
data requirements include conventional demographic, gocioeconomic, and trip information,
readily available to transport planners. Most of these data are required by the logit
specifications that are built in SOLON2. Additional data, associated with the dynamic
nature of the method, include the information and management time constants, and the
initial values of ridership and frequency.

Performance guidelines, indicating how transit service should be modified in
response to performance changes, must next be declared by the user. In this application,
for instance, the transit manager follows a policy that states that there should be no
frequency change for round-trip load factors that equal 0.5; below this value, frequency
should decrease, whereas above it (i.e., when there are standees), it should increase. The
SOLON2 user can update this policy, if desired, at a later stage after the performance

evaluation results have been reviewed.
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Following initialization, SOLON2 begins operation by computing the initial values
of the route performance indicators. Load factor, operating ratio, and net revenue are key
indicators in this application because they determine the service frequency modifications.
If the load factor (LF) exceeds the maximum value (LF, ) allowed by the size of the
transit vehicles, then LF = LF,,, and SOLON2 signals the need for more service. If LF is
below LF, . , the minimum value allowed by the operating ratio constraints, SOLON2
signals that present service conditions should be reevaluated, Fulfillment of additional
performance criteria, critical to service change decisions, may also be similarly
determined.

The next step is activated only at regular time intervals, the length of which is
controlled by the user. These indicate the points in time when transit management
makes service change decisions. If current resources are adequate, frequency change is
initiated on the basis of the state of the performance indicators determined previously.
Owing to implementation time delays, the frequency change initiated in this step can only
be implemented after a period of time. This is necessary as a result of regulations or
because of needed adjustments in the rolling stock and the number of available drivers. In
extreme cases, when the available transit vehicles are not sufficient for satisfying the
needed service improvements, additional capital is desired; in this case vehicles may be
ordered or drivers may be hired, or both. In such an event, order and acquisition delays
intervene and service change decisions may be implemented more than a year after the
process is initiated. At the same time, depreciating vehicles are retired and create the
need for additional equipment orders.

Following the change in transit service, the route performance measures are

determined and the demand is estimated. A record of the ridership, frequency, and other
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performance indicators is kept in the form of tables and plots. These are then available to
the user interactively beginning with time zero(i.e.,the time SOLON2 is initialized) and
ending with the end of the time horizon or any other instant specified by the user.

Having inspected the selected printouts and plots of route performance indicators
for the next base policy, the user can indicate policy modifications and compare the
resulting route performance against the base case. To illustrate this option, two such
policy modifications have been included in Figure 9. In this example, the performance of
the transit operation is evaluated based on the operating ratio. In particular, the
performance objectives the attainment of operating ratio values greater than 0.9. Two
policies are proposed by management for reaching the desired objective. Policy B requires
an initial frequency of service equal to 5 buses per hour, and a fare of $2. Policy C offers
an initial service of 4 buses per hour at a $3 fare. The dynamic simulation of the two
policies indicates that, in both cases, a period of approximately 20 weeks is necessary for
the system to reach equilibrium. This overall system delay results from the time needed
for trip makers to be informed about the new service, decide to use it, and for
management to react to the increasing demand by scheduling the appropriate bus
frequency. Of the two policies, only policy C succeeds in increasing the operating ratio so
that it enters the desired region, i.e., becomes greater than 0.9. The overplotting can
continue and the user can evaluate additional policies until he or she is confident that one
or more of the policies under evaluation are superior and can be selected.

The dynamics of the transition of the operation from the time a policy is instituted
until the time the bus system reaches equilibrium can be illustrated with SOLON2.
Having provided the necessary data, we can apply SOLON2 to the initial conditions of

interest, and let it provide us the equilibrium solution and the time over which it is
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achieved., By applying SOLON2 multiple times, we can produce a map of the isochrones
of the operation. Based on this map, it is sufficient to locate the initial conditions
(frequency of service and ridership) to immediately determine the time it will take for
equilibrium to be reached. For instance (see Figure 10), for initial frequency equal to 5
buses/hr and initial ridership of 3000 trips/week, the transit operation will reach
equilibrium in approximately 20 weecks. Using the isochrone map a transit manager or
funding agency can determine, at a glance, both the potential performance of a transit
operation and the speed with which that performance can be achieved given a desired

policy.
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CHAPTER 7

CONCLUSIONS

A dynamic simulation method has been developed that provides forecasts of transit
system efficiency and effectiveness over time. The new method explicitly includes
performance indicators and can be used as a quick turn-around design tool at two levels:
(a) at the managerial level to provide help in service design and operation, and (b) at the
fund allocation level to help in funding decisions.

Techniques were developed to improve the potential for transferability of the
simulation method, to facilitate its implementation across rural areas of the North
Central region without the need for substantial data collection. The resulting
improvements in transit funding decisions and access of rural populations to employment
and other services can, therefore, be accomplished cost-effectively and with attention to
the individual characteristics of each rural area.

The transit framework of the method is based on the classical economic paradigm
of the supply-demand relationship, where supply and demand share a common
equilibrium point. Over time, however, environmental factors and policy changes can
cause dramatic shifts in the equilibrium point for the system. In addition, the time
needed for the system to exhibit equilibrium behavior is dependent on the overall system
delay. The magnitude of this delay depends on four individual delays, each of which lasts
from four months to one year: Vehicle Acquisition Delay, Schedule Change Delay,
Subsidy Award Delay, and Ridership Information Delay. The basic interrelationships

among the transit system components were identified using information gathered from
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case studies and from a detailed review of the literature on rural transit systems. Cause-
effect relationships were then quantified and computer simulation of the system behavior
over time was employed.

More specifically, the model employed in this work, SOLON?2, is broken down into
two sectors: Demand and Supply. The demand sector is divided into two subsectors by
travel mode chosen: Transit Ridership and Auto. SOLONZ2 uses previously developed logit
disaggregate specifications for travel-demand estimation. One advantage of disaggregate
specifications over aggregate ones is that they use, more efficiently, the variability present
in the data, An additional advantage is that they have shown a transferability over time.
Further, a set of differential equations is developed with the disaggregate demand
specifications as components. Variables appropriate for analyzing and designing policies
of interest to the intended clients are used, rather than descriptive variables. It is thus
possible for the model to be used directly for service design.

With the inclusion of endogenous policy variables in the dynamic model, a number
of feedback effects relevant to current and future policy-making in transportation can be
analyzed. In particular, transit decision makers can perform extensive sensitivity
analysis to determine the relative policy effects prior to implementation. Examples of
policies that can be tested include: fuel price increases and operating and design
strategies such as fleet size, vehicle utilization and service area changes.

A feedback effect, particularly noticeable in rural areas, is the importance of
system awareness and acceptability by the community, Traditional ways of life, scarcity
of convenient transportation alternatives and poor information sources for accessing
transportation systems are factors that contribute to making the rural resident reluctant

to accept new alternatives. These factors are accentuated by advanced age of rural
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residents, and weak economic conditions in many rural communities. System
acceptability increases the longer a transit system operates in the area, and the greater
its share is in the work population. Delays may increase in areas where previous
attempts to operate a transit system failed.

