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ABSTRACT

Existing bridge deterioration models rely on subjective national bridge inventory (NBI) condition
ratings from visual inspections, which lack the objective assessments needed for informed repair and
maintenance decisions. Non-destructive evaluation (NDE) tests, such as impact echo (IE), provide
quantitative and objective condition evaluation data. However, these data have been underutilized for
deterioration modeling due to data scarcity (one to three records per bridge). This report introduces a
novel concept to put limited NDE data to more valuable use. Specifically, a Gaussian process
regression (GPR) model is developed using IE records from the Long-Term Bridge Performance
(LTBP) database. The GPR model offers two key advantages: it accurately predicts delamination for
untested bridges (i.e., the bridges without IE records) with characteristics similar to those in the
training data, and identifies bridges with high prediction uncertainty, enabling them to be prioritized
for NDE testing to improve the model’s future delamination predictions. This approach enhances
NDE inspection planning and resource allocation by focusing on the most uncertain structures for
testing. Moving forward, the report identifies challenges and opportunities in the LTBP database,
urging changes in current NDE data collection practices to support more strategic NDE applications,
data reuse, and accurate deterioration modeling.
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EXECUTIVE SUMMARY

This report introduces a novel method for utilizing limited NDE data from various bridge decks to
predict the deterioration of other decks. Traditional deterioration models often predict the National
Bridge Inventory (NBI) condition rating, which is subjective and qualitative, limiting its direct
application in bridge management and maintenance decisions. To overcome these challenges, a
Gaussian Process Regression (GPR) model was developed based on Impact Echo (IE) data to predict
bridge deck delamination. Due to the limited availability of NDE records (38 in total), careful data
selection, filtration, and processing were implemented. This process yielded 20 IE records that were
used in the model development. Bayesian optimization was used to find the optimum GPR
hyperparameters where 18 points were used for training and 2 points were left for testing. The
proposed model achieved an average root mean square error (RMSE) of 11.45% for cross-validation
data and 10.70% for testing data. Given that the GPR model provides a prediction with an uncertainty
prediction, it is used to construct an NDE inspection planning framework. Moving forward, the
limitations within the NDE data available in the LTBP database have been identified, along with
recommendations for improved data collection practices to optimize the leveraging of the existing
NDE data.
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1. INTRODUCTION

Bridges are one of the most important infrastructures for any country and maintaining bridge
condition is an important task. In 2023, among 621,581 U.S. bridges, 48.9% were reported in fair
condition, while 6.8% were in structurally deficient or poor condition, requiring $47 billion for
rehabilitation according to Federal Highway Administration data (FHWA, 2023). Bridge decks are the
most damaged component within a bridge (Morcous et al., 2010) since they are directly subjected to
traffic loads and severe environmental conditions, especially in cold regions where deicing chemicals
are used (Kim & Yoon, 2009). Figure 1.1 illustrates the historical performance of bridge decks across
the United States. The figure shows a decline in the percentage of bridge decks in “Good” condition,
with a steady increase in the “Fair” condition over the past three decades. Although the “Poor”
condition remains low, a slight increase in the last four years signals emerging concerns (FHWA,
2024). These trends suggest aging infrastructure and highlight the need to better understand and
model bridge deterioration for more effective maintenance strategies.
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Figure 1.1 Time history of bridge deck area condition percentages (“Good,” “Fair,” and “Poor”) based
on the latest FHWA data (2024)

To gain a more comprehensive understanding of the deterioration process and develop effective
maintenance plans, researchers have turned to the development of bridge deterioration models.
Deterioration models are considered a primary component in any bridge management system (BMS).
They have been extensively adopted by many BMSs such as BRIDGIT and AASHTOW, which are
the most popular in the U.S. (Dinesh & Gongkang, 2009). Deterioration models provide information
that helps allocate limited funds and resources to meet current needs and anticipate future conditions.
Currently, deterioration models adopted by different state departments of transportation (DOTs) are
used for long-range budget planning, project scoping and/or planning, and life cycle cost analysis
(Caltrans Division of Research, 2020). Although deterioration models utilizing different inputs and
outputs have been developed, models predicting National Bridge Inventory (NBI) condition ratings
are the most common. This might be due to the relative simplicity, accessibility, and availability of
NBI condition rating data. However, two main challenges restrict the utility of these models: the
limitations of different modeling techniques and the final prediction output of these models.

First, the limitations of the employed modeling techniques stem from their inherent assumptions or
the large amount of data required for training. Generally, deterioration models can be categorized into
four main types: deterministic, stochastic, mechanistic, and artificial intelligence (Al) models.
Deterministic models neglect the uncertainty and stochastic nature of infrastructure deterioration.
Stochastic models, conversely, consider the probabilistic nature of bridge deterioration. However,



stochastic state-based models suffer from being memoryless and time-homogenous (Srikanth &
Arockiasamy, 2020); whereas stochastic time-based models are limited by the complexity of
distribution parameter estimation and the extent of historical data required to provide appropriate
results (Mauch & Madanat, 2001). Mechanistic models mainly yield efficient results when
implemented at the project level, but they are less useful for an inventory of bridges (Nickless &
Atadero, 2018). Recently developed Al-based models excel in handling the complex behavior of
deterioration. Nonetheless, most Al models require a considerably large set of data to avoid fitting
problems (Althaqafi & Chou, 2022; Huang, 2010; Nguyen & Dinh, 2019; Sobanjo, 1997; Tokdemir et
al., 2000). A recently developed model, Gaussian process regression (GPR), effectively addresses the
issue of data scarcity, making it a robust choice even with limited data. Dhada et al. (2020) employed
the GPR model to predict the condition index of bridge elements for bridges in the UK. Since the
GPR model is non-parametric, flexible, and robust, it is employed in this report.

Second, the final prediction output of the previously discussed models was generally the NBI
condition rating. This rating has many limitations such as the subjectivity of visual inspection, no
information about deterioration that cannot be detected by visual inspection, and insufficient
information for some condition ratings, especially low ratings (Winn & Burguefio, 2013). Moreover,
predicted condition ratings cannot be utilized effectively in predictive maintenance and decision-
making. For example, many DOTSs rely on a decision matrix for deterioration repairs where there is a
specific maintenance measure corresponding to each range of deterioration percentage. Taking the
Michigan Department of Transportation as an example, the selection of maintenance strategies varies
with the extent of delamination. Low delamination percentages may warrant the application of epoxy
overlays, while higher percentages necessitate shallow or deep patch repairs (MDOT, 2021).
However, predicted condition ratings offer limited value to inform these decisions as they are abstract
and do not provide the necessary quantitative assessment of deterioration.

To address NBI condition rating limitations, different non-destructive evaluation (NDE) techniques
have been used in deterioration assessment. NDEs employ different advanced technologies to capture
data quantifying the underlying bridge deterioration. Various instruments are used to scan the bridge,
process the data based on physical theories, and finally provide a condition map that describes
quantitatively the ongoing deterioration. Accordingly, they overcome the previously mentioned
limitations of condition rating since they provide objective and relatively accurate quantitative
assessment data. However, NDEs are costly, considering the direct costs of equipment, data analytics,
and human resources, as well as indirect costs due to traffic closure (Taylor et al., 2017). NDE’s cost
means that it has not been adopted as a routine inspection technique for all bridges, rather NDE is
used on bridges with known deterioration to provide a more detailed assessment for maintenance
planning.

