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ABSTRACT 

The rapid increase in traffic volume and heavy vehicle loads is causing accelerated deterioration of 
pavement infrastructure worldwide. This research investigates the impact of overweight and dynamic axle 
loads on pavement performance, employing advanced weigh-in-motion (WIM) systems and machine 
learning models to enhance predictive accuracy. By integrating data from WIM systems with support 
vector regression (SVR) and random survival forest models, this study provides a comprehensive analysis 
of pavement deterioration trends, accounting for high-dimensional variables such as axle load spectra and 
environmental conditions. The findings reveal that overweight vehicles significantly reduce pavement 
life, particularly affecting fatigue cracking, rutting, and longitudinal cracking. The application of random 
survival forest models demonstrates superior predictive performance compared to traditional methods, 
enabling the development of survival probability curves that inform maintenance strategies. Furthermore, 
hybrid systems combining in-pavement sensors with roadside cameras and artificial neural networks offer 
promising solutions for correcting dynamic variables and improving measurement accuracy. This research 
provides a robust framework for assessing the impacts of traffic loads on pavement performance, offering 
practical solutions for enhancing infrastructure resilience and sustainability. The insights gained 
contribute to the optimization of pavement design, maintenance, and rehabilitation strategies, ensuring the 
longevity and safety of roadways in the face of increasing transportation demands. 
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EXECUTIVE SUMMARY 

The global demand for efficient transportation infrastructure has escalated significantly over the past 
decades, driven by increased urbanization, economic growth, and globalization. This rise in demand has 
led to higher traffic volumes and heavier loads on roadways, resulting in accelerated deterioration of 
pavement structures. The presence of overweight vehicles, while economically beneficial for transport 
efficiency, poses significant challenges to pavement integrity. These vehicles induce various forms of 
distress, including fatigue cracking, rutting, and surface roughness, which ultimately reduce the lifespan 
of pavements and increase maintenance costs. Moreover, dynamic axle loads, exacerbated by pavement 
surface irregularities, contribute to fluctuating stress and strain levels within the pavement structure, 
further complicating the assessment of pavement performance. 

Traditional pavement design and evaluation methods often fall short in accurately assessing these impacts 
due to the complex interplay of traffic loading, environmental factors, and pavement materials. These 
conventional methods may overlook the high-dimensional data and complex variable interactions that 
significantly affect pavement deterioration. This gap necessitates the exploration of more advanced 
methodologies that can provide a comprehensive understanding of pavement behavior under real-world 
conditions. 

This research was conducted to address these challenges by leveraging weigh-in-motion (WIM) systems 
and advanced analytical techniques to assess and manage the impacts of traffic loads on pavement 
performance. This body of work integrates machine learning models and mechanistic-empirical 
approaches with WIM data to enhance the accuracy and reliability of pavement performance predictions. 
WIM systems offer significant advantages over traditional static weigh stations by providing real-time 
data on vehicle weights, axle configurations, and traffic patterns. These systems enable continuous 
monitoring of freight traffic, essential for enforcing weight regulations and optimizing pavement 
maintenance strategies. 

Despite their benefits, WIM systems face challenges in maintaining measurement accuracy due to factors 
such as temperature fluctuations, pavement surface conditions, and vehicle dynamics. For instance, 
changes in pavement temperature can affect the stress-strain state of pavement layers, impacting sensor 
signals. Additionally, vehicle wandering and uneven road surfaces introduce potential errors in weight 
assessments. This research addresses these challenges by integrating advanced technologies with WIM 
systems to improve predictive accuracy and reliability. 

The integration of machine learning techniques, such as support vector regression (SVR) and random 
survival forest models, plays a crucial role in this research. These models incorporate detailed axle load 
spectra, traffic loading, and environmental conditions to provide a more comprehensive framework for 
understanding pavement degradation trends. The findings indicate that the inclusion of detailed axle load 
data in performance models is essential for accurately assessing the impact of traffic loading on pavement 
life. By employing these advanced models, the research demonstrates that predictive accuracy 
significantly improves compared to traditional regression methods. 

One of the critical findings of this research is the substantial reduction in pavement life caused by 
overweight traffic. The research quantifies the reduction ratios for different types of pavement distress 
and designs, emphasizing the need for precise predictive models in pavement management. The 
application of random survival forest models has proven effective in quantifying the impact of overweight 
traffic on pavement life, offering superior predictive accuracy compared to conventional methods. By 
utilizing datasets from the Long-Term Pavement Performance (LTPP) program, researchers have 



v 

 

 

developed survival probability curves that illustrate the influence of different traffic loading scenarios on 
pavement service life. These models enable transportation agencies to make informed decisions regarding 
pavement maintenance and rehabilitation strategies, ultimately contributing to more sustainable and cost-
effective infrastructure management. 

Moreover, this research explores the potential of hybrid systems that combine in-pavement sensors with 
roadside cameras and artificial neural networks to correct for dynamic variables and environmental 
influences. These approaches leverage machine learning and data analytics to refine pavement 
temperature predictions and assess dynamic axle loads, providing more reliable insights into pavement 
performance under real-world conditions. 

In conclusion, this research represents a significant advancement in the field of pavement engineering by 
integrating advanced technologies with WIM systems to address the limitations of traditional methods. 
The insights gained from these studies provide a robust framework for assessing and managing the 
impacts of traffic loads on pavement performance. As a result, this research offers practical solutions for 
developing resilient transportation infrastructure capable of withstanding the demands of modern freight 
transportation. By addressing the current limitations of WIM systems and harnessing advanced analytics, 
this body of work contributes to the development of sustainable and efficient roadways, ensuring the 
longevity and safety of transportation networks for future generations. 
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1. INTRODUCTION 

In 2021, the United States had approximately 282 million registered vehicles, with around 166 million 
being private and commercial trucks  [1]. The growing demand for efficient transportation networks has 
led to increased traffic volumes and heavier loads on roadways, resulting in accelerated deterioration of 
pavement infrastructure. Understanding the impact of these loads on pavement performance is crucial for 
developing effective maintenance strategies and ensuring the longevity of roadway systems. However, 
traditional pavement design and evaluation methods often fail to account for the complex interactions 
between traffic loading, environmental conditions, and pavement materials. This oversight can lead to 
inaccurate predictions of pavement life and performance, ultimately resulting in higher maintenance costs 
and reduced serviceability. 

The efficient road maintenance is vital for ensuring safe, sustainable, and economically viable 
transportation infrastructure, minimizing repair costs, enhancing road safety, and facilitating reliable 
traffic flow. Road maintenance is significantly influenced by factors such as vehicle traffic volume, 
diverse vehicle types, and varying weights, all contributing to the degradation of road infrastructure. The 
field of urban traffic data collection offers various methods, including data from swiping transit cards, 
online ride-hailing services, and bikesharing usage [2], [3], [4] . For highway traffic, the primary traffic 
data collection methods encompass the automatic traffic recorder and weigh station systems; however, the 
automatic traffic recorder can only provide vehicle counts, while weigh station systems collect detailed 
data on vehicles speed, axle load, gross vehicle weight, and classification. 

The weigh station systems mainly include the static weigh stations and weigh-in-motion (WIM) stations. 
Static weigh stations offer high accuracy but have drawbacks as they influence traffic and may pose 
safety concerns. These stations are often situated next to highways, requiring vehicles to come to a 
complete stop or driving at a very low speed for weight measurement, resulting in significant time delays 
[5]. This becomes especially problematic when the volume of vehicles is high, and the capacity of static 
weigh station is insufficient to survey all passing heavy commercial vehicles.  

In contrast, WIM stations offer benefits by providing real-time vehicle weight without disrupting them. In 
the field of traffic management, WIM systems contribute to optimizing traffic flow, reducing congestion, 
and supporting informed decision-making for road improvements. WIM technology also aids in safety 
enforcement and environmental protection. It helps monitor weight limits, ensures compliance with 
regulations, and guards against the detrimental effects of overloaded vehicles, enhancing road safety 
while reducing maintenance costs and environmental impact. They provide crucial data for pavement 
design, helping engineers create roads capable of withstanding the heavy loads of modern vehicles [6]. 
Additionally, the integration of machine learning techniques and mechanistic-empirical approaches has 
opened new avenues for analyzing the effects of traffic loads on pavement performance. These 
methodologies enhance predictive accuracy by incorporating high-dimensional data and complex variable 
interactions, which are often overlooked in traditional regression-based models. 

A critical area of research within this domain is understanding the impact of overweight and dynamic axle 
loads on pavement service life. Given the increasing prevalence of heavy vehicles in freight 
transportation, these loads pose significant challenges to pavement integrity. The stresses induced by 
overweight trucks can lead to various forms of pavement distress, including fatigue cracking, rutting, and 
surface roughness, thereby shortening pavement life and increasing maintenance needs. Moreover, 
dynamic loads, exacerbated by pavement unevenness, contribute to fluctuating stress and strain levels 
within the pavement structure, further complicating the assessment of pavement performance. 



2 

 

Addressing these challenges requires a multidisciplinary approach that combines insights from civil 
engineering, data science, and materials science. By leveraging advanced analytical tools and 
comprehensive datasets, researchers can develop robust models that account for the myriad factors 
influencing pavement performance. This research not only advances the theoretical understanding of 
pavement mechanics but also provides practical solutions for infrastructure management, ultimately 
contributing to more sustainable and cost-effective transportation systems. 

In this context, WIM systems have emerged as a vital tool for understanding the impact of traffic loads on 
pavement performance. These systems provide real-time data on vehicle weights, axle loads, and traffic 
patterns, which are essential for monitoring weight regulations and managing pavement life. WIM 
systems offer dynamic solutions by capturing vehicle data as they travel at highway speeds, allowing 
continuous monitoring and accurate enforcement of weight limits. This capability is crucial for 
identifying overweight vehicles that disproportionately contribute to pavement damage and deterioration. 

Despite their benefits, WIM systems face challenges in maintaining measurement accuracy due to various 
factors such as temperature fluctuations, pavement surface conditions, and vehicle dynamics. For 
instance, changes in pavement temperature can alter the stress-strain state of pavement layers, impacting 
sensor signals. Vehicle wandering and uneven road surfaces introduce potential errors in weight 
assessments, underscoring the need for further research and technological advancements. 

To overcome these limitations, recent studies have focused on integrating advanced technologies with 
WIM systems to enhance accuracy. Hybrid sensor systems that combine in-pavement sensors with 
roadside cameras and artificial neural networks offer promising solutions to correct for dynamic variables 
and environmental influences. These approaches leverage machine learning and data analytics to refine 
pavement temperature predictions and assess dynamic axle loads, providing more reliable insights into 
pavement performance under real-world conditions. 

Notably, machine learning models for pavement temperature prediction have shown significant potential 
in improving WIM system accuracy. By utilizing comprehensive weather data and empirical modeling 
techniques, researchers have developed sophisticated models that account for temperature variations at 
different pavement depths. These advancements enhance the reliability of WIM data, equipping 
transportation agencies with valuable tools for infrastructure management and decision-making. 

As the demand for efficient and sustainable transportation systems grows, the need for accurate and 
reliable traffic data becomes increasingly critical. By addressing the current limitations of WIM systems 
and harnessing advanced analytics, this body of research contributes to the development of resilient 
infrastructure capable of withstanding the demands of modern transportation. The insights gained from 
these studies inform the future of pavement design, maintenance, and traffic management, ensuring safe 
and efficient roadways for generations to come. 

1.1 Impact of Traffic Loading on Pavement Damage 

A literature review describes the quantification of pavement damage subjected to axle load spectrum of 
traffic loading recorded in WIM data. The review also highlighted the impacts of overweight traffic and 
longitudinal unevenness on pavement deterioration. Nonetheless, a review of the literature reveals the gap 
and scope for the predictive model of pavement damage considering various potential factors.  
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1.1.1 Statisical and Machine Learning Models 

Past studies mainly used field data to quantify pavement damage due to vehicular loading using 
regression models. Li, and Sinha  [7] developed load and non-load factor functions using the relative 
change in international roughness index (IRI) considering cumulative traffic loading, regional and 
climatic features, subgrade materials, design and construction standards, and pavement ages from Indiana 
pavement management system. Ong et al. [8] correlated pavement distresses, such as IRI, rut, and 
pavement condition rating, with average annual daily truck traffic and environmental factors on different 
highways. Gungor et al. [9] established the relationship between the change of condition rating survey 
with pavement age, daily traffic, and environmental factors to predict pavement deterioration under 
various loading conditions. Wu et al. [10] investigated the influence of overweight traffic on pavement 
service life considering climatic effects, truck origin and destination, permitted routes, and frequency of 
the routes. 

Because of the complexity of the problem, the relationship between pavement performance and influential 
variables may not be apparent in traditional regression models. Advanced machine learning methods 
became commonly used to analyze the pavement performance data in pavement management system. 
Schlotjes et al. [11] used SVM method to predict the probability of structural failure of pavements and 
found that shear failure was more impacted by the combination of traffic, pavement composition, and 
material strength. Ziari et al. [12] analyzed the capability of SVM for predicting pavement condition by 
comparing five kernel types of SVM algorithm. The IRI was considered as the pavement performance 
index, and nine variables were selected in the proposed model. Gong et al. [13] predicted international 
roughness index (IRI) of flexible pavements based on the measured distress, climate, traffic, maintenance, 
and structural data using random forest regression. The results indicated that the random forest regression 
model significantly outperformed the linear regression model.  

Fathi et al. [14] developed a hybrid machine learning method by combining random forest and artificial 
neural network (ANN) to predict alligator cracking index (ACI) based on the measured quality control 
parameters and analyzed influence of independent variables on ACI. Marcelino et al. [15] proposed a 
systematic approach to develop machine learning models for prediction of pavement performance. 
Various machine learning methods were supported, and the generalization performance was emphasized. 
Inkoom et al. [16] predicted highway pavement condition based on previous pavement condition ratings 
and selected time variant and invariant covariates using different machine learning methods. It was 
indicated that these machine learning methodologies were promising in predicting the crack of pavement 
with the coefficient of determination of 0.6-0.9. Inkoom et al. [17] investigated the use of recursive 
partitioning and ANN to predict crack rating of pavements and found that the recursive partitioning and 
ANN were efficient approaches to predict crack condition and their accuracy were close. Although these 
previous studies used machine learning methods for pavement performance analysis under multiple 
influential factors, few research investigated the effect of traffic loading on pavement deterioration using 
machine learning approach. 

1.1.2 Pavement Damage Due to Overweight Traffic 

It is well accepted that overweight trucks would accelerate pavement deterioration based on mechanistic-
empirical (M-E) pavement analysis [18], [19], [20]. Field measurements of pavement distresses and 
traffic loads provide an opportunity to use statistical models to analyze the effects of overweight vehicles 
on pavement deterioration. Traditionally, multiple-variable linear or nonlinear regression models have 
been widely used to develop pavement distress index and identify the pavement damage induced by 
heavy truck traffic [21], [22].  
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Rys et al. [23] investigated asphalt pavement fatigue life caused by mixed traffic based on the axle load 
distribution and percentage of overweight vehicles. The analysis results indicated that the increase of 
percentage of overweight vehicles from zero to 20% would cause up to 50% reduction of fatigue life of 
asphalt pavement. Wang, and Zhao [24] estimated load equivalency factors of axle load on for fatigue 
cracking and rutting and quantified the reduction of pavement life caused by overweight traffic on thin 
and thick asphalt pavements. Batioja-Alvarez et al. [25] predicted rutting and fatigue cracking damage 
due to overweight vehicle considering the impact of vehicle loading, pavement temperature, and vehicle-
miles traveled on pavement performance using mechanistic-empirical approach. It was found that the 
distribution of load equivalency factor could be incorporated in pavement design to consider the influence 
of overweight vehicles. Titi et al. [26] evaluated the impacts of overweight truck traffic on performance of 
four flexible pavements in Wisconsin and found that the proportion of pavement damage due to 
overweight trucks increased most of pavement distresses by 0.5% to 4%. 

1.1.3 Pavement Damage Due to Vehicular Dynamic Loading 

Pavement distress is an accumulated result of mechanistic responses in pavement structure subjected to 
dynamic loads of moving vehicles and climatic conditions. Pavement surface evenness deteriorates as 
pavement distress propagates. The variance of dynamic loads on rougher pavement surface condition 
leads to even faster pavement deterioration. It is vital to consider the vehicle-pavement interaction to 
estimate pavement distress in pavement design. Mechanical-empirical (M-E) method is applied to design 
pavement structures, which was developed under National Cooperative Research Program Projects 1-37A 
[27]. In Mechanical-Empirical Pavement Design Guide (MEPDG), the principles of engineering 
mechanics are applied to calculate pavement response under traffic loading. The empirical transfer 
functions are then used to predict long-term pavement performance through local calibrations. The axle 
load spectra obtained from WIM is utilized as traffic inputs in MEPDG. The WIM system captures gross 
vehicle weights, individual axle loads, and axle spacing when trucks are passing over the station. In 
general, the raw data collected by the WIM system need to be calibrated by comparing the field 
measurements of static scales to guarantee the required accuracy [28]. Therefore, WIM data indicates the 
static axle load spectra, which may not reflect the variation of dynamic loads on real pavements due to 
surface roughness.  

Previous studies have evaluated the impact of dynamic loads on flexible pavement deterioration and 
service life. Navarrina et al. found that the service life of asphalt pavement was shorten by 40% after 
taking dynamic loads into consideration [29]. Bilodeau, Gagnon and Dore concluded that the pavement 
life could be reduced by 29% due to fatigue cracking and by 20% due to rutting after considering dynamic 
loads [30]. Gillespie et al. introduced the distribution of dynamic loads under a wheel with a mean value 
equal to static load and a standard deviation, which follows normal distribution [31]. Hu et al. suggested 
evaluated the pavement damage around manholes and suggested that the maximum of dynamic load was 
1.29 times that of the static load which increased the pavement damage coefficient up to 2.12 times that of 
the static load [32]. To investigate the impacts of dynamic loads on pavement surface conditions, the 
dynamic loading coefficient (DLC) was defined as a ratio by dividing the standard deviation of dynamic 
loads by the mean value. Regression models were developed to correlate DLC with contributing factors, 
such as vehicle speed and pavement roughness conditions [33], [34], [35]. Misaghi et al. found that the 
pavement life decreased from 1.31 million to 0.63 million passes for a terminal rut depth of 15 mm, while 
pavement life decreased from 1.07 million to 0.64 million passes for a terminal of 40% at the vehicle 
speed of 90 km/h [36]. However, limited studies have taken the influence of axle loads on DLC into 
consideration. 
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Limited studies have considered dynamic loads induced by vehicles on rough pavement in pavement 
design. International roughness index (IRI) is a standard scale for roughness according to the response of 
a generic motor vehicle subjected to road surface roughness and determined by the measurement of road 
profile, simulation of vehicle responses, and accumulation of suspension travel [31]. It is quantified by 
measure of vertical deviations over a road section by the response-type road measuring system, such as 
road meters and profilometers [37]. Rys considered dynamic loads in the determination of axle load 
spectra in M-E pavement design by including the static axle load spectra and distributions of dynamic 
loads from specific axle load intervals. It was indicated that the cracked area and rut depth in medium 
pavement structure were increased by 67% and 8% under dynamic loads when the international roughness 
index (IRI) was 4 m/km [38]. The constant value of DLC was utilized in the transformation. However, 
axle loads were expected to have an influence on the variance of dynamic loads and DLC [39], [40]. In 
addition, Rys and Burnos found the effect of random error in axle load spectra arises from dynamic loads 
on the predicted traffic and overweight percentage need to be considered if random error was not low and 
the coefficient was greater than 0.05 [41]. 

The new asphalt overlay shows a similar cracking pattern which matches the cracking in the existing 
asphalt layer after opening to traffic. The cracking propagation from the existing asphalt concrete (AC) 
layer into and through the new AC overlay is named as reflective cracking. The effect of dynamic loads 
on reflective fatigue cracking of AC overlay on asphalt pavement can be quantified by transforming static 
axle load spectra to dynamic axle load spectra in M-E design. Since DLC values tend to change with axle 
load intervals designated by MEPDG in axle load spectra, it is essential to establish a correlation between 
DLC and axle loads to obtain the accurate dynamic axle load spectra. Besides, the change of axle load 
spectra that arises from dynamic loads on the overweight percentage needs to be considered, and the 
impact of overweight traffic on propagation of reflective fatigue cracking in AC overlay can be quantified 
considering dynamic loads induced on rough pavement surface. 

1.2 Weigh-in-motion Systems 

The research on the impact of traffic loading on pavement damage, based on data from WIM systems, 
brings many benefits. WIM systems provide numerous real-time data points, offering valuable insights 
into traffic patterns and their effects on pavement. However, concerns about accuracy have prompted 
further research to improve the precision of these systems. This section reviews existing literature related 
to WIM systems, aiming to identify and address shortcomings in current methodologies and technologies. 

1.2.1 Pavement Temperature 

The precision of a Weigh-in-Motion measurement system can be greatly impacted by pavement 
temperature, as temperature variations can alter the stress–strain state of the pavement layers, resulting in 
changes to the strain signals gathered by the strain sensor located beneath the pavement for WIM 
measurements [42]. Teltayev et al. [43] examined the temperature and moisture distribution, as well as 
stresses and strains, of a highway’s pavement and subgrade in the northern region of Kazakhstan 
throughout a year-long cold period. Through experimental analysis utilising specialized sensors, the study 
found that the elasticity modulus of the asphalt concrete layers and upper subgrade increased notably (up 
to 18,000 MPa and 10,000 MPa, respectively) during the winter season. Additionally, all stress and strain 
components at pavement and subgrade points undergo significant changes throughout the annual cycle. 
Thus, accurately gathering the temperature data for different pavement layers is essential for accurate 
WIM measurements. 
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The pavement temperature can be collected directly by the embedded temperature sensors; however, they 
have a few limitations, such as high cost, limited durability, limited installation location options and 
difficulties in fixing any problems that arise after installation [44], [45]. Therefore, researchers have 
developed an alternative approach, such as utilising pavement temperature prediction models, which were 
intended to predict pavement temperatures based on environmental weather conditions [46], [47]. 
However, they are only based on one or few weather conditions. An effective prediction model should be 
capable of employing a comprehensive set of data on weather conditions, including temperature, 
humidity, wind, precipitation, and more, to analyse the influences of weather conditions on pavement 
performance.  

Pavement temperature prediction models are categorized into (1) analytical, (2) numerical, and (3) 
empirical models. The former two models are based on solving partial differential equations for heat 
conduction under the prescribed boundary conditions, while the latter is developed through statistical 
analysis [48]. Analytical models and numerical models generally involve multiple heat transfer models 
such as incident short-wave radiation, reflected short-wave radiation, long-wave radiation emitted by the 
pavement, longwave back radiation emitted by the atmosphere, convection between the pavement surface 
and air, and heat flux conducted into the pavement [49]. Numerical methods can handle complex 
boundary conditions and nonlinearities in pavement temperature prediction models, providing an 
advantage over analytical methods [48]. Chen et al. [48] discussed different methods for predicting 
pavement temperature, including analytical models with simplified assumptions, and numerical methods 
such as Finite Difference Method, Finite Volume Method, and Finite Element Method, and highlighted 
the critical climatic and pavement factors affecting the accuracy of temperature prediction. While 
analytical models and numerical models offer greater flexibility and physical insights, they come with 
some disadvantages, such as being complex and computationally intensive. Moreover, they can be 
sensitive to input data quality and model parameters, which can require significant data collection and 
calibration efforts.  

Empirical models are widely used in practice because they are straightforward to apply and can provide 
quick and accurate results when properly calibrated and validated against data. Chen et al. [48] illustrated 
empirical models’ ability to estimate pavement temperature without analytical deviation or numerical 
computation. Empirical models also do not require a deep understanding of underlying physical 
mechanisms, making them easier to interpret and apply in certain contexts. Empirical models for 
predicting pavement temperatures are developed through statistical analysis and provide simplified 
associations between pavement temperature and affected factors. 

As one of the primary types of asphalt pavement temperature models, empirical models should rely on 
large databases containing climatic, meteorological, geographical, and pavement data, such as air 
temperature, wind speed, solar radiation intensity, latitude, pavement layer thickness, and in-situ 
pavement temperature measurements at various depths [50]. Kršmanc et al. [51] proposed a purely 
statistical method for forecasting road surface temperature based on stepwise linear regression analysis 
with appropriate selection of input parameters and separate models for different time intervals, which 
showed comparable or better accuracy than physical models, and could be continuously improved with 
new data. 

Empirical models and machine learning models are both used to make predictions based on observed 
data. However, empirical models are typically developed through regression analysis and rely on prior 
knowledge of the underlying relationship between variables, and are more widely used. Nonetheless, the 
past decade has witnessed a rapid growth in the use of machine learning (ML), particularly deep learning, 
due to its powerful fitting abilities and reduced dependence on prior knowledge. This has made ML a 
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promising data analytical approach for solving complex data patterns or formats in various applications, 
including image classification and machine translation [52].  

Huang et al. investigated a road pavement structure comprising two HMA layers measuring 3.5 and 6.3 
in., a granular base course layer measuring 17.7 in., and a subgrade soil layer measuring 110.2 in. and 
developed machine learning models to predict the average daily temperature at depths ranging from 20 to 
106 in. below the pavement surface based only on the air temperature and day of the year. The results 
show that the accuracy of temperature prediction in the base and subgrade layers using machine learning 
models was found to be higher than that of an existing model. Matić et al. [53] utilised ANN to predict 
the minimum and maximum pavement temperatures at a specified depth, based again only on the surface 
pavement temperature. The models show adequate accuracy for predicting both maximum and minimum 
temperatures, with the model for minimal temperature at a specific depth being slightly more accurate. 
Rigabadi et al. [54] investigated the feasibility of utilising remote sensing technology to estimate 
pavement temperature. To accomplish this, the paper proposed three models, including linear, non-linear, 
and ANN, which were developed for the asphalt pavement at the surface level and at depths of 7.9 and 9.8 
in. The accuracy of the predicted temperatures was then validated against measurements obtained from 
the BELLS3 model, which used data from a local weather station to calculate the temperature beneath the 
road surface. The results indicate that the predicted temperatures closely align with the measured 
temperatures. The BELLS3 models were widely used to estimate pavement temperature based on factors 
such as pavement surface temperature, average air temperature from the previous day, depth, and time of 
testing [55]. However, Marshall et al. [56] found BELLS3 model provided accurate predictions for 
temperatures below 25°C, but tended to underestimate the mid-depth temperature by an average of 5°C at 
higher temperatures. 

In addition to the general concern of pavement temperature present in all WIM systems, there are specific 
concerns regarding the two primary data acquisition methods used in practical WIM systems: the 
embedded sensor system and the image capture system. The sensor system involves integrating 
specialized sensors into the road surface to detect vehicle forces and calculate real-time weights. 
Conversely, the image-capturing system strategically positions cameras to estimate weight by analyzing 
the tire's profile as the vehicle moves. 

1.2.2 Embedded Sensor System 

For a WIM system based on in-pavement sensors, the embedded sensor system consists of two main 
components: a data acquisition system and sensors integrated into the road surface. The sensors 
commonly used for this purpose include bending plates, load cell plates, polymer piezoelectric sensors, 
quartz piezoelectric sensors, and strain gauge strip sensors [57]. However, these electrical sensors, such as 
bending plates, load cell plates, polymer piezoelectric sensors, and quartz piezoelectric sensors, tend to be 
highly susceptible to their surrounding environment, which often leads to issues such as electromagnetic 
interference, relatively short lifespans, and moderate levels of measurement errors [58]. To overcome 
these challenges, Fiber Bragg Grating (FBG) technology has emerged as an attractive alternative for WIM 
systems based on in-pavement sensors. FBG technology offers several advantages, including immunity to 
electromagnetic radiation, non-conductive nature, lightweight design, spark-free operation, intrinsic 
safety, high sensitivity to strain, and embedding compatibility with structural elements [59]. FBG sensors 
find widespread application in research to measure parameters like strain, stress, temperature, pressure, 
and vibrations across diverse fields, encompassing structural health monitoring [60], [61], aerospace [62], 
etc. However, it is worth noting that bare FBG sensors are quite delicate and can be easily damaged when 
exposed to harsh and demanding environments. To address this, the proper packaging method of the FBG 
sensors becomes essential [63]. Recently, Glass Fiber Reinforced Polymer (GFRP) has been 
demonstrated to be an effective choice for packaging FBG sensors, known as GFRP-FBG sensors [58], 
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[64], for WIM systems in asphalt pavements to detect real-time wheel weights due to its impressive 
strength, durability, resistance to corrosion, and ability to withstand fatigue.  

However, due to the fact that the GFRP-FBG sensors are point sensors, the accuracy of GFRP-FBG 
sensors for WIM measurement can be significantly influenced by the occurrence of the wandering effect, 
stemming from the disparity between sensor placement and actual wheel load positions [58]. This 
mismatch often results in inaccuracies as the sensors are fixed in location, failing to precisely align with 
the varying wheel positions of passing vehicles. As a consequence, this phenomenon introduces 
uncertainties and inconsistencies in weight measurements, undermining the reliability of the collected 
data. This difficulty arises from factors such as sensor accuracy, weather conditions, and road surface 
smoothness associated with current techniques [57]. Therefore, alternative approaches must be explored 
to enhance the accuracy of the WIM system based on FBG sensors, more specifically, the GFRP-FBG 
sensors.  