SOLON?2 data requirements include conventional demographic, socioeconomic, and
trip information, readily available to transport planners. Additional data, associated with
the dynamic nature of the method, include the information and management time
constants, and the initial values of ridership and frequency. The load factor value at
which the manager is content to keep the system capacity and supply unchanged, the
operating point, also plays an important role in the total system behavior. Performance
guidelines, indicating how transit service should be modified in response to performance
changes, are declared by the user. The SOLON2 user can update this policy, if desired,
after the performance evaluation results have been reviewed.

Following the simulation, the route performance measures are determined and are
available interactively over the time horizon or at any instant specified by the user.
Having inspected the selected printouts and plots of route performance indicators for the
policy being evaluated, the user can indicate policy modifications and compare the
resulting route performance against the base case,

SOLONZ2 has been implemented in a way that allows easy access by decision
makers with little or no computer experience. As a result, it enables experienced policy
analysts to examine expected performance improvements in greater depth by

experimenting with a wide range of plans prior to field application.
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APPENDIX A

STRUCTURE OF SOLON SOFTWARE

SOURCE CODE OF SOLON SOFTWARE
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Menu S8tructure of SOLON2 Software

Main Menu
‘File Run Simulation Graph Quit
Load File Select Number
of Routes
[
Save File Identify Desired
Routes
‘ |
Edit File Type of
Graph
New File

Main Menu
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Glossary

File : Select the File Menu.
‘Load File : Load a data set from a text file.

Save File : Save the data in a text file.

Edit File : Edit the data in a given text file.

New File : Create a new text file and save the data in this file.

Main Menu : Return to the Main Menu.

Run 8imulation : Run the simulation by using the most recent data

set.

. Graph : Select the Graphics Menu.

Select Number of Routes : The number of routes that will be
displayed on the same graph can be selected (max 3 routes).
Identify Desired Routes : Identify the routes that will be
displéyed (0 -~ Main Route, 1 ... 12 - Feeder Routes).

Type of Graph : Select the route performance indicator - to be
displayed over time of simulation (weeks). The available
indicators are : Headway, Ridership, Load Factor, Frequency, Cost,

Revenue, Profit, Revenue/Cost.

Quit : Quit the program and go to DOS.
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Source code of SOLON software

/ %* == e e e e e e e D &%
* File.: solon2.c *
* ) . +*
* This file contains the main structure of the program Solon2. *
* , *
* Version : 1.0a *
* Copywrite (c¢) University of Minnesota *
* Department of Civil and Mineral Engineering *
* Written by Nikos V. Vairamidis *
S —— mmmmmm—— = */

[ *== * include files *======= */

#include "solon2.i"

[ *= * main program * s=== */

void main()

{

int response;
set _up();

1bl0:
response = main_menu();
switch(response)
{
case DATAMENU:
1b20:
response = data_menu();
switch(response)
{
case LOADFILE :
load _file();
goto 1b20;
case SAVEFILE :
save file();
goto 1b20;
case EDITFILE :
edit file();
goto 1b20;
case NEWFILE :
new_file();
goto 1b20;
case MAINMENU :
goto 1blo;
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default :

goto 1b20;
}
goto 1bl10;
case SIMULAT : '
simulation();
goto 1bl10;
case GRAPH :
graphics();
goto 1bl0;
case QUIT :
goto 1lb30;
default :
goto 1blo;
}
1b30:

_setbkcolor(0l);
_Clearscreen(_ GCLEARSCREEN),

remove('"'results.tmp");
exit(0);

* end of the file *
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* File : data.c

* This file contains all the data management functions.,

S~ % ¥ ¥ *

Fes==== =mmre =
[ *== * include files * = —
#include "solon2.i"
char naf[16];
[ #=m===========% load data file *==========sc=s====sss=ccozoz=os —%/
void lecad_file()
{

int 1, 3;

char ch;

FILE *inf;
reset_all();
cwindow (TEXTWINDOW) ;

_settextcolor(3);
_outtext("Load File");

1bl0:
swindow (TTEXTWINDOW) ;
_settextcolor(7);

outtext ("Name of file : ");.

read_str(i, 16);

if ((inf = fopen(naf, "rt")) == NULL)

{
_settextposition(3, 1);
settextcolor(4);

“outtext("ERROR : Could not open the file");

ch = getch();
_settextcolor(7);

return;
}
fscanf(inf, "%d %d %d %e %e", &simlen,
: &mandel,
&pepdel,
&operhrs,
&busseats) ;

fscanf(inf, "%e %e %e %e %e",

&cstpml,

&estst,
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&cstphr,
&gaspr,
&tickt);

fscanf (inf, "%d %e", &maindata.numzones,
&maindata.frequency};

for (i = 0; 1 < MAXZONES; i ++)
fscanf (inf, "%e", &maindata.length{i]);

fscanf (inf, "%d", &linesdata.numlines);
for (i = 0; 1 < MAXLINES; i ++)

fscanf(inf, "%d %d %d %e",
&linesdata.linesexist[i],
&linesdata.linenum(i],
&linesdata.linezones[i],
&linesdata.frequency{i]);

}

for (i = 0; i < MAXLINES; i +4+)

for (j = 0; j < MAXZONES; j ++)

fscanf{inf, "%e %e %e %e %e %e %e %e %e %e 3e",
&linesdata. length[l][j],
&linesdata.ivt_a[i][]],
&linesdata.ivt b(i][]],
&linesdata.ovt b[i][j},
&linesdata.egress c[i][
&linesdata.egress t[i][
&linesdata.parkcost c[i
&linesdata.autoph{iJ[]]
&linesdata.persph{ij(j]
&linesdata.income[i][]]
&linesdata.worktrips[i]

}
'}

fclose(inf);
draw_line();

return;

/*=====z======* save data file *===

void save file()
{

int i, 3j;

char ch;
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FILE #*outf;
cwindow (TEXTWINDOW) ;

_settextcolor(3);
_outtext("Save File");

1blo0:

swindow (TTEXTWINDOW) ;
_settextcolor(7);
_outtext("Name of file : ");
read str(1l, 16);

if ((outf = fopen(naf, "wt")) == NULL)
{
_settextposition(3, 1);
_settextcolor (4);
_outtext ("ERROR : Could not open the file");
ch = getch()};
_settextcolor(7);

return;
}
fprintf (outf, " %3d\n %3d %3d\n %10e %¥10e\n", simlen,
mandel,
pepdel,
operhrs,

busseats);

fprintf (outf, " %10e %$10e %¥10e\n %1l0e %10e\n", cstst,
cstpml,
c¢stphr,
gaspr,
tickt);

fprintf (outf, "\n %3d\n %10e\n\n", maindata.numzones,
maindata.frequency) ;

for (i = 0; i < MAXZONES; i ++)
fprintf (outf, " %10e\n", maindata.length(i]);

fprintf (outf, "\n %3d\n", linesdata.numlines);
for (i = 0; i < MAXLINES; i ++)

fprintf(outf, " %34 %3d  %3d\n %10e\n",
linesdata.linesexist(i],
linesdata.linenum(i],
linesdata.linezones{i],
linesdata.frequency{il]);

}
for (i = 0; 1 < MAXLINES; 1 ++)
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}