Although NDEs offer a promising solution for bridge inspection, their output is typically limited to
assessment of a single bridge, and there has been no effort to use the data for bridge deterioration
modeling. The main reason NDE data are not being put to greater use is that there is no clear strategic
plan for NDE data collection and sharing. Accordingly, the data are not collected on a fixed time basis
and data collected by different companies are not publicly shared and not necessarily stored in the
same format. However, resolving such limitations will help employ NDE data in deterioration
modeling, extending their utility and making the collection of these data more cost-effective. NDE
data collected strategically with well-designed spatial and temporal sampling plans will fulfill a
broader goal where they can be efficiently utilized in deterioration modeling across different bridges
within bridge networks and not just to assess one bridge’s current condition.



2. PURPOSE

This report proposes a novel concept for leveraging NDE data from different bridges to allow
quantitative and objective prediction of bridge deck deterioration. To demonstrate this concept, a GPR
model is developed based on IE records obtained from the Long-Term Bridge Performance (LTBP)
database to model the concrete deck delamination of multi-girder bridges. Delamination occurs when
part of the concrete surface debonds from the underlying base, a critical issue for bridge decks and the
primary cause of most deck repairs (Gucunski et al., 2013). Delamination can result from short-term
factors, such as premature finishing, or long-term issues like freeze-thaw cycles and corrosion
(Concrete New Zealand Incorporated, 2021).

The proposed model will serve two purposes: First, the model will handle the complex behavior of
bridge deterioration and the diversity of bridge parameters to predict an approximate percentage of
delamination for bridges with no IE records. Second, the model provides prediction uncertainty
estimation, which can be used to prioritize NDE scheduling, particularly for bridges with high
prediction uncertainty. Both purposes support informed maintenance decisions and optimal resource
allocation. A secondary purpose of this report is to highlight some of the limitations associated with
NDE data that are available in the LTBP database and suggest ways to improve LTBP data collection
that will help enhance bridge deterioration modeling.



3. NDE DATA AVAILABLE IN THE LTBP DATABASE

This report is based on the NDE data available in the LTBP database. The LTBP database offers
massive data for almost 623,000 bridges throughout the U.S. However, only 38 bridges have NDE data,
which will constitute the available dataset for this report. For these bridges, the database contains
information about most of the bridge parameters, such as structural system, construction material,
dimensions, traffic, environmental conditions, and NDE data. The NDE data contain records obtained
from different non-destructive tests, including impact echo (IE), ground penetrating radar, electric
resistivity, half-cell potential, and ultrasonic surface waves. The NDE test results are provided in two
forms: raw data in the form of voltage-time signals and processed data in the form of condition maps.
At the time of this report, most NDE data provided in the LTBP are only given for one to three years.
These years are usually 2013, 2015, and 2017.

Although many of these NDEs provide deterioration data that could be used in the proposed model,
this report will focus on predicting one type of deterioration, which is deck delamination. This
prediction is achieved by using delamination percentages quantified from the available IE records. IE
records are used because among all the different NDE tests available, IE is often considered the best
NDE test for detecting delamination. More specifically, past studies showed that IE is capable of
estimating deck thickness with an error of 3% (Sansalone and Streett, 1997). Also, previous research
has utilized ground-coupled IE for detecting shallow delaminations in concrete structures (Azari et al.,
2014; Olson et al., 2011; Sansalone & Carino, 1989). These studies showed the capability of
identifying delaminations as small as 100 mm in diameter. Besides, IE is considered the primary NDE
technique in the LTBP program for the detection and characterization of deck delamination (Gucunski
et al., 2017). According to the second Strategic Highway Research Program (SHRP 2), IE is the best
NDE method for the detection of delaminations when considering accuracy and reliability (Gucunski
etal., 2012).



4. IMPACT ECHO BACKGROUND

An IE test is conducted by applying an impact force using a steel ball to the concrete surface
producing a compression wave (P-wave) through the deck thickness. The wave undergoes multiple
reflections when it hits the bottom of the deck or any subsurface defect. The reflected wave is
recorded by an adjacent receiver. If the receiver is close to the impact point, the round-trip travel
distance is 2T, where T is the distance between the test surface and the reflection surface. Although it
is possible to analyze the recorded signal in the time domain, a more straightforward and robust
analysis is usually conducted in the frequency domain. Hence, the recorded time domain signal is then
converted to the frequency domain using fast Fourier transform (FFT). This frequency is directly
associated with the physical properties of the deck, where the wave travel time is calculated as twice
the deck thickness divided by the P-wave velocity. Consequently, the P-wave frequency is the inverse
of this time interval. The relationship between thickness resonance frequency (f;;), deck thickness
(H), and P-wave velocity (13,) is given by the approximate relationship:

fth:ﬁﬁ

o (1)

where (v,,) typically ranges between 3,500 m/s to 4,500 m/s (Lee & Oh, 2016) and can either be

measured or assumed, and () is a modification factor, which takes the value of approximately 0.96
for concrete plates.

Since there is no unified approach to interpret the IE signals, there are many criteria that can be
followed to classify the resulting IE signal into two, three, or four classes representing the deck
condition (Torlapati et al., 2023). Generally, for intact decks, emitted signals are reflected back and
forth between the two free surfaces of the deck. Accordingly, the thickness resonance frequency
stands out as the dominant peak. On the other hand, decks in serious condition will excite the flexural
vibrational mode of the upper delaminated areas. In this case, the dominant peak frequencies will be
much lower than the thickness resonance frequency, usually below 5 KHz. Finally, intermediate cases
may be present and are identified by several dominant peaks caused by the initiation of shallow
delaminations or the presence of deep delaminations. A widely adopted approach is to classify the IE
data into four distinct classes: good, fair, poor, and serious. The classification results are then
visualized as a color-coded condition map for easier data interpretation (Gucunski et al., 2008a).



5. DATA SELECTION AND FILTRATION

The GPR model is data-driven. Thus, careful data preparation is required to ensure quality of the
input data and, consequently, the model. First, among different main span design systems in the LTBP
database, including box, truss, and stringer/multi-beam, bridges with stringer/multi-beam systems are
selected for modeling. This choice is made because stringer/multi-beam bridges are the most common
type with available IE records. Out of the 38 bridges with IE records, 34 bridges have a stringer/multi-
beam system. Another reason is that they are generally the most stressed and high-maintenance types
of highway structures (Morcous & Lounis, 2007). Second, bridges with known deck information such
as thickness data are selected because deck information will be used in both data processing and
modeling steps. Out of 34 bridges, only 26 meet this requirement and are included in the analysis.