1.2.3 Image-capturing System 

On the other hand, a multitude of cutting-edge research studies have emerged, investigating pioneering 
approaches like computer vision within the domain of WIM systems without the need to install sensors 
beneath the road surface. Feng et al. [65] introduced a novel approach by leveraging computer vision 
methods to analyze images of moving vehicles. In this study, the researchers extracted tire deformation 
parameters, including tire-roadway contact length, vertical deflection, and tire make/model identification. 
They retrieved tire width and manufacturer-recommended tire inflation pressure from a tire information 
database and calculated vehicle weight by totaling the products of each tire’s contact area and inflation 
pressure [65]. Furthermore, Kong et al. [66] employed cameras to capture images of moving vehicles and 
subsequently utilized computer vision techniques to detect tire-road contact areas and inflation pressure, 
achieving non-contact WIM solutions. The primary advantage of those studies lies in the image analysis 
of moving vehicles to estimate vehicle weight, where the images are captured by cameras placed near the 
road, eliminating the need for sensor installation. However, a limitation arises from the use of 
manufacturer-provided inflation pressure, which may not accurately reflect the actual tire conditions. 
Variations in contact pressure can occur due to tire type, tire load, and inflation pressure, ranging from 
significantly less than the inflation pressure to up to 10–30% more [67], [68], [69], [70]. Additionally, 
temperature fluctuations can lead to changes in inflation pressure [71]. This discrepancy is particularly 
pronounced for trucks carrying heavy loads, as the actual contact pressure may significantly differ from 
the manufacturer’s recommended inflation pressure. 

1.3 Problem Statement and Research Objectives 

The development and maintenance of road infrastructure face significant challenges due to the complex 
interactions between traffic loads, pavement materials, environmental conditions, and monitoring 
technologies. Existing models often fall short in accurately predicting pavement performance and 
deterioration, while traditional weigh-in-motion (WIM) systems struggle with measurement inaccuracies 
due to factors like vehicle wandering and environmental influences. The integration of advanced 
technologies such as machine learning, hybrid systems, and innovative sensor technologies is essential to 
address these issues. 

Therefore, based on the literature review, there are problems as shown below for traffic loading impacts, 
pavement performance prediction, and vehicle weight monitoring systems: 
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1. Traffic Loading and Pavement Performance: Many existing research models rely on estimates 
rather than actual traffic load measurements, leading to inaccuracies in predicting pavement 
deterioration. Most models fail to incorporate axle load spectra, which are crucial for 
understanding specific impacts on pavement life. Additionally, available models often focus on 
static conditions, overlooking dynamic effects caused by uneven surfaces. 

2. Overweight Traffic Impacts: Traditional methods struggle to quantify the impact of overweight 
traffic on pavement life accurately. There is a lack of comprehensive analysis of axle loads and 
their contributions to pavement distress, such as cracking and rutting. Current regulatory 
measures are not well-informed by precise data on how overweight vehicles affect pavement 
service life. 

3. Dynamic Axle Loads and Uneven Surfaces: Longitudinal unevenness in pavements results in 
dynamic axle loads that traditional models fail to account for adequately. This leads to inaccurate 
predictions of pavement fatigue and deterioration, as existing mechanistic-empirical models do 
not incorporate these dynamic loading conditions. 

4. Pavement Temperature Prediction: Many temperature prediction models rely on surface 
temperature data, neglecting deeper pavement layers and comprehensive environmental factors. 
This results in vulnerabilities in pavement design and increased maintenance costs. 

5. Weigh-in-Motion System Accuracy: Vehicle wandering introduces significant measurement 
errors in traditional WIM systems, compromising the accuracy of vehicle weight data. Existing 
systems lack integration with advanced technologies like computer vision and artificial neural 
networks, limiting their effectiveness. 

6. Hybrid Systems for Improved Monitoring: Image-capturing systems for vehicle monitoring 
depend on manufacturer-provided data, leading to potential inaccuracies. There is a need for 
hybrid systems that combine in-pavement sensors and image-capturing technologies to address 
the wander effect and improve measurement accuracy. 

Based on the identified challenges, this study aims to develop innovative solutions to enhance the 
accuracy and reliability of pavement performance predictions and vehicle weight monitoring. The specific 
objectives are: 

1. Develop Support Vector Regression Models: Create advanced SVR models to accurately 
predict pavement performance under various traffic loading conditions by incorporating axle load 
spectra and dynamic loading effects. 

2. Leverage Machine Learning for Overweight Traffic Analysis: Utilize machine learning 
techniques to analyze the impact of overweight traffic on asphalt pavement life, providing precise 
data for regulatory measures and pavement management. 

3. Incorporate Dynamic Axle Load Spectra in Mechanistic Models: Integrate dynamic axle load 
spectra due to longitudinal unevenness into mechanistic-empirical models to improve predictions 
of pavement performance and lifespan. 

4. Create Advanced Temperature Prediction Models: Develop temperature prediction models 
using multiple regression and artificial neural networks to provide accurate predictions across 
various pavement depths. 

5. Implement Hybrid WIM Systems for Accurate Weight Monitoring: Design hybrid WIM 
systems that combine in-pavement sensors with computer vision to address the wander effect and 
improve vehicle weight measurement accuracy. 

6. Enhance Hybrid Systems with Advanced Technologies: Further develop hybrid WIM systems 
by integrating computer vision with in-pavement sensors to mitigate the wander effect and adapt 
to varying vehicle conditions, enhancing weight monitoring accuracy and infrastructure 
management. 
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The remainder of this report is organized as follows. Chapter 2 details the data collection process from 
state Departments of Transportation (DOT), the Long-Term Pavement Performance (LTPP) program, and 
MnROAD, covering truck traffic data, pavement structure, climate conditions, and field experiments with 
sensors. Chapter 3 explores Support Vector Regression (SVR) for modeling traffic loading impacts, 
comparing traditional regression models and discussing the results, particularly concerning overweight 
trucks. Chapter 4 presents the use of Random Survival Forests to model traffic impacts, explaining the 
methodology and analyzing overweight traffic’s effects on pavement life. Chapter 5 focuses on 
mechanistic-empirical analysis considering dynamic axle loads, evaluating their impact on pavement 
performance. Chapter 6 predicts asphalt pavement temperatures using regression and neural networks, 
evaluating weather factors and their influence on pavement temperatures. Chapter 7 assesses the vehicle 
wandering effect using GFRP-FBG sensors and camera systems, presenting experimental frameworks and 
results. Chapter 8 introduces a hybrid WIM system integrating computer vision with in-pavement sensors, 
presenting its framework, experimental results, and benefits in mitigating the wander effect. Chapter 9 
concludes the study, summarizing findings, discussing implications for pavement management, and 
suggesting future research directions.   
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2. DATA COLLECTION AND PROCESSING 

The LTPP program was established to collect pavement performance data to analyze various affecting 
factors, develop performance prediction models, and evaluate the effectiveness of pavement preservation 
and rehabilitation. Various pavement performance data have been analyzed, including specific pavement 
distresses, pavement condition index, surface roughness, friction considering the interaction between 
pavement material and structure, traffic loading, and environmental conditions. 

2.1 Data Collection from State DOT 

2.1.1 Truck Traffic Data from WIM 

Weigh-in-motion devices can continuously capture and record GVW, axle load, and axle spacing with 
supplementary data including date, time, speed, lane of travel, and vehicle type. Axle load spectra and 
GVW from WIM database are critical inputs for mechanistic-based pavement design and pavement 
performance analysis. NJDOT has 95 WIM sites in the highway network. The axle load spectra recorded 
at 87 WIM sites for both directions were extracted from Vehicle Travel Information System (VTRIS) 
operated by Federal Highway Administration (FHWA) [72]  . 

The numbers of daily ESALs for flexible and rigid/composite pavement structures were calculated from 
WIM data based on load equivalency factors derived from AASHO road test [73]. Considering that WIM 
data was not recorded for every segment successively from 2000 to 2014, the daily ESALs were averaged 
for every five years. Figure 2.1 shows the frequency distribution of average annual daily ESALs for 
Interstate highways, US highways, and state highways, respectively. Interstate highways are part of the 
network of controlled-access highways for long-distance travel and freight transport. US highways are 
mainly consisted of major roads having the designation and numbering coordinated among the states over 
US. State highways are designed according to various standards or capacity and operated by state 
governments. 
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(a) (b) 

 
(c) 

Figure 2.1 Frequency distribution of average annual daily ESALs on (a) state highways, (b) Interstate 
highways and (c) US highways in NJ 

 
The number of single, tandem, tridem axles and axle load spectra were provided in the VTRIS system. 
Figure 2.2 shows single, tandem, and tridem axle load spectra of all trucks on Interstate highway Route 80 
in the year of 2000. It indicated that single axles had the most axle loads around 5 kips, and the axle loads 
of tandem axles concentrated at 5 kips and 11 kips. Most tridem axles have loads between 18 and 20 kips. 
In previous works, Gaussian distribution was applied to fit the observed single and tridem axle load 
spectra, and the tridem axle load was usually not considered [74], [75]. In this study, the axle load spectra 
were fitted using Gaussian distribution, and the amplitude, mean, and standard deviation of Gaussian 
distribution were used to characterize the pattern of traffic loads. The Gaussian distribution fits peaks of 
axle load spectra and is given by Eq.1 [76] . 

𝑦𝑦 = �𝑎𝑎𝑖𝑖𝑒𝑒
�−�𝑥𝑥−𝑏𝑏𝑖𝑖𝑐𝑐𝑖𝑖

�
2
�

𝑛𝑛

𝑖𝑖=1

 (1) 

Where, ai is the amplitude; bi is the centroid or location; ci is the parameter related to the peak width; and 
n is the number of peaks to fit (n =1 for single and tridem axles; n = 2 for tandem axle). 
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(a) (b) 

 
(c) 

Figure 2.2 Gaussian distribution of axle load spectra of (a) single, (b) tandem, and (c) tridem axle on I-80 
in 2000 

2.1.2 Pavement Structure and Field Performance 

The pavement structure and field performance data for the two-mile pavement segments nearby the WIM 
sites were collected from pavement management system of NJDOT. In general, 50% of highways in NJ 
are composite pavements, 40% are flexible pavements, and the remaining 10% are rigid pavements. 
Figure 2.3 shows the frequency distribution of thicknesses of flexible and composite/rigid pavements. For 
the majority of flexible pavements, the thickness of state highways, US highways, and Interstate 
highways are in the ranges of 2-4 inches, 4-6 inches, and 8-12 inches, respectively. For most of the 
composite and rigid pavements, the thickness of surface layer of state highways, US highways, and 
Interstate highways are in the ranges of 6-8 inches, 10-12 inches, and 10-14 inches, respectively. 
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(a) (b) 

Figure 2.3 Frequency distribution of (a) surface layer thickness of flexible pavement and (b) surface layer 
thickness of composite/rigid Pavement 

 
Surface distress index (SDI) is a New Jersey standard used for decades in roadway assessment and 
considered the most indicative of functional adequacy to evaluate the system status. Pavement 
performance data in terms of SDI over years were used to estimate pavement service life after major 
rehabilitation treatments. The SDI has a scale of 0-5 and incorporates both non-load related distresses 
index (NDI) outside wheel paths and a load related distress index (LDI) in wheel path by manual survey 
[77]. Figure 2.4 shows an example of pavement deterioration showing SDI over years. It can be observed 
from that the SDI declines slowly during the first several years. Afterward, SDI starts to drop rapidly and 
finally decreases gradually to a small value. The SDI data indicated a nonlinear relationship with 
pavement age. NJDOT defines the pavement condition as poor when SDI < 2.4 or IRI > 2.7m/km and as 
good when SDI > 3.5 and IRI < 1.5m/km. In real practice, the terminal IRI values are much smaller than 
2.7m/km when pavement life is reached based on the SDI threshold [78]. Therefore, the pavement service 
life in the study is determined as the period before the SDI drops to 2.4. 

 
Figure 2.4 Example of deterioration trend of pavement performance (I-287A) 
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2.1.3 Climate Condition 

The office of New Jersey State Climatologist provides average monthly air temperature data. The 21 
counties in New Jersey were grouped into three districts: Northern New Jersey (11 counties), Southern 
New Jersey (10 counties), and Costal New Jersey. The freezing index (FI) is defined by the negative of 
the sum of all average daily temperatures below 32 °F within the given period, as shown Eq. 2 [8]. The FI 
was found to be 9.3 degree-days in Southern New Jersey, and 175.7 degree-days in Northern New Jersey. 
As the consequence of using average monthly air temperature instead of daily air temperature, the 
estimated FI is correspondingly smaller. 

( )∑ ×



 −−= iMinMax nTTFI 32
2
1  (2) 

Where, FI is accumulative FI, degrees Fahrenheit (°F) degree-days; Tmax is the maximum monthly 
temperature in month i, °F; Tmin is the minimum monthly temperature in month i, °F; and ni is days in 
month i when average monthly temperature is below freezing (32°F). 

2.2 Data Collection from LTPP 

2.2.1 Data Elements from LTPP Database 

The LTPP program was established to collect pavement performance data as one of the major research 
areas of the Strategic Highway Research Program (SHRP). It provides technical knowledge about 
available pavements and seeks models that can better explain pavement performance. The LTPP program 
includes the general pavement study (GPS) and the specific pavement study (SPS). LTPP InfoPave is a 
web interface for the LTPP database that is used to deliver data sets of features generated by users.  

Totally 128 pavement sections in a SPS-5 study located in 12 states were used in this study. The SPS-5 
study was conducted to develop improved methodologies and strategies for the rehabilitation of flexible 
pavements. Each LTPP test section was approximately 3.5 meters wide per lane and 152.4 meters long  
[79].  The selected pavement sections were located at four climate regions: dry freeze (Colorado, 
Montana), dry no freeze (Arizona, California, and New Mexico), wet freeze (Maine), and wet no freeze 
(Florida, Maryland, Mississippi, New Jersey, Oklahoma, Texas) [80]. The climate region of the pavement 
section was considered as an environmental factor in the analysis. 

The load-related pavement distress data, including alligator cracking, longitudinal cracking at wheel-path, 
and rut depth of the analyzed pavement sections were identified and extracted from LTPP database. The 
pavement age of AC overlay at the time of distress survey was determined by comparing the survey time 
and construction time of the rehabilitation. Fatigue cracking and longitudinal cracking were measured at 
different severity levels (high, medium, and low). Therefore, the overall cracking needed to be estimated 
using weight factors. The weight factors for low-, medium-, and high-severity cracking were determined 
to be 0.2, 0.3, and 0.5, respectively, which were approximated based on the deduct value curves used in 
calculating pavement condition index [81]. The initial international roughness index (IRI) score after 
construction was considered as the variable indicating construction quality in the analysis [82].  

Multiple data buckets for desired variables were downloaded from LTPP InfoPave and then organized to 
create a relational database. Table 2.1 summarizes the LTPP database variables and the extracted data 
elements in this study, including pavement age, traffic (number of axles and axle load distribution), 
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pavement layer thickness, climate region, overlay treatment (milling and overlay thickness), construction 
quality, and pavement distresses (alligator cracking, longitudinal cracking at wheel-path, and rutting).  

Table 2.1 LTPP InfoPave database tables and extracted data elements 
Variables Symbol Range Unit Relevant Tables in InfoPave 

Pavement age  0.02~24.
9 year EXPERIMENT_SECTION 

Number of single axles Single 65~4541 N/A YY_AX 
Number of tandem axles Tandem 1~4701 N/A YY_AX 
Number of tridem axles Tridem 0~100 N/A YY_AX 
Range of single axle loads Single 0-39 kips YY_AX 
Range of tandem axle loads Tandem 0-78 kips YY_AX 
Range of tridem axle loads Tridem 0-117 kips YY_AX 
Thickness of AC layer AC 2.8~16 inch TST_L05B 
Thickness of bound base layer TB 0~15 inch TST_L05B 
Thickness of unbound base 
layer GB 0~20.7 inch TST_L05B 

Thickness of bound subbase 
layer SS 0~66 inch TST_L05B 

Thickness of unbound base 
layer GS 0~234 inch TST_L05B 

Climate region Climate 1~4 Categorica
l EXPERIMENT_SECTION  

Improvement type IMP_TYP
E N/A Categorica

l 
CONSTRUCTION_EVENTS_EX
P 

Overlay thickness IMP_h 0.7~7.8 inch CONSTRUCTION_EVENTS_EX
P 

Mill thickness Mill 0.45~4.0 inch AC_MILLING_EXP 
IRI after AC overlay IRI 0.44~1.8 mm/m MON_HSS_PROFILE_SECTION 

Alligator cracking   

0~808 
(L)  
0~424 
(M)  
0~817 
(H) 

m^2 MON_DIS_AC_REV 

Longitudinal cracking   

0~271 
(L) 
0~153 
(M) 
0~48 (H) 

m MON_DIS_AC_REV 

Rut depth   1~25 mm MON_T_PROF_INDEX_SECTIO
N 

2.2.2 Analysis of Axle Load Spectra 

The traffic data are available in the LTPP database in terms of axle configuration and weight collected 
through weigh-in-motion (WIM) stations [83]. Multi-year traffic data for the selected pavement sections 
were used in the analysis. The same traffic data was used in successive years for the pavement sections 
where traffic data was not available for certain years.  
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As compared to the number of equivalent single axle load (ESAL), axle load spectra provide better 
representation of traffic loading by showing the distribution of axle loads for each type of axle 
configuration.  Given the apparent bell-shaped plot, the axle load spectra were fitted using Gaussian 
distribution, as shown in Eq. 1 [84]. The amplitude, mean, and standard deviation of the Gaussian 
distribution were utilized to characterize the pattern of traffic load, which provides a simplified but 
efficient way to take detailed axle load distributions into consideration [85], [86].  

Table 2.2 presents the summary of variables related to the total number of axles and fitted Gaussian 
distributions of axle load spectra for all the pavement sections used in this study. Note that tridem axle 
load spectra were not included in the analysis because of an inconsistent trend of axle load distributions. 
Because the number of tridem axles was small, this exclusion is believed not to affect analysis results. 

Table 2.2  Summary of Gaussian distribution model parameters for axle load spectra 
Variable Symbol Range of Values 
Amplitude of single axle load spectrum a 7.94~37.98 
Mean of single axle load spectra b 4.08~11.48 
Standard deviation of single axle load spectrum c 0.68~5.38 
Amplitude of tandem axle load spectrum (peak 1) a1 2.44~15.9 
Mean of tandem axle load spectra (peak 1) b1 8.09~25.23 
Standard deviation of tandem axle load spectrum (peak 1) c1 1.94~9.64 
Amplitude of tandem axle load spectrum (peak 2) a2 3.22~20.15 
Mean of tandem axle load spectra (peak 2) b2 16.76~36.91 
Standard deviation of tandem axle load spectrum (peak 2) c2 1.74~12.55 

2.3 Data Collection from MnROAD 

To validate the proposed hybrid WIM system, a field study was conducted on Interstate 94 westbound 
located on the MnROAD mainline between exits 201 and exit 194 in Albertville, MN, USA, with sensors 
meticulously positioned just beneath the asphalt pavement road surface. This section provides an 
overview of the field experimental, encompassing pertinent details about the field's location, pavement 
characteristics, and the determination of dynamic modulus for the specific road segment. Additionally, it 
outlines the deployment of sensors, their positioning, and methodological setup of the experiment. 

2.3.1 Field Experiment Setup 

The field tests took place on a designated road within the MnROAD research facility, an establishment 
dedicated to pavement research and equipped with a range of pavement materials. Administered by the 
Minnesota Department of Transportation, MnROAD encompasses several roadways which each contain 
several test sections, with the majority of test sections located on the MnROAD Mainline – 3.5 miles of I-
94 WB interstate), Old I-94 Westbound - 3.5 miles of the original westbound I-94 build during the 1970s, 
and a 2.5-mile low traffic volume test track. This extensive site boasts over 80 distinct test sections 
strategically situated along both the mainline and original westbound I-94 segments. The field test for this 
study was carried out on a specified test section, as highlighted in Figure 2.5.  
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Figure 2.5 Test section location on MnROAD Mainline 

The flexible pavement cross section of the test section is shown in  Figure 2.6(a), and is composed of hot-
mix asphalt (HMA), MnDOT Class 5 granular base, MnDOT Class 3 sub-base, selected granular layer, 
and clay loam [87]. The GFRP-FBG sensors were strategically positioned above the MnDOT Class 5 
granular base, as illustrated in Figure 2.6 (b). To ensure the stability and integrity of their placement 
during subsequent construction stages, a thin layer of HMA was applied to gently secure the sensors in 
their designated locations. This safeguarding step was undertaken before the laying of the 0.127-meter-
thick HMA layer, as shown in Figure 2.6 (c). This comprehensive approach guaranteed that the sensors 
remained in their intended positions throughout the pavement construction process. 
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(a) 

  

(b) (c) 
Figure 2.6 (a) Flexible pavement cross section of the test section; (b) GFRP-FBG sensor placement 

above MNDOT class 5 granular base; (c) safeguarding GFRP-FBG sensor placement with 
HMA layer 
 

Results from previous asphalt mixture performance testing experiments conducted by MnROAD and 
National Center for Asphalt Technology, obtained from MnROAD, were utilized in this study. The 
testing involved two specimens with 150 mm diameter and 38 mm height (the same material as the warm 
mix asphalt layer of the test section), which were used in dynamic modulus testing. The dynamic modulus 
testing consisted of eight frequencies and three temperatures, which generated 24 temperature and 
frequency combinations. The average results from testing the two test specimens are shown in Table 3.1 
2.3 [88]. 

Table 2.3 Average dynamic modulus of elasticity value for test section [88] 
Temp (℃) 25 Hz 10 Hz 5 Hz 1 Hz 0.5 Hz 0.1 Hz 0.05 Hz 0.01 Hz 
-12 15.520 11.830 10.410 9.490 9.000 8.190 7.900 6.990 
12 7.580 7.830 7.340 4.550 3.990 2.120 1.570 0.570 
36 1.660 1.350 1.070 0.420 0.300 0.160 0.130 0.040 

*unit is GPa 

2.3.2 Field Installed GFRP-FBG Sensors and Experimental Setup 

The layout of the proposed hybrid WIM system, depicted in Figure 2.7, involves the utilization of a 
camera, two GFRP-FBG sensors, and one temperature compensation sensor. Either three-dimensional 
(3D) or one-dimensional (1D) GFRP-FBG sensors as shown in Figure 8 (b, c) [89] can be used. In the 
case of the 3D GFRP-FBG sensor, it integrates three distinct components for data collection along 
vertical, longitudinal, and transverse directions. The longitudinal component aligns parallel to the wheel 
path. The transverse component is perpendicular to it, and a vertical dimension extends to a point at the 
asphalt surface. Based on previous study [89], the longitudinal, transverse, and vertical segments 
possessed dimensions can be 4.064, 4.064, and 3.048 cm, respectively, with an FBG positioned at the 
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center of each component. Among a 3D GFRP-FBG sensor, the vertical component of the 3D sensor 
detects proximity but faces alignment challenges with passing vehicles, while the transverse aspect 
depends less on the matrix and requires a reasonable wheel load radius [58]. Conversely, the longitudinal 
part shows high sensitivity, less matrix independence, and an ample detection range, making it ideal for 
WIM measurements along the wheel path. Hence, the longitudinal component usually is chosen for 
evaluating high-speed WIM feasibility post field assessment. For an 1D GFRP-FBG, it can be positioned 
strategically in the longitudinal direction for wheel load detection. 

 

 

(b) 

 

(a) (c) 

Figure 2.7  Photo of the (a) Practical layout of the hybrid WIM system; (b) 3D; and (c) 1D GFRP-FBG 
sensors [89] 

Previous research on the GFRP-FBG sensor [90], the elastic modulus (E0) and outer radius (r0) of the 
optical fiber, shear modulus (GGFRP) and outer radius (rGFRP) of the packaging layer (GFRP), and outer 
radius of the host material layer (rh) are shown in Table 2.4. The gauge length of the longitudinal (lf), 
transverse, and vertical components of the optical fiber were 70 mm, 70 mm, and 14 mm, respectively. 
The shear modulus of the host material layer (which is HMA in this study) was calculated based on the 
dynamic modulus of elasticity and Poisson’s ratio of the host material. This calculated shear modulus and 
the parameters depicted in the Table were then employed to calculate the measurement error attributable 
to the host material. This correction was subsequently applied to adjust the strain calculations obtained 
from the sensor.  

Table 2.4 OFBG sensor strain transfer parameters 
 E0 (GPa) r0 (mm) GGFRP (GPa) rGFRP (mm) rh (mm) lf (mm) 
Longitudinal 70 0.0625 5.0 2.5 25 70 

 
The experimental design was targeted to evaluate vehicle performance at various positions with driving 
speeds of 16.093 km/h (10 mph), 32.187 km/h (20 mph), 40.280 km/h (30 mph), and 64.374 km/h (40 
mph). A semi-truck passed over the two FBG sensors located at positions L1 and L3. The same driver 
drove the truck over each position a total of seven times, aiming to align the wheels directly above the 
sensor positions. 
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However, ensuring precise control over the truck's movement within the specific areas and at the 
designated speed presented a challenge, particularly when the two locations were in close proximity. 
Consequently, both the sensor data and captured images were employed to accurately calculate the 
vehicle's exact speed and location as it passed through the specified points. 

The field test utilized a semi-truck from the MnROAD facility, which had a total gross weight of 354,523 
N. The vehicle configuration is illustrated in Figure 2.8. This study specifically concentrated on weight 
measurement of the first axle equipped with a single tire.  

 
Figure 2.8  Layout of semi-truck used in MnROAD field test
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3. SUPPORT VECTOR REGRESSION OF TRAFFIC LOADING 
IMPACT ON PAVEMENT PERFORMANCE 

This chapter used SVR model to quantify the impact of traffic loading on pavement performance based on 
field data. Pavement structure and condition data were collected from pavement management system. 
Truck traffic data were extracted from WIM database and the characteristics of axle load spectra were 
analyzed. The SVR method was applied and compared to the traditional multi-variable nonlinear 
regression method in terms of prediction accuracy and error. The proposed pavement performance models 
were further used to analyze pavement deterioration caused by overweight trucks with different truck 
traffic and axle load distributions. 

3.1 Traditional Regression Models 

Traditional nonlinear regression models were first used to investigate traffic loading impact on pavement 
performance. The average daily ESALs and axle load spectra were considered as traffic variables in the 
nonlinear regression model to analyze and predict pavement performance. A total of 5,481 data points 
were used to derive the regression models. The number of data points for flexible pavement structure on 
state highways, Interstate highways, and US highways were 1,310, 1,368, and 653, respectively. The 
number of data points for composite and rigid pavement structure on state highways, Interstate highways, 
and US highways were 402, 960, and 788, respectively. The data points were categorized into two groups: 
80% for model training and 20% for model validation. Bootstrap procedure, a resampling technique for 
the validation of model performance, was conducted to assess the influence of each observation on each 
parameter estimate. The shape of bootstrap distribution was examined, and the mean and confidence 
intervals based on the sampling distribution were determined. Confidence intervals were used to evaluate 
the practical significance of the estimate for the population parameter. The pavement performance models 
developed by relating SDI to pavement age, average daily ESALs, and freezing index, as shown in Eq. 3. 

𝑆𝑆𝑆𝑆𝐼𝐼𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎 − 𝑏𝑏 × 𝐿𝐿𝐿𝐿𝐿𝐿(𝑇𝑇) × 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑐𝑐 × 𝐿𝐿𝐿𝐿𝐿𝐿(𝐹𝐹𝐹𝐹) × 𝐴𝐴𝐴𝐴𝐴𝐴) (3) 

Where, SDIt  is surface distress index in the tth year; Age is pavement age; T is average annual daily 
ESALs; FI is freezing index; and a, b, and c are model coefficients. 

Table 3.1 summarizes the coefficients and R square values of the regression models of flexible and 
composite/rigid pavements for state highways, Interstate highways, and US highways, respectively. The 
R square value varies from 0.51 to 0.70 depending on the pavement structure and route type.  

Table 3.1 Coefficients and R^2 values of regression model based on average daily ESALs 

Pavement Type Highway Type a b c R-square 
(training) R-square (validation) 

Flexible 
Pavement 

State Highway 1.717 0.009 0.017 0.50 0.53 
Interstate Highway 1.703 0.002 0.025 0.71 0.68 
US Highway 1.742 0.021 0.006 0.58 0.50 

Composite/Rigid 
Pavement 

State Highway 1.753 0.020 0.024 0.56 0.62 
Interstate Highway 1.754 0.009 0.013 0.53 0.53 
US Highway 1.838 0.034 0.001 0.62 0.66 
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In order to improve the accuracy of prediction, another pavement performance model was developed by 
correlating SDI to pavement age, freezing index, the number of axles, and the fitted Gaussian distribution 
of axle load spectrum for each axle type, expressed by Eq.4. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝑎𝑎 − �(𝑏𝑏𝐴𝐴1 + 𝑐𝑐𝑀𝑀1 + 𝑑𝑑𝑆𝑆𝑆𝑆1) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁1)
+ (𝑒𝑒𝐴𝐴2 + 𝑓𝑓𝑀𝑀2 + 𝑔𝑔𝑆𝑆𝑆𝑆2 + 𝑒𝑒2𝐴𝐴3 + 𝑓𝑓2𝑀𝑀3 +  𝑔𝑔2𝑆𝑆𝑆𝑆3) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁2)
+ (ℎ𝐴𝐴4 + 𝑖𝑖𝑀𝑀4 + 𝑗𝑗𝑆𝑆𝑆𝑆4) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁3)� ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑝𝑝 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹𝐹𝐹) ∙ 𝐴𝐴𝐴𝐴𝐴𝐴� 

(4) 

Where, N1, N2, N3 are the number of single, tandem, and tridem axles; 111 ,, SDMA  are amplitude, 
location, and peak width of single axle load spectrum as shown in Figure 2.2 (a); 

333222 ,,,,, SDMASDMA  are amplitude, location, and peak width of tandem axle load spectrum for the 

first peak and second peak as shown in Figure 2.2 (b); 444 ,, SDMA  are amplitude, location, and peak 
width of tridem axle load spectrum as shown in Figure 2.2 (c); and a, b, c, d, e, f, g, e2, f2, g2, h, i, j, and k 
are model coefficients. 

Table 3.2 presents the coefficients of pavement performance models for state highways, Interstate 
highways, and US highways, respectively. The mean absolute error (MAE), root mean square error 
(RMSE), and coefficient of determination (R-square) were considered as the error metrics to evaluate the 
accuracy of fitting model, as shown in Table 3.3. The R-square values varied from 0.51 to 0.71 depending 
on pavement structure and highway type. The comparison between the R-square values of two nonlinear 
regression models (Eq. 3 and 4) indicated that the accuracy of pavement performance prediction was 
improved by considering the number of axles and the fitted Gaussian distribution of axle load spectra in 
the model. However, the R-square values are still not very high. 