/*

{ - .
for (j = 0; j < MAXZONES; j ++)

fprintf (outf, " %10e %¥10e %10e %10e
linesdata. length[l] _
linesdata.ivt a[1]
linesdata.ivt b[1]
linesdata.ovt_b[i]
linesdata.egress c|[ '
linesdata.egress_t{i ):

fprintf (outf, * %10e %10e %10e %10e
linesdata.parkcost c[i}[3}]
linesdata.autoph{il[j],
linesdata.persph{i][]],
linesdata.income{i][j],
linesdata.worktrips{i][]j]);

L W W |
}-n-u.u.u..—-.
—

p
3
]

’

}
}

- fclose(outf) ;

return;

%$10e  %10e",

%¥10e\n",

void edit file()

{

int i, j;
char buf[80];

cwindow (TEXTWINDOW) ;

_settextcolor(3);
_outtext ("Edit File");

cwindow (TTEXTWINDOW) ;
_settextcolor(7);
outtext("System data“),

cwindow (DATAWINDOW) ;
_settextposition(2, 2);
outtext(“81mu1at10n length (weeks) : ");
simlen = read_int(2, 29, 500, 10, simlen);

_settextposition(3, 2);
outtext("Manager delay (weeks) : ")
mandel = read int(3, 29, 100, 1, mandel);

settextposition(4, 2);

_outtext ("Travelers delay (weeks) : "),
pepdel = read int(4, 29, 100, 1, pepdel);
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_settextposition(s5, 2);
outtext("Operation hours : ")
operhrs = read real(5, 29, 24.0, 1.0, operhrs);

_settextposition(e, 2);
_outtext ("Seats per bus LM I
busseats = read_real(6, 29, 200.0, 10.0, busseats),

_settextposition(7, 2); :
_outtext ("Constant cost / day ($) LS I
- cstst = read_real(7, 29, 100000.0, 0.0, cstst);

_settextposition(8, 2);
outtext(“Cost / mile (%) I
cstpml = read_real(8, 29, 100.0, 0.0, cstpml);

cwindow (DATAWINDOW) ;
_settextposition(2, 2); '
“outtext("Cost / hour (%) : "),
cstphr = read real(2, 29, 500.0, 0.0, cstphr);

settextp031tlon(3, 2);
“outtext("Gas price (3) : "),
gaspr = read real(3, 29, 10.0, 0.0, gaspr);

settextp051tlon(4 2);
“outtext ("Fare price ($) : ");
tlckt = read_real(4, 29, 10.0, 0.0, tickt);

cw1ndow(TTEXTWINDOW),
_settextcolor(7);
_outtext("Main line");

cwindow (DATAWINDOW) ;
_settextposition(2, 2);
outtext(“Frequency (bus/h) : ");
maindata.frequency = read_real(2, 21, 60.0, 0.1,
: maindata.frequency) ;

for (i = 0; i1 < maindata.numzones; i ++)
{
show zone(0, i + 1, 1);
cw1ndow(TTEXTWINDOW),
_settextecolor(7);
sprintf(buf, "Zone %2d of main line", i + 1);
_outtext (buf) ;

cwindow (DATAWINDOW) ;
_settextposition(2, 2);
outtext("Length {mls) L B

. maindata.length[i] = read_real(2, 21, 20.0, 0.1,
maindata.length[i]);
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show_zone(o, i+ 1, 0);

for (1L = 0; 1 < linesdata.numlines; i ++)

if (linesdata.linesexist{i] == 1)
{
cwindow (TTEXTWINDOW) ;
_settextcolor(?); ,
sprintf(buf, "Line 24", linesdata.linenum(i] + 1);
_outtext(buf);

cwindow (DATAWINDOW) ;
settextposition(2, 2);
_outtext(“Frequency (bus/h) : ");
Tinesdata.frequency{i] =
read_real(2, 21, 60.0, 0.1, 1inesdata.frequency{il);

for (j = 0; J < linesdata.linezones(i]; j ++)
{ .
show_zone(i + 1, i+ 1, 1);
cwindow (TTEXTWINDOW) ;
_settextcolor(?);
sprintf (buf, "Zone $d of line %24",
j o+ 1, linesdata.linenum{i] + 1);
_outtext(buf);

ewindow (DATAWINDOW) ;

_settextposition(z, 2);

_outtext(“Length (mls) : ")

Jinesdata.length{il[3] = read _real(2, 24, 20.0, 0.1,
linesdata.length[i]1(31);

_settextposition(3, 2);

_outtext("IVT(a) (min) : ");

Tinesdata.ivt_a[il[3] = : :
read_real(3,24,120;0,0.25,1inesdata.ivt_a[i]{j]);

settextposition(4, 2);

_outtext(“IVT(b) (min) : ")

Tinesdata.ivt b[i]1[]] =
read_rea1(4,24,120.0,0.25,1inesdata.ivt~b[i]{j]);

_settextposition(s, 2);
“outtext("OVT(b) (min) D
Tinesdata.ovt b[i]1[]] = :
read_real(5, 24, 60.0, 0.25, linesdata.ovt b(il[31)7

msettextposition(e, 2);
“outtext("Egress Time(c) (min) : ");
Iinesdata.egress_c[i]1(]]) =

read_real(6, 24, 30.0, 0.0,
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linesdata.egress_c[i]1([31);

_settextposition(7, 2);
“outtext ("Egress Tlme(t) (min) : ");
Tinesdata.egress t[i][]] =
read real(7 24, 30.0, 0.0, ‘
linesdata egress_t[i]1[3]);

_settextp051t10n(8 2);
_outtext ("Parking cost(c) ($) : "™);
Tinesdata.parkcost _c[i]){]] =
read_real(8, 24, 20.0, O. 0,
linesdata. parkcost clii{ily;

cwindow (DATAWINDOW) ;
_settextposition(2, 2);
_outtext ("Autos/household LD BH
linesdata.autoph({i][]j] = ‘
read_real(2, 24, 5.0, 0.0, linesdata.autoph({i])[j1);

_settextposition(3, 2);
outtext(“Persons/household L
linesdata.persph{i}{j] =

read real(3, 24, 10.0, 1.0, linesdata. persph[l][j}),

_settextposition(4, 2);
_outtext("Income ($) : "y,
linesdata.income(i][j] =
read_real(4, 24, 300000.0, 0.0, linesdata.income[i]([31);

_settextposition(5, 2);
“outtext ("Work trips : ")
Tinesdata.worktrips[i][j] =

read_real(5, 24, 30000.0, 0.0, linesdata.worktrips[i][jl);

show zone(i + 1, j + 1, 0);
}.
}
}

set_up();
draw ' line();

return;

/* =======*% new data file *=== B */

void new_file()

{
int i, j, response;
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char buf(80];
reset_all();
cwindow (TEXTWINDOW) ;

_settextcolor(3);
“outtext ("New File");

swindow (TTEXTWINDOW) ;
_settextcolor(7);

_outtext ("Number of zones on main line
maindata.numzones = read_int(1l, 32, 6,

.y
-y

= oo
0\\.’

draw_line();
l1inesdata.numlines = maindata.numzones * 2;

j = =-1;

. for (i = 0; i < linesdata.numlines; i ++)

{ o

show line(i + 1, 1);

swindow (TTEXTWINDOW) ;

_settextcolor(7);

_outtext("Select this line (1: No, 2: Yes) : ");
Tesponse = read_int(1, 36, 2, 1, 2);

if (response == 2)

linesdata.linesexist[i] = 1;
linesdata.linenumf{i] = ++Jj;
}
else
show_line(i + 1, 0);

}
draw_line();

for (1 = 0; 1 < linesdata.numlines; i ++)
{
if (linesdata.linesexist[i] == 1)
{
show line(i + 1, 1);
swindow (TTEXTWINDOW) ;
_settextcolor(7);
sprintf(buf, "Number of zones on line %24 : ",
linesdata.linenum({i) + 1);
outtext (buf};

Tinesdata.linezones[i] = read_int(1, 30, 6, 1, 6)

show_line{(i + 1, 0};
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draw_line();

cwindow (TTEXTWINDOW) ;
_settextcolor(?);
_outtext ("System data");

cwindow (DATAWINDOW) ;

_settextposition(2, 2);
”outtext("simulation length (weeks) : ");
simlen = read_int(2, 29, 500, 10, 100);

__settextposition(3, 2);
_outtext ("Manager delay (weeks)
mandel = read_int(3, 29, 100, 1, 1);

..

