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ABSTRACT   

Existing bridge deterioration models rely on subjective national bridge inventory (NBI) condition 
ratings from visual inspections, which lack the objective assessments needed for informed repair and 
maintenance decisions. Non-destructive evaluation (NDE) tests, such as impact echo (IE), provide 
quantitative and objective condition evaluation data. However, these data have been underutilized for 
deterioration modeling due to data scarcity (one to three records per bridge). This report introduces a 
novel concept to put limited NDE data to more valuable use. Specifically, a Gaussian process 
regression (GPR) model is developed using IE records from the Long-Term Bridge Performance 
(LTBP) database. The GPR model offers two key advantages: it accurately predicts delamination for 
untested bridges (i.e., the bridges without IE records) with characteristics similar to those in the 
training data, and identifies bridges with high prediction uncertainty, enabling them to be prioritized 
for NDE testing to improve the model’s future delamination predictions. This approach enhances 
NDE inspection planning and resource allocation by focusing on the most uncertain structures for 
testing. Moving forward, the report identifies challenges and opportunities in the LTBP database, 
urging changes in current NDE data collection practices to support more strategic NDE applications, 
data reuse, and accurate deterioration modeling.  
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EXECUTIVE SUMMARY 

This report introduces a novel method for utilizing limited NDE data from various bridge decks to 
predict the deterioration of other decks. Traditional deterioration models often predict the National 
Bridge Inventory (NBI) condition rating, which is subjective and qualitative, limiting its direct 
application in bridge management and maintenance decisions. To overcome these challenges, a 
Gaussian Process Regression (GPR) model was developed based on Impact Echo (IE) data to predict 
bridge deck delamination. Due to the limited availability of NDE records (38 in total), careful data 
selection, filtration, and processing were implemented. This process yielded 20 IE records that were 
used in the model development. Bayesian optimization was used to find the optimum GPR 
hyperparameters where 18 points were used for training and 2 points were left for testing. The 
proposed model achieved an average root mean square error (RMSE) of 11.45% for cross-validation 
data and 10.70% for testing data. Given that the GPR model provides a prediction with an uncertainty 
prediction, it is used to construct an NDE inspection planning framework. Moving forward, the 
limitations within the NDE data available in the LTBP database have been identified, along with 
recommendations for improved data collection practices to optimize the leveraging of the existing 
NDE data. 
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1. INTRODUCTION 

Bridges are one of the most important infrastructures for any country and maintaining bridge 
condition is an important task. In 2023, among 621,581 U.S. bridges, 48.9% were reported in fair 
condition, while 6.8% were in structurally deficient or poor condition, requiring $47 billion for 
rehabilitation according to Federal Highway Administration data (FHWA, 2023). Bridge decks are the 
most damaged component within a bridge (Morcous et al., 2010) since they are directly subjected to 
traffic loads and severe environmental conditions, especially in cold regions where deicing chemicals 
are used (Kim & Yoon, 2009). Figure 1.1 illustrates the historical performance of bridge decks across 
the United States. The figure shows a decline in the percentage of bridge decks in “Good” condition, 
with a steady increase in the “Fair” condition over the past three decades. Although the “Poor” 
condition remains low, a slight increase in the last four years signals emerging concerns (FHWA, 
2024). These trends suggest aging infrastructure and highlight the need to better understand and 
model bridge deterioration for more effective maintenance strategies. 

 
Figure 1.1 Time history of bridge deck area condition percentages (“Good,” “Fair,” and “Poor”) based 

on the latest FHWA data (2024) 

To gain a more comprehensive understanding of the deterioration process and develop effective 
maintenance plans, researchers have turned to the development of bridge deterioration models. 
Deterioration models are considered a primary component in any bridge management system (BMS). 
They have been extensively adopted by many BMSs such as BRIDGIT and AASHTOW, which are 
the most popular in the U.S. (Dinesh & Gongkang, 2009). Deterioration models provide information 
that helps allocate limited funds and resources to meet current needs and anticipate future conditions. 
Currently, deterioration models adopted by different state departments of transportation (DOTs) are 
used for long-range budget planning, project scoping and/or planning, and life cycle cost analysis 
(Caltrans Division of Research, 2020). Although deterioration models utilizing different inputs and 
outputs have been developed, models predicting National Bridge Inventory (NBI) condition ratings 
are the most common. This might be due to the relative simplicity, accessibility, and availability of 
NBI condition rating data. However, two main challenges restrict the utility of these models: the 
limitations of different modeling techniques and the final prediction output of these models. 

First, the limitations of the employed modeling techniques stem from their inherent assumptions or 
the large amount of data required for training. Generally, deterioration models can be categorized into 
four main types: deterministic, stochastic, mechanistic, and artificial intelligence (AI) models.  
Deterministic models neglect the uncertainty and stochastic nature of infrastructure deterioration. 
Stochastic models, conversely, consider the probabilistic nature of bridge deterioration. However, 
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stochastic state-based models suffer from being memoryless and time-homogenous (Srikanth & 
Arockiasamy, 2020); whereas stochastic time-based models are limited by the complexity of 
distribution parameter estimation and the extent of historical data required to provide appropriate 
results (Mauch & Madanat, 2001). Mechanistic models mainly yield efficient results when 
implemented at the project level, but they are less useful for an inventory of bridges (Nickless & 
Atadero, 2018). Recently developed AI-based models excel in handling the complex behavior of 
deterioration. Nonetheless, most AI models require a considerably large set of data to avoid fitting 
problems (Althaqafi & Chou, 2022; Huang, 2010; Nguyen & Dinh, 2019; Sobanjo, 1997; Tokdemir et 
al., 2000). A recently developed model, Gaussian process regression (GPR), effectively addresses the 
issue of data scarcity, making it a robust choice even with limited data. Dhada et al. (2020) employed 
the GPR model to predict the condition index of bridge elements for bridges in the UK. Since the 
GPR model is non-parametric, flexible, and robust, it is employed in this report. 