Figure 3.1 illustrates the actual observed and predicted SDI using the nonlinear regression models 
expressed by Eq.4, respectively, for different pavement structures and highway types. An apparent bias 
was observed in the predicted SDI with low accuracy. Therefore, more accurate predictive models are 
needed to investigate the impact of traffic loading on the deterioration trend of pavement performance. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.1 Actual observed and fitted SDI based on multiple nonlinear regression models for flexible 
pavement structure on (a) state highways; (b) Interstate highways; (c) US highways; and 
composite/rigid pavement structure on (d) state highways; (e) Interstate highways; (f) US 
highways. 
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Table 3.2 Coefficients of regression models based on axle load spectra 
Pavement 
Type 

Highway 
Type a b c d e f g 

Flexible 
Pavement 

State  1.712 - - - 5.1E-
04 1.1E-03 2.6E-

03 
Interstate  1.670 - - - - - - 

US  1.735 - 1.3E-
02 

-1.4E-
03 - - - 

Composite/Rig
id Pavement 

State  1.784 1.2E-
03 - 7.9E-04 - -4.5E-

03 - 

Interstate  1.754 - - - - -8.2E-
03 

8.2E-
03 

US  1.846 - 9.9E-
03 - 0.001 - - 

Pavement Type Highway 
Type e2 f2 g2 h i j p 

Flexible 
Pavement 

State  -2.0E-
04 - - - - - 3.9E-

02 

Interstate  - - - - 9.6E-
04 

-1.0E-
02 

7.6E-
02 

US  - - - - - - 6.5E-
03 

Composite/Rig
id Pavement 

State  4.1E-03 - 8.0E-
03 - - - - 

Interstate  8.8E-04 3.5E-
03 - - - - 2.3E-

02 

US  - 2.7E-
04 - 1.7E-03 - - 8.3E-

03 

Table 3.3 Error metric of regression model based on axle load spectra 

Structure Route 

R-
square 
(training
) 

RMSE 
(validation) 

MAE 
(validation) 

R-square 
(validation) 

Flexible 

State 0.51 0.82 0.62 0.51 
Interstat
e 0.71 0.58 0.43 0.68 

US 0.63 0.76 0.60 0.63 

Composite/Rig
id 

State 0.68 0.63 0.47 0.68 
Interstat
e 0.58 0.74 0.56 0.58 

US 0.66 0.68 0.49 0.66 
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3.2 Support Vector Regression Method 

3.2.1 Principle of Support Vector Regression 

The selection of machine learning algorithms needs to consider the size of dataset, the number of 
potential influential variables, linearity, training time, model accuracy, and interpretability of output. 
Support vector method (SVM) is a supervised learning model which is commonly applied for 
classification and regression analysis. SVM is an efficient approach to derive pavement performance 
model with low generalization error and easy interpretation of results, especially when the dataset is small 
and the correlation is nonlinear  [11], [12]. Since the size of dataset in this study was not large, SVM 
approach was used to develop the pavement performance models. 

SVM produces nonlinear boundaries by constructing a linear boundary in a large, transformed version of 
the feature space. The basic principle behind the linear SVM is to find an optimal separating hyperplane 
creating the biggest margin between the training data. The closest training points to the hyperplane are 
called support vectors. SVM can also be used as regression method rather than classification method, this 
application is also called as SVR [91]. SVR uses the same principles as SVM but provides the flexibility 
to find the appropriate hyperplane in higher dimensions to regress the data and customize controlled 
errors in an acceptable range. Its main objective is to decide a decision boundary at a specific distance 
from the original hyperplane such that data points closest to the hyperplane or the support vectors are 
within that boundary line by approximating a function to seek the narrowest ϵ-tube centered around the 
data [92], as shown in Figure 3.2. 

 
(a) (b) (c) 

Figure 3.2 Principle of SVR 

For the training data consisted of N pairs (x1, y1), (x2, y2), …, (xN, yN), with p
ix R∈ and { }1,1iy ∈ − . 

Define a hyperplane by Eq. 5.                                                      

{ }0: ( ) 0Tx f x x β β= + =
 

(5) 

where, β  is a unit vector =1β .  

A classification rule induced by f(x) is defined by Eq. 6:  
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0( ) si TG x gn x β β = +   
(6) 

where, f(x) gives the signed distance from a point x to the hyperplane 0( ) 0Tf x x β β= + = . The classes 

are separated, so a function 0( ) Tf x x β β= +  with ( ) 0i iy f x i> ∀ .   Thus, it is available to find the 
hyperplane that maximizes the margin between training data for different classes. The optimization 
problem is defined by Eq. 7. 

0, , 1
max M

β β β =
 (7) 

Subject to                                 

0( ) , 1,...,T
i iy x M i Nβ β+ ≥ =        (8) 

The band is M units away from the hyperplane on either side, and then 2M units wide, which is called the 
margin. Therefore, optimization problem can be more conveniently phrased as shown in Eq. 9 and 10.                                                                             

0,
min
β β

β      (9) 

Subject to 

𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0) ≥ 1, 𝑖𝑖 = 1, . . . ,𝑁𝑁                                              (10) 

Noted that 
1M
β

= . Eq. 9-10 are the common approach of expressing the support vector criterion for 

separable data. When SVM is used for regression to estimate , the minimization of Eq.11 is considered 
with Eq. 12. SVM regression is considered as a nonparametric technique since it is dependent on kernel 
functions, which will be introduced in the following section.  

𝐻𝐻(𝛽𝛽,𝛽𝛽0) = �𝑉𝑉�𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)� +
𝜆𝜆
2
‖𝛽𝛽‖2

𝑁𝑁

𝑖𝑖=1

 (11) 

Where, ϵ - insensitive error function is:  

𝑉𝑉𝜖𝜖(𝑟𝑟) = � 0               𝑖𝑖𝑖𝑖 |𝑟𝑟| < 𝜖𝜖
|𝑟𝑟| − 𝜖𝜖       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (12) 

Assume that the classes are overlapped in feature space. Overlap is solved by maximizing M allowing 
some points to be on the inaccurate side of the margin. Define the slack variables ξ = (ξ1, ξ2, … , ξN), and 
drop the norm constraints on β to write the Eq. 10 in the equivalent form: 

0,
min
β β

β   Subject to �𝑦𝑦𝑖𝑖�𝑥𝑥𝑖𝑖
𝑇𝑇𝛽𝛽 + 𝛽𝛽0� ≥ 1 − 𝜉𝜉𝑖𝑖∀𝑖𝑖

𝜉𝜉𝑖𝑖 ≥ 0,∑𝜉𝜉𝑖𝑖 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (13) 
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The convex optimization in Eq.13 is solved using Lagrange multipliers, and the Lagrange (primal) 
function is: 

𝐿𝐿𝑝𝑝 =
1
2
‖𝛽𝛽‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖�𝑦𝑦𝑖𝑖�𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽 + 𝛽𝛽0� − (1 − 𝜉𝜉𝑖𝑖)� −
𝑁𝑁

𝑖𝑖=1

�𝜇𝜇𝑖𝑖𝜉𝜉𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (14) 

 
Which minimize Lp with respect to β, |β0 and ξi. C is the “cost” parameter which replaces the constant in 
Eq.13. Setting the respective derivatives to zero, we can get 

𝛽𝛽 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (15) 

𝛽𝛽0 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (16) 

𝛼𝛼𝑖𝑖 = 𝐶𝐶 − 𝜇𝜇𝑖𝑖 ,∀𝑖𝑖 (17) 

The Lagrangian dual objective function can be derived by substituting Eq.15-17 into Eq. 14 and 
expressed by Eq.18 which gives a lower bound on the objective function for any feasible point. The 
optimization problem in Eq. 14 can be solved in a special approach by only involving the input feature via 
inner products using the transformed feature vectors h(xi). Then the Lagrangian dual objective function 
can be expressed by Eq.19. 

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖′

𝑁𝑁

𝑖𝑖′=1

𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖′𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑖𝑖′ (18) 

𝐿𝐿𝐷𝐷 = �𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖′

𝑁𝑁

𝑖𝑖′=1

𝑁𝑁

𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖′〈ℎ(𝑥𝑥𝑖𝑖), ℎ(𝑥𝑥𝑖𝑖′)〉 (19) 

From Eq.15, the solution function f(x) can be written by: 

𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥)𝑇𝑇𝛽𝛽 + 𝛽𝛽0 = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖〈ℎ(𝑥𝑥𝑖𝑖), ℎ(𝑥𝑥𝑖𝑖′)〉
𝑁𝑁

𝑖𝑖=1

+ 𝛽𝛽0 (20) 

The knowledge of the kernel function can be used to solve the problem in Eq.19-20 using inner products 
without specifying the transformation h(x), as illustrated in Figure 3.2 (a)-(b). 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 〈ℎ(𝑥𝑥), ℎ(𝑥𝑥′)〉 (21) 

 
Which calculates inner products in the transformed space. K is supposed to be a symmetric positive 
definite function. 
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3.2.2 Results and Discussion 

Similar to the nonlinear regression model, the SVR model was developed by relating SDI to pavement 
age, FI, and truck traffic. The average daily ESALs and fitted Gaussian distribution of axle load spectra 
were considered as traffic variables, respectively. The data points were categorized into two groups: 80% 
for model training and 20% for model validation to evaluate the performance of retrained model. In 
Python, scikit-learn is a widely used library for implementing machine learning algorithms. The 
sklearn.svm module was utilized to implement SVR algorithm (Python Software Foundation). Parameter 
values in the SVR models were optimized using grid search with k-fold cross-validation. The k-fold 
cross-validation is a resampling procedure in applied machine learning to estimate the skill of a model on 
unseen data. In general, it provides a less biased or less optimistic estimate of the model skill than other 
validation methods  [93]. Kernels were used in SVR to solve nonlinear regression problems through 
decreasing the complexity of calculations by providing an chance to linearly deal with nonlinear functions 
in high-dimensional spaces [94]. Different kernels, including linear, radial basis function, sigmoid, and 
universal Pearson VII function, were considered in the model optimization [95]. Radial basis function 
kernel was found work best in the dataset through trial analysis. The radial basis function is expressed by 
Eq.22. 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾‖𝑥𝑥 − 𝑥𝑥′‖2) (22) 

where, γ  is constant. 

Table 3.4 summaries the cross-validation results of SVR when different traffic variables were considered 
in the model. The score was used to calculate the coefficients of determination (R-square values) for the 
evaluation of the SVR model performance. The mean_squared_error and mean_absolute_error from 
sklearn.metrics module were imported to compute the Root Mean Square Error (RMSE) and mean 
absolute error (MAE) values, respectively (Python Software Foundation). By applying SVR method, the 
coefficients of determination (R-square values) were found significantly increased as compared to the 
traditional nonlinear regression models. The MAE decreased to 0.17-0.38 and the coefficient of 
determination (R-square) increased to 0.71-0.93. The predictive models for flexible pavements on 
Interstate highway and composite/rigid pavements on US highway presented better accuracy than the 
other highway types. Compared to the nonlinear regression models, the SVR models could capture more 
complicated relationships in the original feature space between datapoints without computing the 
coordinates of the data in a higher dimensional space by applying kernel tricks. On the other hand, the 
fitting accuracy was further improved by involving the number of axles and fitted Gaussian distribution of 
axle load spectra in the SVR model, except for the flexible pavement on US highway. Thus, it was 
recommended to use the number of axles and the fitted Gaussian distribution of axle load spectra to 
develop SVR model and predict pavement performance. However, the SVR model based on average daily 
ESALs provided a simplified way with acceptable accuracy to investigate the influence of traffic loading 
on pavement deterioration. 
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Table 3.4 Cross-validation results of SVR with different variables 

Model 
Variables 

Pavement 
Type 

Highway 
Type 

R-
square 
(trainin
g) 

RMSE 
(validation
) 

MAE 
(validation) 

R-square 
(validation) 

Age, FI, 
ESALs 

Flexible 
State 0.86 0.46 0.25 0.85 
Interstate 0.86 0.41 0.22 0.84 
US 0.83 0.54 0.34 0.79 

Composite/Ri
gid 

State 0.87 0.58 0.32 0.80 
Interstate 0.84 0.58 0.30 0.72 
US 0.85 0.45 0.24 0.88 

 

Figure 3.3 presents the comparison of actual observed and predicted SDI values for the validation data set 
by using the SVR models based on the fitted Gaussian distribution of axle load spectra and the number of 
axles. As compared to Figure 3.1, the SVR method shows significant improvement on the accuracy of 
performance prediction. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 3.3 Actual observed and fitted SDI based on SVR models for flexible pavement structure on (a) 
state highways; (b) Interstate highways; (c) US highways; and composite/rigid pavement 
structure on (d) state highways; (e) Interstate highways; (f) US highways. 
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The developed SVR models could be applied to predict the pavement performance over year after 
reconstruction and derive the fragility curve of pavement section. The maintenance and rehabilitation 
could be scheduled based on the estimated deterioration trend of pavement section to avoid the pavement 
failure. Moreover, sensitivity analysis could be conducted to investigate the impact of traffic and 
environmental factors on pavement deterioration. The developed SVR models were further used to 
analyze the impact of overweight trucks on pavement deterioration in the following section. 

3.3 Impact of Overweight Truck on Pavement Deterioration  

The developed SVR models were utilized to investigate the impact of overweight truck traffic on 
pavement damage. Currently, NJDOT legislates 80,000 lbs. as the legal GVW. The legal weight on single 
axle at Interstate highways and non-Interstate highways are 20,000 lbs. and 22,400 lbs., respectively. The 
legal weight on tandem axle is 34,000 lbs. [96]. In order to evaluate the overweight traffic effect on 
pavement performance, the WIM data was processed and grouped into two traffic groups. The first group 
included all the trucks within the legal weight limit (non-overweight traffic); while the second group 
included both the trucks within the legal weight limit and the overweight trucks (total traffic). The 
considered legal weight limits on single, tandem, and tridem axles were 22,400 lb., 34,000 lb., and 42,000 
lb., respectively. Table 3.5 shows the highway type, route number, pavement structure, freezing index 
(FI), and the number of single, tandem, and tridem axles for the total and non-overweight traffic at the 
selected six sites. One site was selected for each highway type. 

Table 3.5 Total and non-overweight (N-O) traffic at the selected routes 

Paveme
nt  
Type  

Highwa
y  
Type 

Rout
e # 

Traffi
c 

FI  
(degree-
day) 

Asphalt 
concret
e  
(in.) 

Cement 
concret
e  
(in.) 

No. of 
single 
axle 

No. of 
tande
m axle 

No. of 
tridem 
axle 

Flexible 

State 

NJ-
138 Total -9.3 2 0 412 118 7 

NJ-
138 N-O -9.3 2 0 410 109 1 

Interstat
e 

I-195 Total -9.3 12 0 3509 3602 201 
I-195 N-O -9.3 12 0 3505 3562 76 

US 

US-
30 Total -9.3 5 0 336 114 10 

US-
30 N-O -9.3 5 0 334 104 1 

Compos
ite/ 
Rigid 

State 

NJ-
33 Total -9.3 2.5 5.5 664 299 19 

NJ-
33 N-O -9.3 2.5 5.5 659 277 3 

Interstat
e 

I-80 Total -175.7 3 8 4197 4448 55 
I-80 N-O -175.7 3 8 4051 3990 30 

US 

US-
202 Total -175.7 3.5 7 356 225 25 

US-
202 N-O -175.7 3.5 7 355 211 3 
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Figure 3.4 shows the axle load spectra at the selected routes, respectively, for single, tandem, and tridem 
axles. It indicated that most of tridem axles were overweight axles, but it was less than 5% of the total 
traffic. The majority of overweight axle loads were on tridem and tandem axles, which were expected to 
have significant influences on pavement deterioration. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.4 Axle load spectra at the selected sites: (a) NJ-138; (b) I-195; (c) US-30; (d) NJ-33; (e) I-80; (f) 
US-202 (solid line—: non-overweight; dotte dline---: overweight). 
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Figure 3.5 illustrates the deterioration trend of flexible and composite pavement under the total and non-
overweight truck traffic using the derived SVR models based on the number of axles and the fitted 
Gaussian distribution of axle load spectra. The deterioration of pavement condition increased with the 
change of axle load spectra and the increasing number of axles, especially on tridem axle, due to the 
overweight truck traffic. Since the maintenance or rehabilitation was applied at the pavement sections 
before the SDI dropped to 2.4, it was difficult to track the pavement sections with the SDI below 2.5. In 
order to derive the entire curve of SDI deterioration, a sigmoidal model, which has been proven to 
provide acceptable accuracy to fit the performance curve, was applied to fit the predicted SDI values, as 
expressed by Eq. 23 [97], [98]. With the determined model parameters, the pavement life before the SDI 
decreasing to 2.4 was calculated for total and non-overweight traffic scenarios at each route. 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆0 − 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎 − 𝑏𝑏 ∗ 𝑐𝑐𝑙𝑙𝑙𝑙 ( 1
𝐴𝐴𝐴𝐴𝐴𝐴)) (23) 

 
where, SDI is surface distress index; SDI0 is surface distress index at year zero; Age is the year since the 
construction of rehabilitation; and a, b, and c are model coefficients. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.5 Pavement performance under total and nonverweight truck traffic for flexible pavements 
(a) state highway; (b) Interstate highway; (c) US highway; and composite pavements (d) state 
higway; (e) Interstate highway; (f) US highway. 
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To quantify the impact of overweight traffic on pavement damage, the reduction ratio of pavement life 
was calcualted using Eq. 24. Table 3.6 summarizes the overweight percenetage on single, tandem, and 
tridem axles and reduction ratio of pavement life for the selected routes. Since the SVR models were 
developed for each highway type, the pavemetn life reduction due to traffic loading variations were 
acurately captured for different pavement structures and highway types.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝐿𝐿𝑇𝑇 − 𝐿𝐿𝑁𝑁
𝐿𝐿𝑁𝑁

 (24) 

where, LT is pavement life caused by total traffic; and LN is pavement life caused by the non-overweight 
traffic. 

Table 3.6 Percentage of overweight axles and pavement life ratio for selected routes 
Pavement Type Route Single Tandem Tridem Pavement Life Reduction (%) 

Flexible 
NJ-138 0% 8% 86% 29% 
I-195 0% 1% 62% 14% 
US-30 1% 9% 90% 21% 

Rigid 
NJ-33 1% 7% 84% 9% 
I-80 3% 10% 45% 11% 
US-202 0% 6% 88% 23% 

 
To quantity the pavement deterioration induced by overweight traffic on different road types, the 
reduction ratio of SDI was calculated using Eq. 25. Figure 3.6 illustrates the range of reduction ratio of 
SDI at the end of observation for different road types. It indicated that composite/rigid pavement sections 
were more affected by overweight traffic, especially for Interstate highways and US highways. 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆 = −
𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁

𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁
 (25) 

where, SDIT is SDI caused by total traffic; and SDIN is SDI caused by the non-overweight traffic. 

 
 

Figure 3.6 Boxplot of reduction ratio of SDI for different road types 
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3.4 Summary of Using Support Vector Regression to Model Traffic Load 
Impacts on Pavement 

This chapter used traditional nonlinear regression and machine learning methods to derive pavement 
performance models under the impact of traffic loading. Compared to the nonlinear regression model, the 
accuracy of pavement performance prediction was significantly increased by utilizing the SVR method. 
The model accuracy was further improved by considering the number of axles and fitted Gaussian 
distribution of axle load spectra in the performance model. The derived SVR models were used to 
investigate the impact of overweight truck traffic on the deterioration trend of pavement. The 
deterioration of pavement condition increased with the change of axle load spectra and the increasing 
number of axles due to overweight truck traffic. The proposed pavement performance model can be 
further used in determining pavement damage caused by overweight trucks for pavement rehabilitation 
strategy and permit fee analysis. SVR model has proved to be an efficient approach to analyze small 
dataset of pavement performance. However, other supervised learning approaches, such as random forests 
and neural network, will be more suitable than SVR method to develop pavement performance models 
using a larger dataset due to the intensive computation of SVR. 
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4. RANDOM SURVIVAL FOREST MODELING TRAFFIC IMPACT ON 
PAVEMENT PERFORMANCE 

The objective of this chapter is to quantify the impact of overweight traffic on asphalt pavement life using 
machine learning based survival analysis. Traffic data and field distress measurements were collected 
from the LTPP database. The random survival forest method was used to establish predictive models of 
load-related pavement distresses considering traffic loading, pavement structure, and climate. The 
variable importance approach was used to select the appropriate variables in the prediction model and to 
reduce prediction errors. The derived models were applied to estimate survival probability of asphalt 
pavement life at different traffic loading scenarios and to evaluate the impact of overweight traffic on 
pavement life. 

4.1 Random Survival Forest Model 

4.1.1 Algorithm of Random Survival Forest 

Recently, random survival forest, a fully non-parametric approach, has been applied for better variable 
selection and survival analysis [99]. Non-parametric survival analysis, like Kaplan-Meier estimate, is 
flexible but cannot incorporate with covariates, which means it is difficult to infer the impacts of variables 
in the survival functions. Unlike traditional semi-parametric and parametric survival analysis (like Cox 
Proportional hazards regression analysis), an assumption of the distribution of life or a linear-exponential 
form was not needed in random survival forest model. Random survival forest is capable of dealing with a 
large number of variables and identifying non-linear effects of all variables automatically with the random 
forest for regression and classification, because decision trees are used as base learners or a block for an 
ensemble process in random survival forest [100].  

Figure 4.1 illustrates the framework of random survival forest algorithm. The specific details of the 
random survival forest algorithm are as follows: 

1. Draw bootstrap samples from the training dataset. Each bootstrap sample excludes approximately 
one third of the data, called out-of-bag (OOB) data. 

2. Grow a survival tree for every bootstrap sample. Randomly select p candidate variables at every 
node of the survival tree. The candidate variable which maximizes survival difference between 
daughter nodes is used to split the node. 

3. Grow the survival tree to full size under the constraint that a terminal node is supposed to have no 
less than d0>0 unique deaths. 

4. Calculate a cumulative hazard function (CHF) for every survival tree and average to derive the 
ensemble CHF. 

5. Calculate prediction error for the ensemble CHF using out-of-bag data. 
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Figure 4.1 Framework of random survival forest algorithm 

4.1.2 Ensemble of Cumulative Hazard Function 

The key aspect of the random survival forest algorithm is to grow a survival tree and construct the 
ensemble CHF. Survival trees consist of binary trees grown by recursively splitting nodes. A survival tree 
is grown from the root node, and the root node is split into two daughter nodes according to a 
predetermined survival criterion. Then, every daughter node is split, and this process is repeated in a 
recursive order for every subsequent node. The node splitting is optimized by searching all possible split 
values and variables and selecting the optimal split that maximizes survival differences. Finally, a 
saturation point is reached when no new daughters can be generated because of the constraint that every 
node needs to contain a minimum of d0>0 unique deaths. The most extreme nodes in a saturated survival 
tree are named terminal nodes denoted by T. 

Let (T1,h, δ1,h)…, ( Tn(h),h, δn(h),h) be the survival times and censoring information for cases in a terminal 
node h ∈ T. A case i is set to be right-censored at time Ti,h if, δi,h = 0; otherwise, if δi,h = 1, the case is 
considered to have died or experienced an event at Ti,h. Let t1,h < t2,h < ⋯ < tN(h),h be the N(h) distinct 
event times. Define dl,h and Yi,h to be the number of events and cases at risk at time tl,h. The CHF 
estimate for terminal node h is the Nelson-Aalen estimator that is a non-parameter estimator for 
incomplete and censored data, and all individuals in h have the same CHF, as shown in Eq. 26. 

𝐻𝐻�ℎ(𝑡𝑡) = �
𝑑𝑑𝑙𝑙,ℎ
𝑌𝑌𝑙𝑙,ℎ𝑡𝑡𝑙𝑙,ℎ≤𝑡𝑡

 (26) 

Each individual i has a d-dimensional covariate xi. Let H(t|xi) be the CHF for i. To decide the CHF, drop 
xi down the survival tree. Because of the binary characteristic of a tree, xi will fall into a unique terminal 
node h ∈ T. The CHF for i is the Nelson-Aalen estimator for the terminal node of xi. Eq. 27 is applied to 
define the CHF for all cases and estimate CHF for the tree.  
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𝐻𝐻(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝐻𝐻�ℎ(𝑡𝑡), if 𝑥𝑥𝑖𝑖 ∈ ℎ (27) 

The CHF is obtained from a single tree, and the CHF are averaged over B survival trees to derive an 
ensemble CHF. As is known, every survival tree in the forest is grown by an independent bootstrap 
sample. Define Ii,b = 1 if i is an OOB case for b; otherwise, set Ii,b = 0. Let Hb

∗(t|x) be the CHF for a 
tree grown using the bth bootstrap sample. The ensemble CHF of OOB data for i is an average over 
bootstrap samples, as shown in Eq. 28. 

𝐻𝐻𝑒𝑒∗∗(𝑡𝑡|𝑥𝑥𝑖𝑖) =
∑ 𝐼𝐼𝑖𝑖,𝑏𝑏𝐻𝐻𝑏𝑏∗(𝑡𝑡|𝑥𝑥𝑖𝑖)𝐵𝐵
𝑏𝑏=1
∑ 𝐼𝐼𝑖𝑖,𝑏𝑏𝐵𝐵
𝑏𝑏=1

 (28) 

OOB data is dropped down a tree grown from bootstrap data and the terminal node and CHF of case i are 
tracked. The OOB ensemble CHF is estimated by Eq. 28. In contrast, the bootstrap ensemble CHF for i is 
computed using all survival trees, as shown in Eq. 29. 

𝐻𝐻𝑒𝑒∗(𝑡𝑡|𝑥𝑥𝑖𝑖) =
1
𝐵𝐵
� 𝐻𝐻𝑏𝑏∗(𝑡𝑡|𝑥𝑥𝑖𝑖)

𝐵𝐵

𝑏𝑏=1
 (29) 

4.1.3 Prediction Error and Cross-Validation 

Several measures are available for assessing the probabilistic risk predictions in survival analysis. Brier 
and logarithmic scoring rules are commonly selected metrics [101], [102]. In this study, the prediction 
error defined as the time-dependent expected Brier score is discussed and used to assess the developed 
model [103], as shown in Eq. 30. 

𝐵𝐵𝐵𝐵�𝑡𝑡, 𝑆̂𝑆� = 𝐸𝐸�𝑌𝑌𝑖𝑖(𝑡𝑡) − 𝑆̂𝑆(𝑡𝑡|𝑋𝑋𝑖𝑖)�
2
 (30) 

The expectation is in terms of the data of a case i which is not within the training dataset. Yi(t) =
I (Ti ≥ t) is the observed status of case i and S�(t|Xi) is the predicted survival probability at time t for case 
i with predictor variables xi. In survival analysis, the Kaplan-Meier estimate of survival is calculated with 
all training samples.  

Several approaches are applied to deal with overfitting issues when only one data set is used to establish 
the prediction models. The bootstrap cross-validation method splits the data DN into bootstrap samples Db 
and corresponding test samples DN\Db (b = 1…, B). Bootstrap samples can either be generated with or 
without replacement from the original data. Then, models S�b are trained using the bootstrap training data 
Db, corresponding test samples are predicted, and residuals are calculated. Eventually, the bootstrap cross-
validation estimate of prediction error is computed by averaging over the test dataset, as shown in 
Equation 31. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑡𝑡, 𝑆̂𝑆� =
1
𝐵𝐵
�

1
𝑀𝑀𝑏𝑏

� 𝑊𝑊�𝑖𝑖(𝑡𝑡)�𝑌𝑌�𝑖𝑖(𝑡𝑡) − 𝑆̂𝑆𝑏𝑏(𝑡𝑡|𝑋𝑋𝑖𝑖)�
2

𝑖𝑖∈𝐷𝐷𝑁𝑁𝐷𝐷𝑏𝑏

𝐵𝐵

𝑏𝑏=1
 (31) 

where, W�i is the inverse probability of censoring weights. Mb is the size of bootstrap samples for 
resampling without replacement.  



41 

 

4.2 Model Results and Analysis 

The random survival forest approach was applied to investigate asphalt pavement life using the failure 
threshold of each pavement distress. After combining the pavement distress data and all explanatory 
variables summarized in Table 2.1 and Table 3.1, the total number of data observations for alligator 
cracking, longitudinal cracking at wheel-path, and rut depth were 1214, 1214, and 1139, respectively. 
Based on the current practice of mechanistic-empirical pavement design, the thresholds of alligator 
cracking, longitudinal cracking at wheel-path, and rut depth were defined be 20% of lane area, 189 m/km 
(1000 ft/mile), and 12.7 mm (0.5 inch), respectively [27].  

Variable importance measures the change (increase or decrease) of prediction error for the forest 
ensemble when a variable is randomly “noised-up” [99]. The variable with larger variable importance 
indicates the prediction error that is significantly impacted when the variable is “noised-up”. Positive 
variable importance shows variables have predictive power, and zero or negative variable importance 
means variables make no contribution to prediction accuracy. The variable importance was estimated by 
the differences between the prediction error calculated using Equation 6 and the recalculated prediction 
error using the noise-up data by random node assignment. Random node assignment is capable of 
effectively calculating variable importance. In random node assignment, cases are randomly assigned to a 
daughter node when the parent node is split at the target variable.  

Pavement structure and material, traffic history, climatic condition, and construction quality were 
considered to be influential variables for pavement performance and the variable importance was 
calculated for each variable. Figure 4.2 illustrates the variable importance for different pavement 
distresses. The greater value of positive variable importance indicates that the variable makes more 
contribution to the prediction model. The explanation of each symbol could be found in Table 2.1 and 
Table 2.2.  