"

_settextposition(4, 2);
_outtext ("Travelers delay (weeks)
pepdel = read_int(4, 29, 100, 1, 10)

");

e ¢

_settextposition(5, 2);
_outtext ("Operation hours / week ")
operhrs = read_real(5, 29, 24.0, 1.0, 20.0);

_settextposition(s, 2);
_outtext("Seats per bus : "y,
busseats = read real(6, 29, 200.0, 10.0, 60.0);

_settextposition(7, 2);
“outtext("Constant cost / day ($) HELB I
cstst = read real(7, 29, 500.0, 0.0, 1000.0);

_settextposition(8, 2);
_outtext("Cost / mile ($) ' : ");
cstpml = read real(8, 29, 500.0, 0.0, 0.5);

cwindow (DATAWINDOW) ;
_settextposition(2, 2);

_outtext("Cost / hour (%) : "
cstphr = read real(2, 29, 500.0, 0.0, 2

) =
s
-

_settextposition(3, 2);
_outtext("Gas price ($) ‘
gaspr = read_real(3, 29, 10.0, 0.0,

| i
.

W =
T S
~a ma

_settextposition(4, 2);
_outtext("Fare price ($)
tickt = read_real(4, 29, 10.0,

-
N
-~y wa

o
o

K
e
o

cwindow (TTEXTWINDOW) ;
_settextcolor(?);
_outtext("Main line");
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cwindow (DATAWINDOW) ;

_settextposition(z, 2);

_outtext(“Frequency (bus/h) : ");

maindata.frequency = read real(2, 21, 60.0, 0.1, 6.0);

for (i = 0; 1 < maindata.numzones; i ++)
{ .
show _zone(0, 1 + 1, 1);
cwindow (TTEXTWINDOW) ;
_settextcolor(?);
sprintf(buf, "Zone %24 of main line", i + 1);
_outtext (buf) ;

cwindow (DATAWINDOW) ;

_settextposition(z, 2);

_outtext("Length (mls) LS I

maindata.length[i] = read_real(2, 21, 20,0, 0.1, 5.0);
show_zone(0, i + 1, 0);

}

for (i =0;.1i < linesdata.numlines; i ++)

if (1inesdata.linesexist[i] == 1)
{
cwindow {(TTEXTWINDOW) ;
_settextcolor(7);
sprintf (buf, "Line %2d", linesdata.linenum(i] + 1);
_outtext(buf);

cwindow (DATAWINDOW) ;

_settextposition(z, 2); '

_outtext ("Frequency (bus/h) : “);

Tinesdata.frequency[i] = read real(2, 21, 60.0, 0.1, 6.0);

for (§ = 0; 3 < linesdata.linezones[1]; 1 ++)
{

show_zone(i + 1, j o+ 1, 1);

cwindow (TTEXTWINDOW) ;

_settextcolor(7);

sprintf(buf, "Zone %d of line %24",

j + 1, linesdata.linenum[i} + 1)7

mouttext(buf);

cwindow (DATAWINDOW) ;

_settextposition(z, 2);

“outtext("Length (mls) HEALS
Tinesdata.length[i]{]}] = read real(2, 24, 20.0, 0.1, 3.0);

settextposition(3, 2);

“outtext ("IVT(a) (min) L
linesdata.ivtma{i][j] = read_real(3, 24, 120.0, 0.25, 9.0);
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~_settextpos'it.iorl(4,. 2);
“outtext("IVT(b) (min) DI
Tinesdata.ivt b[i][j] = read_real(4, 24, 120.0, 0.25, 16.0};

_settextposition(5, 2);
“outtext ("OVT(b) (min) t My :
linesdata.ovt_b[i](j] = read_real(5, 24, 60.0, 0.25, 4.0);

settextposition(6, 2); _
“outtext("Egress Time(c) (min) : ");
Tinesdata.egress_c[i][j]) = read_real(6, 24, 30.0, 0.0, 8.0);

_settextposition(7, 2);
—outtext ("Egress Time(t) (min) : "); :
Tinesdata.egress t[i][]j] = read_real(7, 24, 30.0, 0.0, 5.0);

msettextposition(s, 2);

Touttext ("Parking cost(c) (%) : "); '

Tinesdata.parkcost_c[i)[}] = read_real(8, 24, 20.0, 0.0,
3.73);

cwindow (DATAWINDOW) ;

_settextposition(2, 2);

“outtext ("Autos/household : ")
Tinesdata.autoph{i][j] = read real(2, 24, 5.0, 0.0, 1.27);

_settextposition(3, 2);
_outtext ("Persons/household : "y :
Tinesdata.persph(i]{j] = read_real(3, 24, 10.0, 1.0, 2.39);

_settextposition(4, 2);

_outtext("Income (%) : ")

Tinesdata.income[i][j] = read_real(4, 24, 300000.0, 0.0,
42000.0);

_settextposition(5, 2);
_outtext ("Work trips : ")
linesdata.worktrips([i]){j] =

read_real(5, 24, 30000.0, 0.0, 5000.00);

show zone(i + 1, j + 1, 0);
}

}
}

set _up{();
draw_line();

return;

54




/*

int read_int(1li, co, up, dwn, va)

int 1i, co, up, dwn, vaj

/* 1i ...

line

== read an integer *

co ... column

up ... max of the input number
dwn .. min of the input number
va ... default value */

int ‘in;
char response, buf{80], stin(80],

in = vaj;

ﬂSettextposition(li, co) ;

sprintf (buf, "%-16d", in);

_outtext (buf);

response = getch(};

if (response == ENTER)
return in;

1b10:
_settextposition(1li, co);
_outtext ("

sprintf (stin, "");
_settextposition(li, co);

1b20:
response = getche();
switch{response) '

case ZERO @

*stp;

sprintf (stin, "%s0", stin);

goto 1b20;
case ONE :

goto 1b20;
case TWO :

goto 1b20;
case THREE!

sprintf(stin, "%s1", stin);

sprintf (stin, "%s2", stin);

sprintf(stin, "%s3", stin);