The selected 26 bridges are then filtered in two steps. First, bridges with null or duplicate IE records
are removed. Second, bridges with clear evidence of maintenance actions are excluded. The aim of
the second step is to ensure that the selected bridges represent continuously increasing deterioration
that was not interrupted by any maintenance actions. However, since the LTBP database does not
provide bridge maintenance records, an indirect approach is followed to exclude bridges with
maintenance histories. Specifically, if the time history of the bridge deck condition rating experienced
a sudden increase of more than two rating conditions in two consecutive inspections, this bridge is
excluded. The reason is that such an increase will not be due to human visual inspection subjectivity
but rather a probable major maintenance or reconstruction (Phares et al., 2001). Following the
filtration process, 23 bridges were retained for further analysis, where their IE records will be
processed to quantify the deck delamination percentage. Note that the decks of the selected bridges all
share the same overlay condition (i.e., no deck overlay), which ensures the validity and homogeneity
of the selected IE records (ASTM, 2022).



6. DATA PROCESSING

In this step, the IE records of filtered bridges are processed to estimate the delamination percentage
for each bridge deck. IE is usually conducted on bridge decks with a grid point spacing range of 0.60—
0.90 m to map a condition of deck integrity at each point (Gucunski et al., 2008b). At each grid point,
an IE test is conducted producing an IE signal that is recorded. These recorded signals, referred to as
the IE record, are then processed to evaluate the extent of delamination. The LTBP database includes
both the raw signals and condition maps produced by the NDE company showing the processed
interpretation of deck condition. However, the provided condition maps are imperfect and contain
numerous artifacts, as will be demonstrated in the Discussion section. Moreover, IE tests were
conducted by different companies, which may not use the same techniques/thresholds to interpret the
IE raw signals into condition maps. Therefore, to ensure the consistency of the estimated delamination
percentage, processing raw IE signals is adopted for this research.

Raw IE signals are first pre-processed to ensure data consistency and to eliminate noise. This
preprocessing is achieved by removing the direct current offset by subtracting its mean amplitude
from the original signal. The signals are then zero-padded to the nearest power of 2 to ensure good
performance when transformed to the frequency domain using the FFT. Finally, the transformed
signal is squared and normalized to obtain the normalized spectral amplitude plot. This plot only
includes the first 60 kHz values to remove higher frequency values, which usually correspond to
noise. The term “IE power spectrum” will be used in the following description to denote the spectrum
derived from this preprocessing step.

The processing of the IE signals can be done using the conventional IE data analysis method, which
mainly relies on classifying the IE signals based on the peak frequency (i.e., the frequency
corresponding to the maximum energy) value only. However, this approach may overlook important
energy distribution in areas representing poor or fair conditions, potentially resulting in a less
comprehensive assessment. In this study, a more comprehensive method that utilizes both peak
frequency and frequency distribution proposed by Sengupta et al. (2021) is adopted. This method
provides a more accurate representation of the signal by capturing the full spectrum of energy
distribution, thereby offering a deeper insight into the structural condition beyond what peak
frequency alone can reveal.

Building on Sengupta et al.’s method, each IE power spectrum signal is classified into one of three
classes—good, fair, or poor. This classification is achieved in two steps. Step 1: the energy content
within three non-overlapping frequency bands is clustered into groups representing good, fair, and
poor conditions. This energy content must be calculated for all IE test signals across the available
records to ensure a comprehensive analysis. The output of this step is three clusters, each with a
unique centroid of relative energy content values in the three bands, which are used in the second step.
Step 2: This step involves estimating deck delamination for a given bridge deck. In this step, each IE
test signal is classified into one of the three clusters based on its relative energy content values and the
centroids identified in the previous step. This classification is applied to all IE test signals across the
deck, assigning each signal a condition label corresponding to one of the three classes: good, fair, or
poor. Finally, the delamination percentage is calculated as the proportion of IE signals classified as
poor to the total number of signals, providing a quantitative measure of the deck’s condition. The
specific procedures for the two steps are discussed in the following section.

Step 1: Identification of centroids of three classes—good, fair, or poor. The clustering of the IE
energy content is achieved by first plotting the histogram of the peak frequency for each IE record. A
Gaussian mixture model (GMM) is then used to fit Gaussian curves to the histogram. The Gaussian
curve with the largest mixing proportion is selected to represent the thickness resonance frequency
(ftn)- Each IE power spectrum is divided into three distinct frequency bands: Band 1, Band 2, and
Band 3. Band 1 captures low-frequency energy below the thickness resonance and is labeled as
“poor.” Band 2, representing the thickness resonance frequency dominant in intact decks, is labeled as
“good.” Band 3, covering frequencies above the thickness resonance, is labeled as “fair.” The
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thickness resonance frequency bandwidth (i.e., Band 2) is defined from (f;, —n-0) to (fip, + n-0),
where o is the standard deviation of the fitted Gaussian curve, and n is the number of standard
deviations considered in defining the bands. The bandwidths of Bands 1 and 3 are from O to (f;, — n -
0) and from (f;;, + n - 0) to 60 kHz, respectively. The energy content within each band is calculated,
and this process is repeated for all available IE records. When completed, the relative energy
percentage in each band for all signals is fed into a K-means clustering algorithm. Running the
algorithm with K=3 yields three centroid values for the three different clusters: good, fair, and poor.
Although it is possible to adopt this workflow for the selected IE records employed in this study,
centroid values from Sengupta et al. (2021) were used because their study employed a larger dataset,
including synthetic IE records, to achieve balanced data that accurately represent IE records for decks
with varying condition ratings.

Step 2: Assessment of bridge delamination. After the centroids of the three clusters were identified,
the clusters were used to estimate the delamination percentage for the selected bridge decks, which
had one to three IE records (from one to three inspections). However, to ensure that the modeling data
points are independent, only the first available (earliest) IE record for each bridge deck was selected.
The reason for that is to avoid any potential underreporting of maintenance activities in subsequent
years. For each IE record, delamination estimation was achieved by fitting a GMM model to the peak
frequency histogram. Nevertheless, a precise selection process is essential to determine the thickness
resonance frequency bandwidth, given the limited number of available bridges after the filtration step
(i.e., 23 bridges). Due to the small dataset, the influence of any outlier or poorly processed IE record
is magnified, potentially skewing the results significantly. More specifically, multiple dominant
frequencies may be present in the frequency histogram. In this case, the estimated bandwidth may not
accurately reflect the thickness frequency, but rather peak frequencies associated with delaminations.