The results indicated that fatigue cracking was sensitive to climate, the number of tandem axle loads, the 
number of single axle loads, the thickness of AC overlay, and the thickness of milling. Longitudinal 
cracking was found to be more affected by the amplitude of tandem axle load spectrum (first peak), the 
number of tandem axles, the standard deviation of tandem axle load spectra (first peak), the number of 
single axle loads, and the amplitude of tandem axle load spectrum (second peak). The top-five important 
features for rut depth were the standard deviation of tandem axle load spectrum (second peak), the 
thickness of AC layer, the amplitude of tandem axle load spectra (second peak), and the number of single 
axle loads, and the thickness of treated base layer. These findings indicated that the explanatory variables 
of axle load spectra would impact pavement distress development. Therefore, the derived predictive 
models showed promise for analyzing the influence of traffic loading on deterioration trend of each 
pavement distress.  
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(c) 

Figure 4.2  Variable Importance for (a) alligator cracking; (b) longitudinal cracking at wheel-path; and 
(c) rut depth 

 
The cross-validation bootstrap method was used to compare the time-dependent Brier score (prediction 
error) of fitted survival forests. A total of 100 bootstrap samples were considered. Figure 4.3 shows the 
prediction error curve of random survival forest (RSF) models and the conventional non-parametric 
survival analysis using Kaplan-Meier (K-M) models for alligator cracking, longitudinal cracking at 
wheel-path, and rut depth, respectively. For alligator cracking and rutting, the prediction error of two 
models were found to be small and similar as the pavement life was shorter than eight years, but the 
random forest survival model showed much less error with the longer pavement life. As for longitudinal 
cracking, the prediction error of two models were similar but relatively smaller than those for other 
pavement distresses. In general, random survival forest models outperformed than the conventional 
survival analysis with K-M model in prediction accuracy. 
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(a) (b) 

 
(c) 

Figure 4.3 Prediction error of survival models: (a) alligator cracking; (b) longitudinal cracking at wheel-
path; and (c) rut depth (RSF: random survival forest model; K-M: Kaplan-Meier model) 

4.3 Impact of Overweight Traffic on Pavement Life 

4.3.1 Effect of Overweight Traffic on Survival Probability 

The derived random survival forest models can be used to analyze the influence of overweight traffic 
loading on the survival probability of AC pavement. To evaluate the overweight effect on pavement 
distress, the axle load spectra data was processed and divided into two traffic categories. The first 
category (non-overweight traffic) only included the trucks within the legal weight limit by excluding the 
overweight axles. The second category (total traffic) included the trucks within the legal weight limit and 
the overweight trucks. The differences of the number of axles and axle load spectra between the non-
overweight and total traffic were considered in the survival analysis. The legal weight limits on single, 
tandem, and tridem axles were set as 22,400 lbs., 34,000 lbs., and 42,000 lbs. to distinguish the 
overweight axles from the total traffic [96].  

One pavement section (SHRP_ID: 040502) was selected for the survivable probability analysis. The 
pavement structure consisted of a 6.5-inch AC layer and a 14.7-inch untreated base layer laid on soil 
subgrade, which was located in dry and no-freeze climate region. A maintenance treatment of milling the 
existing pavement (1.05 inch) and overlaying with AC (2.7 inch) was applied. The average daily number 
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of single, tandem, and tridem axles in the total traffic were 2769, 2775, and 8, respectively. The average 
daily number of single, tandem, and tridem axles in the non-overweight traffic were 2754, 2356, and 7, 
respectively. The overweight axles were found to be approximately 1%, 15%, and 13% of total single, 
tandem, and tridem axles, respectively. Figure 4.4 shows the axle load spectra of non-overweight and 
total traffic at the selected pavement section. The amplitude, mean, and standard deviation of the 
Gaussian distribution defined in Equation 1 were utilized to characterize the single and tandem axle load 
distribution pattern of non-overweight traffic and total traffic, respectively. The comparison of Figure 4.4 
(a) and (b) shows that the tandem axle load spectra were significantly influenced by the overweight 
traffic. 

  
(a) (b) 

Figure 4.4  Axle load spectra: (a) non-overweight traffic; (b) total traffic at the selected pavement section 
 
The deterioration trends of pavement distress under total traffic and non-overweight traffic scenarios were 
predicted for the selected pavement section. Figure 4.5 presents the survival curves of pavement life at the 
selected pavement section respectively, for alligator cracking, longitudinal cracking at wheel-path, and rut 
depth. Survival curves illustrate the probability of pavement life after construction until the pavement 
distress reached the failure threshold. The decreasing trend of the survival curve is expected because 
pavement sections are likely to fail as service life increases. As expected, overweight truck traffic 
accelerated pavement deterioration and increased failure risk of pavement. It was found that the pavement 
life at 50% survival probability was reduced by 1-2 years due to overweight traffic. The reduction of 
pavement life varied depending on the failure mechanism. 
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(a) (b) 

 
(c) 

Figure 4.5 Survival probability curves at the selected pavement section: (a) alligator cracking; (b) 
longitudinal cracking at wheel-path; (c) rut depth at the selected pavement section 

4.3.2 Effect of Overweight Traffic on Pavement Life Reduction 

The derived predictive model was further used to evaluate the impact of overweight traffic on pavement 
life for all the selected 128 pavement sections. The survival probability of 50% was used to estimate the 
median survival life of a pavement section from the survival probability curve of each load-related 
pavement distress. Figure 4.6 (a)-(c) illustrate the percentage distributions of pavement service life before 
failure under total and non-overweight traffic. It was clear that the overweight traffic caused more 
pavement sections to fail after a shorter service life. The reduction ratio of pavement life resulting from 
overweight traffic was calculated for each pavement section, as shown in Eq. 32.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑛𝑛
𝐿𝐿𝑛𝑛

 (32) 

where, Lt is pavement life caused by total traffic; and Ln is pavement life caused by the non-overweight 
traffic.  
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Figure 4.6 (d) shows the pavement life reduction ratio resulting from overweight traffic in box plots. Note 
that the negative values are considered as the outliers impacted by the accuracy of predictive models. For 
most pavement sections, the reduction ratios were found to be in the range of 16-43% for longitudinal 
cracking at wheel-path, 3%-42% for alligator cracking, and 0%-33% for rut depth. The median values of 
the life reduction ratios were found to be 32%, 24%, and 12% for longitudinal cracking, alligator 
cracking, and rut depth, respectively. This indicates the average pavement failure risk for alligator 
cracking and longitudinal cracking were more impacted by overweight traffic loading. The t-test was 
conducted to determine if there were statistically significant differences between the life reduction ratios 
determined based on different pavement distresses. The calculated p-value for each paired comparison 
was far smaller than 0.05, which indicated the impact of overweight traffic on alligator cracking, 
longitudinal racking, and rutting was significantly varied. 

  
(a) (b) 

  
(c) (d) 

Figure 4.6 Distribution of survival life: (a) alligator cracking; (b) longitudinal cracking; (c) rut depth; and 
(d) Boxplots of survival life differences under total traffic and non-overweight traffic 
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These findings demonstrated the ability of random survival forest method for quantifying the impact of 
overweight traffic on pavement life considering axle load spectra. The survival probability curve of 
pavement service life at different traffic loading scenarios can be obtained directly. Thus, the random 
survival forest method provides an easier and faster manner of investigating the impact of overweight 
traffic on pavement life. 

4.4 Summary of Predictive Modeling of Pavement Lifespan Under 
Overweight Traffic Using Machine Learning 

This chapter used random survival forest method to investigate the impact of overweight traffic on asphalt 
pavement life using traffic data and field measurements from the LTPP database. The traffic data 
collected from WIM stations in the LTPP database were characterized through the number of axles and 
axle load spectra.  

The random survival forest was proved to be an efficient approach to predict pavement life under the 
complex interaction of traffic loading, pavement structure, and climate. The variable importance method 
was used to select explanatory variables in the predictive models. The random survival forest models 
were developed for three different failure mechanisms (alligator cracking, longitudinal cracking, and 
rutting). The findings indicated that the explanatory variables regarding axle load spectra of traffic 
loading explained pavement performance degradation in significant roles. The random survival forest 
model can generate survival curves with better variable selection and survival prediction that shows less 
prediction error as compared to the conventional survival analysis. 

The random survival forest models were further used to analyze the survival curves of pavement life at 
different traffic loading scenarios and evaluate the influence of overweight traffic. The reduction ratios of 
pavement life due to overweight traffic that was estimated based on different failure mechanisms were 
found having statistically significant differences. The results indicated that pavement failure due to 
alligator cracking and longitudinal cracking were more impacted by overweight traffic loading. 

The study findings indicate the proposed random survival forest model is a promising approach for 
analyzing the impact of traffic loading on the failure risk of pavement. Due to the ability of random forest 
model for handling large amounts of variables, the model accuracy can be improved by considering more 
detailed climate conditions and material properties, such as precipitation, pavement temperature, air void, 
and asphalt binder type. The developed model can be used to quantify the impact of different influential 
factors on pavement performance and service life. 
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5. MECHANISTIC-EMPIRICAL ANALYSIS OF PAVEMENT 
PERFORMANCE UNDER VEHICULAR DYNAMIC LOADING 

This section quantified the impact of dynamic traffic loading on pavement dis-tress of AC overlay on 
asphalt pavement. DLCs were calculated for each axle type and nonlinear regression models were fitted 
with respect to axle loads and pavement rough-ness levels. The dynamic loads excited by rough pavement 
surface condition were considered by transforming the static axle load spectra to the dynamic axle load 
spectra in MEPDG. Two representative pavement structures on major and minor highways were selected 
to investigate the impact of dynamic loads on pavement distresses using M-E pavement design. The impact 
of overweight traffic loading on pavement distresses was quantified by considering dynamic axle load 
spectra. 

5.1 Consideration of Dynamic Loads in Axle Load Spectra 

5.1.1 Pavement Profiles and Vehicle Models 

Quarter-car models, two degree of freedom systems consisting of the wheel, suspension system, and a 
quarter of vehicle mass, have been widely adopted to simulate the vehicle behavior and investigate the 
influence of pavement evenness on dynamic tire forces [29], [104], [105], [106]. Taking advantage of 
advanced software (such as MATLAB), multibody dynamic truck models were developed to simulate 
dynamic characters of vehicles considering comprehensive vehicle system components [30], [107]. 
TruckSim, a multi-body dynamic model with multiple freedoms, is capable of simulating dynamic 
behaviors of various truck configurations. Multiple bodies can be simulated on the basis of the database 
embedded for a truck, including steering system, suspension system, power train, sprung mass, and so on 
[40], [108]. Previous research has used TruckSim to simulate dynamic tire forces of moving vehicles with 
various truck configurations considering a wide range of vehicle speeds and pavement roughness levels 
[109], [110]. 

The dynamic tire forces of different axle configurations excited by pavement surface profiles at specific 
operational speeds were calculated using TruckSim software. Figure 5.1 illustrates the axle configuration 
of Class 5, Class 7, and Class 9 trucks used in the study. The dynamic tire forces under single, tandem, 
and tridem axles were evaluated using the selected representative truck configurations. The spring rates of 
the tires were computed according to the static load deflection measurements and applied in the previous 
study related to vehicle dynamics simulation [111]. For the steering axle (Axle 1), the single tire was 
equipped. The tire width was 275 mm with the spring rate of 932 N/mm. For the drive axles (Axle 2, 3, 4, 
and 5), dual tire assembly was equipped. The tire width was 275 mm with the spring rate of 829 N/mm. 
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(a) (b) 

 
(c) 

Figure 5.1  Illustration of axle configurations for (a) Class 5; (b) Class 7; and (c) Class 9 trucks 
(Texas DOT, 2013) 

 
The Long-Term Pavement Performance (LTPP) was founded to collect pavement performance data by 
the Strategic Highway Research Program (SHRP). The LTPP program consisted of two fundamental 
categories of studies and some smaller studies to quantify specific pavement related details that have 
significant influence on pavement performance. The two categories of studies are the General Pavement 
Study (GPS) and the Specific Pavement Studies (SPS). The pavement profile data of selected pavement 
sections in New Jersey was extracted from LTPP database [80]. The moving average window of profile 
measurements was 0.3 m (0.98 ft), and the pavement surface elevation data was recorded at the interval of 
0.15 m (0.49 ft). The total length of individual pavement segment was 152.4 m (500 ft) consisted of 1017 
surveyed points. Totally 13 pavement profiles of five pavement sections (SHRP_ID = 341003, 341030, 
341031, 341033, and 341034) on minor highways and 11 pavement profiles of five pavement sections 
(SHRP_ID = 340501, 340502, 340503, 340506, and 340560) on major (Interstate) highways were 
extracted. The measurements were conducted during 1997 - 2007 on the pavement sections of GPS-6S, 
GPS-2, and SPS-5 study. The range of IRI values of the selected major routes was 0.73-2.78 m/km (46-
176 inch/mile). A wide range of IRI values from 0.73 m/km (46 inch/mile) to 4.73 m/km (300 inch/mile) 
was considered for minor routes. The pavement sections with similar IRI values might have totally 
different surface profiles, such as pavement sections of 340503, 340507, and 340560. In pavement 
management system, the IRI values of 1.50 m/km (95 inch/mile) and 2.68 m/km (170 inch/mile) were 
usually set as the thresholds of pavement conditions ranging fair to good and from poor to fair rating, 
respectively [112]. 
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4500 mm 1270 mm 1270 mm 
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Axle 1  Axle 2 Axle 3 Axle 4 Axle 5 



51 

 

 
(a) 

 
(b) 

Figure 5.2 Selected pavement profiles: (a) major highways; (b) minor highways 
(legend: SHRP_ID_IRI value) 

  

-40

-20

0

20

40

0 20 40 60 80 100 120 140

E
le

va
tio

n 
(m

m
)

Length (m)

0501_2.04 m/km 0501_2.41 m/km 0501_2.78 m/km 0502_1.03 m/km

0502_1.33 m/km 0502_1.87 m/km 0503_0.73 m/km 0507_0.73 m/km

0507_0.92 m/km 0560_0.74 m/km 0560_1.01 m/km

-60

-40

-20

0

20

40

0 20 40 60 80 100 120 140

E
le

va
tio

n 
(m

m
)

Length (m)

1003_1.3 m/km 1003_2.25 m/km 1003_3.88 m/km 1003_4.73 m/km
1030_3.07 m/km 1030 _3.76 m/km 1030_4.13 m/km 1031_0.73 m/km
1033_1.45 m/km 1033_1.86 m/km 1033_2.52 m/km 1034_1.52 m/km
1034_1.68 m/km



52 

 

5.1.2 Dynamic Load Coefficients 

To investigate the impacts of pavement surface conditions on dynamic loads, DLC was defined as a ratio 
by dividing the standard deviation of dynamic loads by the mean value [113]. It is well accepted that 
pavement roughness conditions and vehicle speed are influential factors to DLC. Hassan and McManus 
(2001) and Bilodeau et al. (2017)related DLC to pavement roughness conditions, while Bonabi (2011) 
developed regression models of IRI in terms of pavement roughness conditions and vehicle speeds. Few 
studies have considered the effect of static axle loads on DLC. Elisher et al. (2012) and Múčka (2017) 
predicted the DLC values in unladen and laden loading scenarios, respectively. Thus, in this study, DLCs 
of dynamic loads of single, tandem, and tridem axles estimated by the multi-body dynamic models in 
TruskSim were calculated for each pavement profile considering a wide range of static axle loads. The 
two vehicle speeds of 80 km/h (50 mph) and 104 km/h (65 mph) were set for minor and major highways, 
respectively. Figure 5.3 shows the effects of IRI and static axle loads on DLCs on minor and major 
highways. It indicated that DLC tends to increase as pavement roughness levels increase and decrease 
with the increasing of static axle loads. 



53 
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Figure 5.3 Change of DLC with IRI and axle loads: (a) single axle (minor); (b) tandem axle (minor); (c) 
tridem axle (minor); (c) single axle (major); (d) tandem axle (major); and (e) tridem axle 
(major) 
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Based on the calculated DLCs, a nonlinear regression model was fitted with respect to axle load and 
pavement roughness for each axle type, as expressed by Eq. 33. The vehicle speed was not included as a 
continuous variable in the regression model since two different speeds were considered for major and 
minor highways, respectively. 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑘𝑘 = 𝑎𝑎 × 𝑙𝑙𝑙𝑙(𝑄𝑄𝑘𝑘) + 𝑏𝑏 × 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑐𝑐 (33) 

Where, DLCi,kis dynamic loading coefficient of axle type i (i = 1 for single, 2 for tandem, and for tridem); 
Qkis static axle load (kips); IRI is international roughness index of pavement profile (m/km); and a, b, and 
c are fitting coefficients. 

Table 5.1 presents the parameters of regression model in Eq.1 for the major and minor highways. 
Regression models were derived for single, tandem, and tridem axles loads with the acceptable R-squared 
values. Taking advantage of these models, the DLCs of specific static axle loads could be predicted for 
determination of dynamic axle load spectra given the axle load interval.  

Table 5.1 Parameters of regression model of DLC with respect to IRI and axle load 
Route Type Axle Type a b c R-Squared value 

Major highway (104 km/h) 
Single 0.067 0.030 0.232 89 
Tandem 0.072 0.042 0.277 87 
Tridem 0.068 0.042 0.265 86 

Minor highway  
(80 km/h) 

Single 0.096 0.025 0.308 85 
Tandem 0.089 0.033 0.317 88 
Tridem 0.081 0.041 0.277 82 

5.1.3 Dynamic Axle Load Spectra 

Dynamic load distribution should consider the impact of deviation of axle loads from static magnitudes. 
The discrete distribution of axle loads is determined by the percentage of axle passes falling into a set of 
axle load intervals. The Dynamic Axle Loads Spectrum includes both static axle load spectra and 
distributions of dynamic loads coming from other axle load intervals [114]. The percentage of dynamic 
loads dj in the interval j comes from dynamic loads induced by axles with static loads of Qk. The dynamic 
axle load spectra, the total percentage dj of all axle loads in a given load interval j is calculated as a sum 
of dynamic loads from all the static axle load spectra intervals k. The percentage of dynamic loads dj is 
computed using Eq. 34. 

𝑑𝑑𝑖𝑖,𝑗𝑗 = �𝑠𝑠𝑘𝑘
1

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑘𝑘𝑄𝑄𝑘𝑘√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝑄𝑄𝑘𝑘 − 𝑄𝑄𝑗𝑗�
2

2𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖,𝑘𝑘2 𝑄𝑄𝑘𝑘2
�

𝑛𝑛

𝑘𝑘=1

 (34) 

where, di,jare the percentage of dynamic loads; Qj are dynamic loads (kips); and sk are the percentage of 
number of axles with static load Qk determined from WIM data. 

It was assumed that dynamic loads can be characterized as normal distribution with the average value in 
the middle of a given interval and standard deviation, which has been proved and applied in previous 
works  [32], [114]. The DLC values in the formula would change with the pavement roughness levels and 
axle load intervals designated by MEPDG. Figure 5.4 illustrates the comparison of static axle load spectra 
and dynamic axle load spectra on major and minor highways. The dynamic loads at three different IRI 



55 

 

values of 1 m/km (63 inch/mile), 2 m/km (126 in/mile) and 3 m/km (190 in/mile) were compared with the 
static loads on smooth pavement surface. The spikes in the distribution of axle loads were flattened after 
transformation because of the greater deviation of dynamic loads of vehicles. The increase of DLC led to 
a reduction in the percentage of lighter loads but increase in the percentage of heavier loads. The heavier 
axle loads were expected to accelerate pavement deterioration in M-E pavement design. The distinction of 
load distribution on tandem and tridem axles were more obvious, especially for the IRI value of 3 m/km.  
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.4  Static and dynamic axle load spectra: (a) single axle (major); (b) tandem axle (major); (c) 
tridem axle (major); (d) single axle (minor); (e) tandem axle (minor); and (f) tridem axle 
(minor) 
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5.2 Mechanistic-Empirical Pavement Analysis Considering Dynamic Axle 
Loads 

5.2.1 Analysis Inputs and Assumptions 

Asphalt overlay is commonly used for rehabilitating asphalt pavements with or without milling part of 
original surface layer. In this study, two AC overlays with different thicknesses of existing AC layers 
(254 mm and 152.4 mm) were designed as the representative pavement structures of major and minor 
highways in M-E pavement design. The thicknesses of new AC layers were 50.8 mm. Table 5.2 shows 
the inputs of material property, traffic, and climate. Figure 5.5 presents the dynamic modulus of asphalt 
mixture in overlay at different temperatures and loading frequencies, which was set as the Level 1 input in 
MEPDG. The material properties of mixture in AC overlay were obtained from producer, while the 
mixture’s default material properties were designated for the existing AC layer. For both pavement 
structures, a 254-mm base layer and a 254-mm subbase layer were laid on the subgrade, and the typical 
material properties in NJ were designated for the base layer, subbase layer, and subgrade. 

Table 5.2 Pavement structure and material inputs for Pavement ME 
Input Parameters Major highway Minor highway 

Material 
Property 

AC 
Overlay 

Thickness (mm) 50.8 
Air Void (%) 6.2 
Total Binder Content (%) 5.4 
Effective Binder Content by Volume (%) 10.5 
Asphalt mixture 9.5M64 (level 3) 

Existing 
AC Layer 

Thickness (mm) 254 152.4 
Air Void (%) 5 
Total Binder Content (%) 5 
Effective Binder Content by Volume (%) 11.6 
Asphalt mixture 9.5M64 (level 3) 

Base 
Thickness (mm) 254 
Classification A-1-a 
Resilient Modulus (MPa) 552 

Subbase 
Thickness (mm) 254 
Classification A-1-b 
Resilient Modulus (MPa) 414 

Subgrade Classification A-1-a 
Resilient Modulus (MPa) 731 

Traffic 
Two-way annual average daily traffic (AADT) 2202 1575 
Operational speed (km/h) 104 80 

Climate Mean annual air temperature (°C) 11.7 
Mean annual precipitation (mm) 1306 
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Figure 5.5  Dynamic modulus of asphalt mixture for overlay 
 
The dynamic axle load spectra were modified using Eq. 34 based on the estimated DLC by Eq. 33 and 
static axle load spectra from WIM data in LTPP database. Vehicle class distribution and axles per truck 
were updated according to the modified axle load spectra. The default monthly adjustment factor was 
used. The two-way annual average daily traffic (AADT) of minor and major highways were 1575 and 
2202, respectively. The operational speeds of minor and major highways were 80 km/h (50 mph) and 104 
km/h (65 mph), respectively. The environmental data was required to perform an analysis in the MEPDG. 
The climate data at the station US NJ-144169 (latitude: 40.05; longitude: -74.4) in Jackson Township, NJ 
was applied for the pavement structures on major and minor highways using M-E pavement design. The 
default parameters in transfer functions were applied for M-E analysis to quantify the impact of dynamic 
loads on pavement performance.  

5.2.2 Impact of Dynamic Loads on Pavement Performance 

In general, the new asphalt overlay shows a similar cracking pattern which matches the fatigue cracking 
in the existing asphalt layer after opening to traffic. The cracking propagation from the existing AC layer 
into and through the new AC overlay is named as reflective cracking. The occurrence of reflective 
cracking tends to cause water infiltration, rapid deterioration of the underlying pavement structure, and 
reduction of pavement service life. Reflective cracking is the result of strain concentration in the AC 
overlay due to the movement induced by shearing or bending action from traffic loading and 
daily/seasonal temperature changes in the existing asphalt pavement at the vicinity of cracks. Thus, 
reflective cracking is one of the asphalt overlay failure criteria. Regarding AC overlay rutting, it is well 
accepted that rutting or permanent deformation is the combined result of densification due to volume 
change of asphalt mixture and repetitive shear deformation because of plastic flow without volume 
change. The rut depth in the AC layer is another failure criteria of AC overlay design. Rutting depth is 
impacted by many factors, such as binder content, binder type, mix type, temperature, load level, and 
initial density after compaction [115].  
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In M-E pavement design, reliability is a combined indicator of probability that each performance measure 
will be less than a specific level over the analysis period [27]. The reliability level of 90% was considered 
in the analysis. In the M-E analysis, the initial IRI values were assumed to be 1 m/km (63 inch/mile) for 
both types of highways, and the terminal IRI values at the 20th year of service period were found to be 
2.25 m/km (142 inch/mile) and 2.32 m/km (146 inch/mile) for major and minor highways, respectively. 
When the initial IRI was 2 m/km (126 inch/mile), the terminal IRI values at the 20th year of service period 
were 3.97 m/km (250 inch/mile) and 4.03 m/km (254 inch/mile) for major and minor highways, 
respectively. Besides, the initial IRI was found to have no influence on the propagation of pavement 
distress, except for terminal IRI value. Therefore, the IRI values of 1m/km, 2 m/km, and 3 m/km, which 
included a reasonable range of IRI values during pavement service period, were applied to derive the 
dynamic axle load spectra to evaluate the effect of dynamic loads on pavement distresses. The M-E 
outputs indicated that dynamic loads increased IRI, rut depth (total and AC only), and fatigue cracking 
(reflective) during the pavement service period. The effect of dynamic loads on reflective fatigue cracking 
was relatively more significant. 

Figure 5.6 illustrates the comparison of reflective fatigue cracking and rut depth under the static and 
dynamic loads in pavement structures on major highway. Reflective fatigue cracking of AC overlay 
pavement sections includes reflective cracking and bottom-up cracking in AC layer. The AC overlay 
shows a similar cracking pattern which matches the existing cracking. Reflective fatigue cracking 
increased rapidly after the 2-year service period and approached a specific value after a 10-year analysis 
period. The rut depth in the AC layer accumulated slowly over time. It indicated the impact of dynamic 
loads on reflective cracking varied during the cracking propagation. The influence became more 
significant from the 3rd to 7th years, while slight influence was observed at the end of cracking 
propagation. The impact of dynamic loads on rut depth was found to slightly increase with the 
accumulation of rut depth with pavement age, but the overall impact was not significant. 
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(a) 

 
(b) 

Figure 5.6  (a) Fatigue cracking (reflective); and (b) rut depth under the static and dynamic loads on 
pavement structure on major highway (10% existing cracking) 
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Figure 5.7 illustrates the reflective fatigue cracking and rut depth in pavement structure on minor 
highway under the static and dynamic loads. The reflective fatigue cracking propagated rapidly 
after the 2.5-year service period and approached to a constant value after 15-year analysis period. 
Compared to the trend of reflective fatigue cracking, the impact of dynamic loads on rut depth 
was relatively small. The impact of dynamic loads on reflective cracking and rut depth varied 
depending on pavement age, and the influence was not so significant as compared to the 
influence on major highways. To quantify the susceptibility of pavement distress to dynamic 
loads, the increasing ratio due to dynamic loads was defined by Eq. 35. 

𝑅𝑅𝑠𝑠−𝑑𝑑 =  
𝐷𝐷𝑠𝑠 − 𝐷𝐷𝑑𝑑
𝐷𝐷𝑠𝑠

 (35) 

where, Rs−d is the increasing/decreasing ratio due to dynamic loads; Ds is pavement distress estimated 
using static axle load spectra; and Dd is pavement distress estimated using dynamic axle load 
spectra. 
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(a) 

 
(b) 

Figure 5.7 (a) Fatigue cracking (reflective); and (b) rut depth under the static and dynamic loads on 
pavement structure on minor highway (10% existing cracking) 

 
The fatigue cracking in the existing AC layer was a potential influential factor for cracking propagation. 
The cracking percentage in existing layers were set as 5%, 10%, and 15%, which covered a full-scale 
range observed in field inspection. Table 5.3 shows the increasing ratio of reflective fatigue cracking 
considering different levels of existing fatigue cracking in AC layer. As expected, the cracking 
percentage increased with pavement roughness levels increased. Existing cracking raised the 
increasing ratio of reflective fatigue cracking. The ratio of reflective fatigue cracking increased then 
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decreased over time. For major highways with the existing fatigue cracking of 10%, the dynamic 
axle loads increased the reflective fatigue cracking by 2.1% after a 3-year service period when 
the IRI of pavement profile was 1 m/km. The reflective fatigue cracking was increased by 4.5% 
if the IRI was 2 m/km, and the reflective fatigue cracking was increased by 8.2% when the IRI 
was 3 m/km.  

For minor highways with the existing fatigue cracking of 10%, the increasing ratios of reflective 
fatigue cracking were 2%, 3.6% and 5.4% after a 7-year service period for the IRI values of 1 
m/km, 2 m/km, and 3 m/km, respectively. Therefore, the influence of dynamic axle loads on the 
pavement structure of major highways was more significant than that of minor highways. The 
impact of dynamic loads on reflective fatigue cracking was distinguished at early stage of service 
period and eliminated after 10-year analysis period when the propagation of reflective cracking 
reached to a specific level. The impact of dynamic loads became much less significant after the 
pavement was fully deteriorated, which was primarily determined by the existing cracking for 
overlay design. The selection of distress threshold and analysis period would dominate the 
increasing ratio. 