Second, the final prediction output of the previously discussed models was generally the NBI 
condition rating. This rating has many limitations such as the subjectivity of visual inspection, no 
information about deterioration that cannot be detected by visual inspection, and insufficient 
information for some condition ratings, especially low ratings (Winn & Burgueño, 2013). Moreover, 
predicted condition ratings cannot be utilized effectively in predictive maintenance and decision-
making. For example, many DOTs rely on a decision matrix for deterioration repairs where there is a 
specific maintenance measure corresponding to each range of deterioration percentage. Taking the 
Michigan Department of Transportation as an example, the selection of maintenance strategies varies 
with the extent of delamination. Low delamination percentages may warrant the application of epoxy 
overlays, while higher percentages necessitate shallow or deep patch repairs (MDOT, 2021). 
However, predicted condition ratings offer limited value to inform these decisions as they are abstract 
and do not provide the necessary quantitative assessment of deterioration. 

To address NBI condition rating limitations, different non-destructive evaluation (NDE) techniques 
have been used in deterioration assessment. NDEs employ different advanced technologies to capture 
data quantifying the underlying bridge deterioration. Various instruments are used to scan the bridge, 
process the data based on physical theories, and finally provide a condition map that describes 
quantitatively the ongoing deterioration. Accordingly, they overcome the previously mentioned 
limitations of condition rating since they provide objective and relatively accurate quantitative 
assessment data. However, NDEs are costly, considering the direct costs of equipment, data analytics, 
and human resources, as well as indirect costs due to traffic closure (Taylor et al., 2017). NDE’s cost 
means that it has not been adopted as a routine inspection technique for all bridges, rather NDE is 
used on bridges with known deterioration to provide a more detailed assessment for maintenance 
planning.  

Although NDEs offer a promising solution for bridge inspection, their output is typically limited to 
assessment of a single bridge, and there has been no effort to use the data for bridge deterioration 
modeling. The main reason NDE data are not being put to greater use is that there is no clear strategic 
plan for NDE data collection and sharing. Accordingly, the data are not collected on a fixed time basis 
and data collected by different companies are not publicly shared and not necessarily stored in the 
same format. However, resolving such limitations will help employ NDE data in deterioration 
modeling, extending their utility and making the collection of these data more cost-effective. NDE 
data collected strategically with well-designed spatial and temporal sampling plans will fulfill a 
broader goal where they can be efficiently utilized in deterioration modeling across different bridges 
within bridge networks and not just to assess one bridge’s current condition. 
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2. PURPOSE  

This report proposes a novel concept for leveraging NDE data from different bridges to allow 
quantitative and objective prediction of bridge deck deterioration. To demonstrate this concept, a GPR 
model is developed based on IE records obtained from the Long-Term Bridge Performance (LTBP) 
database to model the concrete deck delamination of multi-girder bridges. Delamination occurs when 
part of the concrete surface debonds from the underlying base, a critical issue for bridge decks and the 
primary cause of most deck repairs (Gucunski et al., 2013). Delamination can result from short-term 
factors, such as premature finishing, or long-term issues like freeze-thaw cycles and corrosion 
(Concrete New Zealand Incorporated, 2021).  

The proposed model will serve two purposes: First, the model will handle the complex behavior of 
bridge deterioration and the diversity of bridge parameters to predict an approximate percentage of 
delamination for bridges with no IE records. Second, the model provides prediction uncertainty 
estimation, which can be used to prioritize NDE scheduling, particularly for bridges with high 
prediction uncertainty. Both purposes support informed maintenance decisions and optimal resource 
allocation. A secondary purpose of this report is to highlight some of the limitations associated with 
NDE data that are available in the LTBP database and suggest ways to improve LTBP data collection 
that will help enhance bridge deterioration modeling. 
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3. NDE DATA AVAILABLE IN THE LTBP DATABASE 

This report is based on the NDE data available in the LTBP database. The LTBP database offers 
massive data for almost 623,000 bridges throughout the U.S. However, only 38 bridges have NDE data, 
which will constitute the available dataset for this report. For these bridges, the database contains 
information about most of the bridge parameters, such as structural system, construction material, 
dimensions, traffic, environmental conditions, and NDE data. The NDE data contain records obtained 
from different non-destructive tests, including impact echo (IE), ground penetrating radar, electric 
resistivity, half-cell potential, and ultrasonic surface waves. The NDE test results are provided in two 
forms: raw data in the form of voltage-time signals and processed data in the form of condition maps. 
At the time of this report, most NDE data provided in the LTBP are only given for one to three years. 
These years are usually 2013, 2015, and 2017.  

Although many of these NDEs provide deterioration data that could be used in the proposed model, 
this report will focus on predicting one type of deterioration, which is deck delamination. This 
prediction is achieved by using delamination percentages quantified from the available IE records. IE 
records are used because among all the different NDE tests available, IE is often considered the best 
NDE test for detecting delamination. More specifically, past studies showed that IE is capable of 
estimating deck thickness with an error of 3% (Sansalone and Streett, 1997). Also, previous research 
has utilized ground-coupled IE for detecting shallow delaminations in concrete structures (Azari et al., 
2014; Olson et al., 2011; Sansalone & Carino, 1989). These studies showed the capability of 
identifying delaminations as small as 100 mm in diameter. Besides, IE is considered the primary NDE 
technique in the LTBP program for the detection and characterization of deck delamination (Gucunski 
et al., 2017). According to the second Strategic Highway Research Program (SHRP 2), IE is the best 
NDE method for the detection of delaminations when considering accuracy and reliability (Gucunski 
et al., 2012). 
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4. IMPACT ECHO BACKGROUND 