. goto 1b20;
case FOUR :

sprintf(stin, "%s4", stin);

goto 1b20;
case FIVE :

sprintf(stin, "%s5", stin);

goto 1b20;
case SIX :

sprintf(stin, "%s&", stin);
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goto 1b20;
case SEVEN:
sprintf(stin, "%s7", stin);
goto 1b20;
case EIGHT:
sprintf(stin, "%s8", stin);
goto 1b20;
case NINE : _
sprintf(stin, "%s9", stin);
goto 1b20;
case ENTER:
goto 1lb30;
case ESC
goto 1bl0;
default :
goto 1lbl0;

}

1b30:

in = strtol(stin, &stp, 10);

if ((in > up) || (in < dwn))
goto 1bl0;

return in;

[* * read a real #*==

float read_real(li, co, up, dwn, va)
int 1i, co;
double up, dwn, vaj;
/* 11 ... line
co ... column
up ... max of the input number
dwn .. min of the input number
va ... default value */

float 1in;
char response, stin(80], buf(80], *stp;

in = va;

_settextposition(li, co);
sprintf (buf, "$-16.2£f", in);

_outtext (buf) ;
response = getch();
if (response == ENTER)

return in;

1b10:
_settextposition(li, co) ;
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_outtext ("
sprintf(stin, "");
_settextposition(li, co};

1b20:

response = getche(};
switch(response)

{

case

case

case

case

case

case

case

case

ZERO :
sprintf (stin,
goto 1b20;

ONE :
sprintf (stin,
goto 1b20;

TWO :
sprintf(stin,
goto 1b20;

THREE :
sprintf(stin,
goto 1b20;

FOUR :
sprintf (stin,
goto 1b20;

FIVE :
sprintf (stin,
goto 1b20;

SIX :
sprintf(stin,
goto 1b20;

SEVEN :
sprintf(stin,
goto 1b20;

case EIGHT :
sprintf(stin,
goto 1b20;
case NINE :
sprintf(stin,
goto 1b20;
case PERIOD:
sprintf(stin,
goto 1b20;
case ENTER :
goto 1b30;
case ESC :
goto 1bl0;
default :
goto 1bl0;
}
1b30:

"%SO" ,

"%sl" '

“%52" ’

"%53" g

"%54"'

ll%ssll '

"%56“ '

!l%s'?ll '

“%SB" '

“%59" ;

"%S. L] '

in = strtod(stin, &stp);
if ((in > up) || (in < dwn))

stin);

stin);

stin);

stin);

stin);

stin);

stin);

stin);

stin);
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goto 1bl0;

return in;

/*::z:::::::u:* read a 'String EA—

void read_str(li, co)
int 1i, co;
/* 1i ... line

co ... column */

char buf{80],
response;

sprintf (naf, "noname.dat") ;

_settextposition(li, co) ;

sprintf (buf, "%-1és", naf) ;

_outtext (buf) ; :

response = getch();

if (response == ENTER)
return;

ibl0: .
ﬂsettextposition(li, co);
_outtext ("

sprintf (naf, "");
_settextposition(li, co);

1b20:
response = getche();
switch(response)

case ENTER:

break;
case ESC :©

goto 1b1l0;
default :

")

sprintf(naf, ngs%c", naf, response);

goto 1lb20;
}

return;

/* ~=——=—==% reset all the variables *

void reset all()
{
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}

/*

int i, 3;

simlen = mandel = pepdel = 0;
operhrs = busseats = 0.0;
cstst = cstpml = cstphr = gaspr = tickt = 0.0;

maindata.numzones = 0;

malndata.frequency = 0,0;

for (i = 0; i < MAXZONES; i ++)
maindata.length([i] = 0.0;

linesdata.numlines = 0;
for (i = 0; i < MAXLINES; i ++)

1inesdata.linesexist[i] = linesdata. linenum([i]
= linesdata.linezones(i] = 0;
iinesdata.frequency[i] = 0.0;

}
for (i = 0; i < MAXLINES; i ++)

for (j = 0; j < MAXZONES; j ++)
{
linesdata. length[l]
linesdata.ivt a[1]{
linesdata.ivt_ b[l][

[ ] - 0'
J
3
linesdata. ovt b[l][j
i
i

-

linesdata.egress_c|

linesdata.egress_t|

linesdata. parkcost c
linesdata. autoph[l]{
linesdata. persph[l][
linesdata. 1ncome[1][j
linesdata.worktrips{i

}

+ OO
O-.-hu
-

e o

J
1
]
]
]
]
(i
J
J

OO || OO~ e~ O

—
]
O ~e
o
-

}

return;

===% end of the file ¥======
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/ *==== : B =

# File : simulate.c

* *
* This file contains the simulation functions. *
* e */
/% ===% include files *= e Y L e */

#include "solon2.i"

] *= * variable declaration *

float mainrid, prmainrid, mainfreq, mainlgth;

linereal linrid, prlinrid, lintr, linfreq,

linlgth;

| h==mmmmmm=m== * run the simulation * ===

void simulation()

int i, 3, w;

float ua, ub, emu, ut, uc,
pat, pbt, pt,
pa, pb, pc,
1f;

char ch;

FILE *tmpf;

mainfreq = maindata.frequency;

for (i = 0; i < MAXLINES; i ++)
linfreq(i] = linesdata. frequency([il;

cwindow (TEXTWINDOW) ;

_settextcolor(3);
“outtext("Running Simulation");

swindow (TTEXTWINDOW) ;

_settextcolor(7}; '

“outtext("Wait ... ")

if ((tmpf = fopen(“results.tmp", "wt") ) ==

“settextposition(3, 1);
settextcolor(4);

NULL)

Touttext ("ERROR : Could not open temporary file");

ch = getch();
_settextcolor(7);
return;

}
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mainlgth = 0.0;
for (1 = 0; i < MAXZONES; i ++)
mainlgth += maindata.length(i];

for (i = 0; 1 < MAXZONES; i ++)
linlgth[i] = 0.0;
for (j = 0; Jj < MAXLINES; } ++)

linlgth[i] += linesdata.length[i}{3];
) ‘

_settextpo

sition(3, 10);
_outtext( "—" )i
for (w = 0; w < simlen; w ++) '

_settextposition(3, 10 + w * 50 / simlen);
Touttext ("§");

mainrid = 0.0;

for (i = 0; i < MAXLINES; i ++)

linrid[i] = lintr({i] 0.0;

if (linesdata.linesexist{i] == 1)

for (3 = 0; j < linesdata.linezones[i]; j ++)
{
ua = - 3.23 - 0.073 * linesdata.ivt_a([i](]]
+ 1.74 * (linesdata.autoph{1](]] /
linesdata.persph[i](]]);
ub = - 0.073 * linesdata.ivt _b[i][]]
- 0.105 * (linesdata.ovt_b[i][]] + wait(i, 3)):

emu = log(exp(ua) + exp(ub));

ut = 0.485 * emu - 0.0599 * linesdata.egress t[i][]]
- 0.0144 * (gaspr / linesdata.income[i][J] * 1000);
uc = - 1.626 - 0.0599 * linesdata.egress c[i][]]
- 0,180 * (1inesdata.parkcost_c[i][j] /
linesdata.income(i][])
%* 1000.0) - 0.0144 * (gaspr / linesdata.income{i][3j]
* 1000);

pat = exp(ua) / (exp(ua) + exp(ub)};
pbt = 1.0 - pat;

pt = exp(ut) / (exp(ut) + exp(uc));
pa = pat * pt;

pb = pbt * pt;