To avoid the potential pitfalls described above and ensure more accurate selection of thickness
frequency bandwidth, two checks are followed. First, the estimated bandwidth based on the fitted
Gaussian curve should overlap with the thickness frequency range calculated by equation (1). This
calculated range is obtained by using the available deck thickness and assuming a P-wave velocity
range of 3,500—4,500 m/s and a () factor of 0.96. Second, the lower limit of the estimated bandwidth
should not be less than 5 kHz since, typically, peaks with frequencies less than 5 kHz are caused by
the presence of extensive shallow delaminations. Accordingly, if the IE record analysis for one deck
did not pass these two checks, this IE record is excluded from the modeling dataset. Histogram
examples of both included and excluded IE records are given in Figure 6.1. Also note that the
estimated bandwidth used in the checks is chosen as (f;;, — ) to (fi, + o) where the value of n was
chosen as 1, similar to Torlapati et al. (2023), and also since this estimated bandwidth better matches
the calculated bandwidth from equation (1). For bridge records passing the checks, the relative energy
percentage in each band is calculated. Finally, each signal is then classified using the K-nearest
neighbor (k-NN) algorithm and Euclidean distance between the test data in terms of the energy
contents in each band and the centroid of each class. The delamination percentage is quantified by the
proportion of IE signals categorized as “poor” relative to the total number of signals analyzed. The
general workflow of the data processing is given in Figure 6.2. Following this workflow yielded 20 IE
records, which will be subsequently used to develop the GPR model.
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Figure 6.1 Peak histogram examples: (a) record failing both thickness frequency checks since the
estimated bandwidth does not overlap with the calculated thickness frequency range and
the lower limit of the estimated thickness resonance frequency is less than Sk Hz; (b)
record passing both thickness frequency checks.
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7. MODELING AND RESULTS

7.1 Explanatory Variables Selection

Bridge deterioration is a complex process that is influenced by many explanatory variables. Different
studies have investigated the influence of both structural specifications and environmental conditions
on the deterioration rate of roadway and railway bridges (Ghonima et al., 2020; Srikanth &
Arockiasamy, 2021). Explanatory variable selection can be based on engineering judgment (Li & Jia,
2021). Based on previous studies and engineering judgment, the explanatory variables shown in Table
1 were selected to be the most influential variables affecting bridge deterioration (Liu & Zhang, 2020;
Nguyen & Dinh, 2019).

Table 7.1 Selected explanatory variables for delamination modeling

Explanatory variable Data source
Structure configuration

Bridge roadway width - curb to curb NBI- Item 51
Year built NBI-Item 27
Skew angle, degrees NBI-Item 34
Deck thickness LTBP-design data
Deck top cover LTBP-design data
Service conditions

Bridge age NBI-Item 27
Average daily traffic (ADT) NBI-Item 29
Average daily truck traffic (ADTT) NBI-Item 109
Average number of freeze-thaw cycles LTBP-design data
Deck protection code NBI-Item 108C

The selected explanatory variables can be divided into two categories. The first category includes
structure configuration variables. In this category, bridge roadway width can affect bridge
deterioration since the wider the deck, the more it can accommodate traffic loads. Wider decks also
have larger exposure areas to environmental effects such as temperature changes and, accordingly,
they are more prone to deterioration. The year the bridge was built captures the differences in design,
material quality, and construction practices that occur as engineering practices change over time.
Considering the deck skew angle, skewed bridges are more prone to non-uniform load distribution,
differential deflections, and increased shear forces. Thicker decks generally provide better load
distribution, greater thermal stability, and increased durability, all of which help reduce the risk of
delamination. Lastly, the deck top cover is the main line of defense that protects the top reinforcement
layers from penetrating chlorides, which cause reinforcement corrosion.

The second category of explanatory variables can be referred to as service conditions. In this category,
bridge age is one of the main influencing variables and is calculated as the difference between the
year built and the inspection year. Bridge age reflects the degradation of materials over time and the
length of exposure to other service conditions. Both ADT and ADTT exert a significant impact on
bridge decks, with higher traffic volumes, particularly trucks, intensifying deck stresses and
accelerating wear, thereby increasing delamination potential. For some bridges, the time history of
ADT and ADTT has dramatically changed over time. While cumulative ADT and ADTT values can
capture these changes, because of missing records from earlier years these values are averaged over
the available time history for each bridge. The annual number of freeze-thaw cycle days can
accelerate the delamination process, especially in colder regions. During freeze-thaw cycles, water
penetrates concrete, freezes, and expands causing delamination. Besides, in such regions it is common
to use deicing salts, which cause corrosion of reinforcement and eventually delamination. Since the
number of freeze-thaw cycle days varies from year to year, the average annual number was calculated,
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following the same approach used for ADT and ADTT. Finally, the deck protection code specifies
whether the reinforcement bars are epoxy coated or not. Uncoated bars are more likely to corrode,
leading to more delamination.

7.2 Gaussian Process Regression Model

GPR is a flexible non-parametric and data-driven Bayesian approach to regression that maps the input
variables to provide a stochastic distribution over functions of the objective output. Prior knowledge is
first assumed by specifying the covariance (kernel) function, and posterior over functions are then
evaluated given the observed data. GPR is selected to model bridge deterioration for two main
reasons. First, GPR can work on small datasets while capturing complex deterioration patterns due to
the strong assumptions of the Gaussian process. Second, GPR provides an uncertainty measurement
on the predictions without any additional computational cost. Such advantages can help indicate
bridges with high prediction uncertainty within the dataset and better inform maintenance decisions.

The gaussian process (GP) is a stochastic process in which every finite subset of those random
variables has a multivariate Gaussian distribution. It generalizes the concept of the Gaussian
distribution over random variables to continuous functions. The GP is completely defined by its mean
m(x) and covariance function k(x, x") (Rasmussen & Williams, 2005) and expressed as:

f()~GP(m(x), k(x,x")) 2

The mean function m(x) represents the expected value of the function f(x) at the input point x which
allows for a greater flexibility in defining prior functions, enhancing the modeling process. The
covariance function k(x, x") determines the covariance (or correlation) between any two points in the
input space X and X'. It captures the similarity between input points. The training dataset is expressed
as D = {(x;,y;)}\_,, where x denotes the explanatory variables vector and y denotes the delamination
percentage. In GP, it is assumed that:

y=fx) +e 3)

where f(x) is the true function value and € represents an additive noise that follows independent
identically distributed Gaussian with zero mean and variance o,,2, e~N(0, 6,,2).

The GPR process involves the identification of several key parameters, including the mean function,
covariance function and its associated hyperparameters, alongside the noise variance. The mean
function is usually assumed to be zero for computational simplicity. Several covariance functions
have been studied in the literature based on the nature of the problem. However, one common choice
is the squared exponential covariance function expressed as:

N 2
1/x—x
k(x,x") = g?exp <_E< l > ) 4

where o2 and [ are free hyperparameters that correspond to signal variance and length scale,
respectively. Different covariance functions have different hyperparameters, which can be estimated
by maximizing the likelihood function. In the case of a multivariate regression problem, a kernel
function with a different length scale for each variable can be used to capture the relative influence
between the different variables. In this report, a MATLAB software code was developed to construct
the GPR model.
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7.3 GPR Hyperparameters Optimization

Hyperparameter optimization is a crucial step that involves tuning the parameters of the Gaussian
process model to achieve the best possible performance in terms of predictive accuracy as well as
generalization capability. The GPR process typically begins by selecting an expected mean function
(often assumed to be zero for simplicity) and a covariance function, which describes the relationship
between the explanatory variables and delamination. The hyperparameters in GPR include the
covariance function hyperparameters: amplitude standard deviation o) and length scale (1) as well as
noise standard deviation (g,,). Generally, if enough IE records are available, they can be used to infer
information about the expected mean delamination percentage and covariance function. In this case,
the different hyperparameters can be optimized by maximizing the likelihood function. However,
given the limited data in this study (only 20 data points) and the mix of numeric and categorical
explanatory variables, selecting appropriate mean and covariance functions becomes less
straightforward. Accordingly, a more robust technique, Bayesian optimization, is employed (Snoek et
al., 2012). The Bayesian optimization approach extends the optimization problem to include different
possible combinations of the mean and kernel functions. Unlike other optimization algorithms,
Bayesian optimization improves the search speed by using past evaluations. This is achieved by
calculating a posterior distribution of the objective function based on the likelihood of the data
observed so far and an initial assumption about the prior of the function.