An IE test is conducted by applying an impact force using a steel ball to the concrete surface 
producing a compression wave (P-wave) through the deck thickness. The wave undergoes multiple 
reflections when it hits the bottom of the deck or any subsurface defect. The reflected wave is 
recorded by an adjacent receiver. If the receiver is close to the impact point, the round-trip travel 
distance is 2𝑇𝑇, where T is the distance between the test surface and the reflection surface. Although it 
is possible to analyze the recorded signal in the time domain, a more straightforward and robust 
analysis is usually conducted in the frequency domain. Hence, the recorded time domain signal is then 
converted to the frequency domain using fast Fourier transform (FFT). This frequency is directly 
associated with the physical properties of the deck, where the wave travel time is calculated as twice 
the deck thickness divided by the P-wave velocity. Consequently, the P-wave frequency is the inverse 
of this time interval. The relationship between thickness resonance frequency (𝑓𝑓𝑡𝑡ℎ), deck thickness 
(H), and P-wave velocity (𝑣𝑣𝑝𝑝) is given by the approximate relationship: 

where (𝑣𝑣𝑝𝑝) typically ranges between 3,500 m/s to 4,500 m/s (Lee & Oh, 2016) and can either be 
measured or assumed, and (𝛽𝛽) is a modification factor, which takes the value of approximately 0.96 
for concrete plates. 

Since there is no unified approach to interpret the IE signals, there are many criteria that can be 
followed to classify the resulting IE signal into two, three, or four classes representing the deck 
condition (Torlapati et al., 2023). Generally, for intact decks, emitted signals are reflected back and 
forth between the two free surfaces of the deck. Accordingly, the thickness resonance frequency 
stands out as the dominant peak. On the other hand, decks in serious condition will excite the flexural 
vibrational mode of the upper delaminated areas. In this case, the dominant peak frequencies will be 
much lower than the thickness resonance frequency, usually below 5 KHz. Finally, intermediate cases 
may be present and are identified by several dominant peaks caused by the initiation of shallow 
delaminations or the presence of deep delaminations. A widely adopted approach is to classify the IE 
data into four distinct classes: good, fair, poor, and serious. The classification results are then 
visualized as a color-coded condition map for easier data interpretation (Gucunski et al., 2008a). 

  

 
𝑓𝑓𝑡𝑡ℎ =

𝛽𝛽𝑣𝑣𝑝𝑝
2𝐻𝐻

 (1) 
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5. DATA SELECTION AND FILTRATION  

The GPR model is data-driven. Thus, careful data preparation is required to ensure quality of the 
input data and, consequently, the model. First, among different main span design systems in the LTBP 
database, including box, truss, and stringer/multi-beam, bridges with stringer/multi-beam systems are 
selected for modeling. This choice is made because stringer/multi-beam bridges are the most common 
type with available IE records. Out of the 38 bridges with IE records, 34 bridges have a stringer/multi-
beam system. Another reason is that they are generally the most stressed and high-maintenance types 
of highway structures (Morcous & Lounis, 2007). Second, bridges with known deck information such 
as thickness data are selected because deck information will be used in both data processing and 
modeling steps. Out of 34 bridges, only 26 meet this requirement and are included in the analysis.  

The selected 26 bridges are then filtered in two steps. First, bridges with null or duplicate IE records 
are removed. Second, bridges with clear evidence of maintenance actions are excluded. The aim of 
the second step is to ensure that the selected bridges represent continuously increasing deterioration 
that was not interrupted by any maintenance actions. However, since the LTBP database does not 
provide bridge maintenance records, an indirect approach is followed to exclude bridges with 
maintenance histories. Specifically, if the time history of the bridge deck condition rating experienced 
a sudden increase of more than two rating conditions in two consecutive inspections, this bridge is 
excluded. The reason is that such an increase will not be due to human visual inspection subjectivity 
but rather a probable major maintenance or reconstruction (Phares et al., 2001). Following the 
filtration process, 23 bridges were retained for further analysis, where their IE records will be 
processed to quantify the deck delamination percentage. Note that the decks of the selected bridges all 
share the same overlay condition (i.e., no deck overlay), which ensures the validity and homogeneity 
of the selected IE records (ASTM, 2022). 
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6. DATA PROCESSING 

In this step, the IE records of filtered bridges are processed to estimate the delamination percentage 
for each bridge deck. IE is usually conducted on bridge decks with a grid point spacing range of 0.60–
0.90 m to map a condition of deck integrity at each point (Gucunski et al., 2008b). At each grid point, 
an IE test is conducted producing an IE signal that is recorded. These recorded signals, referred to as 
the IE record, are then processed to evaluate the extent of delamination. The LTBP database includes 
both the raw signals and condition maps produced by the NDE company showing the processed 
interpretation of deck condition. However, the provided condition maps are imperfect and contain 
numerous artifacts, as will be demonstrated in the Discussion section. Moreover, IE tests were 
conducted by different companies, which may not use the same techniques/thresholds to interpret the 
IE raw signals into condition maps. Therefore, to ensure the consistency of the estimated delamination 
percentage, processing raw IE signals is adopted for this research.   

Raw IE signals are first pre-processed to ensure data consistency and to eliminate noise. This 
preprocessing is achieved by removing the direct current offset by subtracting its mean amplitude 
from the original signal. The signals are then zero-padded to the nearest power of 2 to ensure good 
performance when transformed to the frequency domain using the FFT. Finally, the transformed 
signal is squared and normalized to obtain the normalized spectral amplitude plot. This plot only 
includes the first 60 kHz values to remove higher frequency values, which usually correspond to 
noise. The term “IE power spectrum” will be used in the following description to denote the spectrum 
derived from this preprocessing step.  

The processing of the IE signals can be done using the conventional IE data analysis method, which 
mainly relies on classifying the IE signals based on the peak frequency (i.e., the frequency 
corresponding to the maximum energy) value only. However, this approach may overlook important 
energy distribution in areas representing poor or fair conditions, potentially resulting in a less 
comprehensive assessment. In this study, a more comprehensive method that utilizes both peak 
frequency and frequency distribution proposed by Sengupta et al. (2021) is adopted. This method 
provides a more accurate representation of the signal by capturing the full spectrum of energy 
distribution, thereby offering a deeper insight into the structural condition beyond what peak 
frequency alone can reveal.  