pc = 1.0 - pt;
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lintr(i] +— pa # linesdata. worktrlps[l][J :
linrid[i] += pb * linesdata. worktrips(il[j];
) .
}
mainrid += lintr[i] + linrid([i];
} ' <
if (w = 0)
riders_calc();
aelse
{

prmainrid = mainrid;
for (i = 0; i < MAXLINES; 1 ++)

if (linesdata.linesexist[i] == 1)
prlinrid(i] = linrid(i};
}
}
1f = prmainrid / (operhrs * mainfreq) / busseats;
fprintf (tmpf,
"\n %3d\n %10e %¥10e %10e %10e %10e %10e %$10e
%¥10e\n",
W,
60.0 / mainfreq,
prmainrid,
(1£ < 1.0) ? 1f : 1.0,
mainfreq,

mainfreq * operhrs * (cstst + cstphr + malnlgth * ¢stphr),
prmainrid * tickt,

prmainrid * tickt
- mainfreq * operhrs * (cstst + cstphr + malnlgth * cstphr),

prmainrid * tickt
/ (mainfreq * operhrs * (cstst + cstphr + mainlgth * cstphr)});

for (i = 0; 1 < MAXLINES; i ++)

if (linesdata.linesexist([i] == 1)

{
1f = prlinrid{i] / (operhrs * linfreq[i]) / busseats;

fprintf (tmpf, .
" %1l0e %¥10e %10e %10e %10e %10e %10e %$10e\n",
60.0 / linfreq[i],

prlinridfi],

(1f < 1.0) ? 1f : 1.0,

linfreq[i],
linfreq[i] * operhrs * (cstst + cstphr + linlgth({i] * cstphr),

prlinrid{i] * tickt,
prlinrid{i] * tickt
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- linfreg[i] * operhrs * (cstst + cstphr + linlgth[i] *
cstphr),
prlinrid[(i] #* tickt
/ (linfreq[i] * operhrs *
cstphr)});
}

(cstst + cstphr + linlgth[i] *

}

frequences_calc();
}

‘fclose(tmpf);
return;

}

/* ===+ calculate the waiting time #*====== */

float wait(i, 3J)
int i, 3

float ti;

ti = 60.0 / linfreq[i } ] 6 .0
+ 60.0 / mainfreqg / 3.

b.

return ti;

}
[ R==== * calculate the ridership *==s=====s=sm==m=s==S=== */
void riders_calc() | |
¢ int i;

prmainrid += (mainrid - prmainrid) / pepdel;j

for (i = 0; i < MAXLINES; 1 ++)

if (11nesdata llnesex1st[1] == 1)
prlinrid[i] += (linrid[i] - prlinrid[i]}) / pepdel;

} }
/* ==% calculate the frequences * === =%/

void frequences calc()
{

int i;

float u, 1f;
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1f = prmainrid / operhrs / mainfreq / busseats;

if (1f < 1.0)
u=2,0%*1f - 1,0;
else
u=1,0;

mainfreq += u / mandel / 4.0 * mainfreq;
mainfreq = (mainfreg >= 0.1

? mainfreq

: 0.1);

for (i = 0; 1 < MAXLINES; i ++)
if (linesdata.linesexist[i] == 1)
{
1f = prlinrid[i] / operhrs / linfreq[i] / busseats;

if (1f < 1.0)
u=4.0 % 1f - 1.0;

else
u=1.0;
linfreq[i}] += u / mandel * linfreq{i];
linfreq[i] = (linfreq[i] >= 0.1.
? linfreq[i]
: 0.1);
}
}
}
J*= =% end of the file * === =%/
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/* ===
"% File : graphics.c

*

* This file contains the graphic functions.

f oo e R T S S S TR e e

/* =—====% jnclude files k=== = mmmmm——=

#include "solon2.i"

/* —==% variable declaration *=== ==

int linu(3];

char tit[8][14] = {"Headway",
"Ridership",
"Load Factor",
"Frequency",
llcost" .
"Revenue",
nprofit",
nRevenue/Cost"};

[ *== * main graphics function * m=m==

void graphics()
A
int i,

nuli, inca;
char ch;

cwindow (TEXTWINDOW) ;
_settextcolor(S);
mouttext("Graphics Menu") ;

swindow (TTEXTWINDOW) ;

_settextcolor(?);

“outtext ("Nunber of lines : ");

nuli = read int(1, 19, 3, 1, 1);

“settextposition(l, 25);

_outtext("Select 1ine number (0 for main line) : ");
for (i = 1; 1 <= nuli; i ++)

*/

linu[i - 1] = read_int(1, 64 + 3% (1 -1), l1inesdata.numlines,

0, 0);
_outtext("\nl. Headway 3. Load factor 5. Cost
7. Profit\n");
_outtext("2. Ridership 4. Frequency 6. Revenue

8. Revenue/Cost\n");
_outtext("Select indicator : ");
Tnca = read int(4, 20, 8, 1, 1) ¢
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do_graphics(nuli, inca);

return;

}

/% ========% 0 the graphics *== » =

'void do_graphics(nuli, inca)
int nuli, inca; '

{
int i1, j, k, g9, w;
float data, val{8],
maxx, minx,
maxy, miny,
58X, SY.,
XX, YYi
char ch, buf(80];
FILE *tmpf;

cwindow (TTEXTWINDOW) ;
_outtext("Reading the data ...");
if ((tmpf = fopen("results.tmp", "rt")) == NULL)

_settextposition(3, 1);

_settextcolor(4); ' :
_outtext ("ERROR : Could not open temporary file");
ch = getch();

_settextcolor(7);

return;

}

miny = 1.0e30;
maxy = -1.0e30;

for (k = 1; k <= nuli; k ++)

{
tmpf = fopen("results.tmp", "rt");
for (w = 0; w < simlen; w ++)

fscanf (tmpf, "%d", &g);
for (i = 0; i <= linesdata.numlines; i ++)

{

C4f ((i == 0) |! ((i != 0) && (linesdata.linesexist[i - 1]

1= 0)))
{

for (j = 0; J < 8; ] ++)
fscanf (tmpf, "%e", &val(]
if (((i == linu{k - 1]) &&
(linesdata.linenum{i - 1

.
!

e e b
,—l-‘-—f‘
I

11
1iﬁu[k - 171))
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data = val[inca - 1];

}

. if(data > maxy)
maxy = data;

if (data < miny)
miny = data;

}
fclose(tmpf) ;
}
if (miny == maxy)
{
miny -= 1.0;
maxy += 1.0;
}
- sy = =270.0 / (maxy - miny);"
minx = 0;
maxx = simlen;
sx = 550.0 / maxx;

_setvideomode (_ERESCOLOR) ;
_setlogorg(70, 300);

_moveto{0, 0);
_lineto(0, -270);
_lineto (550, =270);
_lineto(550, 0);
_lineto(0 ,0);

for (k = 0; k < nuli; k ++)

_settextcolor(k + 2);
settextposition(3, 25 + 12 * k);

If (linu[k] == 0)
_outtext("Main line");
else

sprintf (buf, "Line %2d4", linufk]);
_outtext (buf);

}
}

_settextcolor(7);
_settextposition(42, 33);
“outtext ("Week of Simulation");
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_settextposition(3, 5);
_outtext(tit{inca - 1]);

for (i = 0; i <= 10; 1 ++)

{

- _moveto(i * 55, 0);
_lineto(i * 55, 5);

}

_settextposition(40, 10);
“outtext ("0");

_settextposition(40, 42);
sprintf (buf, "%34", simlen / 2);
_outtext(buf);

_settextposition(40, 77);
sprintf (buf, "%3d4", simlen);
_outtext(buf); '

for (1 = 0; 1 <= 10; i ++)

{
_moveto(0, i * - 27);
_lineto(-5, 1 * - 27);

_settextposition(38, 1);
sprintf (buf, "%8.1le", miny);
_outtext (buf) ;

_settextposition(zl, 1);
sprintf (buf, "%8.1le", (maxy + miny) / 2.0);
_outtext (buf) ; .