The developed GPR model implemented Bayesian optimization using the MATLAB built-in Bayesian
optimization algorithm: “fitrgp.” The process starts by building a GP proxy model of the objective
loss function, which needs to be minimized. The acquisition function then selects the next set of
hyperparameters to evaluate by balancing exploration of the search space and exploitation of known
areas with promising results. The “expected-improvement-per-second-plus” acquisition function is
selected to optimize hyperparameter tuning by evaluating the expected improvement, which measures
the expected amount of improvement in the objective function over the current best value. The per-
second aspect considers evaluation time and penalizes hyperparameter values that are expected to take
a very long time to train. The plus component adjusts the function to prevent overexploitation of local
minima by increasing the variance, encouraging exploration of new areas. By iteratively updating the
probabilistic GP model and selecting new hyperparameter values, Bayesian optimization
progressively converges toward the optimal solution with minimal objective function evaluations,
leading to more efficient hyperparameter optimization.

To ensure the reliability of the GPR model and prevent overfitting given the small dataset, cross-
validation was employed in the hyperparameter optimization process. With only 20 data points and 10
explanatory variables, the GPR model was trained on 18 data points and tested on two. Bayesian
optimization minimized the nine-fold cross-validation loss in nine runs. For each run, 16 points are
used for training and two points are left out for validation. Specifically, the objective loss function is
expressed as log(1 + MSE.y), where MSE -y, represents the overall cross-validation loss calculated
by averaging the mean squared error (MSE) of the two validation points in each run, and then
averaging this value across all nine runs. The MATLAB built-in Bayesian optimization algorithm
searches for the optimal mean function from four candidates: “constant,” “none,” “linear,” and
“pureQuadratic.” Additionally, it identifies the best kernel function and its corresponding
hyperparameters from a set of 10 options: “ardexponential,” “ardmatern32,” “ardmatern52,”
“ardrationalquadratic,” “ardsquaredexponential,” “exponential,” “matern32,” “matern52,”
“rationalquadratic,” and “squaredexponential,” The algorithm further optimizes the noise variance and
determines if data standardization is necessary.
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7.4 Results

The results of the hyperparameter optimization for the GPR model are first discussed to highlight the
effectiveness of Bayesian optimization in improving predictive accuracy of the GRP model. The runs
of objective function evaluations in the hyperparameter optimization were increased from the default
value of 30 to 60 to ensure convergence to an optimized solution (Figure 7.1). The final results of
hyperparameter optimization are as follows: standardized data, a noise variance of 7.58%, a zero-
mean function, an amplitude standard deviation of 33.75%, and an ARD-squared exponential kernel.
These parameters together optimized the model’s performance. The ARD-squared exponential is a
variant of the squared exponential kernel, where ARD stands for automatic relevance determination
(Neal, 1996), allowing each variable to have a unique length scale. The selection of the squared
exponential kernel is particularly appropriate here as it implies that bridges with similar characteristics
will exhibit similar delamination patterns, reflecting the smooth and continuous nature of the
underlying physical process.

The final optimized GPR model demonstrated strong predictive performance, as demonstrated by the
cross-validation results in Figure 7.2(a). In this figure, the predicted delamination percentages
generally align well with the actual delamination percentages across most runs, indicating that the
model’s hyperparameters have been effectively optimized despite the limited data (16 data points for
training per run). In runs such as 3 and 4, the predictions closely match the actual values,
demonstrating the model’s accuracy. However, discrepancies are evident in run 7, where the predicted
values are noticeably higher than the actual, suggesting the model struggles with cases that differ
significantly from the training data. Across all nine runs, the model achieved an average RMSE of
11.45%, with six of those runs having an RMSE below 10%, as shown in Figure 7.2(b). The predicted
standard deviations [Figure 7.2(a)] remain small in most runs, indicating a fair level of confidence,
though slight increases in uncertainty are observed in runs 7 and 8. This increased uncertainty is due
to the larger differences of explanatory variables between the validation data and training data within
these two runs. Finally, the optimized hyperparameters were used to train the model on the full dataset
(18 data points). The model was then tested on two previously unseen data points, which were not part
of the training or cross-validation process. The model achieved an average RMSE of 10.70% for these
two points, with prediction standard deviations of 10.34% and 11.46%, as shown in Figure 7.3. The
results demonstrate the model’s robustness and its ability to generalize to new data while maintaining
reasonable accuracy.

One approach to show the relative importance of the selected explanatory variables is to plot the log
of length scale for each variable, as shown in Figure 7.4. In this case, variables with smaller length
scales have a greater influence on the delamination percentage, as the model responds more
sensitively to changes in these variables. Figure 7.4 highlights that the number of freeze-thaw cycles
is the most significant factor affecting bridge deck delamination. This finding is consistent with the
ACI Committee 116 report, which identifies freeze-thaw cycles as a primary cause of delamination
(ACI Committee 116R-00, 2003). Deck thickness also has a notable impact, as thicker decks
generally provide better resistance to environmental stresses. Skew angle, while less critical, still
contributes to vulnerability, as larger angles can lead to stress concentrations and cracking. A survey
conducted among New York State DOT regional bridge maintenance engineers indicated that 96%
(22 out of 23) of the participants viewed skewed bridges to have higher maintenance needs (Diaz
Arancibia et al., 2020). Deck protection code and top cover show comparable influences, as both play
a role in reducing the exposure of reinforcing steel to corrosive elements, thus mitigating corrosion
and reducing the risk of delamination (Cady & Weyers, 1984; Pincheira et al., 2015). Traffic-related
variables, such as ADTT and ADT, moderately affect delamination, as increased traffic volumes
accelerate deterioration. In contrast, both the age of the bridge and the year it was built appear to have
minimal impact, with bridge roadway width identified as the least important variable in determining
delamination.
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8. DISCUSSION

This report demonstrates the application of GPR to bridge NDE data for developing quantitative
predictions of deterioration. An important implication of this modeling approach is its potential use in
strategically allocating NDE inspections to enhance model predictions, particularly through
uncertainty prediction. However, the analysis and model development were not fully optimized due to
several data limitations of NDE data available in the LTBP database. The effectiveness of leveraging
NDE data provided in the LTBP database can be significantly improved by addressing these
limitations and incorporating additional crucial non-NDE data that are currently missing. By filling
these gaps, the overall quality of the dataset would be enhanced, leading to better predictive accuracy
and more reliable bridge condition assessments, ultimately improving decision-making in bridge
management.