Table 5.3 Effect of existing cracking on increasing ratio of reflective fatigue cracking due to dynamic 
loads 

Type Existing Cracking % IRI 3-Year 5-Year 7-Year 10-Year 15-Year 20-Year 

Major 

5% 
1 m/km 1.4% 1.6% 0.5% 0.0% 0.1% 0.1% 
2 m/km 3.2% 3.4% 1.0% 0.1% 0.1% 0.2% 
3 m/km 5.7% 6.1% 1.6% 0.1% 0.2% 0.3% 

10% 
1 m/km 2.1% 2.0% 0.6% 0.0% 0.0% 0.1% 
2 m/km 4.5% 4.2% 1.1% 0.1% 0.1% 0.2% 
3 m/km 8.2% 7.5% 1.9% 0.1% 0.2% 0.3% 

15% 
1 m/km 2.4% 2.1% 0.5% 0.1% 0.1% 0.1% 
2 m/km 5.3% 4.5% 1.1% 0.1% 0.1% 0.1% 
3 m/km 9.6% 8.1% 1.9% 0.1% 0.2% 0.2% 

Minor 

5% 
1 m/km 0.4% 1.1% 1.6% 0.7% 0.2% 0.1% 
2 m/km 0.6% 2.0% 2.8% 1.2% 0.4% 0.1% 
3 m/km 1.0% 2.9% 4.1% 1.8% 0.5% 0.1% 

10% 
1 m/km 0.6% 1.7% 2.0% 0.9% 0.2% 0.1% 
2 m/km 1.1% 3.1% 3.6% 1.4% 0.4% 0.2% 
3 m/km 1.7% 4.6% 5.4% 2.0% 0.5% 0.2% 

15% 
1 m/km 0.9% 2.1% 2.3% 0.8% 0.3% 0.1% 
2 m/km 1.6% 3.7% 4.0% 1.5% 0.4% 0.1% 
3 m/km 2.4% 5.6% 6.0% 2.1% 0.6% 0.1% 
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5.2.3 Impact of Overweight Traffic on Pavement Performance under Dynamic 
Loads 

Previous studies have proved that overweight trucks would accelerate pavement deterioration and shorten 
pavement service life using M-E pavement design method [20], [24]. Rys et al. (2016) quantifies the 
fatigue life reduction of asphalt pavement caused by combined traffic on the basis of the axle load 
distribution and percentage of overweight vehicles. They found that the increase of percentage of 
overweight vehicles from 0% to 20% could induce as high as 50% reduction in fatigue life of asphalt 
pavement. Titi et al. (2018) investigated the influence of overweight truck traffic on the pavement 
performance of four flexible pavement structures in Wisconsin using the M-E pavement design method 
and field investigation. It was suggested that the proportion of pavement damage induced by overweight 
trucks increased most of the pavement distresses by 0.5% to 4%. Few studies have investigated the 
overweight impact on pavement distresses considering dynamic loads due to rough surface conditions. In 
this study, the impact of overweight traffic on reflective fatigue cracking of AC overlay on asphalt 
pavement would be investigated using the dynamic axle load spectra in M-E pavement design. 

New Jersey Department of Transportation defined 356 kN (80 kips) as the legal limit of gross vehicle 
weight. 1 kip (1000-pound force) equals to 4.45 kN (kilonewton). The legal weights of single axle on 
non-Interstate and Interstate highways are 100 kN (22.4 kips) and 89 kN (20 kips), respectively. The legal 
weight of tandem axle is 151 kN (34 kips) [96]. The WIM data was categorized into two traffic groups. 
The first group included the trucks within the legal weight limit and the overweight trucks (total traffic), 
and the second group only included the trucks within the legal weight limit (non-overweight traffic). The 
considered legal weight limits on single, tandem, and tridem, and quad axles were 89 kN (20 kips), 151 
kN (34 kips), 187 kN (42 kips), and 240 kN (54 kips), respectively. Figure 5.8 presents the static and 
dynamic axle load spectra of non-overweight traffic on major and minor highways. The overweight 
weight percentage were 5.4%, 5.8%, 6.2%, and 6.5% corresponding to the scenarios of static load on 
smooth pavement surface and dynamic load on rough pavement surface with the IRI values of 1 m/km, 2 
m/km, and 3 m/km. For minor highways, the overweight percentage were 3.5%, 3.6%, 3.7%, and 3.9% 
when static load and dynamic loads were induced on the rough pavement surfaces and when the IRI 
values of 1 m/km, 2 m/m, and 3 m/km were considered. 
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(e) 

 
(f) 

Figure 5.8  Static and dynamic axle load spectra of non-overweight traffic: (a) single axle (major); (b) 
tandem axle (major); (c) tridem axle (major); (d) single axle (minor); (e) tandem axle 
(minor); and (f) tridem axle (minor) 

 
Figure 5.9 (a) illustrates the reflective fatigue cracking in the pavement structures on major highway 
under the static and dynamic loads of total and non-overweight traffic. Slower propagation of reflective 
fatigue cracking was observed when dynamic loads were considered because of the exclusion of heavier 
axle loads in non-overweight traffic scenario. The exclusion of dynamic overweight axle loads decreased 
the reflective fatigue cracking when dynamic loads were considered. However, the terminal percentages 
of reflective cracking under total and non-overweight traffic were identical due to the dominant role of 
existing cracking in the cracking development in pavement overlay design. Figure 5.9 (b) presents the 
reflective fatigue cracking in the pavement structures on minor highway under the static and dynamic 
loads of total and non-overweight traffic. Taking into account the fact that dynamic axle load spectra 
accelerated the pavement distress under total traffic and decelerated the pavement distress under non-
overweight traffic, the impact of overweight traffic on pavement distress would be significant when 
dynamic loads were considered. It suggested that the negative influence of overweight traffic on 
pavement distresses were underestimated if static axle load spectra were applied in the M-E design. 
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(a) 

 
(b) 

Figure 5.9  Fatigue cracking (reflective) of (a) major highway and (b) minor highway under total and 
non-overweight traffic (10% existing cracking) 
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The design reliability is supposed to be selected in balance with the performance criteria. The 
recommended reflective fatigue cracking (alligator cracking) of AC overlay on Interstate and primary 
highways are 10% and 20%, respectively. The recommended rut depth on Interstate and primary 
highways are 10.16 mm (0.4 inch) and 12.7 mm (0.5 inch), respectively. The recommended reliability 
level of principal arterials is 90% [116]. The considered criteria of fatigue cracking were 10% and 5% due 
to the limit of cracking propagation as shown in Figure 5.6 (a) and Figure 5.7 (a). To quantify the effect 
of overweight traffic loading on pavement distress, the reduction ratio of pavement service life was 
defined by Eq. 36. 

𝑅𝑅𝑟𝑟 =
𝐿𝐿𝑇𝑇 − 𝐿𝐿𝑁𝑁
𝐿𝐿𝑁𝑁

 (36) 

where, Rr is the reduction ratio of pavement service life; LT is the service period when a given level of 
pavement distress occures under total traffic; and LN is the service period when a given level of pavement 
distress occures under non-overweight traffic. 

Since the terminal rut depth at the end of design life was much smaller than the recommended values as 
shown in Figure 5.6 (b) and Figure 5.7 (b), the pavement service life determined by rut depth and 
corresponding reduction ratio due to dynamic loads were not considered in this study. Figure 5.10 shows 
the impact of overweight traffic on reduction ratio of pavement life considering different percentage of 
existing fatigue cracking in the AC layers. The considered threshold of reflective fatigue cracking was 
5%. The analysis results indicated that the dynamic axle load spectra increased the impact of overweight 
traffic on reflective fatigue cracking, and the pavement structure on major highway tended to be more 
sensitive to the overweight traffic loading. One of the reasons would be the greater values of DLC 
corresponding to the higher operational speed on major highways. Pavement service life was found to be 
reduced with the existing fatigue cracking increased and the reduction ratio of pavement service life 
increased with the existing fatigue cracking increased. The effect of existing cracking had more 
significant impact on the pavement structure on major highway. The service life of pavement structure 
with 15% existing fatigue cracking was reduced by additional 12%, which increased the reduction ratio of 
pavement life up to 46%. 
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(a) (b) 

Figure 5.10 Impact of overweigh traffic on reduction ratio of pavement life considering different 
percentages of existing fatigue cracking: (a) major highway; and (b) minor highway 

5.2.4 Discussion 

The M-E outputs indicated that dynamic loads increased IRI, rut depth, and reflective fatigue cracking 
during pavement service period, as expected. The effect of dynamic loads on reflective fatigue cracking 
was relatively more significant as compared to the effects on rut depth. The impact of dynamic loads on 
reflective fatigue cracking was distinguished at early stage of service period and eliminated after 10-year 
analysis period when the propagation of reflective cracking reached to a specific level which was 
dominated by the existing cracking in AC layer. The impact of dynamic loads on fatigue cracking was not 
so significant as that in previous work because of the lower vehicle speed and higher level of terminal 
fatigue cracking. The impact of dynamic loads on rut depth was limited due to the pavement structure 
type [114] . 

The analysis results indicated that the dynamic axle load spectra enhanced the impact of overweight 
traffic on reflective fatigue cracking, and the pavement structures on major highways would be more 
sensitive to the overweight traffic loading due to the greater DLCs excited at higher operational speed on 
major highway. The pavement service life was found to decrease with the percentage of existing fatigue 
cracking increased, and the reduction ratio of pavement service life increased with the existing fatigue 
cracking percentage increased. The effect of existing cracking had more significant impact on the 
pavement structure on major highway. 
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5.3 Summary of Mechanistic–Empirical Analysis of Pavement 
Performance 

This study quantified the impact of dynamic traffic on pavement distress of AC overlay on asphalt 
pavement using M-E pavement design method. Dynamic tire forces were calculated for single, tandem, 
and tridem axles considering various IRI values of pavement profiles and axle loads. The calculated 
DLCs of dynamic tire forces increased as IRI values increased but decreased with axle loads increased. 
The nonlinear regression models of DLC with respect to IRI and axle loads were derived to predict the 
DLC values given any axle load interval designated by MEPDG. The dynamic loads excited by rough 
pavement surface condition were considered by transforming the static axle load spectra to dynamic axle 
load spectra. After the modification, the spikes in the distribution of axle loads were flattened because of 
the greater deviation of dynamic loads. The increase of DLC led to a decrease in the percentage of lighter 
loads but an increase in the percentage of heavier loads. 

The impact of dynamic loads on reflective fatigue cracking was distinguished at early stage of service 
period and eliminated after 10-year analysis period when the propagation of reflective cracking reached to 
a specific level which was dominated by the existing cracking in AC layer. The dynamic axle load spectra 
enhanced the impact of overweight traffic on reflective fatigue cracking, and the pavement structures on 
major highways tend to be more sensitive to the overweight traffic loading because of the greater DLCs 
excited at higher operational speed on major highway.  

A methodology was proposed to quantify the dynamic axle load spectra on the performance of AC 
overlay on flexible pavement considering pavement longitudinal unevenness, and typical pavement 
structures of a major route and a minor route were illustrated in the case study. The proposed method 
could be extensively applied to other flexible pavement structures in MEPDG. In future study, the 
analysis results need to be verified based on the field pavement performance subjected to the dynamic 
loads and static loads which might be difficult to capture in the field survey now. 
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6. PREDICTING ASPHALT PAVEMENT TEMPERATURE WITH 
REGRESSION AND NEURAL NETWORKS  

The precision of WIM measurement systems can be significantly influenced by pavement temperature 
variations, which alter strain signals collected by sensors beneath the pavement. Studies have shown 
substantial changes in elasticity modulus during winter, underscoring the importance of accurate 
pavement temperature data. Despite the direct collection of pavement temperature by embedded sensors, 
researchers seek alternative approaches due to limitations such as cost and durability issues. Pavement 
temperature prediction models, leveraging comprehensive weather data, including temperature, humidity, 
wind, and precipitation, offer promising avenues. However, challenges persist in data acquisition 
methods, as many research models' validations rely on estimates due to a lack of true pavement 
temperatures at various layers. Additionally, existing prediction models often focus solely on air 
temperature or pavement surface temperature, neglecting crucial environmental data. Furthermore, 
available models typically target specific depths of interest, lacking a complete understanding of 
prediction performance across various depths, including the base layer. These challenges underscore the 
need for robust solutions in WIM technology to ensure accurate and reliable measurements. 

This study aims to overcome challenges in pavement temperature modeling by employing empirical 
modeling techniques to predict temperature variations at different depths, including the base layer. By 
integrating data from nearby weather stations and field observations at MnROAD, the research will 
develop and compare multiple models to accurately predict road temperature, offering insights for 
selecting features and determining optimal sensor placement for enhanced weigh-in-motion system 
performance. 

6.1 Field Study Facility 

The experimental data were collected through a field test conducted at MnROAD, a pavement test track 
consisting of various research materials and pavements owned and operated by the Minnesota Department 
of Transportation. MnROAD includes 3 miles of mainline (I-94 interstate), 3.5 miles of the original 
westbound I-94, and a 2.5-mile low volume road. There are over 80 distinct test sections located on the 
mainline and the original westbound I-94. The layout of the sensors used to collect data for the field test is 
shown in Figure 6.1(a). The pavement temperature was collected in the location depicted in Figure 6.1(c). 
Meanwhile, as shown in Figure 6.1 (b) and (d), two weather stations located on the north-west (NW) and 
south-east (SE) sides of the test road section were used to collect weather conditions such as: wind speed 
and direction, air temperature, humidity, etc. Furthermore, Figure 6.2 displays the cross-section of the 
structure of the tested pavement, which comprises hot mix asphalt (HMA), MnDOT Class 6 granular 
base, MnDOT Class 3 sub-base, selected granular layer, and clay loam [117]. 
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(a) 

 

(b) 

 
(c) 

 
(d) 

 
 

Figure 6.1  Satellite view of the (a) MnROAD research area; (b) NW weather station; (c) road embedded 
temperature sensor location; and (d) SE weather station 

 

Figure 6.2  Cross section of the pavement in tested road section 

6.2 Weather Factors and Temperature Data Collection 

To predict the temperature of asphalt pavement at various depths using weather station (NW) data, this 
study utilized a dataset spanning 52 days from August to September, with recordings taken every 15 
minutes for 24 hours per day. 

True pavement temperature data beneath the pavement surface, ranging from 0.25 to 12 inches, was 
collected using the thermocouple embedded at the test location. These ground truth measurements then 
were used to verify the accuracy of the prediction models. In addition, the models were validated using 
weather data from a second weather station (SE). 
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Table 6.1 presents a comprehensive list of the weather factors collected from the weather stations. These 
factors include wind speed and direction, air temperature, humidity, barometric pressure, solar radiation, 
and precipitation.  

Table 6.1 Weather factors collected by NW and SE weather station 
Description Unit 
Air Temperature Celsius 
Atmospheric Pressure Millibars 
Heated Rain Gauge Precipitation inches 
Relative Humidity Percent % 
Net Radiation Watts/Square Meter 
Wind Direction from North Degrees 
Wind Average Speed Meter/Second 
Gust Maximum Speed Meter/Second 
Gust Direction from North Degrees 

 
Among the collected weather factors, an example of air temperature data is presented in Figure 6.3 (a).  
The air temperature range for NW and SE weather stations is from 3.98° to 32.16° and 4.85° to 32.75° 
Celsius, respectively. The temperature data collected by the thermocouple is shown in Figure 6.3 (b), and 
from this data it is clear to see that pavement temperature at a depth of 0.25 inches has the largest 
variation and temperature at a depth of 12 inches has the smallest variation within the same day. Given 
space limitations, this plot only shows the temperature at a depth of 0.25 inches rather than display all 
data at seven depths. Figure 6.3 (c) shows a comparison between the air temperature collected by the two 
weather stations and the temperature measured 0.25 inches below the pavement surface. The lowest and 
highest temperatures were recorded at a depth of 0.25 inches below the road surface, with values of 8.41° 
and 51.65° Celsius, respectively. It is clear that the pavement temperatures at 0.25 inches differ 
significantly from the corresponding air temperatures collected by NW and SE weather station. 
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(a) 

 

(b) 

 

(c) 

Figure 6.3 Collected temperature by (a) the NW and SE weather stations; (b) thermocouple at varied 
depts of pavements, and (c) comparing the NW and SE weather stations and the 
thermocouple’s data at a depth of 0.25 inch 

6.3 Data Analysis and Development of Prediction Models 

As there are multiple weather factors that can influence the temperature of the pavement's surface and 
other layers, it is important to recognize that some factors have a significant influence while others have 
marginal effects, leading to a trade-off between including all factors for improved accuracy and the 
corresponding increase in processing time and costs. [118]. A normality test on both the surface 
temperature and base layer’s temperature data and the weather station data was conducted, to select the 
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appropriate correlation tests because some tests have the normality assumption. Then the input factors 
correlation levels with pavement temperature for pavement prediction models are determined with the 
correlation coefficient method chosen through the normality test. This study intends to train regression 
models with 1) all nine weather factors and 2) only the ones that show a strong to weak correlation 
relationship with asphalt pavement temperature. Four regression models are evaluated in this study. 

6.3.1 Normality test and feature selection methods 

Optimal data analysis relies heavily on selecting appropriate feature selection methods, which requires 
first assessing the dataset’s conditions, including its normal distribution. In this study, the Shapiro-Wilk 
test, a widely used normality test [119], was chosen for this purpose because it has been shown to have 
greater power in detecting non-normality compared to other normality tests [120]. Given a variable O 
with ordered random samples, O1, O2, O3, … , Ol (l is the total number of the random samples), where 
O1 ≤  O2 ≤  O3 ≤ ⋯ ≤  Ol, O� is the sample mean, Shapiro and Wilk [121] proposed the W test based on 
the statistic which is defined as: 

𝑊𝑊 =  
(∑ 𝑎𝑎𝑙𝑙𝑂𝑂𝑙𝑙𝑚𝑚

𝑙𝑙=1 )2

∑ (𝑂𝑂𝑙𝑙  −   𝑂𝑂�)𝑚𝑚
𝑙𝑙=1

 
(37) 

where  

𝑎𝑎𝑙𝑙 = (𝑎𝑎1, … , 𝑎𝑎𝑙𝑙) =  
𝑚𝑚𝑇𝑇𝑉𝑉−1

(𝑚𝑚𝑇𝑇𝑉𝑉−1𝑉𝑉−1𝑚𝑚)2
 (38) 

where m = (m1, … , ml) T denote the expected values of the order statistics of a sample of independent 
and identically distributed random variables, drawn from the standard normal distribution. The covariance 
matrix, V, characterizes the relationship between these order statistics [122]. 

Two widely recognized methods for feature selection are Pearson’s and Spearman’s correlation 
coefficients [123], [124]. Pearson’s correlation coefficient necessitates normally distributed continuous 
variables and relies on a parametric test for computation, whereas Spearman’s correlation coefficient is a 
non-parametric measure of the strength and direction of the relationship between two variables, which 
does not assume that the data follow a normal distribution [125]. Given two variables X1 and X2, with n 
samples each, the Pearson correlation coefficient (rp) and Spearman’s correlation coefficient (rs) can be 
determined by [124]: 

𝑟𝑟𝑝𝑝 =  
∑ (𝑋𝑋1,𝑗𝑗  −   𝑋𝑋1���)(𝑋𝑋2,𝑗𝑗  −   𝑋𝑋2���)𝑛𝑛
𝑗𝑗=1

�(∑ �𝑋𝑋1,𝑗𝑗  −   𝑋𝑋1����
2𝑛𝑛

𝑗𝑗=1 )(∑ (𝑋𝑋2,𝑗𝑗  −   𝑋𝑋2���)2𝑛𝑛
𝑖𝑖=1 )

 (39) 

where, X1,j and X2,j are the variable samples, and j = 1, 2, 3, … n. X1��� and X2��� are means of the values in X1 
and X2 variable. 

𝑟𝑟𝑠𝑠 =  1 −
6∑ 𝑑𝑑𝑗𝑗

2𝑛𝑛
𝑗𝑗=1

𝑛𝑛(𝑛𝑛2 − 1)
 (40) 
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where, di
2 is the difference between the jth pair of the ranked variables, rp and rs both range in value 

from +1 to -1, where a value of +1 indicates a perfect positive correlation and a value of -1 indicates a 
perfect negative correlation between the two variables. 

6.3.2 Pavement temperature prediction based on regression analysis 

This study utilized four different methods for regression analysis, including 1) linear regression model, 2) 
simple polynomial regression model, (3) polynomial regression model (including a power of degree of the 
same input features), and 4) artificial neural network (ANN) modelling. Each model offers unique 
advantages. Linear regression stands out for its simplicity and ease of interpretation, providing a 
straightforward means to model variable relationships. Simple polynomial regression introduces 
curvature, improving modelling accuracy for complex dependencies. Polynomial regression with different 
degrees offers flexibility, capturing intricate relationships in various scenarios. ANN modelling excels at 
handling complexity and nonlinearity. Using the values of the correlation coefficients, this study 
determined the strength of the relationship between the weather factors and asphalt pavement 
temperature, ranging from perfect to weak. Relevant weather factors were included in the analysis to 
predict the temperature of the pavement’s surface and base layer using various regression models. The 
comprehensive examination under different conditions and feature sets equips researchers with valuable 
insights for selecting the most suitable model for their specific research requirements. Details of the 
models employed in this study are presented below. 

Linear regression model 
Linear regression is a statistical method used to model the relationship between a dependent variable and 
one or more independent variables. It is often preferred for its simplicity, making it easy to understand 
and interpret. Given N independent variables (X1, X2, X3, … XN) and a dependent variable (Y), the X and 
Y following the linear regression relationship as [126]: 

𝑌𝑌𝑗𝑗 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1,𝑗𝑗 + 𝛽𝛽2𝑋𝑋2,𝑗𝑗 + 𝛽𝛽3𝑋𝑋3,𝑗𝑗 + ⋯+ 𝛽𝛽𝑁𝑁𝑋𝑋𝑁𝑁,𝑗𝑗 +  𝜀𝜀𝑗𝑗 (41) 

where β0 represents the Y-intercept of the regression surface, βj (j = 1,2, 3, …, N) is the slope of the 
regression surface with respect to variable Xi,j, Yj is the dependent variable value for observation j, and εj 
represents the random error component for the jth case. 

Polynomial regression model 
Polynomial regression is a type of regression analysis that models the relationship between a dependent 
variable and one or more independent variables by fitting a polynomial equation to the data. Compared to 
the linear regression model, polynomial regression fits a broad range of functions, providing a better 
approximation of the relationship between the dependent and independent variables, especially when the 
relationship is curvilinear [127]. To clearly present the research, this study specifies two types of 
polynomial regression. The first type includes interaction effects, which differ from linear regression. The 
second type includes higher order polynomial terms of the same input features. For the first type of the 
model, according to the equations used by Kim et al. [128] and Qiu et al. [129], when the degree of the 
polynomial regression model is set to 2, the model includes only the features that are products of, at most, 
two distinct input features. This means that the terms with a power of 2 of the same input features are 
excluded. The resulting equation can be expressed as: 

𝑌𝑌𝑗𝑗 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1,𝑗𝑗 + ⋯+ 𝛽𝛽𝑁𝑁𝑋𝑋𝑁𝑁,𝑗𝑗 +  𝛽𝛽𝑁𝑁+1𝑋𝑋1,𝑗𝑗𝑋𝑋2,𝑗𝑗 + ⋯  + 𝛽𝛽𝑁𝑁(𝑁𝑁+1)
2

𝑋𝑋(𝑁𝑁−1),𝑗𝑗𝑋𝑋𝑁𝑁,𝑗𝑗 +  𝜀𝜀𝑗𝑗 (42) 



77 

 

For the second type polynomial regression model that includes terms with a power of 2 of the same input 
features can be expressed as: 

𝑌𝑌𝑗𝑗 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1,𝑗𝑗 + ⋯+ 𝛽𝛽𝑁𝑁𝑋𝑋𝑁𝑁,𝑗𝑗 +  𝛽𝛽𝑁𝑁+1𝑋𝑋1,𝑗𝑗𝑋𝑋2,𝑗𝑗
+ ⋯  + 𝛽𝛽𝑁𝑁(𝑁𝑁+1)

2
𝑋𝑋(𝑁𝑁−1),𝑗𝑗𝑋𝑋𝑁𝑁,𝑗𝑗 +  𝛽𝛽𝑁𝑁(𝑁𝑁+1)

2 +1
𝑋𝑋1,𝑗𝑗

2 + ⋯+  𝛽𝛽𝑁𝑁(𝑁𝑁+3)
2

𝑋𝑋𝑁𝑁,𝑗𝑗
2

+ 𝛽𝛽𝑁𝑁(𝑁𝑁+3)
2 +1

𝑋𝑋1,𝑗𝑗
2𝑋𝑋2,𝑗𝑗 +  𝛽𝛽𝑁𝑁2+𝑁𝑁𝑋𝑋(𝑁𝑁−1),𝑗𝑗

2𝑋𝑋𝑁𝑁,𝑗𝑗 +  𝜀𝜀𝑗𝑗 
(43) 

Artificial neural network model 
ANN has been widely used to solve the regression problems through a learning process by adjusting the 
values of the connection weights among the neurons [130]. Shan et al. [131] conducted a study on asphalt 
pavement deformation, which incorporates various factors, laboratory tests, and three neural network 
algorithms. This study used the multilayer perceptron, which is the most widely adopted ANN model in 
different industries [132]. A multilayer perceptron may have one or more hidden layers and finally an 
output layer. Multilayer perceptron is described as being fully connected, with each node connected to 
every node in the next and previous layer [133]. Two hidden layers were considered in this study as 
shown in Figure 6.4. Activation maps are processed through a nonlinear activation function. While the 
traditional activation function is typically a sigmoid function [134], the rectified linear unit (ReLU) has 
gained popularity in recent years [135] because ReLU has been shown to accelerate the convergence of 
stochastic gradient descent when compared with sigmoid functions. Furthermore, ReLU can be easily 
implemented by thresholding activation maps at zero [136]. 
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Figure 6.4  A multilayer perceptron with two hidden layers 
 
To assess the predictive ability of the proposed models, this study used two evaluation metrics: root mean 
squared error (RMSE) and R-squared (R2). While RMSE can be informative, it has a range between zero 
and positive infinity and may not provide meaningful information about the performance of the regression 
with respect to the distribution of the ground truth elements [137]. Therefore, Chicco et al. suggest that R2 
should be used as the standard metric to evaluate regression analyses in any scientific domain [137]. The 
RMSE and R2 value is produced by [138]: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
∑ �𝑌𝑌𝚥𝚥�  −   𝑌𝑌𝑗𝑗�

2𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 (44) 

𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

=  
∑ �𝑌𝑌𝚥𝚥�  −   𝑌𝑌��2𝑛𝑛
𝑗𝑗=1

∑ �𝑌𝑌𝑗𝑗  −   𝑌𝑌��2𝑛𝑛
𝑗𝑗=1

 (45) 

where SSR and SST is sum of squared regression and sum of squared total (total variation), respectively. 
Yȷ�  is the predicted value of dependent variable for observation j. 
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6.4 Evaluation of Weather Factors on Temperature of Asphalt Pavement 
using Statistical Analysis and Machine Learning Models 

In this section, true pavement temperatures at various depths are used to test the normality of the weather 
factors and asphalt pavement temperature. This assessment aimed to establish the relationship between 
asphalt pavement temperatures and various weather factors. Subsequently, the correlation coefficient was 
calculated to help determine which factors can be used to fit the four different regression models. The 
analysis of the results involved examining the R2 and RMSE values under 28 conditions (7 different 
depths and 4 different sets of features selected based on different correlation coefficients levels) for each 
regression model. 

6.4.1 Normality Test of Weather Factors and Asphalt Pavement Temperature 

The normality of true temperature in asphalt pavement and weather factors collected by weather stations 
was investigated in this section, to check if the data conforms to a normal distribution. The Shapiro-Wilk 
test is employed to assess the normality of the true temperature in pavement and weather factors, and the 
resulting p-Values are reported in Table 6.2. The p-Values for all the tested parameters are less than 0.05, 
indicating that none of the features follow a normal distribution. Results suggest that the weather station 
factors and asphalt pavement temperature values did not follow a normal distribution.  

6.4.2 Correlation Analysis between Weather Factors and Road- embedded 
Temperature Sensors 

In order to predict the temperature of pavement’s surface and base layer accurately, this study utilized the 
weather factors (as presented in Table 6.1) collected by the weather stations as predictor variables, and the 
accuracy of the prediction was examined by the thermocouple temperature sensors embedded in the 
pavement. 

Table 6.2 Results of Shapiro-Wilk Test for Normality of Weather 
Factors and Asphalt Pavement Temperature 

Features 𝐩𝐩-Value 
Air Temperature 9.70E-04 
Atmospheric Pressure 8.02E-03 
Heated Rain Gauge Precipitation 3.61E-15 
Relative Humidity Percent 5.41E-04 
Net Radiation 2.37E-05 
Wind Direction from North 2.29E-03 
Wind Average Speed 3.19E-03 
Gust Maximum Speed 2.32E-04 
Gust Direction from North 1.65E-02 
0.25 (HMA) 9.82E-36 
1.25 (HMA) 1.22E-30 
2.25 (HMA) 2.23E-24 
4.00 (HMA) 9.35E-22 
5.00 (HMA) 5.91E-17 
6.00 (granular) 9.81E-12 
12.00 (granular) 8.11E-26 
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Therefore, to predict the pavement and base layer’s temperature, this study starts with all the available 
weather factors. Spearman’s correlation coefficient was used to choose which weather factors would be 
included in the prediction since all the weather factors did not follow a normal distribution. The values of 
Spearman’s correlation coefficient between the weather factors and the temperature at various depths 
below the road surface are shown in Figure 6.5. The results showed that there were no features that highly 
influenced the temperature at a depth of 12 inches. When the depth was between 0.25 inches and 6 inches, 
air temperature and relative humidity percent had a high influence on the temperature of surface and base 
layer, and net radiation influenced the temperature when the depth was more than 2.25 inches. 
Additionally, the correlation between the features and the asphalt pavement temperature decreased as the 
depth increased. The top significant weather conditions are air temperature, humidity, and radiations for 
temperatures at all depths especially for temperatures between surface to about 2.25 inches. 

 

Figure 6.5 Spearman’s correlation coefficient between weather factors and temperature of the surface and 
base layer at various depths 
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6.4.3 Prediction of Surface and Base Layer’s Temperature based on Weather 
Factors 

This study explores various models to predict the surface and base layer’s temperature using weather 
factors. The models considered include linear regression, simple polynomial regression, polynomial 
regression (including a power of degree of the same input features), and artificial neural network (ANN). 

To fit the data to the four models, the study selected all weather factors and the weather factors based on 
their Spearman’s correlation coefficient at three levels as being more than 0.1, 0.2, or 0.4. Since the 
correlation coefficient between weather features and temperature of surface and base layer changes at 
different depths, the number of features that fit the models also changes. This means that the number of 
independent variables and parameter values used to predict temperature are different even when fitting 
them to the same type of model. 

For the entire weather station dataset, this study randomly assigned 80% of the data for training the 
models and the remaining 20% for testing the model’s performance. The evaluation metrics used were R2 
and RMSE. To ensure consistency across all models, the same seed number was used to randomly split 
the data into training and testing sets for different depths. Otherwise, the results may vary if different 
random seeds are used. 