Building on Sengupta et al.’s method, each IE power spectrum signal is classified into one of three 
classes—good, fair, or poor. This classification is achieved in two steps. Step 1: the energy content 
within three non-overlapping frequency bands is clustered into groups representing good, fair, and 
poor conditions. This energy content must be calculated for all IE test signals across the available 
records to ensure a comprehensive analysis. The output of this step is three clusters, each with a 
unique centroid of relative energy content values in the three bands, which are used in the second step. 
Step 2: This step involves estimating deck delamination for a given bridge deck. In this step, each IE 
test signal is classified into one of the three clusters based on its relative energy content values and the 
centroids identified in the previous step. This classification is applied to all IE test signals across the 
deck, assigning each signal a condition label corresponding to one of the three classes: good, fair, or 
poor. Finally, the delamination percentage is calculated as the proportion of IE signals classified as 
poor to the total number of signals, providing a quantitative measure of the deck’s condition. The 
specific procedures for the two steps are discussed in the following section. 

Step 1: Identification of centroids of three classes—good, fair, or poor. The clustering of the IE 
energy content is achieved by first plotting the histogram of the peak frequency for each IE record. A 
Gaussian mixture model (GMM) is then used to fit Gaussian curves to the histogram. The Gaussian 
curve with the largest mixing proportion is selected to represent the thickness resonance frequency 
(𝑓𝑓𝑡𝑡ℎ). Each IE power spectrum is divided into three distinct frequency bands: Band 1, Band 2, and 
Band 3. Band 1 captures low-frequency energy below the thickness resonance and is labeled as 
“poor.” Band 2, representing the thickness resonance frequency dominant in intact decks, is labeled as 
“good.” Band 3, covering frequencies above the thickness resonance, is labeled as “fair.” The 
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thickness resonance frequency bandwidth (i.e., Band 2) is defined from (𝑓𝑓𝑡𝑡ℎ − 𝑛𝑛 ∙ 𝜎𝜎) to (𝑓𝑓𝑡𝑡ℎ + 𝑛𝑛 ∙ 𝜎𝜎), 
where 𝜎𝜎 is the standard deviation of the fitted Gaussian curve, and 𝑛𝑛 is the number of standard 
deviations considered in defining the bands. The bandwidths of Bands 1 and 3 are from 0 to (𝑓𝑓𝑡𝑡ℎ − 𝑛𝑛 ∙
𝜎𝜎) and from (𝑓𝑓𝑡𝑡ℎ + 𝑛𝑛 ∙ 𝜎𝜎) to 60 kHz, respectively. The energy content within each band is calculated, 
and this process is repeated for all available IE records. When completed, the relative energy 
percentage in each band for all signals is fed into a K-means clustering algorithm. Running the 
algorithm with K=3 yields three centroid values for the three different clusters: good, fair, and poor. 
Although it is possible to adopt this workflow for the selected IE records employed in this study, 
centroid values from Sengupta et al. (2021) were used because their study employed a larger dataset, 
including synthetic IE records, to achieve balanced data that accurately represent IE records for decks 
with varying condition ratings.  

Step 2: Assessment of bridge delamination. After the centroids of the three clusters were identified, 
the clusters were used to estimate the delamination percentage for the selected bridge decks, which 
had one to three IE records (from one to three inspections). However, to ensure that the modeling data 
points are independent, only the first available (earliest) IE record for each bridge deck was selected. 
The reason for that is to avoid any potential underreporting of maintenance activities in subsequent 
years. For each IE record, delamination estimation was achieved by fitting a GMM model to the peak 
frequency histogram. Nevertheless, a precise selection process is essential to determine the thickness 
resonance frequency bandwidth, given the limited number of available bridges after the filtration step 
(i.e., 23 bridges). Due to the small dataset, the influence of any outlier or poorly processed IE record 
is magnified, potentially skewing the results significantly. More specifically, multiple dominant 
frequencies may be present in the frequency histogram. In this case, the estimated bandwidth may not 
accurately reflect the thickness frequency, but rather peak frequencies associated with delaminations. 

To avoid the potential pitfalls described above and ensure more accurate selection of thickness 
frequency bandwidth, two checks are followed. First, the estimated bandwidth based on the fitted 
Gaussian curve should overlap with the thickness frequency range calculated by equation (1). This 
calculated range is obtained by using the available deck thickness and assuming a P-wave velocity 
range of 3,500–4,500 m/s and a (𝛽𝛽) factor of 0.96. Second, the lower limit of the estimated bandwidth 
should not be less than 5 kHz since, typically, peaks with frequencies less than 5 kHz are caused by 
the presence of extensive shallow delaminations. Accordingly, if the IE record analysis for one deck 
did not pass these two checks, this IE record is excluded from the modeling dataset. Histogram 
examples of both included and excluded IE records are given in Figure 6.1. Also note that the 
estimated bandwidth used in the checks is chosen as (𝑓𝑓𝑡𝑡ℎ − 𝜎𝜎) to (𝑓𝑓𝑡𝑡ℎ + 𝜎𝜎) where the value of 𝑛𝑛 was 
chosen as 1, similar to Torlapati et al. (2023), and also since this estimated bandwidth better matches 
the calculated bandwidth from equation (1). For bridge records passing the checks, the relative energy 
percentage in each band is calculated. Finally, each signal is then classified using the K-nearest 
neighbor (k-NN) algorithm and Euclidean distance between the test data in terms of the energy 
contents in each band and the centroid of each class. The delamination percentage is quantified by the 
proportion of IE signals categorized as “poor” relative to the total number of signals analyzed. The 
general workflow of the data processing is given in Figure 6.2. Following this workflow yielded 20 IE 
records, which will be subsequently used to develop the GPR model.   
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Figure 6.1 Peak histogram examples: (a) record failing both thickness frequency checks since the 

estimated bandwidth does not overlap with the calculated thickness frequency range and 
the lower limit of the estimated thickness resonance frequency is less than 5k Hz; (b) 
record passing both thickness frequency checks. 
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Figure 6.2 Workflow followed in IE signals processing: determination of centroids of IE signal 
energy clusters—good, fair, or poor (left); quantification of bridge delamination 
percentage (right) 
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7. MODELING AND RESULTS  