The developed GPR model offers two key advantages in predicting deck delamination, particularly
for bridges without IE records. First, it enables accurate delamination predictions for bridges with
characteristics similar to those used in training, providing actionable insights without the need for
immediate testing. Second, the model optimizes the selection of bridges for NDE testing by
identifying those with high prediction uncertainty. By incorporating uncertainty estimation for each
prediction, the GPR model prioritizes bridges with the highest uncertainty for testing, ensuring that
resources are allocated efficiently. This approach not only improves the accuracy of future predictions
by focusing on bridges with the greatest uncertainty, but it also enhances overall bridge management
by targeting the most uncertain structures for inspection, ensuring resources are deployed where they
are most needed.

To visually illustrate the two main advantages of the GPR model, a schematic diagram of a GPR
model has been developed to represent the relationship between the explanatory variables vector and
the predicted delamination percentage. In Figure 8.1(a), the testing points have characteristics similar
to those of the training data, resulting in low prediction uncertainty. In this case, the predicted
delamination values can be confidently used to guide maintenance decisions, demonstrating the
model’s first advantage. In Figure 8.1(b), the three testing points, shown with varying levels of
uncertainty, differ significantly from the training data. This leads to higher uncertainty in predictions,
especially for Bridges 1 and 2, which show the largest uncertainty. In this case, considering available
financial resources, Bridges 1 and 2 should be prioritized for NDE scheduling to refine future
predictions and optimize resource allocation.
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Figure 8.1 Main advantages of the GPR model: (a) predicting delamination percentage for bridges
similar to those in the training data; (b) identifying bridges with high uncertainty for
prioritized IE testing and scheduling.

This approach of employing GPR for future IE test scheduling can be employed for any NDE output.
Accordingly, this can be utilized to establish an NDE inspection planning framework. In this
framework, inventory bridges are evaluated using the existing GPR model to quantify prediction
uncertainty for each bridge. Bridges with high prediction uncertainty, along with available resources
and funds, are prioritized for the upcoming NDE tests. After the NDE tests are conducted, the
deterioration estimates are used to update the NDE records database. This updated database is then
used to fit a new GPR model, with model parameters optimized via Bayesian optimization. This
iterative process continues until a sufficient number of NDE records is available, at which point the
model will deliver strong predictive performance with acceptable uncertainty. This proposed
framework is shown in Figure 8.2.
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Figure 8.2 Proposed NDE inspection planning framework

Although the developed GPR model has delivered promising results, its predictive accuracy can be
further improved by addressing key limitations in the NDE data available in the LTBP database. A
more comprehensive and complete dataset would strengthen the model’s ability to generalize across
diverse bridge conditions. A thorough investigation of the NDE data provided in the LTBP database
has revealed several critical limitations that, if addressed, could significantly enhance the model’s
predictive capabilities and overall performance. These limitations include:

e A very limited number of bridges with NDE records (38 bridges) exist on the LTBP when
compared with the number of bridges in the inventory (620,700 bridges).

e Previously detected delaminated areas were sometimes not identified in subsequent
inspections, likely due to variations in test operators and differences in scanned area
dimensions across different years.

e There was no standardized format for presenting the NDE results. Some NDE maps were
displayed in colored condition maps to represent poor to sound conditions, while others
showed the actual return frequency magnitude values.

e Deck information, including concrete specifications, thickness, and reinforcement details, is
crucial for interpreting NDE data, yet only 26 bridges have these data available.

e For some bridges, deck specifications such as skew angle, do not match between the NBI data
and the LTBP design data.

e For NDE condition maps, some have missing areas due to errors and terminations in the
automated scanning process, as shown in Figure 8.3.

e For some bridges, particularly those with automated scans, irregularities in test point locations
were evident, including missing and overlapping areas, as shown in Figure 8.4.

e Finally, the available NDE data are geographically restricted to the eastern U.S., resulting in a
dataset that lacks diversity in environmental conditions.
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The aforementioned limitations can be effectively addressed by implementing the following actions:

Increase the number of bridges with NDE data provided.

e Standardize aspects of the NDE data collection, data processing, and reporting process to allow
data from different inspection companies to be used collectively with ease.

e Include detailed information about the NDE test equipment, such as technical specifications,
calibration status, and environmental conditions (e.g., temperature, humidity, wind speed).

e Document any interruptions or terminations during automated scans, specifying the underlying
causes (e.g., equipment malfunction, positioning errors, or environmental factors), the affected
scan areas, and whether these sections were omitted or re-scanned, potentially resulting in
overlapping data. Include a description of the corrective actions taken to ensure transparency,
consistency, and completeness of the dataset.

e Conduct a quality check on all NDE records to ensure consistency in scanned areas and to
identify any overlapping or missing scans.

Finally, several critical gaps related to other non-NDE data in the LTBP bridge database have been
identified, and addressing these gaps would significantly enhance the filtration and deterioration
modeling processes. Specifically, while maintenance data are included in the LTBP Program
protocols, they are notably absent from the database. These data are vital for accurately tracking and
understanding bridge deterioration, particularly since each state DOT follows distinct maintenance
and rehabilitation policies. Additionally, the application of deicing and anti-freezing chemicals,
though cost-effective, contributes to bridge deck degradation and reinforcement corrosion. Collecting
detailed data on their use could yield valuable insights into their long-term effects and cost-
effectiveness. Furthermore, construction practices and design data—such as soil compaction
techniques, concrete placement, curing methods, welding, and fastening—are essential for
determining bridge service life. However, design data are available for only a limited number of
bridges, with just 1,580 out of 620,669 bridges having design data, and only 26 bridges having both
NDE and design data. Addressing these data gaps is crucial for improving the accuracy and reliability
of bridge deterioration models.
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9. CONCLUSIONS

This report introduces a novel concept for leveraging limited NDE data, which is often underutilized.
Currently, NDE data are only used to evaluate the condition for a specific bridge being tested. The
proposed GPR model offers a new way to collectively use the data across different bridges to provide
two valuable advantages. First, it enables accurate delamination predictions for untested bridge decks
with characteristics similar to the training data, offering actionable insights without the need for
immediate testing. Second, it optimizes NDE testing by prioritizing bridges with high prediction
uncertainty, ensuring that resources are allocated efficiently. This approach not only improves the
accuracy of future predictions by focusing on bridges with the greatest uncertainty, but it also
enhances overall bridge management by targeting the most uncertain structures for inspection,
ensuring resources are deployed where they are most needed.

This concept was demonstrated using existing IE test records from the LTBP database to predict
future delamination percentages, accompanied by associated uncertainty measures. When tested on
bridges with similar environmental conditions and characteristics, the model achieved an average
RMSE of 11.45% for cross-validation data and 10.70% for testing data. Analysis of the model
revealed that the number of freeze-thaw cycles is the most critical factor influencing bridge deck
delamination, followed by deck thickness. Finally, this report identifies the current limitations in the
NDE data available in the LTBP database and suggests actions to address them, leading to
improvements in future data collection. Additionally, several critical gaps related to non-NDE data
have been identified to enhance the deterioration modeling processes. Further exploration of this
approach is recommended to enhance the accuracy and reliability of bridge deterioration predictions
once more data become available.