Table 6.3 to 6.6 present the R2 and RMSE obtained when fitting the features to the linear regression, 
polynomial regression, polynomial regression (excluding a power of degree of the same input features), 
and ANN; the number of features depends on the setting of the correlation coefficient values. When the 
correlation coefficient is more than 0.4, there are no R2 and RMSE values available for the depth of 12 
inches. This is because, at that depth, none of the features have a correlation coefficient greater than 0.4, 
which means that there is no significant relationship between the weather factors and the road temperature 
at that depth. 

Linear regression 
Table 6.3 displays the number of weather factors included in the model (n), and the two model 
performance measurements (R2 value and RMSE) calculated with the NW weather station data. Referring 
to Table 6.3, the more features or weather factors will be included in the model if the Spearman’s 
correlation coefficient rule is less utilized to guide the feature selection. For example, if we select the 
model based on strong correlation (R2 ≥ 0.4), a lower number of features will be selected (3 for depth at 
0.25 inches), however if the correlation requirement is relaxed, more features will be selected (9 for 
|rs| ≥ 0).  It is clear to see that the model performs better when the model includes more weather factors 
as R2 values increase and RMSE values decrease which indicates a weaker relationship between the 
variables and a slight decrease in the accuracy of the predictions. However, there is minimal benefit gain 
when the Spearman’s correlation coefficient is less than 0.2. The accuracy and relationship decrease for 
the linear regression model as the depth increases as shown when the R2 value decrease and RMSE value 
increase slightly as the depth below the pavement increases from 0.25 to 4 inches. When the depth 
increases from 5 inches to 12 inches, corresponding to the granular base layer, distinct from the HMA 
layer above it, the R2 value continues to increase. Additionally, when the absolute value of the correlation 
coefficient is less than 0.2, RMSE decreases. However, when the correlation coefficient is greater than or 
equal to 0.2, the RMSE increases on the granular base layer. 
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Table 6.3 Evaluation of linear regression model for predicting surface and base layer’s temperature 
Depth (in) Correlation coefficient |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟒𝟒 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟐𝟐 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟏𝟏 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎 

0.25 (HMA) 
n 3 5 7 9 

R2 0.85 0.88 0.88 0.88 
RMSE 3.11 2.81 2.73 2.74 

1.25 (HMA) 
n 3 4 7 9 

R2 0.78 0.82 0.83 0.83 
RMSE 3.32 3.01 2.94 2.94 

2.25 (HMA) 
n 3 3 6 9 

R2 0.77 0.77 0.77 0.77 
RMSE 3.34 3.34 2.96 2.96 

4.00 (HMA) 
n 2 3 5 9 

R2 0.64 0.67 0.69 0.74 
RMSE 3.51 3.36 3.26 2.99 

5.00 (HMA) 
n 2 3 5 9 

R2 0.60 0.65 0.67 0.73 
RMSE 3.44 3.22 3.13 2.84 

6.00 (granular) 
n 2 2 7 9 

R2 0.46 0.46 0.61 0.68 
RMSE 3.55 3.55 3.01 2.73 

12.00 (granular) 
n 0 4 5 9 

R2  0.39 0.50 0.51 
RMSE  2.75 2.47 2.46 

*n represents the number of weather factors included in the model. 

Simple Polynomial Regression  
As presented in table 6.4, compared to the linear regression model, fitting the features to a simple 
polynomial regression model shows performance improvements in the R2 and RMSE values, except for 
depths of 2.25 inches where Spearman’s correlation coefficients are greater than or equal to 0.2. The 
maximum R2 value achieved is 0.91, representing a 0.03 improvement compared to the performance of 
the linear regression model. Additionally, the RMSE value shows a reduction of 0.36. Overall, the trend 
remains similar when varying both the Spearman’s correlation coefficient and the depth. When the 
Spearman's correlation coefficient is lower, indicating a weaker initial correlation between variables, and 
there are more features in this range, it suggests that when incorporating features into the model based on 
the lower correlation coefficient, a larger number of features will be included. The inclusion of more 
features in the model improves its performance. However, the additional improvement in performance 
becomes less significant when adding more features with lower correlations. Based on the features 
obtained from the weather stations considered in this study, the models exhibit lower accuracy in 
predicting temperature as the depth increases.  
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Table 6.4 Evaluation of simple polynomial regression model for predicting surface and base layer’s 
temperature 

Depth (in) Correlation coefficient |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟒𝟒  |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟐𝟐 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟏𝟏 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎 

0.25 (HMA) 
n 3 5 7 9 

R2 0.87 0.90 0.91 0.91 
RMSE 2.93 2.55 2.40 2.38 

1.25 (HMA) 
n 3 4 7 9 

R2 0.81 0.85 0.87 0.87 
RMSE 3.13 2.79 2.53 2.51 

2.25 (HMA) 
n 3 3 6 9 

R2 0.74 0.74 0.83 0.84 
RMSE 3.15 3.15 2.56 2.50 

4.00 (HMA) 
n 2 3 5 9 

R2 0.66 0.71 0.74 0.81 
RMSE 3.40 3.17 2.97 2.52 

5.00 (HMA) 
n 2 3 5 9 

R2 0.62 0.68 0.73 0.81 
RMSE 3.36 3.05 2.84 2.39 

6.00 (granular) 
n 2 2 7 9 

R2 0.47 0.47 0.66 0.77 
RMSE 3.51 3.51 2.81 2.33 

12.00 (granular) 
n 0 4 5 9 

R2  0.42 0.55 0.59 
RMSE  2.67 2.36 2.23 

*n represents the number of weather factors included in the model. 

Polynomial Regression (Including a Power of Degree of the Same Input Features) 
The data in Table 6.5 indicates that the polynomial regression model includes not only the interaction 
terms between different input features (X1,jX2,j, X2,jX3,j, … , X(N−1),jXN,j) as simple polynomial model but 
also includes higher power terms of the same input features (X1,j

2X2,j, X2,j
2X3,j, … , X(N−1),j

2XN,j). Table 
6.5 presents the inclusion of features in the model and showcases the model's performance in terms of R2 
and RMSE at different depths and correlation coefficient scales. The polynomial regression model 
achieves a maximum R2 value of 0.92, which is slightly superior to the simple polynomial regression and 
notably better than the linear regression. The overall pattern remains consistent with the previous two 
models.  
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Table 6.5 Evaluation of polynomial regression model (including a power of degree of the same input 
features) for predicting surface and base layer’s temperature 

Depth (in) Correlation coefficient |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟒𝟒  |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟐𝟐 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟏𝟏 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎 

0.25 (HMA) 
n 3 5 7 9 

R2 0.88 0.91 0.92 0.92 
RMSE 2.82 2.42 2.34 2.31 

1.25 (HMA) 
n 3 4 7 9 

R2 0.82 0.87 0.88 0.88 
RMSE 2.98 2.57 2.46 2.41 

2.25 (HMA) 
n 3 3 6 9 

R2 0.77 0.77 0.84 0.85 
RMSE 2.98 2.98 2.47 2.41 

4.00 (HMA) 
n 2 3 5 9 

R2 0.67 0.74 0.75 0.83 
RMSE 3.36 2.99 2.90 2.43 

5.00 (HMA) 
n 2 3 5 9 

R2 0.63 0.72 0.74 0.82 
RMSE 3.32 2.86 2.77 2.33 

6.00 (granular) 
n 2 2 7 9 

R2 0.50 0.50 0.67 0.78 
RMSE 3.40 3.40 2.76 2.28 

12.00 (granular) 
n 0 4 5 9 

R2  0.50 0.63 0.64 
RMSE  2.47 2.14 2.09 

*n represents the number of weather factors included in the model. 

Artificial Neural Network (ANN) 
Table 6.6 demonstrates that the ANN model provides the highest level of accuracy in predicting pavement 
temperature. When considering all nine weather factors to forecast the pavement temperature at a depth of 
0.25 inches, the ANN model achieves an impressive R2 value of 0.96 and a RMSE of 1.69. When the 
depth increases to 12 inches, the RMSE reaches its lowest value of 1.40 and R2 is 0.85. The overall 
pattern remains consistent with the previous three models. All models suggest increased performance 
when more weather factors are included, but with a decreasing marginal gain, and shows that prediction 
accuracy decreases as the depth of the pavement increases. 
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Table 6.6 Evaluation of artificial neural network model for predicting surface and base layer’s 
temperature 

Depth (in) Correlation coefficient |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟒𝟒  |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟐𝟐 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎.𝟏𝟏 |𝐫𝐫𝐬𝐬| ≥ 𝟎𝟎 

0.25 (HMA) 
n 3 5 7 9 

R2 0.90 0.93 0.95 0.96 
RMSE 2.58 2.14 1.84 1.69 

1.25 (HMA) 
n 3 4 7 9 

R2 0.86 0.90 0.92 0.93 
RMSE 2.69 2.22 1.99 1.84 

2.25 (HMA) 
n 3 3 6 9 

R2 0.81 0.81 0.91 0.92 
RMSE 2.74 2.74 1.88 1.79 

4.00 (HMA) 
n 2 3 5 9 

R2 0.69 0.78 0.83 0.90 
RMSE 3.28 2.77 2.42 1.81 

5.00 (HMA) 
n 2 3 5 9 

R2 0.66 0.75 0.81 0.90 
RMSE 3.17 2.69 2.37 1.73 

6.00 (granular) 
n 2 2 7 9 

R2 0.51 0.51 0.76 0.88 
RMSE 3.39 3.39 2.34 1.65 

12.00 (granular) 
n 0 4 5 9 

R2  0.63 0.73 0.84 
RMSE  2.13 1.83 1.40 

*n represents the number of weather factors included in the model. 

In summary, the results reveal that all nine factors influence the surface and base layer’s temperatures and 
contribute to increasing the R2 while decreasing the RMSE, even when the included features are only 
those with small correlation coefficients. However, as the model includes additional features with lower 
correlation, the marginal gain in performance starts to decrease. In other words, the incremental 
improvement gained from including marginally correlated features becomes less pronounced. This raises 
a trade-off issue between time efficiency and higher accuracy because one weather factor is associated 
with one specific sensor - time efficiency when modelling - while inclusion of multiple weather factors 
requires additional data collection and resources for processing requirements, but results in higher 
accuracy. Therefore, finding a balance between data availability, time, and accuracy is crucial. Based on 
this study’s results, only including the features that have a strong relationship with the road temperature 
does not significantly reduce the R2 and RMSE values when compared to the model including all the 
weather features. 

Comparing all the models, the ANN performs the best followed by polynomial regression model 
(including a power of degree of the same input features), the simple polynomial regression model, and 
lastly the linear regression model.  
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This research compares the predicted temperature generated by the four models based on all nine weather 
factors to the real temperature. Due to space limitations, this study presents the performance of four 
models in predicting the temperature at a depth of 0.25 inches as shown in Figure 6.6. The results show 
that the predicted temperature generated by the ANN model is almost identical to the real temperature 
experienced by the pavement, indicating that the ANN model has the best performance among the four 
models. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 6.6 Real surface and base layer’s temperature and predicted temperature by the (a) linear 
regression model; (b) polynomial regression model; (c) polynomial regression model 
(including a power of degree of the same input features), and (d) ANN model 

Model Validation Based on the Secondary Weather Station 

To assess the model’s effectiveness for other weather stations located in different areas and using 
different sensors to collect the same weather factors, the performance of the generated model based on the 
data from the weather station NW was evaluated using weather station SE. 

Figure 6.7 displays both the R2 and RMSE values calculated based on the data from weather station SE 
(Figure 6.7 (b) and (d)) compared to the measurements with NW station data (Figure 6.7 (a) and (c)). 
Note the models are constructed with NW station data. So the tests performed with NW station data is 
considered as in-sample validation and the test performed with SE station data is considered as external-
sample validation which can indicate the robustness of the model’s performance.  

The performance of the models is considered consistent with the two validation results. Overall, there is a 
little performance loss based on the validation performed with external-sample data compared to the in-
sample data. Both performances suggest which models perform worst and which perform best, with the 
following order of worst to best; linear, simple polynomial (Polynomial 1), polynomial (which includes a 
power of degree of the same input features, polynomial 2), and ANN as shown in Figure 6.7 (b) and (d).  

In general, model performance decreases with increasing depth, and the performance differences were 
most pronounced at a depth of 12 inches. However, compared to the R2 values and RMSE calculated 
using data from weather station NW, those obtained using data from weather station SE showed a more 
significant decrease as depth increased (Figure 6.7 (b) and (d)). While the decrease in R2 was not as 
apparent for depths of 0.25 and 1.25 inches when compared to the data from weather station NW, it 
became more significant as depth increased.  
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(a) (b) 

  

(c) (d) 

Figure 6.7 R2 was calculated using data from weather station (a) NW and (b) SE, and RMSE was 
calculated using data from weather station (c) NW and (d) SE 
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6.5 Summary of Pavement Temperature Prediction Using Weather Station 
Data 

From this work key findings are summarized as follows: 

The pavement temperature data collected from the road embedded temperature sensor and weather 
stations do not follow a normal distribution. Furthermore, the Spearman’s correlation coefficient between 
the weather factors and surface and base layer’s temperature decreased as the depth increased, and results 
revealed that none of the weather factors have a strong correlation with pavement temperature when the 
depth is beyond 12 inches. 
 
When more weather factors are included in the models, better performance is achieved. As depth 
increases, accuracy decreases in predicting pavement temperature.  
 
To achieve the highest level of accuracy while maintaining cost efficiency, it is recommended to install 
the WIM sensor at a depth of 2.25 inches below the pavement surface. This placement enables accurate 
temperature calculations using a weather station sensor with a high degree of precision, as indicated by an 
R2 value exceeding 0.8. Moreover, this approach streamlines the data requirements by focusing on three 
essential weather factors: air temperature, humidity, and radiation. 
 
Among the four prediction models, the deep learning-based regression model, ANN, generated the best 
results at all pavement depths. When all the weather factors were considered and evaluated using the data 
collected by the embedded temperature sensor, the R2 value was approximately 0.96, indicating a strong 
relationship between the predicted and actual temperature values. Additionally, the RMSE was found to 
be approximately 1.69°C, indicating the low average difference between the predicted and actual 
temperature values. 
 
For ANN model, the R2 can reach as high as 0.90 for predicting temperature at 0.25 inches by only 
including the top 3 weather factors suggested by Spearman’s correlation coefficient (air temperature, 
radiation, and humidity) compared to 0.96 by including all 9 weather factors. This finding translates to a 
practice trade-off where the loss of prediction performance is only less than 0.06 however the number of 
sensors needed for data collection is reduced from 9 to 3. This trend is consistent for all the depths 
however, as depth increases there is more loss of performance in terms of R2 while holding the same 
number of the significant weather factors. 
 
The study constructed models with the data from weather station NW, and evaluated the performance 
based on in-sample R2 and RMSE. Furthermore, the performance was validated with external data from 
weather station SE. The results confirmed that the model performance was robust and consistent for both 
stations, with the best-performing model being the ANN. 

As the current study only validated the temperature prediction model in the selected location of 
Albertville, Minnesota, in future research, the validation of the temperature prediction model in diverse 
geographical locations will valuable to enhance its robustness and applicability. Additionally, there will 
be an emphasis on quantifying the temperature adjustment factors based on the predicted pavement 
temperature to improve the accuracy of the weigh-in-motion weight measurements. Moreover, other 
weather conditions’ direct impacts on WIM weight measurements should be quantified to further improve 
WIM performance. For example, wind speed and direction can directly affect the wander of vehicles 
which in turn will impact the performance of a WIM system.   
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7. ASSESSING VEHICLE WANDERING EFFECT USING IN-
PAVEMENT FIBER-BRAGG SENSORS AND CAMERA SYSTEM 

After identifying methods to obtain pavement temperature, which significantly influence the accuracy of 
WIM measurements, this section aims to tackle challenges in WIM systems, with a particular focus on 
embedded sensor and image-capturing systems. Embedded sensors, despite offering advantages like 
immunity to electromagnetic interference, face challenges such as the wander effect, leading to 
inaccuracies in weight measurements due to misalignment with wheel positions. In contrast, image-
capturing systems rely on tire inflation pressure data, potentially leading to inaccuracies, and require high-
quality cameras for precise figure extraction. These challenges underscore the need for alternative 
approaches to enhance the accuracy of WIM systems, considering the limitations of both sensor-based 
and image-based methods. 

7.1 Framework for Weigh-in-motion using Camera Data and GFRP-FBG 
Sensors Fusion 

Figure 7.1 further shows the network of the hybrid WIM system, which combines embedded sensor 
system utilizing in-pavement GFRP-FBG sensors with computer vision through a camera. The camera 
captures images of the moving vehicle, with a particular focus on the vehicle's wheels. This enables the 
system to calculate the distance between the sensor and the wheel loading point, which is crucial for 
KENPAVE's analysis. KENPAVE software is employed to compute stress factors, aiding in the 
understanding of pavement behavior under changing loading positions and environmental conditions. 
These stress factors are influenced by sensor installation depth and distance from the loading point, which 
plays a significant role in the comprehensive analysis of the wander effect's impact. As the vehicle passes 
over the installed GFRP-FBG sensor, variations in wavelength occur due to temperature and strain 
changes. Following temperature compensation via a temperature sensor, the strain induced by the 
vehicle's passage can be computed after include the HMA parameter to calculate. Then after combine the 
results through the hybrid WIM system, the weight of vehicle can be determined. 
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Figure 7.1  Integrated hybrid WIM system for accurate wheel load measurements 

7.2 Wheel Load Measurement by GFRP-FBG Sensor 

For the objectives of this study, the determination of vehicle weight is predicated on utilization of two 
GFRP-FBG sensors, either the longitudinal segment of an 3D sensor or an 1D sensor for the 
determination of vehicle weight, while the temperature sensor (T) is used in temperature compensation. 
As shown in Figure 2.7, specifically, all sensors can be installed on the right, left, or both side (if enough 
budget) of the center line within a typical width of the driving lane. FBG-1 needs to be strategically 
placed above the wheel path, while FBG-2 can be located within a reasonable distance of FBG-1, which 
is 0.521 m away from FBG-1 as in the example of Figure 2.7 (a). Moreover, FBG-1, FBG-2, and the 
temperature sensors should be aligned on the same axis. To calibrate the positioning of both the actual 
elements and the figures, four specific positions are designated in this study. The positions L1 and L3 
correspond to placement of the FBG-1 and FBG-2 sensors, respectively. The L2 location is positioned 
equidistant between L1 and L3 and Location L4 is situated at a certain distance away from L3. Based on 
layout of the GFRP-FBG sensors, this section details further how to measure wheel load from GFRP-
FBG sensors accurately using the hybrid system. 

7.2.1 Strain Collection by GFRP-FBG Sensor 

For the FBG sensor, a portion of an optical fiber is exposed to an UV laser, and the optical FBG are made 
by laterally exposing the core of single-mode fiber to a periodic pattern of intense ultraviolet light [90], 
[139]. The specific wavelength of light (Bragg wavelength) will be reflected by the grating when a 
broadband incident light is transmitted into the fiber [139]. The Bragg wavelength can expose as [90], 
[140]:  

𝜆𝜆 = 2𝑛𝑛𝑛𝑛 (46) 

where n is the effective index of refraction and Λ is the grating periodicity of the FBG. 

  



92 

 

For the embedded FBG sensors, the measured field interacts with the sensitive optical fiber, causing the 
wavelength change of the transmitted light in the optical fiber [141], [142]. Once vehicles pass through 
the GFRP-FBG sensors, the Bragg wavelength changes as a function of temperature and strain, which is 
dependent on the grating period [90]. The general expression of the strain–temperature relationship for 
the GFRP-FBG strain sensor and temperature compensation sensor can be described as [140]: 

∆𝜆𝜆
𝜆𝜆

=  
∆𝜆𝜆𝜀𝜀
𝜆𝜆𝜀𝜀

+
∆𝜆𝜆𝑇𝑇𝑒𝑒
𝜆𝜆𝑇𝑇𝑒𝑒

= (1 − 𝑃𝑃𝑒𝑒)𝜀𝜀 + (𝛼𝛼 +  𝛾𝛾)∆𝑇𝑇𝑒𝑒 (47) 

∆𝜆𝜆𝑇𝑇𝑒𝑒
𝜆𝜆𝑇𝑇𝑒𝑒

= (𝛼𝛼 +  𝛾𝛾)∆𝑇𝑇𝑒𝑒 
(48) 

in which λ is the Bragg wavelength of the grating, which experiences strain and temperature changes, and 
where λTe  and λε is Bragg wavelength of the grating, which only experience temperature and strain 
change. The ∆λTe  and ∆λε represents the alteration in Bragg wavelength due to temperature and strain, 
respectively. α, γ, and Pe are the thermal expansion coefficient, thermal-optics coefficient, and optical 
elasticity coefficient, respectively. Then, the strain of sensor can be determined as follows: 

𝜀𝜀 =  
1

(1 − 𝑃𝑃𝑒𝑒) (
∆𝜆𝜆
𝜆𝜆
−
∆𝜆𝜆𝑇𝑇𝑒𝑒
𝜆𝜆𝑇𝑇𝑒𝑒

) (49) 

7.2.2 Strain Correction based on the Host Material  

In addition, for the GFRP-FBG sensor, the optical fiber is covered by the protecting layer (GFRP) and 
host material (HMA). When the host material is different, the strain transfer error of the GFRP-FBG 
sensor is also different. Accounting for the impact of the packaging layer between the optical fiber and 
host material, the relationship between average strain experienced by the GFRP-FBG sensor (ε�c) and the 
actual strain of the host material (ε�h) is as follows [143]: 

𝜀𝜀ℎ̅ =
𝜀𝜀𝑐̅𝑐

1 − 𝜙𝜙
=  𝑘𝑘𝜀𝜀𝑐̅𝑐 (50) 

where k is the strain transfer error modification coefficient and ϕ is the measurement error of the 
packaged GFRP-FBG, which can be computed as [90]: 

𝜙𝜙 =  �
𝜀𝜀𝑐̅𝑐 − 𝜀𝜀ℎ̅ 
𝜀𝜀ℎ̅

� =  �
𝑐𝑐𝑐𝑐𝑐𝑐ℎ�𝜉𝜉𝑙𝑙𝑓𝑓� − 1
𝜉𝜉𝑙𝑙𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠ℎ (𝜉𝜉𝑙𝑙𝑓𝑓)

� (51) 

where lf is the gage length of the package GFRP-FBG sensor and the ξ represents the eigen value of its 
characteristic function, which can be calculated as [143]: 

𝜉𝜉2 =  
2

𝐸𝐸0𝑟𝑟02(� 1
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

� 𝑙𝑙𝑙𝑙 �𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟0
� +  � 1

𝐺𝐺ℎ
� 𝑙𝑙𝑙𝑙 � 𝑟𝑟ℎ

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
�)

 (52) 
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where E0 and r0 are the elastic modulus and outer radius of the optical fiber; GGFRP and rGFRP are the 
shear modulus and outer radius of the protecting layer (GFRP); Gh and rh is the shear modulus and outer 
radius of the host material layer. 

For different host materials, the shear modulus (Gh) is different, with the dynamic modulus (E) changed. 
The shear modulus on various temperature and loading frequency  was generated using a constant 
Poisson’s ratio (μ) with the following equation [144]:  

𝐺𝐺ℎ =  
𝐸𝐸

2(1 + 𝜇𝜇)
 (53) 

The dynamic measurement error is used to correct the strain values generated by the GFRP-FBG sensors 
based on different temperatures and the loading frequencies, where the temperature is various by seasons, 
and the loading frequency is influenced by the contact radius of the tire. 

For enhanced accuracy in strain values, the dynamic modulus of the material covering the sensor at 
different temperatures and frequencies is employed to calculate the measurement error between the 
collected and actual strain values. The dynamic modulus of elasticity and parameters, like the asphalt 
concrete pavement's thickness and Poisson's ratio for each road layer, are determined through laboratory 
testing. This data is then fed into the KENPAVE software, which generates the stress factor of the road at 
various locations and depths. Subsequently, the wheel load can be calculated using Equation 9. 

𝐹𝐹 =  
𝜀𝜀𝑧𝑧 ∗ 𝐸𝐸 ∗ 𝑎𝑎

𝛼𝛼𝑧𝑧 − 𝑣𝑣(𝛼𝛼𝑟𝑟 + 𝛼𝛼𝑡𝑡)
 (54) 

where εz is the vertical strain can be calculated through FBG sensor and temperature sensor, E is the 
dynamic modulus of elasticity, a is the contact area, v is the Poisson ratio, αz, αr, and αt is the vertical, 
radial and tangential stress factor. 

7.3 Integration of Image-Based Distance Determination and KENPAVE 
Analysis to Determine the Stress Factor 

Given the fixed-sensor position, variations arise in the signal received by the FBG sensor as vehicles with 
varying wheel loading positions pass. To achieve precise weigh-in-motion data, knowing the wheel-
loading positions is paramount. Additionally, accounting for the stress factor based on road parameters 
and vehicle characteristics becomes crucial in relation to the distance between the wheel loading position 
and the sensor. Hence, this section introduces methodology for determining wheel-load positions from the 
figures, featuring the wheels and elucidates the process of calculating the stress factor utilizing the 
KENPAVE software. 

7.3.1 Determining Wheel Load Position using Camera-Captured Figures 

Accurately determining the wheel load position is crucial for WIM due to the fixed sensor positions. The 
signals generated as a vehicle passes over the sensors vary based on the wheel load position. As four 
positions are identified in this process with two located at the sensor locations (L1 and L3) and the other 
two adjacent positions. For example, L2 can be situated at a distance of 26 cm from each sensor location, 
and L4 can be at a distance of 22.9 cm from L3, respectively. These positions are marked by lines as 
illustrated in Figure 7.2. To ensure safety and avoid direct positioning in front of moving vehicles, the 
cameras need to be placed right ahead of the vehicle on the roadside. 
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Despite the camera being properly set up and capturing images with the wheels, an issue arises in 
accurately determining the precise distance between the wheel loading position and the embedded sensor 
through image due to visual perspective. Despite distance appearing shorter and the potential for actual 
distances to remain consistent, this issue persists due to a visual distortion arising from the image's 
perspective, where objects position farther away seemed compressed, resulting in them appearing shorter 
even though their true distances remain unaltered. Within this study, the four marked lines (for location 
L1 to L4), in conjunction with three calibration lines, hold a pivotal role in quantifying the distance 
between the wheel loading position and the embedded sensor. In scenarios where no vehicles are present, 
the four marked lines and three calibration lines are shown in Figure 7.2 (a). The known distance between 
the edge line and the four marked lines traces on the road formed a pivotal aspect in defining the wheel's 
location. This position is determined through utilization of three calibration lines: 

Purple calibration line: White lines usually exist on the side of the highway edge line, which is used as the 
purple calibration line deliberately positioned consistently above the same spot and is meant to align with 
the white line. If the purple calibration line fails to align with the white line, it signifies the potential for 
camera position shifts caused by windy conditions, leading to the possibility of inaccurate determinations 
of locations. 
Red calibration line: The highway edge lines (red line) can be used as another reference as it determines 
the wheel loading position of trucks in the direction parallel to the edge line. 
Yellow calibration line: The lines perpendicular to the highway edge lines (yellow line) can be used to 
determine the wheel loading position of trucks in the direction vertical to the edge line. 

As depicted in Figure 7.2 (a), once the camera positioning is confirmed using the purple line, the lengths 
of the yellow calibration lines and their corresponding red calibration lines are taken as input variables. 
These inputs are used to determine the output variable, which represents the actual distance between the 
edge line and the marked line. The trained model will then be employed to predict the wheel's location, 
similar to the scenario depicted in Figure 7.2 (b), where the lengths of the yellow and red lines are 
inputted to determine the wheel's position accurately. 
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(a) 

 

(b) 
Figure 7.2  Accurate wheel load position determination and calibration process (a) calibration area with 

marked and calibration lines; (b) example of vehicle passing calibration area 

7.3.2 Stress Factor Determination using KENPAVE Software 

In the field of pavement analysis, when a vehicle's wheels apply pressure to the road surface, resulting 
deformations manifest at varying depths and positions. Consequently, it becomes essential to determine 
stress factor at different depths and distances from the loading point (determined by the wheel location in 
section 2.3.1.), considering elements like contact area, dynamic modulus of the road, temperature, and 
loading frequency as the vehicle moves along the road. 

To address this challenge, the KENPAVE software [145] is employed in this study, offering a solution to 
the wander effect and providing specialized tools extensively used in civil engineering and pavement 
analysis. In this study, KENPAVE facilitates the computation of stress factors, crucial for understanding 
pavement behavior under varying loading position, temperatures, and environmental conditions. Notably, 
stress factors are influenced by parameters, such as sensor installation depth, distance between the sensor 
and loading position. 

With all the requisite information (including dynamic modulus, Poisson's ratio, and thickness of each road 
layer at specific temperatures and loading frequencies from the lab) ready for input into KENPAVE, the 
only missing elements are the contact area and dynamic modulus. Based on the research that compared 
the real tire contact area (detected by a vehicle driving over paper to record the footprint of the wheel) 
with the measured contact area by different equations, including rectangular, circular, deflection, and oval 
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[66], [146], [147], the contact area measured by the oval method generated the lowest average error [66]. 
The equation to evaluate the contact area based on the oval method is [66]: 

𝐴𝐴 =  
2
3
∗ 𝑙𝑙 ∗ 𝑤𝑤 +

𝜋𝜋
3
∗
𝑙𝑙
2
∗
𝑤𝑤
2

 (55) 

where l and w are length and width of the contact area. 