_settextposition(5, 1);
sprintf (buf, "%8.1le", maxy):;
_outtext (buf) ;

for (k = 1; k <= nuli; k ++)
{ .
_moveto(0, 0);

_setcolor(k + 1); '

tmpf = fopen("results.,tmp", "rt");
for (w = 0; w < simlen; w ++)

fscanf (tmpf, "%d", &q);
for (1 = 0; i <= linesdata.numlines; i ++)

{
if ((L == 0) || ((i != 0) && (linesdata.linesexist[i - 1]

[
1= 0)))
{ .
for (j = 0; J < 8; J ++)
fscanf (tmpf, "%e", &val[j]):
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if (((i == linu[k - 1]) && (i == 0)) ||
(linesdata.linenum[i - 1] + 1 == linufk = 11))
data = val(inca - 1];
}
}
xx = (W - minx) * sXx;
yy = (data - miny) * sy;
_lineto(xx, YY)i

}

fclose (tmpf) ;
}

ch = getch(); ch = getch();
_setvideomode(_DEFAULTMODE);

set_up();
draw_line();

return;

}

] *== * end of the file ¥*=ssomwssssosssssoSmmSSsSs=====m
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*

File : menus.c

% This file contains all the menus functions.

&
X

/

*

s * include files #*====

#include "solon2.i"

/'k

==% /

* set up function *==

void set_up()

{

/*

int i;

mclearscreen(_GCLEARSCREEN);

setbkcolor(11l);

“settextwindow(l, 1, 35, 80);
_clearscreen(_GWINDOW) ;

setbkcolor (01) ;

“settextwindow(36, 1, 43, 80);

_clearscreen( _GWINDOW) ;

settextcolor(7);

_settextposition(1,1);

for (i = 1; i <= 80;. 1 ++)
outtext(“l")

return;

void sw1ndow(w1ndow)
int window;

switch(window)
{

case GRAPHWINDOW:
setbkcolor(ll),

* gelect windows graph or text ¥=======

“gettextwindow(l, 5, 35, 75);

break;
case TEXTWINDOW :
setbkcolor (01);
“settextwindow (38,
break;

5, 43, 75);
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case TTEXTWINDOW:
' _setbkcolor(0l);
settextwindow(40, 5, 43, 75);

break;
case DATAWINDOW :
_setbkcolor(11l);
_settextwindow(34, 41, 42, 78);
}
return;

}

void cwindow(window)
int window;

switch({window)
{ R
case GRAPHWINDOW:
_setbkcolor(1l);
_settextwindow(1l, 5, 35, 75);
_clearscreen(_GWINDOW) ;
break;
case TEXTWINDOW : ,
_setbkcolor(0l);
_settextwindow(38, 5, 43, 75};
_clearscreen(_GWINDOW) ;
break;
case TTEXTWINDOW:
-_setbkcolor(01);
_settextwindow(40, 5, 43, 75);
_clearscreen(_GWINDOW) ;
break;
case DATAWINDOW :
_setbkcolor(71); '
_settextwindow (33, 40, 43, 79);
_Clearscreen(_GWINDOW) ;

_setbkcolor(1l);
_settextwindow (34, 41, 42, 78);
_clearscreen(_GWINDOW) ;

}

return;

}

| k=mm===mmm==s * main menu function *= ====

int main_menu ()

{

int response;
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cwindow (TEXTWINDOW) ;

_settextcolbr(3);
_outtext("Main Menu\n\n");

_settextcolor(7);

_outtext("1. Data Management
_outtext("2. Run Simulation\n");
_outtext("3. Graphics");

1bl0:

response = getch();
switch(response)

{

case ONE :

return DATAMENU;
case TWO

return SIMULAT;
case THREE:

return GRAPH;

case FOUR :
return QUIT;
default H
goto 1bl0;
}
}
/* * data menu function *

4.

Quit\n") ;

int data_menu()

{
int response;
cwindow (TEXTWINDOW) ;

_settextcolor(3);
_outtext("Data Management\n\n");

_settextcolor(7);
_outtext("1. Load File
_outtext("2. Save File
_outtext ("3, Edit File");
1b10:
response = getch();
switch(response)
{

case ONE :

return LOADFILE;
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5.

New File\n");
Main Menu\n");

*/




case

case

case

case

T™C )

return SAVEFILE;
THREE:

return EDITFILE;
FOUR :

return NEWFILE;
FIVE :

return MAINMENU;

default :

[ *==

goto 1bl0;

% end of the file
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*# File : draw.c

I
*

T~ ¥ ¥ ¥ *

[ *== * include files * S —

#include "solon2.i"

[ k== ====m==m * variable declaration *========

step[6] = {61, 29, 19, 15, 11, 9};
step2(6] = {31, 15, 10, 8, 6, 5};

*/

/% ==% draw transit lines #*=========

void draw_line()

{
int i, j, 1i;
struct rccoord pos;
char buf[80];

if (maindata.numzones == 0)
return;

cwindow (GRAPHWINDOW) ;

_settextcolor(7);
setbkcolor(ll),
settextp051t10n(17 2);
outtext("ML“)
settextp051tlon(18 3);

_outtext ("J");
for (1 = 0; 1 < maindata.numzones; i ++)

for (j = 0; j < step[maindata.numzones - 1]; j ++)

_outtext(“=");
_outtext ("$") ;
}
pos = gettextpositlon(),
settextposition(pos.row, pos.col - 1);
_outtext ("l|");
settextp051tlon(pos row - 1, pos.col - 1);
_outtext("ML")'

if (linesdata.numlines == 0)
return;
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for (1 = 0; i < maindata.numzones; i ++)

{

= 07

if (linesdata.linesexist(i] == 1)
j = 10;

if (linesdata.linesexist([maindata.numzones + i] == 1)
jo+=1;

_settextposition(18, 3 + i * (step[maindata.numzones - 1] + 1)

+ step2{maindata.numzones = 11);

.

switch(])

case 10:
_outtext (L") ;
break;

case 1:
_outtext{"y");
break;

case 11:
_outtext ("");

}
}

for (i = 0; i < linesdata.numlines; i ++)

if ((linesdata.linesexist[i] == 1) && (linesdata.linezones[i]
1= 0)) |

if (i < maindata.numzones)
for (3 = 0; j < linesdata.linezones[i]; J ++)

msettextposition(l? -2 * 9,
3 + i * (step[maindata.numzones - 1] + 1)
+ step2[maindata.numzones = 11);

_outtext("|");