7.1 Explanatory Variables Selection 

Bridge deterioration is a complex process that is influenced by many explanatory variables. Different 
studies have investigated the influence of both structural specifications and environmental conditions 
on the deterioration rate of roadway and railway bridges (Ghonima et al., 2020; Srikanth & 
Arockiasamy, 2021). Explanatory variable selection can be based on engineering judgment (Li & Jia, 
2021). Based on previous studies and engineering judgment, the explanatory variables shown in Table 
1 were selected to be the most influential variables affecting bridge deterioration (Liu & Zhang, 2020; 
Nguyen & Dinh, 2019).  

Table 7.1 Selected explanatory variables for delamination modeling 
Explanatory variable Data source  
Structure configuration  
Bridge roadway width - curb to curb NBI- Item 51 
Year built NBI-Item 27 
Skew angle, degrees NBI-Item 34 
Deck thickness  LTBP-design data 
Deck top cover LTBP-design data 
Service conditions  
Bridge age NBI-Item 27 
Average daily traffic (ADT) NBI-Item 29 
Average daily truck traffic (ADTT) NBI-Item 109 
Average number of freeze-thaw cycles LTBP-design data 
Deck protection code NBI-Item 108C 

 
The selected explanatory variables can be divided into two categories. The first category includes 
structure configuration variables. In this category, bridge roadway width can affect bridge 
deterioration since the wider the deck, the more it can accommodate traffic loads. Wider decks also 
have larger exposure areas to environmental effects such as temperature changes and, accordingly, 
they are more prone to deterioration. The year the bridge was built captures the differences in design, 
material quality, and construction practices that occur as engineering practices change over time. 
Considering the deck skew angle, skewed bridges are more prone to non-uniform load distribution, 
differential deflections, and increased shear forces. Thicker decks generally provide better load 
distribution, greater thermal stability, and increased durability, all of which help reduce the risk of 
delamination. Lastly, the deck top cover is the main line of defense that protects the top reinforcement 
layers from penetrating chlorides, which cause reinforcement corrosion.  

The second category of explanatory variables can be referred to as service conditions. In this category, 
bridge age is one of the main influencing variables and is calculated as the difference between the 
year built and the inspection year. Bridge age reflects the degradation of materials over time and the 
length of exposure to other service conditions. Both ADT and ADTT exert a significant impact on 
bridge decks, with higher traffic volumes, particularly trucks, intensifying deck stresses and 
accelerating wear, thereby increasing delamination potential. For some bridges, the time history of 
ADT and ADTT has dramatically changed over time. While cumulative ADT and ADTT values can 
capture these changes, because of missing records from earlier years these values are averaged over 
the available time history for each bridge. The annual number of freeze-thaw cycle days can 
accelerate the delamination process, especially in colder regions. During freeze-thaw cycles, water 
penetrates concrete, freezes, and expands causing delamination. Besides, in such regions it is common 
to use deicing salts, which cause corrosion of reinforcement and eventually delamination. Since the 
number of freeze-thaw cycle days varies from year to year, the average annual number was calculated, 
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following the same approach used for ADT and ADTT. Finally, the deck protection code specifies 
whether the reinforcement bars are epoxy coated or not. Uncoated bars are more likely to corrode, 
leading to more delamination.  

7.2 Gaussian Process Regression Model 

GPR is a flexible non-parametric and data-driven Bayesian approach to regression that maps the input 
variables to provide a stochastic distribution over functions of the objective output. Prior knowledge is 
first assumed by specifying the covariance (kernel) function, and posterior over functions are then 
evaluated given the observed data. GPR is selected to model bridge deterioration for two main 
reasons. First, GPR can work on small datasets while capturing complex deterioration patterns due to 
the strong assumptions of the Gaussian process. Second, GPR provides an uncertainty measurement 
on the predictions without any additional computational cost. Such advantages can help indicate 
bridges with high prediction uncertainty within the dataset and better inform maintenance decisions.  

The gaussian process (GP) is a stochastic process in which every finite subset of those random 
variables has a multivariate Gaussian distribution. It generalizes the concept of the Gaussian 
distribution over random variables to continuous functions. The GP is completely defined by its mean 
𝑚𝑚(𝐱𝐱) and covariance function k(𝐱𝐱, 𝐱𝐱′) (Rasmussen & Williams, 2005) and expressed as: 

The mean function 𝑚𝑚(𝐱𝐱) represents the expected value of the function 𝑓𝑓(𝐱𝐱) at the input point 𝐱𝐱 which 
allows for a greater flexibility in defining prior functions, enhancing the modeling process. The 
covariance function k(𝐱𝐱, 𝐱𝐱′) determines the covariance (or correlation) between any two points in the 
input space 𝐱𝐱 and 𝐱𝐱’. It captures the similarity between input points. The training dataset is expressed 
as 𝐷𝐷 = {(𝐱𝐱𝑖𝑖,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , where 𝐱𝐱 denotes the explanatory variables vector and 𝑦𝑦 denotes the delamination 
percentage. In GP, it is assumed that: 

 𝑦𝑦 = 𝑓𝑓(𝐱𝐱) + 𝜖𝜖 (3) 

 
 

 

where 𝑓𝑓(𝐱𝐱) is the true function value and 𝜖𝜖 represents an additive noise that follows independent 
identically distributed Gaussian with zero mean and variance 𝜎𝜎𝑛𝑛2, 𝜖𝜖~𝑁𝑁(0,𝜎𝜎𝑛𝑛2). 