On the other hand, for different pavement road, the dynamic modulus was different, and it is influenced 
by the temperature and loading frequency. Using dynamic modulus data collected in field and NCAT of 
the HMA in the field experiments there a dynamic modulus master curve can be developed by shifting 
twenty-four results gained through testing at different temperature-frequency combi-nations using the 
following equations [148], [149]: 

𝑙𝑙𝑙𝑙𝑙𝑙|𝐸𝐸| =  𝛿𝛿 +  
𝑀𝑀𝑀𝑀𝑀𝑀 − 𝛿𝛿

1 + 𝑒𝑒𝛽𝛽+𝛾𝛾∗𝑙𝑙𝑙𝑙𝑙𝑙𝜔𝜔𝑟𝑟
 (56) 

where E and Max are dynamic modulus and limiting maximum modulus (6.895 GPa [150]); δ, β, and γ 
are fitting parameters. The logarithm of the reduced frequency at the reference temperature (ωr) can be 
computed based on Arrhenius equation [148], [151]:  

𝑙𝑙𝑙𝑙𝑙𝑙𝜔𝜔𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +  
𝛥𝛥𝐸𝐸𝑎𝑎

19.14714
(

1
𝑇𝑇
−  

1
𝑇𝑇𝑟𝑟

) (57) 

where ω is loading frequency at the test temperature. Tr and T are the reference temperature and test 
temperature ( K° ) with the test temperature determined using the installed temperature sensor situated 
next to the GFRP-FBG sensor. ΔEa is activation energy (treated as a fitting parameter). 

Assuming the moving load only impacted the sensor within a loading area six times of the contact radius 
(a) between the tire, the loading frequency can be estimated by vehicle speed divided by the travel length 
(12 times of the contact radius) [58] as follows: 

𝜔𝜔 =   
𝑣𝑣

12𝑎𝑎
 (58) 

Once the contact area and dynamic modulus have been calculated, all necessary input data for the 
KENPAVE software is available, and the software can then generate stress values and subsequently 
calculate the stress factor for varying distances between the sensor and the wheel loading position. 
Considering that sensor positions can differ and even the same vehicle passing by with varying wheel 
load positions can result in different signals received by the sensor, this study aims to utilize the stress 
factor produced by the software for calibration purposes. This approach is taken to mitigate the impact of 
the wandering effect on the accuracy of WIM results. 

7.4 Experimental Results and Discussion 

The subsequent experimental results and discussion section highlights: 1) Strain values from the same 
vehicle positioned differently during each drive; 2) A model trained to calculate distances between the 
wheel loading position and the edge line, aiding in determining the distance between the wheel loading 
position and the embedded sensor; and 3) Stress factors for varying sensor-wheel distances. Through the 
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application of strain and stress factors adjusted with distances derived from image analysis, the accuracy 
of wheel load assessment is evaluated. 

7.4.1 Utilizing GFRP-FBG Sensors for Wavelength-based Strain Calculation 

Strain calculation was conducted using Equations 2 to 4, with the GFRP-FBG sensors collecting 
wavelength data and incorporating temperature compensation via a temperature sensor. As a vehicle 
passed over the sensors, a change in wavelength occurred, illustrated in Figure 7.3 (a). In Figure 7.3 (b), 
the five wheels corresponded to the wavelength peaks positions. In terms of the wheel location in Figure 
7.3 (b), the wheel loading directly above the FBG-1 sensor was farther away from FBG-2. As a result, the 
wavelength changes and peaks recorded by FBG-1 were larger than those observed by FBG-2, as depicted 
in Figure 7.3 (a). 

 

 

(a) (b) 

Figure 7.3  (a) Wavelength change generated by vehicle passage; (b) corresponding wheel loading 
position for FBG peaks 

Given that accuracy in evaluating wheel load is higher when the wheel loading point is in proximity to the 
sensor, the data from FBG-1 was utilized for cases where the wheel loading point was near FBG-1, and 
similarly, the data from FBG-2 was employed when the wheel loading point was close to FBG-2. The 
collected wavelength change data from FBG-1, FBG-2, and the temperature sensor (T) for the 14 vehicle 
runs and the calculated strain derived from the wavelength change are presented in Table 7.1. 

Table 7.1 Wavelength change data and calculated strain for 14 vehicle runs 

Vehicle 
# 

Wavelength 
change  
(FBG-1) 

Wavelength 
change  
(T) 

Strain 
(*E-
4) 

Vehicle 
# 

Wavelength 
change  
(FBG-2) 

Wavelength 
change  
(T) 

Strain 
(*E-
4) 

1 0.143 -0.002 1.194 8 0.143 0.001 1.186 
2 0.132 -0.003 1.111 9 0.153 0.002 1.260 
3 0.142 -0.002 1.183 10 0.127 0.000 1.057 
4 0.151 -0.001 1.252 11 0.136 -0.002 1.153 
5 0.105 -0.001 0.875 12 0.121 0.001 0.988 
6 0.113 -0.002 0.951 13 0.126 -0.001 1.055 
7 0.112 -0.001 0.931 14 0.082 -0.002 0.696 

*unit of wavelength is nm. 
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7.4.2 Calibration Line Utilization and Modeling for Distance Calculation 

With the purple calibration line consistently employed for determining the camera's location, the four 
distinctive marked lines at locations L1, L2, L3, and L4 each used the same red calibration line, along with 
15 yellow calibration lines (as shown in Figure 7.4), which differed for each location. The lengths of the 
red and yellow calibration lines, measured in meters, are presented in Table 7.2.  

These measurements were employed to train a linear regression model as shown in Equation 14 — a fitted 
equation for calculating the distance from the edge line to the wheel location when inputting lengths of the 
red (lr) and yellow calibration lines (ly). The model's R-squared value and standard error is 0.9989 and 
0.3668, when the confidence interval is set at 95%, indicating a good fit to the actual data.  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  −32.307 + 5.148 ∗ 𝑙𝑙𝑟𝑟 + 7.203 𝑙𝑙𝑦𝑦  (59) 

  

(a) (b) 

 

 

(c) (d) 

Figure 7.4  Calibration lines for location (a) L1; (b) L2; (c) L3; (d) L4 
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Table 7.2  Length of the red and yellow calibration lines used to train the distance model 

Number Red 
calibration line  

Yellow 
calibration line  
(L1) 

Yellow 
calibration line  
(L2) 

Yellow 
calibration line 
(L3) 

Yellow 
calibration line 
(L4) 

1 0.030 0.114 0.102 0.089 0.073 
2 0.032 0.113 0.100 0.087 0.072 
3 0.033 0.112 0.099 0.086 0.071 
4 0.035 0.111 0.098 0.085 0.069 
5 0.037 0.110 0.097 0.084 0.068 
6 0.038 0.109 0.096 0.083 0.067 
7 0.040 0.108 0.095 0.082 0.066 
8 0.041 0.106 0.093 0.080 0.065 
9 0.043 0.105 0.092 0.079 0.064 
10 0.045 0.104 0.091 0.078 0.063 
11 0.046 0.103 0.090 0.077 0.062 
12 0.048 0.102 0.089 0.076 0.061 
13 0.049 0.101 0.087 0.074 0.060 
14 0.051 0.100 0.086 0.073 0.059 
15 0.052 0.099 0.085 0.072 0.058 

*unit is m. 

The identical vehicle was intentionally driven over the sensors a total of 14 times, with seven of these 
passes deliberately executed near location 1 (FBG-1), and the remaining seven near location 2 (FBG-2). 
Subsequently, the lengths of the red and yellow calibration lines corresponding to the 14 vehicle runs 
were incorporated as input for the previously trained model. This model served to estimate the distance 
from the edge line to the wheel loading position. It's important to clarify that the designated wheel loading 
position pertains to the right side of the wheel, not the midpoint, which signifies the actual wheel loading 
location. To rectify this discrepancy, the revised distance was corrected by adding half of the wheel 
width, equivalent to 0.103 meters. Both the model-derived distances and the adjusted measurements are 
presented in Table 7.3 for comparison. In this table, a plus sign (+) indicates that the wheel loading point 
resided on the sensor side closer to the centerline, while a minus sign (-) denotes that the wheel loading 
point was situated on the sensor side nearer to the edge line. The sequence of vehicles was based on the 
absolute value of the revised distance derived from the FBG-1 and FBG-2 sensors. 
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Table 7.3 Model-derived and adjusted wheel loading distances for 14 vehicle runs 

Vehicle # Distance 
(FBG-1) 

Revised Distance 
(FBG-1) Vehicle # Distance 

(FBG-2) 
Revised Distance 
(FBG-2) 

1 -0.125 -0.022 8 -0.101 0.002 
2 -0.159 -0.056 9 -0.084 0.019 
3 -0.176 -0.073 10 -0.053 0.050 
4 -0.192 -0.089 11 -0.040 0.064 
5 0.011 0.114 12 -0.033 0.070 
6 -0.232 -0.129 13 -0.205 -0.102 
7 0.027 0.131 14 -0.212 -0.109 

*unit of distance is m. 

7.4.3 Stress Analysis with KENPAVE Software in Pavement Structures 

The KENPAVE software [145], taking into account various input parameters, including the number of 
pavement layers, the depth of the GFRP-FBG sensor, layer moduli, individual layer thickness, Poisson’s 
ratio, contact radial, and contact pressure, was employed for stress analysis. Notably, while the software 
mandates the input of contact pressure, this study did not delve into its determination process. This is 
because the input value of the contact pressure did not influence the outcome; it was solely used to 
calculate the stress factor from the software's stress output. Regardless of the heightened stress output 
resulting from increased input values of the contact pressure, the stress factor, obtained by dividing stress 
by the contact pressure, remained constant when other input information remained unaltered. 

To obtain the contact radius, tire information is essential. For this study, the tire specification was 275/80 
R 22.5, where 275 represents the tire width in millimeters, 80 was the aspect ratio and equal to sidewall 
height divided by section width, "R" was for radial tires, and 22.5 was the rim diameter in inches (57.2 
cm). A contact width of 75% of the tire section width is for optimum performance, as suggested by 
typical design criteria. [152] Therefore, for this tire, the contact width was 0.206 m, with the assumption 
that the contact width was 60% of the contact length [145], the contact length was 0.344 m. And based on 
Equation 10, the contact area was 0.066 m2. With the software defining the contact area as a circle, the 
input contact radius was 0.145 m. 

The pavement information, as shown in Table 7.4 [87], [145], the contact pressure, and contact radius of 
the one wheel were input to the software KENPAVE to generate the stress, when the distance between the 
center of the contact area and the sensor (installed 0.127 m under the road) was from 0 to 1.168 m. The 
software generated a comprehensive array of outputs, including vertical, radial, tangential, shear stress, 
and vertical displacement data, covering a radial coordinate range from 0 to 116.8 m. This research 
employed the vertical, radial, and tangential stress relative to weight to derive vertical, radial, and 
tangential factors (as depicted in Figure 7.5). Subsequently, these factors contributed to the utilization of 
Equation 9 for the determination of vehicle weight. 
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Table 7.4 Parameters input to the software KENPAVE 
Layer Thickness (m) Poisson’s Ratio Dynamic modulus (GPa) 
HMA 0.127 0.35 4.826 
granular base 0.305 0.35 0.414 
sub-base clay loam 0.305 0.35 0.276 
granular 0.178 0.4 0.083 
clay loam 0.089 0.4 0.083 

 
Figure 7.5 Vertical, longitudinal, tangential stress factors 

7.4.4 Accuracy Assessment of Vehicle Load Monitoring  

Having acquired the strain, distances between the sensors and wheel loading position, and the fitted stress 
factor to these distances, the calculation of the wheel load for the first right single wheel became feasible. 
Considering the same vehicle positioned differently during each drive, Table 7.5 provides the computed 
distances between the wheel and the sensor, calculated weight, and accuracy. The weight of the first right 
single wheel was assumed to be one-half of the weight of the first axle, which totals 26,022 N. This value 
was utilized as the actual weight of the first right single wheel for accuracy assessments. Generally, 
accuracy is closely linked to the distance between the wheel loading point and the sensors. For the FBG-1 
sensor, the average accuracy reached 87.831% when the absolute distance from the FBG sensor to the 
wheel loading point was less than 0.089 meters, decreasing to 84.206% when the distance fell below 
0.131 meters. Meanwhile, the FBG-2 sensor achieved an average accuracy of 94.645% when the sensor-
to-wheel loading point distance was less than 0.070 meters. When the distance is less than 0.109 meters, 
the FBG-2 sensor will maintain an average accuracy of 91.027%. Figure 7.6 illustrates the alteration in 
vehicle measurement accuracy in response to changes in the distance between the two embedded GFRP-
FBG sensors and the wheel loading position.  As the distance between the sensors and the wheel loading 
position increases, there is a noticeable and consistent reduction in measurement accuracy. This 
observation underscores the importance of maintaining relatively close proximity between the sensors and 
the wheel loading point for optimal accuracy in vehicle weight measurement. Therefore, it is 
recommended to install the GFRP-FBG sensors approximately every 0.09 meters and 0.07 meters to 
achieve around 85% and 95% accuracy, respectively. Considering the significance of both driving speed 
and the distance between the wheel loading point and the FBG sensor, it's worth noting that this study 
primarily focuses on analyzing the distance's impact on the results. This choice is driven by the practical 
challenge of controlling heavy trucks to drive at the same speed and the same location. To validate the 
influence of speed on the measurement results, it's imperative to conduct additional runs with consistent 
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speeds and controlled wheel loading positions. Further analysis of speed's impact on measurement 
accuracy will be incorporated in future research. 

Table 7.5 Vehicle load accuracy based on dynamic modulus of elasticity, KENPAVE stress factors, and 
GFRP-FBG strain evaluation 

Vehicle 
# 

Revised 
Distance 
(FBG-1) 

Weight 
(FBG-1) 

Accuracy 
(%) 

Vehicle 
# 

Revised 
Distance 
(FBG-2) 

Weight 
(FBG-2) 

Accuracy 
(%) 

1 -0.022 26750.916 97.199 8 0.002 26275.504 99.026 
2 -0.056 26429.119 98.435 9 0.019 28168.385 91.752 
3 -0.073 29826.825 85.378 10 0.050 24817.696 95.372 
4 -0.089 33747.883 70.310 11 0.064 28061.367 92.163 
5 0.114 27505.864 94.298 12 0.070 24698.723 94.915 
6 -0.129 32990.593 73.220 13 -0.102 30495.575 82.808 
7 0.131 33672.318 70.601 14 -0.109 21117.985 81.154 

*unit of the distance and weight is m and N.  

 
Figure 7.6 Vehicle measurement accuracy vs distance between the embedded sensor and wheel loading 

position. 

7.5 Summary of Mitigating Vehicle Wandering Effect with In-Pavement 
Sensor-Camera Hybrid System 

This study proposes an in-pavement sensor-camera hybrid system for wheel load detection on highway to 
assess the wandering effect of vehicle on the accuracy of WIM systems based on GFRP-FBG sensors. 
The hybrid system effectively addressed key challenges in WIM systems using either only FBG sensors 
or computer vision, including the lack of comprehensive research on the influence of vehicle wandering 
on WIM accuracy and the persistent difficulties in achieving accurate contact pressure assessment for 
vehicles using computer vision techniques. By integrating the spatial information from the computer 
vision with strain assessments from GFRP-FBG sensors, an effective calibration approach was employed 
in this study to mitigate the wandering effect and enhance the accuracy of the WIM system based on FBG 
sensors. Key findings and conclusions from the study can be summarized as below: 
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Applying calibration line to generate model for distance prediction: This study employed distinct marked 
lines (L1, L2, L3, and L4) to develop a linear regression model accurately estimating the distance from 
the edge line to the wheel loading position. This model's reliability is supported by a strong R-squared 
value of 0.9989 when the confidence interval is set at 95%, providing a solid basis for precise distance 
calculations. 
 
Investigation of the wander effect: Given the fixed position of the sensor and the significant impact of 
varying wheel loading positions on the collected signals, this study accounted for the wandering effect 
using KENPAVE software. The outputs encompassed vertical, radial, and tangential stress, covering a 
sensor-wheel loading distance range of 0 to 116.8 meters. Vertical, radial, and tangential factors were 
derived relative to weight, contributing to the determination of vehicle weight. 
 
High-accuracy WIM measurement: Highly accurate measurement was achieved by taking account factors 
such as the GFRP-FBG sensor assessed strain, distance between the sensor and wheel loading position, 
and KENPAVE software-derived stress factors. Accuracy is closely tied to the proximity of the wheel 
loading point to sensors. FBG-1 achieves an average accuracy of 87.831% for distances under 0.089 
meters, decreasing to 84.206% when the distance less than 0.131 meters. In contrast, FBG-2 achieves 
94.645% accuracy for distances less than 0.070 meters and maintains 91.027% accuracy for distances 
under 0.109 meters. 

In conclusion, this study effectively validated applicability of the proposed sensor-camera hybrid system 
for assessing single-wheel loads while the vehicle is in motion. Through a combination of using high-
sensitive, strong, and durable GFRP-FBG sensors, precise calibration methods, and advanced software 
analyses, this study provides valuable insights into weight evaluation techniques, particularly accounting 
for the wandering effect. The sensor-camera hybrid system's innovative approach, which addresses the 
wandering effect, improves weight measurements for moving vehicles. This enhanced accuracy has 
practical applications in transportation infrastructure maintenance, traffic management, environmental 
impact assessment, pavement design, and research and development, contributing to safer roads and more 
efficient transportation systems. While this study primarily focuses on analyzing the distance's impact on 
results due to practical challenges in controlling speed and location, it acknowledges the limitation of not 
fully exploring the impact of speed, truck load types and configuration, and installation layers within the 
pavement. Future research will address this limitation by conducting additional runs with controlled 
conditions to evaluate speed's influence on measurement accuracy. Furthermore, while the study 
effectively evaluated single-wheel weights using the proposed methodology, future research avenues will 
include dual-wheel weight assessments. Analyzing load distribution and strain patterns in dual-wheel 
configurations could enhance our understanding of multi-axle vehicle behavior and its impact on 
pavement integrity, providing essential insights for both research and practical transportation scenarios. 
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8. HYBRID WIM SYSTEM WITH COMPUTER VISION & IN-
PAVEMENT SENSORS 

In 2022, the United States recorded 283.4 million vehicles, with light trucks accounting for 10.9 million 
units sold during that year [153]. The growing number of vehicles, particularly trucks, can lead to 
accelerated wear and increased structural stress on road infrastructure. This increased demand poses 
additional challenges for road maintenance, impacting the long-term integrity of the roadway system. 
Hence, efficient road maintenance is vital for ensuring safe, sustainable, and economically viable 
transportation infrastructure, minimizing repair costs, enhancing road safety, and facilitating reliable 
traffic flow. Road maintenance is significantly influenced by factors such as vehicle traffic volume, 
diverse vehicle types, and varying weights, all contributing to the degradation of road infrastructure. Of 
particular concern is the impact of heavy trucks, whose substantial weight and associated stresses pose 
significant challenges, accelerating the deterioration of roads. 

Two commonly used methods for obtaining vehicle weight are static weigh stations and weigh-in-motion 
(WIM) stations. Static weigh stations offer high accuracy but have drawbacks as they influence traffic and 
may pose safety concerns. These stations are often situated next to highways, requiring vehicles to come 
to a complete stop or driving at a very low speed for weight measurement, resulting in significant time 
delays [5]. This becomes especially problematic when the volume of vehicles is high, and the capacity of 
static weigh station is insufficient to survey all passing heavy commercial vehicles. In contrast, WIM 
stations offer benefits by providing real-time vehicle weight without disrupting them. However, concerns 
arise regarding the accuracy of vehicle weight measurements. Various factors can influence WIM 
accuracy, including driving speed, weather conditions, pavement temperature, and road roughness [154], 
[155], [156], [157]. Following the ASTM 1318E-09 standard, recognized as the primary WIM standard in 
the United States, it outlines performance requirements for WIM systems categorized as type I, II, and III. 
The standard specifies axle load accuracy tolerances of ± 20%, ± 30%, and ± 15% for type I, II, and III 
systems [139]. Type I and II systems, characterized by lower accuracy, are well-suited for traffic data 
collection with slight variations in performance requirements. In contrast, Type III systems are optimal 
for screening vehicles suspected of weight or load limit violations, pre-selecting them for static weigh 
stations [139]. Therefore, the integration of a highly accurate WIM system holds the potential for 
substantial benefits in enhancing efficiency and safety in vehicle weight monitoring processes. 

There are two primary data acquisition methods to perform WIM measurements including embedded 
sensor systems and image capture systems [158]. The embedded sensor system, also known as in-
pavement sensor system, integrates a data acquisition system with in-pavement sensors  placed beneath 
the road, such as bending plates, load cell plates, polymer piezoelectric sensors, quartz piezoelectric 
sensors, and strain gauge strip sensors [139]. However, electrical sensors in this system face challenges 
such as environmental susceptibility, electromagnetic interference, limited lifespans, and moderate 
measurement errors [58]. Fiber Bragg grating (FBG) technology emerges as a promising alternative for 
WIM, offering immunity to electromagnetic radiation, non-conductive nature, lightweight design, spark-
free operation, intrinsic safety, high sensitivity to strain, and compatibility with structural elements [59]. 
Therefore, FBG sensors are widely used in research applications like structural health monitoring [60], 
[61], [62]. For asphalt pavement monitoring, researchers utilize FBG sensors to assess the performance of 
multilayered asphalt pavement [159].  However, given that WIM necessitates installing sensors beneath 
the pavement road, it is crucial to employ protective packaging to safeguard them against damage during 
installation and throughout their service life. The materials commonly employed for sensor packaging 
encompass fiber reinforced polymer (FRP) options like glass fiber reinforced polymer (GFRP) [160], 
polypropylene sleeves [161], and silicone tubes [162]. In addressing the demanding sensor service 
environment (under highway pavement), the packaging structure must fulfill several requirements, 
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including a substantial measurement range, strength, construction ease, durability, long-term stability, 
fatigue resistance, and resistance to elevated temperatures [58], [64], [90]. Therefore, GFRP has been 
proved effective for packaging FBG sensors. Nevertheless, an unavoidable challenge in employing in-
pavement sensors for WIM measurements is the wander effect. Given that most of the in-pavement 
sensors operate as point or local sensors in WIM, their precision is significantly affected by the wander 
effect, arising from misalignment with actual wheel positions [61]. This mismatch, stemming from static 
sensor placement, introduces inaccuracies and uncertainties in weight measurements [57].  

Another popular approach in WIM systems is the use of road-side image-capturing systems, eliminating 
the need for installing sensors beneath the road. Feng et al. [65] introduced a novel methodology using 
computer vision to analyze moving vehicle images, extracting tire deformation parameters and calculating 
vehicle weight based on tire information [65]. They estimated the vertical deflection of tires using 
computer vision for three fully-loaded concrete trucks and four empty concrete trucks, resulting in 
average errors of 2.36% and 4.85%, respectively. Kong et al. [66] employed computer vision techniques 
for non-contact WIM solutions. They evaluated the proposed method on SUVs and trucks under various 
conditions, showing robust performance with a maximum error in vehicle weight identification below 
10%. While advantageous in eliminating the need for in-pavement sensor installation, these studies rely 
on manufacturer-provided inflation pressure [71], potentially introducing inaccuracies due to variations in 
tire conditions [67], [68], [69], [70]. This limitation is particularly significant for trucks carrying heavy 
loads, where actual contact pressure may deviate from recommended values. Although researchers 
attempt to include tire deformation to mitigate this influence on accuracy, it still relies on statistical 
estimation. 

Consequently, the WIM system with only embedded in-pavement sensors or image-capturing has 
limitations. Embedded sensors may have the wander effect issue, and image-capturing struggles with 
precise inflation pressure. Despite challenges, embedded sensors offer real-time weight calculations, 
while image-capturing excels in capturing detailed vehicle information. Hence, the authors’ earlier 
research [158] introduced a system that integrates embedded in-pavement strain sensors and image-
capturing systems, yielding promising outcomes. A hybrid system integrating image-capturing systems 
with embedded sensors, which accurately determined the location of the wheel passing over the area of 
the embedded sensors, offered a more comprehensive solution. Prior research solely relied on image-
capturing systems to obtain figures, requiring manual intervention using hands and eyes to identify 
vehicle wheels. The process also involved using a generated model to predict the distance between the 
wheel loading position and the wheel to address the wander effect. This approach proved time-consuming 
and demanded extensive human involvement.  

Even though extensive studies have been conducted on WIM, there are still research gaps, which include 
the following: 

The in-pavement sensor systems for WIM measurements faces an inherent challenge known as the 
wander effect. These sensors, typically operating as point or local sensors, are significantly impacted by 
misalignment with actual wheel positions, resulting in inaccuracies and uncertainties in weight 
measurements. 
 
Image-capturing systems obviate the need for in-pavement sensor installation but depend on 
manufacturer-provided tire inflation pressure data, potentially leading to inaccuracies due to tire condition 
variations. Moreover, this approach necessitates high-quality cameras for precise figure extraction. 
Research explored a hybrid system, involving manual identification of vehicle wheels and predicting 
distances to address the wander effect. This approach required extensive human involvement. 
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Therefore, this paper explores a hybrid WIM system that integrates computer vision and in-pavement 
sensors automatically, designed for efficiency with minimal human input and exhibiting considerable 
potential for real-time vehicle weight detection. This system is cost-effective, utilizing a limited number 
of sensors and one low-cost camera. Additionally, the study minimizes traffic disruption by automatically 
calibrating the camera to ensure high accuracy even in adverse weather conditions. Utilizing the 
developed hybrid system, there was a substantial enhancement in the accuracy of WIM measurements 
employing in-pavement strain sensors. This improvement enabled the application of cost-effective WIM 
systems compliant with the ASTM 1318E-09 standard. Its implications extend to areas such as 
transportation, road maintenance, and ensuring compliance with weight regulations, presenting valuable 
contributions to both research and industry. 

This paper used the GFRP packaged FBG sensors as the in-pavement strain sensors to demonstrate the 
effectiveness of the hybrid system. The GFRP-FBG sensors were chosen due to their high sensitivity to 
strains, high survival rate and little lead time during installation, less requirement in maintenance, long 
life cycle, and immunity to electromagnetic field. A camera was installed on the roadside where the in-
pavement sensors were installed for the needs of computer vision to address vehicle wander effect of in-
pavement strain sensors. Specifically, the primary role of computer vision is to determine the wheel’s 
location, enabling the calculation of the distance between the GFRP-FBG sensor and the wheel loading 
position. This section introduces how these two technologies were integrated to determine the vehicle’s 
weight, providing details about the contribution of each technology in WIM measurement. 

8.1 Framework of The Hybrid System 

The working principle of the proposed hybrid WIM system, as shown in Figure 8.1, involves two sections 
employing both cameras and in-pavement sensors to acquire vehicle weight. The left side shows the 
computer vision procedure that processes the images captured by the camera to detect the position of 
wheels in the vehicle. To accurately determine the distance between the wheel loading position and the 
in-pavement sensor, calibration lines, which were marked on the pavement, were utilized. Distances 
between each calibration line were recorded for image distance calibration, ensuring accurate real-
distance measurements using computer vision. Additionally, the software KENPAVE was employed to 
determine stress factors for vehicles at different distances between the in-pavement sensor and the wheel 
loading position. The stress factor in pavement engineering is employed to quantify the distribution of 
stress within pavement layers, which influenced by various factors such as traffic loads, material 
properties, and environmental conditions. This factor is important in the assessment of pavement 
performance and the design of durable roadway infrastructure. 

On the right side, highlighted in the green box, the procedure of using in-pavement sensors (GFRP-FBG 
sensors) to determine strain is illustrated. The wavelength changes collected by the embedded sensor, 
along with temperature data from a temperature sensor, were used to calculate strain caused by the wheel 
load. This strain was then corrected based on hot mix asphalt (HMA) parameters. The corrected strain, 
along with stress factors, was used to derive the vehicle's weight. 
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Figure 8.1 Hybrid weigh-in-motion system layout: integrating computer vision and in-pavement sensors 

8.1.1 Distance Measurement Between Wheel Loading Position and In-pavement 
Sensor through Computer Vision 

Given the fixed placement of embedded in-pavement strain sensors beneath the road, variations in the 
distance between the sensor and the wheel loading position result in differences in the calculated strain. 
Therefore, it is crucial to pinpoint the exact position where the vehicle’s wheel passes through. To address 
this, computer vision was employed in this section to detect the wheel’s position and measure the distance 
between the wheel’s loading position and the sensor location. 

Wheel Position Determination 
To ascertain the distance between the wheel loading position and the sensor, it is essential to determine 
the wheel’s position. This is crucial as the sensor location remains fixed beneath the pavement. This paper 
utilized images captured by a roadside camera to photograph vehicles as they pass through, with a 
specific focus on extracting information related to the vehicle’s wheels. Given the use of a normal camera 
in this study, the aim is to achieve the process of obtaining wheel-related data without the need for 
sophisticated and costly equipment. Nonetheless, challenges arise in accurately determining the wheel’s 
position, prompting the development of necessary processes for adjusting the figures to enhance 
accessibility. 

The image captured by the camera positioned on the roadside is depicted in Figure 8.2(a). Given the 
varying light conditions throughout the day and across seasons, determining the wheel’s position becomes 
challenging, particularly in low-light situations. Consequently, adjustments were made to the brightness 
of the image containing the vehicle to enhance clarity, as shown in Figure 8.2(b). Also, to accurately 
determine the wheel's position in this study, it is crucial to identify its edges. Therefore, the investigation 
contemplated employing Gaussian blur to diminish noise and enhance the clarity of the edges [163], [164] 
as shown in Figure 8.2(b). Further enhancing image analysis capabilities, the conversion to the HSV 
(Hue, Saturation, Value) color space is pivotal for tasks where color information is paramount [Figure 
8.2(c)]. Unlike RGB (Red, Green, Blue), HSV’s separation of color components facilitates a more 
intuitive analysis [165], [166]. This conversion significantly streamlines the extraction of color-specific 
features, contributing to precise and efficient image analysis. 
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Wheel edge detection was then performed in the modified images; the initial step involved recognizing 
and highlighting the black sections, as shown in Figure 8.2(d). Recognizing that black sections on the 
image may not exclusively represent the wheel, all regions containing black were identified using 
contours. To improve result precision, smaller contours were filtered out, considering the size of the 
wheel [Figure 8.2(e)]. The method allows for facilitating precise localization of the wheel by isolating 
relevant areas that represent the wheel’s distinctive features, thereby enhancing accuracy in position 
determination. 