22



10. REFERENCES

ACI Committee 116R-00. (2003). “Cement and concrete terminology.” In Manual of Concrete
Practice (Part 1). American Concrete Institute.

Althaqafi, E., & Chou, E. (2022). “Developing bridge deterioration models using an artificial neural
network.” Infrastructures, 7(8). https://doi.org/10.3390/infrastructures7080101

ASTM. (2022). “Standard test method for measuring the P-wave speed and the thickness of concrete
plates using the impact-echo method (ASTM C1383-15).” ASTM International. Retrieved
October 29, 2024, from https://www.astm.org/c1383-15r22.html

Cady, P. D., & Weyers, R. E. (1984). “Deterioration rates of concrete bridge decks.” Journal of
Transportation Engineering, 110(1), 34—44. https://doi.org/10.1061/(ASCE)0733-
947X(1984)110:1(34)

Caltrans Division of Research, Innovation, and System Information. (2020). “Bridge Deterioration
Models and Rates (Preliminary Investigation PI-0274).” California Department of
Transportation. Retrieved from https://dot.ca.gov/-/media/dot-media/programs/research-
innovation-system-information/documents/preliminary-investigations/pi-0274-al ly.pdf

Concrete New Zealand Incorporated. (2021). Guide to Minimising the Risk of Delamination in
Concrete (ISBN: 978-0-908956-83-8). Concrete New Zealand. Retrieved from
https://concretenz.org.nz/news/575864/Minimise-the-Risk-of-Delamination-in-Concrete.htm

Dhada, M., Hadjidemetriou, G. M., & Parlikad, A. K. (2020). “Predicting bridge elements
deterioration using collaborative Gaussian process regression.” /FAC-PapersOnLine, 53(3),
348-353. https://doi.org/10.1016/].ifacol.2020.11.056

Diaz Arancibia, M., Rugar, L., & Okumus, P. (2020). “Role of skew on bridge performance.”
Transportation Research Record: Journal of the Transportation Research Board, 2674(5),
282-292. https://doi.org/10.1177/0361198120914617

Federal Highway Administration. (2023). 2023 - Bridge Condition by Highway System - National
Bridge Inventory - Bridge Inspection - Safety Inspection - Bridges & Structures. Retrieved
October 29, 2024, from https://www.fhwa.dot.gov/bridge/nbi/no10/condition23.cfm

Federal Highway Administration. (2024). Performance History - LTBP InfoBridge. U.S. Department
of Transportation. Retrieved October 29, 2024, from https://infobridge.fhwa.dot.gov/

Fu, G., & Devaraj, D. (2008). “Methodology of homogeneous and non-homogeneous Markov chains
for modeling bridge element deterioration” (Final Report). Wayne State University, Center
for Advanced Bridge Engineering. Michigan Department of Transportation. Retrieved from
https://rosap.ntl.bts.gov/view/dot/18196

Ghonima, O., Anderson, J. C., Schumacher, T., & Unnikrishnan, A. (2020). “Performance of US
concrete highway bridge decks characterized by random parameters binary logistic
regression.” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:
Civil Engineering, 6(1). https://doi.org/10.1061/AJRUA6.0001031

Gucunski, N., Imani, A., Romero, F., Nazarian, S., Yuan, D., Wiggenhauser, H., Shokouhi, P., Taffe,
A., & Kutrubes, D. (2012). “Nondestructive testing to identify concrete bridge deck
deterioration.” Transportation Research Board. https://doi.org/10.17226/22771

23


https://doi.org/10.3390/infrastructures7080101
https://doi.org/10.1061/(ASCE)0733-947X(1984)110:1(34)
https://doi.org/10.1061/(ASCE)0733-947X(1984)110:1(34)
https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/preliminary-investigations/pi-0274-a11y.pdf
https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/preliminary-investigations/pi-0274-a11y.pdf
https://concretenz.org.nz/news/575864/Minimise-the-Risk-of-Delamination-in-Concrete.htm
https://doi.org/10.1016/j.ifacol.2020.11.056
https://doi.org/10.1177/0361198120914617
https://www.fhwa.dot.gov/bridge/nbi/no10/condition23.cfm
https://infobridge.fhwa.dot.gov/
https://rosap.ntl.bts.gov/view/dot/18196
https://doi.org/10.1061/AJRUA6.0001031

Gucunski, N., Maher, A., Basily, B. B., & La, H. M. (2013). “Robotic platform RABIT for condition
assessment of concrete bridge decks using multiple NDE technologies.” HDKBR Info Mag, 3,
4.

Gucunski, N., Pailes, B., Kim, J., Azari, H., & Dinh, K. (2017). “Capture and quantification of
deterioration progression in concrete bridge decks through periodical NDE surveys.” Journal
of Infrastructure Systems, 23(1). https://doi.org/10.1061/(asce)is.1943-555x.0000321

Gucunski, N., Slabaugh, G., Wang, Z., Fang, T., & Mabher, A. (2008). “Impact echo data from bridge
deck testing.” Transportation Research Record: Journal of the Transportation Research
Board, 2050(1), 111-121. https://doi.org/10.3141/2050-11

Huang, Y.-H. (2010). “Artificial neural network model of bridge deterioration.” Journal of
Performance of Constructed Facilities, 24(6), 597—-602.
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000124

Ilbeigi, M., & Ebrahimi Meimand, M. (2020). “Statistical forecasting of bridge deterioration
conditions.” Journal of Performance of Constructed Facilities, 34(1).
https://doi.org/10.1061/(asce)ct.1943-5509.0001347

Kim, Y. J., & Yoon, D. K. (2009). “Identifying critical sources of bridge deterioration in cold regions
through the constructed bridges in North Dakota.” Journal of Bridge Engineering, 15(5),
542-552. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000087

Lee, Y. H., & Oh, T. (2016). “The measurement of P-, S-, and R-wave velocities to evaluate the
condition of reinforced and prestressed concrete slabs.” Advances in Materials Science and
Engineering, 2016, 1-14. https://doi.org/10.1155/2016/1548215

Li, M., & Jia, G. (2021). “Age, state, and environment dependent non-homogeneous stochastic model
for improved bridge deterioration prediction.” In Bridge Maintenance, Safety, Management,
Life-Cycle Sustainability and Innovations (pp. 2766-2773). CRC Press.
https://doi.org/10.1201/9780429279119-377

Liu, H., & Zhang, Y. (2020). “Bridge condition rating data modeling using deep learning algorithm.”
Structure and Infrastructure Engineering, 16(10), 1447-1460.
https://doi.org/10.1080/15732479.2020.1712610