The GPR process involves the identification of several key parameters, including the mean function, 
covariance function and its associated hyperparameters, alongside the noise variance. The mean 
function is usually assumed to be zero for computational simplicity. Several covariance functions 
have been studied in the literature based on the nature of the problem. However, one common choice 
is the squared exponential covariance function expressed as:  

where 𝜎𝜎2 and 𝑙𝑙 are free hyperparameters that correspond to signal variance and length scale, 
respectively. Different covariance functions have different hyperparameters, which can be estimated 
by maximizing the likelihood function. In the case of a multivariate regression problem, a kernel 
function with a different length scale for each variable can be used to capture the relative influence 
between the different variables. In this report, a MATLAB software code was developed to construct 
the GPR model.  

 𝑓𝑓(𝑥𝑥)~𝐺𝐺𝐺𝐺(𝑚𝑚(𝐱𝐱),𝑘𝑘(𝐱𝐱, 𝐱𝐱′)) (2) 

 
𝑘𝑘(𝐱𝐱, 𝐱𝐱′) = 𝜎𝜎2𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2�

𝐱𝐱 − 𝐱𝐱′

𝑙𝑙 �
2

� (4) 
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7.3 GPR Hyperparameters Optimization 

Hyperparameter optimization is a crucial step that involves tuning the parameters of the Gaussian 
process model to achieve the best possible performance in terms of predictive accuracy as well as 
generalization capability. The GPR process typically begins by selecting an expected mean function 
(often assumed to be zero for simplicity) and a covariance function, which describes the relationship 
between the explanatory variables and delamination. The hyperparameters in GPR include the 
covariance function hyperparameters: amplitude standard deviation 𝜎𝜎) and length scale (𝑙𝑙) as well as 
noise standard deviation (𝜎𝜎𝑛𝑛). Generally, if enough IE records are available, they can be used to infer 
information about the expected mean delamination percentage and covariance function. In this case, 
the different hyperparameters can be optimized by maximizing the likelihood function. However, 
given the limited data in this study (only 20 data points) and the mix of numeric and categorical 
explanatory variables, selecting appropriate mean and covariance functions becomes less 
straightforward. Accordingly, a more robust technique, Bayesian optimization, is employed (Snoek et 
al., 2012). The Bayesian optimization approach extends the optimization problem to include different 
possible combinations of the mean and kernel functions. Unlike other optimization algorithms, 
Bayesian optimization improves the search speed by using past evaluations. This is achieved by 
calculating a posterior distribution of the objective function based on the likelihood of the data 
observed so far and an initial assumption about the prior of the function. 

The developed GPR model implemented Bayesian optimization using the MATLAB built-in Bayesian 
optimization algorithm: “fitrgp.” The process starts by building a GP proxy model of the objective 
loss function, which needs to be minimized. The acquisition function then selects the next set of 
hyperparameters to evaluate by balancing exploration of the search space and exploitation of known 
areas with promising results. The “expected-improvement-per-second-plus” acquisition function is 
selected to optimize hyperparameter tuning by evaluating the expected improvement, which measures 
the expected amount of improvement in the objective function over the current best value. The per-
second aspect considers evaluation time and penalizes hyperparameter values that are expected to take 
a very long time to train. The plus component adjusts the function to prevent overexploitation of local 
minima by increasing the variance, encouraging exploration of new areas. By iteratively updating the 
probabilistic GP model and selecting new hyperparameter values, Bayesian optimization 
progressively converges toward the optimal solution with minimal objective function evaluations, 
leading to more efficient hyperparameter optimization. 

To ensure the reliability of the GPR model and prevent overfitting given the small dataset, cross-
validation was employed in the hyperparameter optimization process. With only 20 data points and 10 
explanatory variables, the GPR model was trained on 18 data points and tested on two. Bayesian 
optimization minimized the nine-fold cross-validation loss in nine runs. For each run, 16 points are 
used for training and two points are left out for validation. Specifically, the objective loss function is 
expressed as 𝑙𝑙𝑙𝑙𝑙𝑙(1 +  𝑀𝑀𝑀𝑀𝐸𝐸𝐶𝐶𝐶𝐶), where 𝑀𝑀𝑀𝑀𝐸𝐸𝐶𝐶𝐶𝐶 represents the overall cross-validation loss calculated 
by averaging the mean squared error (MSE) of the two validation points in each run, and then 
averaging this value across all nine runs. The MATLAB built-in Bayesian optimization algorithm 
searches for the optimal mean function from four candidates: “constant,” “none,” “linear,” and 
“pureQuadratic.” Additionally, it identifies the best kernel function and its corresponding 
hyperparameters from a set of 10 options: “ardexponential,” “ardmatern32,” “ardmatern52,” 
“ardrationalquadratic,” “ardsquaredexponential,” “exponential,” “matern32,” “matern52,” 
“rationalquadratic,” and “squaredexponential,” The algorithm further optimizes the noise variance and 
determines if data standardization is necessary.  
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7.4 Results 

The results of the hyperparameter optimization for the GPR model are first discussed to highlight the 
effectiveness of Bayesian optimization in improving predictive accuracy of the GRP model. The runs 
of objective function evaluations in the hyperparameter optimization were increased from the default 
value of 30 to 60 to ensure convergence to an optimized solution (Figure 7.1). The final results of 
hyperparameter optimization are as follows: standardized data, a noise variance of 7.58%, a zero-
mean function, an amplitude standard deviation of 33.75%, and an ARD-squared exponential kernel. 
These parameters together optimized the model’s performance. The ARD-squared exponential is a 
variant of the squared exponential kernel, where ARD stands for automatic relevance determination 
(Neal, 1996), allowing each variable to have a unique length scale. The selection of the squared 
exponential kernel is particularly appropriate here as it implies that bridges with similar characteristics 
will exhibit similar delamination patterns, reflecting the smooth and continuous nature of the 
underlying physical process. 