_settextposition(l? -2 %3 -1,
' 3 + i * (step{maindata.numzones - 1] + 1)
+ step2[maindata.numzones - 1]);
_outtext ("{"); : '
} .
pos = _gettextposition();
_settextposition(pos.row, pos.col - 1);
“outtext("§");
“settextposition(pos.row - 1, pos.col - 1);
sprintf (buf, "L%d", linesdata.linenum{i] + 1);
_outtext (buf);

}

else

{

1i = i - maindata.numzones; '
for (j = 0; 3 < linesdata.linezones{i]; J ++)
{
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_settextposition(19 + 2 * i,
3 + 1i * (step[{maindata.numzones - 1] + 1)
+ step2[maindata.numzones - 1]);
_outtext("||");
_settextposition(1s + 2 * j + 1,
3 + 1i * (step[maindata.numzones - 1] + 1)
+ step2[maindata.numzones - 1]);
_outtext("{");
}
pos = _gettextposition();
_settextposition(pos.row, pos.col - 1);
_outtext (") ;
_settextposition(pos.row + 1, pos.col - 1);
sprintf (buf, "L%d4d", linesdata.linenum{i] + 1);
_outtext (buf);
}
}
}

return;

| *=====% show zones on main line and on the other lines #*=======¥%/

void show_zone(li, zo, on)
int 11, zo, on;
/* 1i ... # of line (if li==0 then is the main line)
zo ... # of zone on the line
on ... on==1 toc show a zone or on==0 not to show a zone */

{

[
~e

int
if (1i == 0)

if (maindata.numzones == 0)
return; '

swindow (GRAPHWINDOW) ;

settextcolor(7);
if (on == 1)

_setbkcolor(41);
else

“setbkcolor(ll);

settextposition(18, 4 + (zo - 1) *
- (step[maindata.numzones - 1] + 1));
for (i = 0; i < step[maindata.numzones - 1]; i +4)
_outtext ("=");
. return;
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/*

if ((linesdata.linesexist(li - 1] == 0) ||
(linesdata.linezones[1li - 1] == 0))
return;

swindow (GRAPHWINDOW) ;

settextcolor(7);
if (on == 1)

_setbkcolor(41) ;
else

_setbkcolor(1ll);

if (1i <= maindata.numzones)
_settextposition(17 - 2 * (zo0 - 1),
3 + (11 - 1) * (step[maindata.numzones - 1] + 1)
+ step2[maindata.numzones - 1]);
else
{
1i -= maindata.numzones;
_settextposition(19 + 2 * (zo0 - 1),
3 + (11 - 1) * (step[maindata.numzones - 1] + 1)
+ step2[maindata.numzones - 1]);

} .
_outtext ("|");

return;

* show lines *

void show_line(li, on)
int 1i, on;
/* 11 ... # of line

{

on ... on==1 to show a line or on==0 not to show a line */
int i;

if (maindata.numzones == 0)
return;

swindow (GRAPHWINDOW) ;
settextcolor(7);

_setbkcolor(11);
if (1i <= maindata.numzones)

_settextposition(17, 3 + (1i - 1) *
(step(maindata.numzones - 1] + 1)
+ step2[maindata.numzones - 1]);
if (on == 1)
_outtext("+*");
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else )
_outtext(® ");

}
else
A
- 11 == maindata.numzones;
msettextp051tlon(19, 3+ (11 - 1) *
(step[maindata.numzones - 1] + 1)
+ step2[maindata.numzones - 1]);
if (on == 1)
_outtext("~_");
else
_outtext(" ");
} .
return;
}
] *== ==% end of the file *=========== =
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[ Fmmm=== = ==
* File : solon2.i
*
*# This file contains all the constants, variables used in the
* solon2 program and the function declarations.

»

/*&:::#:::::::* include files %=

#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<io.h>
<conio.h>
<float.h>
<graph.h>
<math.h>

/*zﬂm:::"::::::* constants *

#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define

#define
#define
#define
#define
#define

MAXZONES 6

MAXLINES

12

GRAPHWINDOW 1
TTEXTWINDOW 2
TEXTWINDOW 3
DATAWINDOW 4

48
49
50
51
52
53
54
55

ZERO
ONE

TWO

THREE
FOUR
FIVE
SIX

SEVEN
EIGHT 56
NINE 57
PERICD 46

ESC 27
ENTER 13
MAINMENU

DATAMENU
LOADFILE
SAVEFILE
EDITFILE

1

2

21
22
23

NEWFILE 24

maximum number of
every line */
maximum numbéer of

graph window */
text window title
text window */
data window */

number 0 */
number 1 */
number 2 */
number 3 */
number 4 */
number 5 */
number 6 */
number 7 %/
number 8 */
number 9 */
period */
esc key */

enter key#*/

main menu */
data menu #*/
load a file */
save a file */
edit a file */
new data file */

zoneg for

bus lines

*/

S~ ¥ ¥ ¥ ¥
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#define SIMULAT 3
#define GRAPH 4

#define QUIT 5

/* run simulation #*/
/* create graphics */

/* quit from program */

[ F=======

typedef int zoneint[MAXZONES];
typedef float zonereal [MAXZONES];

typedef zoneint intmatrix[MAXLINES];
typedef zonereal realmatrix[MAXLINES];

typedef int lineint[MAXLINES];
typedef float linereal[MAXLINES];

int simlen,
mandel,

pepdel;
fioat operhrs,
busseats,

cstst,

cstpml,
cstphr,

gaspr,
tickt;

typedef struct
{

int numzones;
float frequency;

zonereal length;
} MAIN DATA;

typedef struct
{
int numlines;
lineint linesexist,
linenum,
linezones;

linereal frequency;
realmatrix length,

ivt_a,

80

* types of data *========

*/
/* array of integers */
/* array of reals */
/* matrix of integers */
/* matrix of reals */
/* array of integers */
/* array of reals */
/* simulation length */
/* manager decision

delay */ -
/* people reaction delay */
hours of operation */
seats per bus */
constant cost for
system */
cost per mile */
cost per operation
hour */
gas cost for auto
trip */
/* fare price of the bus */

nunber of zones */
frequency of the main
line */

length of the zones */
data for main line */

/* number of lines */
/* what lines exist #*/
/* number of line */
/* how many zones each line
has */
/* frequency of each
line */
/* length of the zones */
/* in veh time for auto */




ivt b, /* in veh time for bus */

ovt_b, /* out veh time for bus */
egress_c, /* egress time for car */
egress_t, /* egress time for
transit #*/ _ .
parkcost_c, /* parking cost for car */
autoph, /* autos per household */
persph, /* autos per household */
income, /* income */
worktrips; /* work trips for each
. zone */ ’
} LINES_DATA; /* data structure of data
*/
/% ====*% variables *== */
MAIN DATA maindata; ' ' /* structure for main line
.data */
LINES_DATA linesdata; ' /* structure for lines data */
/* ======z===% functions #===== ======== ==% f

void main();

void set_up();
void swindow()
void cwindow()

int read_int();
float read real();
void read_str();

void reset_all();

int main_menu();
int data_menu();

void load_file();
void save file();
void edit_file();
void new file(};
veid draw_line();
void show_zone();
void show_line();

void simulation();
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float wait();
void riders calc();
void frequences calc();

void graphicsg):
void do graphiecs();

/* ==% end of the file

e

”~
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