Mauch, M., & Madanat, S. (2001). “Semiparametric hazard rate models of reinforced concrete bridge
deck deterioration.” Journal of Infrastructure Systems, 7(2), 49-57.
https://doi.org/10.1061/(ASCE)1076-0342(2001)7:2(49)

Michigan Department of Transportation (MDOT). (2021). Bridge management and scoping.
Retrieved October 29, 2024, from https://www.michigan.gov/mdot/programs/bridges-and-
structures/structure-preservation

Morcous, G., & Lounis, Z. (2007). “Probabilistic and mechanistic deterioration models for bridge
management.” In Congress on Computing in Civil Engineering, Proceedings (pp. 364-373).
https://doi.org/10.1061/40937(261)45

Morcous, G., Lounis, Z., & Cho, Y. (2010). “An integrated system for bridge management using
probabilistic and mechanistic deterioration models: Application to bridge decks.” KSCE
Journal of Civil Engineering, 14, 527-537. https://doi.org/10.1007/s12205-010-0527-4

Morcous, G., Rivard, H., & Hanna, A. M. (2002). “Modeling bridge deterioration using case-based
reasoning.” Journal of Infrastructure Systems, 8(3), 86-95.
https://doi.org/10.1061/(ASCE)1076-0342(2002)8:3(86)

24


https://doi.org/10.1061/(asce)is.1943-555x.0000321
https://doi.org/10.3141/2050-11
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000124
https://doi.org/10.1061/(asce)cf.1943-5509.0001347
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000087
https://doi.org/10.1155/2016/1548215
https://doi.org/10.1201/9780429279119-377
https://doi.org/10.1080/15732479.2020.1712610
https://doi.org/10.1061/(ASCE)1076-0342(2001)7:2(49)
https://www.michigan.gov/mdot/programs/bridges-and-structures/structure-preservation
https://www.michigan.gov/mdot/programs/bridges-and-structures/structure-preservation
https://doi.org/10.1061/40937(261)45
https://doi.org/10.1007/s12205-010-0527-4
https://doi.org/10.1061/(ASCE)1076-0342(2002)8:3(86)

Neal, R. M. (1996). Bayesian Learning for Neural Networks (Vol. 118). Springer Science+Business
Media. https://doi.org/10.1007/978-1-4612-0745-0

Nguyen, T. T., & Dinh, K. (2019). “Prediction of bridge deck condition rating based on artificial
neural networks.” Journal of Science and Technology in Civil Engineering (STCE) - NUCE,
13(3), 15-25. https://doi.org/10.31814/stce.nuce2019-13(3)-02

Nickless, K., & Atadero, R. A. (2018). “Mechanistic deterioration modeling for bridge design and
management.” Journal of Bridge Engineering, 23(5), 04018018.
https://doi.org/10.1061/(asce)be.1943-5592.0001223

Phares, B. M., Graybeal, B. A., Rolander, D. D., Moore, M. E., & Washer, G. A. (2001). “Reliability
and accuracy of routine inspection of highway bridges.” Transportation Research Record:
Journal of the Transportation Research Board, 1749(1), 82-92. https://doi.org/10.3141/1749-
13

Pincheira, J. A., Aramayo, A., Fratta, D., & Kim, K.-S. (2015). “Corrosion performance of epoxy-
coated bars in four bridge decks subjected to deicing salts: 30-year perspective.” Journal of
Performance of Constructed Facilities, 29(4), 04014097.
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000592

Rasmussen, C. E., & Williams, C. K. 1. (2005). Gaussian Processes for Machine Learning. The MIT
Press. https://doi.org/10.7551/mitpress/3206.001.0001

Sengupta, A., llgin Guler, S., & Shokouhi, P. (2021). “Interpreting impact echo data to predict
condition rating of concrete bridge decks: A machine-learning approach.” Journal of Bridge
Engineering, 26(8). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001744

Snoek, J., Larochelle, H., & Adams, R. (2012). “Practical Bayesian optimization of machine learning
algorithms.” In Neural Information Processing Systems (pp. 2951-2959).

Sobanjo, J. (1997). “A neural network approach to modeling bridge deterioration.” In 4¢th Congress on
Computing in Civil Engineering, ASCE (pp. 623-626).

Srikanth, 1., & Arockiasamy, M. (2020). “Deterioration models for prediction of remaining useful life
of timber and concrete bridges: A review.” Journal of Traffic and Transportation Engineering
(English Edition), 7(2), 152—173. https://doi.org/10.1016/].jtte.2019.09.005

Srikanth, 1., & Arockiasamy, M. (2021). “Remaining service life prediction of aging concrete bridges
based on multiple relevant explanatory variables.” Practice Periodical on Structural Design
and Construction, 26(4), 04021036. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000604

Taylor, B. R., Qiao, Y., Bowman, M. D., & Labi, S. (2016). The Economic Impact of Implementing
Nondestructive Testing of Reinforced Concrete Bridge Decks in Indiana (Joint Transportation
Research Program Publication No. FHWA/IN/JTRP-2016/20). Purdue University.
https://doi.org/10.5703/1288284316343

Tokdemir, O. B., Ayvalik, C., & Mohammadi, J. (2000). “Prediction of highway bridge performance
by artificial neural networks and genetic algorithms.” In Proceedings of the 17th International
Symposium on Automation and Robotics in Construction (ISARC).
https://doi.org/10.22260/ISARC2000/0066

Torlapati, R., Azari, H., & Shokouhi, P. (2023). “Classification of impact echo signals using
explainable deep learning and transfer learning approaches.” Transportation Research
Record: Journal of the Transportation Research Board, 2677(9), 464—4717.
https://doi.org/10.1177/03611981231159404

25


https://doi.org/10.31814/stce.nuce2019-13(3)-02
https://doi.org/10.1061/(asce)be.1943-5592.0001223
https://doi.org/10.3141/1749-13
https://doi.org/10.3141/1749-13
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000592
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001744
https://doi.org/10.1016/j.jtte.2019.09.005
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000604
https://doi.org/10.5703/1288284316343
https://doi.org/10.22260/ISARC2000/0066
https://doi.org/10.1177/03611981231159404

Winn, E. (2011). “Artificial neural network models for the prediction of bridge deck condition
ratings” (master’s thesis). Michigan State University.

Winn, E. K., & Burguefio, R. (2013). Development and validation of deterioration models for
concrete bridge decks: Phase 1: Artificial intelligence models and bridge management system
(Report No. CEE-RR-2013/01). Department of Civil and Environmental Engineering,
Michigan State University.

26



	1. INTRODUCTION
	2. PURPOSE
	3. NDE DATA AVAILABLE IN THE LTBP DATABASE
	4. IMPACT ECHO BACKGROUND
	5. DATA SELECTION AND FILTRATION
	6. DATA PROCESSING
	7. MODELING AND RESULTS
	7.1 Explanatory Variables Selection
	7.2 Gaussian Process Regression Model
	7.3 GPR Hyperparameters Optimization
	7.4 Results

	8. DISCUSSION
	9. CONCLUSIONS
	10. REFERENCES
	MPC_618_Technical Report Documentation Page.pdf
	Technical Report Documentation Page