The final optimized GPR model demonstrated strong predictive performance, as demonstrated by the 
cross-validation results in Figure 7.2(a). In this figure, the predicted delamination percentages 
generally align well with the actual delamination percentages across most runs, indicating that the 
model’s hyperparameters have been effectively optimized despite the limited data (16 data points for 
training per run). In runs such as 3 and 4, the predictions closely match the actual values, 
demonstrating the model’s accuracy. However, discrepancies are evident in run 7, where the predicted 
values are noticeably higher than the actual, suggesting the model struggles with cases that differ 
significantly from the training data. Across all nine runs, the model achieved an average RMSE of 
11.45%, with six of those runs having an RMSE below 10%, as shown in Figure 7.2(b). The predicted 
standard deviations [Figure 7.2(a)] remain small in most runs, indicating a fair level of confidence, 
though slight increases in uncertainty are observed in runs 7 and 8. This increased uncertainty is due 
to the larger differences of explanatory variables between the validation data and training data within 
these two runs. Finally, the optimized hyperparameters were used to train the model on the full dataset 
(18 data points). The model was then tested on two previously unseen data points, which were not part 
of the training or cross-validation process. The model achieved an average RMSE of 10.70% for these 
two points, with prediction standard deviations of 10.34% and 11.46%, as shown in Figure 7.3. The 
results demonstrate the model’s robustness and its ability to generalize to new data while maintaining 
reasonable accuracy. 

One approach to show the relative importance of the selected explanatory variables is to plot the log 
of length scale for each variable, as shown in Figure 7.4. In this case, variables with smaller length 
scales have a greater influence on the delamination percentage, as the model responds more 
sensitively to changes in these variables. Figure 7.4 highlights that the number of freeze-thaw cycles 
is the most significant factor affecting bridge deck delamination. This finding is consistent with the 
ACI Committee 116 report, which identifies freeze-thaw cycles as a primary cause of delamination 
(ACI Committee 116R-00, 2003). Deck thickness also has a notable impact, as thicker decks 
generally provide better resistance to environmental stresses. Skew angle, while less critical, still 
contributes to vulnerability, as larger angles can lead to stress concentrations and cracking. A survey 
conducted among New York State DOT regional bridge maintenance engineers indicated that 96% 
(22 out of 23) of the participants viewed skewed bridges to have higher maintenance needs (Diaz 
Arancibia et al., 2020). Deck protection code and top cover show comparable influences, as both play 
a role in reducing the exposure of reinforcing steel to corrosive elements, thus mitigating corrosion 
and reducing the risk of delamination (Cady & Weyers, 1984; Pincheira et al., 2015). Traffic-related 
variables, such as ADTT and ADT, moderately affect delamination, as increased traffic volumes 
accelerate deterioration. In contrast, both the age of the bridge and the year it was built appear to have 
minimal impact, with bridge roadway width identified as the least important variable in determining 
delamination. 
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Figure 7.1 Evolution of objective function with the number of evaluations 

 

 
Figure 7.2 GPR predictions cross-validation results: (a) cross-validation predictions, and (b) cross-

validation RMSE results 
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Figure 7.3 GPR prediction results for testing data 

 

 

Figure 7.4 Relative importance of variables expressed by the log of length scale 
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8. DISCUSSION 

This report demonstrates the application of GPR to bridge NDE data for developing quantitative 
predictions of deterioration. An important implication of this modeling approach is its potential use in 
strategically allocating NDE inspections to enhance model predictions, particularly through 
uncertainty prediction. However, the analysis and model development were not fully optimized due to 
several data limitations of NDE data available in the LTBP database. The effectiveness of leveraging 
NDE data provided in the LTBP database can be significantly improved by addressing these 
limitations and incorporating additional crucial non-NDE data that are currently missing. By filling 
these gaps, the overall quality of the dataset would be enhanced, leading to better predictive accuracy 
and more reliable bridge condition assessments, ultimately improving decision-making in bridge 
management. 

The developed GPR model offers two key advantages in predicting deck delamination, particularly 
for bridges without IE records. First, it enables accurate delamination predictions for bridges with 
characteristics similar to those used in training, providing actionable insights without the need for 
immediate testing. Second, the model optimizes the selection of bridges for NDE testing by 
identifying those with high prediction uncertainty. By incorporating uncertainty estimation for each 
prediction, the GPR model prioritizes bridges with the highest uncertainty for testing, ensuring that 
resources are allocated efficiently. This approach not only improves the accuracy of future predictions 
by focusing on bridges with the greatest uncertainty, but it also enhances overall bridge management 
by targeting the most uncertain structures for inspection, ensuring resources are deployed where they 
are most needed. 

To visually illustrate the two main advantages of the GPR model, a schematic diagram of a GPR 
model has been developed to represent the relationship between the explanatory variables vector and 
the predicted delamination percentage. In Figure 8.1(a), the testing points have characteristics similar 
to those of the training data, resulting in low prediction uncertainty. In this case, the predicted 
delamination values can be confidently used to guide maintenance decisions, demonstrating the 
model’s first advantage. In Figure 8.1(b), the three testing points, shown with varying levels of 
uncertainty, differ significantly from the training data. This leads to higher uncertainty in predictions, 
especially for Bridges 1 and 2, which show the largest uncertainty. In this case, considering available 
financial resources, Bridges 1 and 2 should be prioritized for NDE scheduling to refine future 
predictions and optimize resource allocation. 
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Figure 8.1 Main advantages of the GPR model: (a) predicting delamination percentage for bridges 

similar to those in the training data; (b) identifying bridges with high uncertainty for 
prioritized IE testing and scheduling. 

This approach of employing GPR for future IE test scheduling can be employed for any NDE output. 
Accordingly, this can be utilized to establish an NDE inspection planning framework. In this 
framework, inventory bridges are evaluated using the existing GPR model to quantify prediction 
uncertainty for each bridge. Bridges with high prediction uncertainty, along with available resources 
and funds, are prioritized for the upcoming NDE tests. After the NDE tests are conducted, the 
deterioration estimates are used to update the NDE records database. This updated database is then 
used to fit a new GPR model, with model parameters optimized via Bayesian optimization. This 
iterative process continues until a sufficient number of NDE records is available, at which point the 
model will deliver strong predictive performance with acceptable uncertainty. This proposed 
framework is shown in Figure 8.2.  
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Figure 8.2 Proposed NDE inspection planning framework 

Although the developed GPR model has delivered promising results, its predictive accuracy can be 
further improved by addressing key limitations in the NDE data available in the LTBP database. A 
more comprehensive and complete dataset would strengthen the model’s ability to generalize across 
diverse bridge conditions. A thorough investigation of the NDE data provided in the LTBP database 
has revealed several critical limitations that, if addressed, could significantly enhance the model’s 
predictive capabilities and overall performance. These limitations include: 

• A very limited number of bridges with NDE records (38 bridges) exist on the LTBP when 
compared with the number of bridges in the inventory (620,700 bridges). 

• Previously detected delaminated areas were sometimes not identified in subsequent 
inspections, likely due to variations in test operators and differences in scanned area 
dimensions across different years. 

• There was no standardized format for presenting the NDE results. Some NDE maps were 
displayed in colored condition maps to represent poor to sound conditions, while others 
showed the actual return frequency magnitude values. 

• Deck information, including concrete specifications, thickness, and reinforcement details, is 
crucial for interpreting NDE data, yet only 26 bridges have these data available. 

• For some bridges, deck specifications such as skew angle, do not match between the NBI data 
and the LTBP design data. 

• For NDE condition maps, some have missing areas due to errors and terminations in the 
automated scanning process, as shown in Figure 8.3. 

• For some bridges, particularly those with automated scans, irregularities in test point locations 
were evident, including missing and overlapping areas, as shown in Figure 8.4. 

• Finally, the available NDE data are geographically restricted to the eastern U.S., resulting in a 
dataset that lacks diversity in environmental conditions. 
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Figure 8.3 Example of NDE condition map with missing scans: (a) actual bridge image from Google 

Maps; (b) ER map from LTBP showing missing scan areas caused by automated scan self-
termination (LTBP). 

 

Figure 8.4 Example of deck IE test: (a) processed IE condition map; (b) corresponding IE test 
locations with missing and overlapping scan areas (LTBP). 
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The aforementioned limitations can be effectively addressed by implementing the following actions: 

• Increase the number of bridges with NDE data provided. 
• Standardize aspects of the NDE data collection, data processing, and reporting process to allow 

data from different inspection companies to be used collectively with ease. 
• Include detailed information about the NDE test equipment, such as technical specifications, 

calibration status, and environmental conditions (e.g., temperature, humidity, wind speed). 
• Document any interruptions or terminations during automated scans, specifying the underlying 

causes (e.g., equipment malfunction, positioning errors, or environmental factors), the affected 
scan areas, and whether these sections were omitted or re-scanned, potentially resulting in 
overlapping data. Include a description of the corrective actions taken to ensure transparency, 
consistency, and completeness of the dataset. 

• Conduct a quality check on all NDE records to ensure consistency in scanned areas and to 
identify any overlapping or missing scans. 

Finally, several critical gaps related to other non-NDE data in the LTBP bridge database have been 
identified, and addressing these gaps would significantly enhance the filtration and deterioration 
modeling processes. Specifically, while maintenance data are included in the LTBP Program 
protocols, they are notably absent from the database. These data are vital for accurately tracking and 
understanding bridge deterioration, particularly since each state DOT follows distinct maintenance 
and rehabilitation policies. Additionally, the application of deicing and anti-freezing chemicals, 
though cost-effective, contributes to bridge deck degradation and reinforcement corrosion. Collecting 
detailed data on their use could yield valuable insights into their long-term effects and cost-
effectiveness. Furthermore, construction practices and design data—such as soil compaction 
techniques, concrete placement, curing methods, welding, and fastening—are essential for 
determining bridge service life. However, design data are available for only a limited number of 
bridges, with just 1,580 out of 620,669 bridges having design data, and only 26 bridges having both 
NDE and design data. Addressing these data gaps is crucial for improving the accuracy and reliability 
of bridge deterioration models. 
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9. CONCLUSIONS  

This report introduces a novel concept for leveraging limited NDE data, which is often underutilized. 
Currently, NDE data are only used to evaluate the condition for a specific bridge being tested. The 
proposed GPR model offers a new way to collectively use the data across different bridges to provide 
two valuable advantages. First, it enables accurate delamination predictions for untested bridge decks 
with characteristics similar to the training data, offering actionable insights without the need for 
immediate testing. Second, it optimizes NDE testing by prioritizing bridges with high prediction 
uncertainty, ensuring that resources are allocated efficiently. This approach not only improves the 
accuracy of future predictions by focusing on bridges with the greatest uncertainty, but it also 
enhances overall bridge management by targeting the most uncertain structures for inspection, 
ensuring resources are deployed where they are most needed. 

This concept was demonstrated using existing IE test records from the LTBP database to predict 
future delamination percentages, accompanied by associated uncertainty measures. When tested on 
bridges with similar environmental conditions and characteristics, the model achieved an average 
RMSE of 11.45% for cross-validation data and 10.70% for testing data. Analysis of the model 
revealed that the number of freeze-thaw cycles is the most critical factor influencing bridge deck 
delamination, followed by deck thickness. Finally, this report identifies the current limitations in the 
NDE data available in the LTBP database and suggests actions to address them, leading to 
improvements in future data collection. Additionally, several critical gaps related to non-NDE data 
have been identified to enhance the deterioration modeling processes. Further exploration of this 
approach is recommended to enhance the accuracy and reliability of bridge deterioration predictions 
once more data become available. 
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