An additional filter becomes necessary as all wheels in the figure are initially included. Given the study’s 
objective of determining the distance between the wheel loading position and the sensor, it is crucial to 
capture the wheel’s edge when it approaches the sensor. Thus, the analysis focused on discerning the 
wheel and its position when it enters the sensor’s proximity. This targeted approach assisted in identifying 
the contour corresponding to the wheel, leveraging the fixed position of the red square area in Figure 
8.2(f) near the sensors for precise differentiation. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 8.2 Wheel identification through image analysis: (a) image captured roadside; (b) brightness 
adjustment and Gaussian blur for edge delineation; (c) conversion to HSV color space; (d) 
black mask and contour for wheel location; (e) filtering out smaller contours; (f) targeted 
approach with red square near sensors for precise differentiation 

Distance Calibration for Accurate Image Evaluation 
Upon identifying the edge of the wheel near the sensor, it becomes imperative to undertake calibration for 
accurate distance evaluation. Given that the camera is positioned on the roadside rather than the front for 
security and ease of installation without disrupting traffic, the conventional method of determining 
distance in pixels and converting it to real distance cannot be directly applied to the captured images. This 
is due to the perspective distortion—objects appearing larger when close to the camera and smaller when 
farther away—which, if disregarded, would compromise the accuracy of distance determination between 
the sensor and the wheel. Consequently, this study explores the application of calibration lines to adjust 
distances based on the varying proximity of objects in the images. 

The four calibration lines were used in this study prior to the field test: two positioned just above the two 
sensors, marked in the same color (white); and two more located in the middle of the two sensors and next 
to the sensor closest to the centerline, both marked in the distinct color yellow. The measured distances 
between each pair of calibration lines are carefully assessed and utilized for calibration purposes. The 
images were taken at an angle of 45 degrees between the camera and the calibration lines, and the 
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distance from the camera to the white calibration lines, which are closest to the edge line, is 
approximately 4 meters. These images of the calibration lines were captured when no vehicle was over 
them. Similar processes involving Gaussian blur and HSV applied to the image were employed to 
determine the position of the wheel. Masks, which are binary images that highlight specific areas while 
hiding others, were used to isolate the calibration lines. Yellow and white masks are defined for the 
calibration lines, and contours for these lines are identified within the defined area, encompassing the 
sensors and the paved road with the calibration lines, as indicated by the red rectangular area in Figure 
8.3(a). The contours of the calibration lines are easily identified, considering they were painted with a 
width of 0.06 meters. However, for calibration purposes, it is crucial to find the midpoint of the width of 
the lines and apply the actual distance between them for accurate adjustment. Therefore, this study used 
the middle of the width of the lines to represent the calibration lines, as shown in Figure 8.3(b). 

Given that the four calibration lines run parallel to each other and are perpendicular to the width of the 
wheel, each line was divided into multiple points with consistent distances between them. Figure 8.3(c) 
depicts the subdividing of the calibration lines into 50 points, and in Figure 8.3(d), 50 parallel lines (in 
red) were generated based on the subdivision points. These parallel lines were subsequently used to 
determine the position of the wheel’s center and aided in determining the distance between the sensor and 
the wheel in the following sections. For better clarity, Figures 8.3 (e) and (f) present the subdivision of 
calibration lines into 5 points and parallel lines as a demonstration. 
 

  

(a) (b) 

    

(c) (d) 

    

(e) (f) 

Figure 8.3 Image processing and calibration: (a) capturing calibration lines and defining contours; 
(b) calibration using line width midpoint; (c) subdividing calibration lines into 50 points; 
(d) establishing 50 parallels lines; (e) subdividing calibration lines into 5 points; (f) 
establishing 5 parallels lines 
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Determining the Distance between In-pavement Sensor and Wheel Loading Position 
After obtaining the parallel lines in Figure 8.3, these lines were used to determine the loading position of 
the wheel, which is crucial for accurately establishing the distance between the sensor and the wheel. 
Given the non-smooth edge of the wheel, obtaining the line representing the wheel and road becomes 
challenging. 

Utilizing the identified wheel contour from Figure 8.2(f) and the parallel lines in Figure 8.3(d), the blue 
line represents the parallel line closest to the bottom of the wheel; and this line was used to identify a 
point (highlighted in green) with a 5-pixel tolerance, as shown in Figure 8.4(a). These green points were 
then used to determine a line representing the connection between the wheel and the road, which in turn 
determines the width of the vehicles for calculating the contact area in the subsequent process. In 
addition, this line allowed for establishing the middle point of the line to represent the wheel’s center 
(wheel loading position). Once the wheel loading position was obtained, parallel lines were employed to 
determine the distance between the sensor and the lines. As depicted in Figure 8.4(b), the line (in black) 
closest to the wheel’s center (green point) was determined and generated. With knowledge of the pixel 
distances between the green and red points on both sides and the actual distance between them, the 
distance between the sensor and the center of the wheel can be accurately determined. 

 

(a) 

 

(b) 
Figure 8.4 (a) Identification of wheel position using nearest parallel line; (b) locating the bottom parallel 

line closest to the wheel in blue and highlighting points on the closest parallel lines and 
calibration lines with red markings 

Except for the condition depicted in Figure 8.4(b), where the wheel’s center is located between the first 
white (W1) and yellow (Y1) lines, three additional conditions are considered, as illustrated in Figure 8.5. 
These include to the left of W1, between the first yellow (Y1) and second white (W2) calibration lines, 
and between the second white and yellow lines (Y2). The condition next to Y2 is excluded, as the left 
wheel of the vehicle will not traverse that area unless turning into another lane. The evaluation process is 
outlined in Figure 8.6 through pseudocode, with input parameters including the position of the closest two 
points (PM), sorted based on their x-values to ensure the first point is on the left side of the second point. 
The position of the center of the wheel is represented as PCW. Points on the closest parallel line and lines 
W1, Y1, W2, and Y2 are denoted as PW1, PY1, PW2, and PY2. The pixel distance from PCW to the closest 
two points (PDM) is sorted from large to small. Real distances between W1 and Y1 (RDW1,Y1), Y1 and W2 
(RDY1,W2), and W2 and Y2 (RDY2,W2) are defined. The maximum pixel distance between W1 and Y1 is 
denoted as MPW1,Y1. The output is the distance between the center of the wheel and the sensor (DCW_S). 
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Figure 8.5 Multiple conditions for wheel center position and distance calculation 

 
Figure 8.6 Pseudocode for distance calculation 

8.1.2 Strain Evaluation and Correction with GFRP-FBG Sensor 

Sensing Principle 
The GFRP packaged FBG sensors were selected to be the in-pavement strain sensors for WIM 
measurements in this study. A FBG sensor is fabricated by exposing a segment of a single-mode fiber’s 
core to an intense ultraviolet light pattern through UV laser irradiation [90], [139]. This exposure leads to 
the formation of the grating, which reflects a specific wavelength of light, referred to as the Bragg 
wavelength, when broadband incident light is transmitted into the fiber [139]. The expression for the 
exposed Bragg wavelength is given as [90], [140]: 

𝜆𝜆 = 2𝑛𝑛𝑛𝑛, (60) 

where n is the effective index of refraction and Λ is the grating periodicity of the FBG sensor. 

For FBG sensors, the sensitive optical fiber interacts with the measured field, resulting in a wavelength 
shift in the transmitted light [141], [142]. As vehicles pass above the FBG sensors, the Bragg wavelength 
dynamically changes in response to temperature and strain, influenced by the grating period [90]. 
Describing the strain–temperature relationship for FBG strain sensors and temperature compensation 
sensors, the general expression is formulated as [140]: 

∆𝜆𝜆
𝜆𝜆

=  ∆𝜆𝜆𝜀𝜀
𝜆𝜆𝜀𝜀

+ ∆𝜆𝜆𝑇𝑇𝑒𝑒
𝜆𝜆𝑇𝑇𝑒𝑒

= (1 − 𝑃𝑃𝑒𝑒)𝜀𝜀 + (𝛼𝛼 +  𝛾𝛾)∆𝑇𝑇𝑒𝑒, (61) 

∆𝜆𝜆𝑇𝑇𝑒𝑒
𝜆𝜆𝑇𝑇𝑒𝑒

= (𝛼𝛼 +  𝛾𝛾)∆𝑇𝑇𝑒𝑒, 
(62) 



112 

 

where λ is the Bragg wavelength of the grating, experiencing changes in both strain and temperature. The 
λTe  and λε represent the Bragg wavelength of the grating, responding exclusively to alterations in 
temperature and strain. The ∆λTe  and ∆λε indicate the shifts in Bragg wavelength due to temperature and 
strain, respectively. α, γ, and Pe are the thermal expansion coefficient, thermal-optics coefficient, and 
optical elasticity coefficient, respectively. 

Strain Evaluation and Correction 
Based on the preceding Equations (1-3), the expression for evaluating strain is presented here as: 

𝜀𝜀 =  1
(1−𝑃𝑃𝑒𝑒) (∆𝜆𝜆

𝜆𝜆
− ∆𝜆𝜆𝑇𝑇𝑒𝑒

𝜆𝜆𝑇𝑇𝑒𝑒
). (63) 

However, Equation (4) cannot be directly applied to the GFRP-FBG sensors since the FBG sensors were 
packaged using GFRP materials. The protective GFRP layer envelops the FBG sensor before the sensor is 
embedded under the pavement. Positioned within the pavement and shielded by the surrounding material, 
the GFRP-FBG sensor’s strain transfer error varies with different host materials. Considering the impact 
of the packaging layer between the optical fiber and host material, the relationship between the average 
strain experienced by the GFRP-FBG sensor (ε�c) and the actual strain of the host material (ε�h) of the 
pavement is represented by equation 5 [143]. Here, ϕ  is the measurement error of the packaged GFRP-
FBG, and its calculation is given by equation 6 [90]. 

𝜀𝜀ℎ̅ = 𝜀𝜀�𝑐𝑐
1−𝜙𝜙

, (64) 

𝜙𝜙 =  �𝜀𝜀�𝑐𝑐−𝜀𝜀�ℎ 
𝜀𝜀�ℎ

� =  �𝑐𝑐𝑐𝑐𝑐𝑐ℎ�𝜉𝜉𝑙𝑙𝑓𝑓�−1
𝜉𝜉𝑙𝑙𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠ℎ (𝜉𝜉𝑙𝑙𝑓𝑓)

�, (65) 

where lf is the gage length of the package GFRP-FBG sensor and ξ represents the eigenvalue of its 
characteristic function, which can be computed as [143]: 

𝜉𝜉2 =  2

𝐸𝐸0𝑟𝑟02(� 1
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

�𝑙𝑙𝑙𝑙�𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟0
�+ � 1

𝐺𝐺ℎ
�𝑙𝑙𝑙𝑙� 𝑟𝑟ℎ

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
�)

, (66) 

where E0 and r0 denote the elastic modulus and outer radius of the optical fiber, respectively; GGFRP and 
rGFRP represent the shear modulus and outer radius of the protecting layer (GFRP); and Gh and rh stand 
for the shear modulus and outer radius of the host material layer.  

In this study, the GFRP-FBG sensors were installed inside asphalt concrete pavement. The distinct host 
material, asphalt concrete, exhibits varying shear modulus (Gh), which is associated with changes in 
dynamic modulus (E). The shear modulus under diverse conditions of temperature and loading 
frequencies is determined utilizing a consistent Poisson’s ratio (μ), as expressed by Equation 8 [144]. 
These modifications consider the dynamic measurement error when correcting the strain values obtained 
from the GFRP-FBG sensors, addressing variations in temperature throughout seasons and loading 
frequencies influenced by the wheel’s contact radius. 

𝐺𝐺ℎ =  𝐸𝐸
2(1+𝜇𝜇)

. (67) 

For various types of pavements, the dynamic modulus may vary, influenced by temperature and loading 
frequency. Utilizing field-collected dynamic modulus data and NCAT HMA field experiments, a dynamic 
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modulus master curve is constructed. This involves shifting 24 results obtained from tests at different 
temperature-frequency combinations using Equations 9 and 10 [148], [149], where E  and Max represent 
dynamic modulus and limiting maximum modulus (6.895 GPa [150]), and δ, β, and γ are fitting 
parameters. The logarithm of the reduced frequency at the reference temperature (ωr) is computed using 
Arrhenius equation [148], [151], where ω is the loading frequency at the test temperature. Tr and T are 
the reference temperature and test temperature (°K), respectively, with the test temperature determined by 
the installed temperature sensor adjacent to the GFRP-FBG sensor. The activation energy is denoted as 
ΔEa and treated as a fitting parameter. 

𝑙𝑙𝑙𝑙𝑙𝑙|𝐸𝐸| =  𝛿𝛿 +  𝑀𝑀𝑀𝑀𝑀𝑀−𝛿𝛿
1+𝑒𝑒𝛽𝛽+𝛾𝛾∗𝑙𝑙𝑙𝑙𝑙𝑙𝜔𝜔𝑟𝑟

, (68) 

𝑙𝑙𝑙𝑙𝑙𝑙𝜔𝜔𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +  
𝛥𝛥𝐸𝐸𝑎𝑎

19.14714
�

1
𝑇𝑇
−  

1
𝑇𝑇𝑟𝑟
�. (69) 

The loading frequency, assuming the moving load affects the sensor within a loading area six times the 
contact radius (r), can be estimated by vehicle speed (v) divided by the travel length (12 times the contact 
radius) [58] as follows: 

𝜔𝜔 =   𝑣𝑣
12𝑟𝑟

. (70) 

8.1.3 Dynamic Wheel Weight Measurement 

This study utilized the computer vision method described in Section 3.2 to obtain the distance between 
the wheel and GFRP-FBG sensor, and corrected the strain values through GFRP-FBG, as detailed in 
Section 3.3. After that, the wheel weight can be computed using Equation 12. This equation involves 
acceleration (a), Poisson ratio (v) obtained from experimental data, and vertical strain εz (determined 
through the FBG sensor and temperature sensor). As vehicles traverse the road, their weight induces 
deformation, leading to vertical strain propagation through the surface. Despite its horizontal orientation 
relative to traffic flow, the FBG sensor will be expanded together with the host matrix and induce strains, 
which can be detected through the measurement of the shifts of center wavelength in reflected light of the 
FBG sensors.  

𝐹𝐹 =  𝜀𝜀𝑧𝑧∗𝐸𝐸∗𝐴𝐴
𝑎𝑎∗(𝛼𝛼𝑧𝑧−𝑣𝑣(𝛼𝛼𝑟𝑟+𝛼𝛼𝑡𝑡))

. (71) 

The only remaining factors to be calculated are the contact area (A) and the stress factors αz, αr, and αt, 
representing vertical, radial, and tangential stresses, respectively. To accurately calculate the contact area, 
this study referred to research comparing the real tire contact area (detected by a vehicle driving over 
paper with a recorded footprint of the wheel) with the measured contact area using various equation 
methods, such as rectangular, circular, and oval [66], [146], [147]. The oval method yielded the lowest 
average error [66]. The equation for evaluating the contact area based on the oval method is [66]: 

𝐴𝐴 =  2
3
∗ 𝑙𝑙 ∗ 𝑤𝑤 + 𝜋𝜋

3
∗ 𝑙𝑙
2
∗ 𝑤𝑤
2

, (72) 

where l and w are length and width of the contact area. The width of the contact area can be determined 
through the computer vision process outlined in Section 2.2.3. With the assumption that the contact width 
is 60% of the contact length [145], the contact length can then be determined accordingly. 
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For the value of the vertical, radial, and tangential stress factors in pavement analysis, several factors 
come into effect. For instance, as a vehicle’s wheels exert pressure on the road surface, deformations 
occur at different depths and positions. The variation in stress values can be attributed to factors like the 
sensor’s depth, the material covering the sensor, the number of road layers, characteristics and thickness 
of each layer, and overall road properties. Furthermore, elements such as contact area, dynamic modulus 
of the road, temperature changes, loading frequency during vehicle movement, and a significant factor—
the distance between the loading point and the sensor collecting loading data—all contribute to the 
fluctuations in vertical, radial, and tangential stress factors. In addressing this challenge, this study utilizes 
the KENPAVE software [145], a widely used tool in civil engineering and pavement analysis, to mitigate 
the wander effect.  

With the provided information, including the contact area of the wheel, dynamic modulus of the host 
material, and characteristics and thickness of the road, KENPAVE software processes the data to generate 
stress values and calculate stress factors for different distances between the sensor and the wheel loading 
position. Given the potential variation in sensor positions and the impact of changing wheel load 
positions, even for the same vehicle, this study employs the stress factor generated by the software for 
calibration, aiming to reduce the influence of the wander effect on the accuracy of WIM results.  

In evaluating the accuracy of weight determination, this study employed three evaluation methods: 
accuracy, margin of error (MOE), and mean absolute percentage error (MAPE). Within these approaches, 
the accuracy offers a straightforward measure of how closely the system's weight estimates align with the 
true values, simplifying the interpretation of overall performance. The assessment of accuracy can be 
achieved by utilizing the equation below: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (%) = 100 ∗ �1 −  (𝑌𝑌𝚤𝚤�− 𝑌𝑌)
𝑌𝑌

�%, (73) 

where Y is the actual weight of the vehicle and Yı�  represents the estimated weight of the vehicle in the ith 
experiment. 

MOE offers insight into the variability and uncertainty of estimated weights by quantifying the range 
within which the true weight is likely to fall, aiding in understanding the precision and reliability of the 
estimates and thereby crucial for evaluating the overall accuracy of the system. A low MOE indicates that 
the estimated values are closely clustered around the true value, suggesting a high level of precision and 
reliability in the estimation process. The MOE with (1- α) % confidence is defined as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀1−𝛼𝛼 =  ± 𝜎𝜎𝑡𝑡1−𝛼𝛼/2,𝑑𝑑𝑑𝑑

𝜇𝜇√𝑁𝑁
, (74) 

where σ is the standard deviation, df represents the degrees of freedom, t1−α/2,df denotes the t-score, μ is 
the mean values of the measurement, and N is the sample size. 

In order to provide a standardized metric for measuring the deviation between estimated and actual 
weights, MAPE is employed to offer a percentage representation of this deviation to assess accuracy and 
consistency, thereby informing system performance enhancements. The MAPE is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100 ∗ �1
𝑁𝑁
∗ ∑ |𝑌𝑌𝚤𝚤�− 𝑌𝑌|

𝑌𝑌
𝑁𝑁
𝑖𝑖=1 �%. (75) 
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8.2 EXPERIMENTAL RESULTS AND DISCUSSION 

To confirm the effectiveness of the hybrid WIM system, a field investigation took place on the westbound 
lanes of Interstate 94, specifically the MnROAD Mainline between exits 201 and 194 in Albertville, MN, 
USA as shown in Figure 8.7. A camera positioned on the side of the pavement captures images of 
vehicles from their front and right side. The sensors were strategically placed beneath the asphalt 
pavement road, with all data collected through the data box. This section offers insights into the field 
experiment, covering the location, pavement attributes, and the determination of dynamic modulus for the 
targeted road segment. It also details the sensor deployment, positioning, and the overall experimental 
setup. The subsequent section discusses the experimental results, evaluating the hybrid WIM system’s 
performance in real-world conditions. 

 

 
Figure 8.7 Layout of the Hybrid WIM System on Interstate 94 

8.2.1 Parameter of Pavement Road 

Field tests carried out at the MnROAD mainline on the flexible pavement cross-section, specified in 
Table 8.1 [87], included GFRP-FBG sensors strategically positioned above the MnDOT Class 5 granular 
base.  Considering that placing the sensor directly near the topmost layer may result in excessively high 
strain levels, previous research has installed sensors at depths of 0.06 m and 0.22 m from the road surface 
[167]. Given that the pavement depth in this study is 0.127 m, the sensors were installed at the bottom of 
the asphalt layer (surface layer). To ensure that the sensors could be covered and placed at the bottom of 
the surface layer (HMA), a protective layer of HMA was applied to secure the sensors before the 
installation of the 0.127 m thick HMA layer, ensuring their stability and integrity throughout pavement 
construction. Dynamic modulus data for this study were sourced from asphalt mixture performance 
testing experiments conducted by MnROAD and the National Center for Asphalt Technology. The testing 
involved two specimens (150 mm diameter, 38 mm height), representative of the warm mix asphalt layer 
in the test section. Dynamic modulus testing included eight frequencies and three temperatures, resulting 
in 24 temperature and frequency combinations [88]. 
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Table 8.1 Flexible pavement information 
Material Thickness (m) Poisson’s 

Ratio 
HMA 0.127 0.35 
Class 5 granular base 0.305  0.35 
Class 3 sub-base 0.305 0.35 
Selected granular layer 0.178 0.40 
Clay loam 0.089 0.40 

 

8.2.2 GFRP-FBG Sensors and Experimental Layout 

Two GFRP-FBG sensors were employed in the experiment, aligned parallel to the wheel path. The 
GFRP-FBG sensors strategically positioned in the longitudinal direction for wheel load detection, which 
is ideal for high-speed WIM measurements, according to a previous study that utilized a 3D FBG sensor 
capable of measuring longitudinal, transverse, and vertical directions [58]. They found that the vertical 
component is highly sensitive to the location of loading. However, it can only effectively respond to a 
wheel load within 20 cm of the sensor head, posing a challenge to ensure direct alignment of the vehicle 
over the sensor head during driving. The transverse component of the 3D sensor is less reliant on material 
properties of the host matrix but still requires the wheel load to be within a 30 cm radius of the sensor. 
Conversely, the longitudinal component of the 3D sensor demonstrates competitive sensitivity, minimal 
dependence on property changes of the host matrix due to temperature or loading rate, and sensitivity to 
loads within a 60 cm radius. Therefore, this study only considers the GFRP-FBG sensors positioned in the 
longitudinal direction. 

The schematic diagram of the GFRP-FBG sensor structure is shown in Figure 8.8. Based on the previous 
research on the GFRP-FBG sensor [90], essential material parameters were investigated, including the 
elastic modulus (E0) and outer radius (r0) of the optical fiber, shear modulus (GGFRP) and outer radius 
(rGFRP) of the packaging layer (GFRP), the outer radius of the host material layer (rh) of the host material 
layer, and the longitudinal gauge lengths (lf) of the optical fiber as shown in Table 8.2. The shear modulus 
of the host material layer (which is HMA in this study) was calculated based on the dynamic modulus of 
elasticity and Poisson’s ratio of the host material. The calculated shear modulus and the parameters were 
then employed to calculate the measurement error attributable to the host material; this correction was 
subsequently applied to adjust the strain calculations obtained from the sensor. 
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Figure 8.8 The schematic diagram of the GFRP-FBG sensor 

Table 8.2 GFRP-FBG sensor strain transfer parameters 
𝐄𝐄𝟎𝟎 (GPa) 𝐫𝐫𝟎𝟎 (mm) 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 (GPa) 𝐫𝐫𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 (mm) 𝐫𝐫𝐡𝐡 (mm) 𝐥𝐥𝐟𝐟 (mm) 
70 0.0625 5 2.5 25 70 

 

The GFRP-FBG sensor is depicted in Figure 8.9(a), with both sides covered by the base layer while the 
sensor portion is positioned above the base layer, as illustrated in Figure 8.9(b). Epoxy is then applied to 
secure the sensor in place, as depicted in Figure 8.9(c), followed by the addition of asphalt (Figure 8.9(d)) 
before paving with the machine (Figure 8.9(e)) to protect the sensors. Subsequently, a roller truck is used 
for compaction and smoothing of the new asphalt pavement to ensure a uniform surface, as shown in 
Figure 8.9(f). 
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(a) (b) 

  

(c) (d) 

 

 

(e) (f) 
Figure 8.9 (a) GFRP-FBG sensor; (b) sensor positioned above base layer; (c) application of epoxy for 

sensor adhesion; (d) addition of asphalt to protect sensor; (e) paving asphalt with asphalt 
paving machine; (f) compaction and smoothing with roller truck 

In addition to the GFRP-FBG sensors, a temperature sensor was used for temperature compensation, and 
a roadside camera captured images for computer vision, as depicted in Figure 8.10. FBG-1 is strategically 
placed above the wheel path, while FBG-2 is positioned 0.521 m away from FBG-1. Both FBG-1 and 
FBG-2, and the temperature sensors, are aligned on the same axis. To ensure accurate positioning, four 
specific locations are designated for calibration in this study. 
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Figure 8.10 Experimental setup layout with GFRP-FBG sensors, temperature sensor, and roadside camera 

8.2.3 Field Test for WIM Measurement 

The field test involved a Class 9 semi-truck from the MnROAD facility with a total gross weight of 36,196 
kg. The individual axle weights for the first, second, third, fourth, and fifth axles were 5,352 kg, 8,006 kg, 
7,462 kg, 7,620 kg, and 7,756 kg, respectively. The distances between the wheels were 5.2 m (first to 
second), 1.4 m (second to third), 10.4 m (third to fourth), and 1.3 m (fourth to fifth), and this study 
specifically focused on measuring the weight of a single wheel in the first axle. 

During the test, the semi-truck passed over the sensor location, and repeated the passage over each 
position seven times, aiming to align the wheels directly above the sensor positions. Achieving precise 
control over the truck’s movement within the specified areas and at the designated speed proved 
challenging, particularly when the two locations were close to. Hence, both the sensor data and captured 
images were utilized to accurately determine the vehicle’s speed and location as it passed through the 
specified points. As the driver maneuvers the truck over the sensors, the distance between the actual 
passing position and the sensor location can be considered the wandering distance, and this distinction 
aids in advancing research on the impact of the wandering effect. 

8.2.4 Analytical Process for Experimental Results 

To accurately measure vehicle weight, the analytical process includes three parts. The first part is 
studying the stress factors at various wandering distances. Additionally, it reveals the results obtained 
from computer vision for the distance from the wheel loading position to the sensor (wandering distance), 
along with the corresponding stress factors. Furthermore, the strain calculated through the GFRP-FBG 
sensors and temperature sensor, combined with the stress factors corresponding to the wandering 
distance, is utilized to estimate vehicle weight. 

Stress Factors at Various Wandering Distances 
Given that the sensor positions were fixed, the collected wavelength by the sensor varied when the 
vehicle was at different positions. Consequently, the phenomenon of wavelength variation needs to be 
addressed, and the use of KENPAVE software becomes essential to tackle this challenge. As presented in 
Figure 8.11, the input data for KENPAVE software include 1) the number of road layers, 2) thickness for 
each layer, 3) the Poisson’s ratio for individual layers, and 4) elastic modulus values at tested 
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temperatures; using the tested temperature obtained by temperature sensor, the following elastic modulus 
values were used for HMA, granular base, sub-base clay loam, granular, and clay loam: 4.826, 0.414, 
0.276, 0.083, and 0.083 GPa, respectively. After that, the stress factors were calculated using stress 
overweight, as illustrated in Figure 8.11. 

 

Figure 8.11 Input data of pavement for KENPAVE software 

Therefore, Figure 8.12 plots the relationship between calculated stress factors and the sensor-wheel 
distance. Considering the maximum distance between the sensor and the loading position are close to 0.1 
m in this study, stress factor values concerning the distances ranged from 0 to 0.3 m (Figure 8.12). The 
data in this figure was used to work with the distance between these sensors and was assessed using 
computer vision. A closer examination of Figure 8.12 reveals intriguing patterns in stress factor 
variations. As the wandering distance increases, there is a noticeable change in the stress factors recorded 
by the sensors. These variations could be attributed to the differential distribution of load as a vehicle 
passes over the sensor array. Understanding these patterns is vital for interpreting the impact of vehicle 
weight and pressure distribution on road infrastructure. For example, as the distance between the wheel 
loading position and the sensor increases, the vertical stress factor exhibits a slight decrease from 0.328 to 
0.062. The vertical stress factor decreases, which may indicate a reduction in the direct load impact on the 
sensor as the distance increases. This could suggest a dispersion of the load over a wider area, leading to 
less intense stress directly above the sensor. Simultaneously, the radial stress factor increases from -1.582 
to 0.202, and the tangential stress factor rises from -1.582 to -0.273. Therefore, the observed stress 
patterns suggest a direct correlation with the vehicle’s weight distribution. Additionally, given that there 
are two embedded sensors and considering the higher accuracy achieved with the sensor closest to the 
wheel loading position, the subsequent calculation process is configured to automatically select data from 
the nearest sensor for determining vehicle weight. 

  



121 

 

 

Figure 8.12 Vertical, longitudinal, and tangential stress factors 

Computer Vision-Based Wandering Distance and Corresponding Stress Factors 
Utilizing the computer vision methodology detailed in Section 2.2 enhances the accuracy of distance 
measurements, leveraging digital precision for improved results. The wandering distances were 
determined and presented in Table 8.3. The numerical labeling ranging from 1 to 7 designates sensors 
positioned close to FBG-1, whereas sensors numbered 8 to 14 are near FBG-2. This sequential 
arrangement is based on their respective wandering distances, ensuring a methodical and precise 
representation of proximity for analytical clarity and accuracy. To achieve the highest accuracy in 
evaluating vehicle weight, the analysis focuses solely on the closest sensor. Consequently, Table 8.3 
displays the wandering distance and corresponding vertical, radial, and tangential stress factors for the 
nearest sensor. 

Table 8.3 Stress factors and corresponding wandering distance 

Vehicle  Number Distance to (FBG-1) 
(m) Vertical Stress Factor Radial Stress Factor Tangential Stress Factor 

1 0.028 0.323 -1.545 -1.560 
2 0.038 0.319 -1.514 -1.542 
3 0.053 0.311 -1.449 -1.504 
4 0.074 0.295 -1.325 -1.432 
5 0.114 0.250 -0.957 -1.216 
6 0.119 0.243 -0.902 -1.184 
7 0.124 0.237 -0.847 -1.150 

Vehicle  Number Distance to (FBG-2) 
(m) Vertical Stress Factor Radial Stress Factor Tangential Stress Factor 

8 0.003 0.328 -1.581 -1.581 
9 0.015 0.326 -1.571 -1.575 
10 0.058 0.307 -1.422 -1.488 
11 0.061 0.305 -1.407 -1.480 
12 0.069 0.299 -1.360 -1.452 
13 0.094 0.275 -1.160 -1.336 
14 0.119 0.243 -0.902 -1.184 
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This organized presentation allows for comparisons between stress factors recorded at different distances 
from the FBGs, shedding light on the varying impacts of vehicle weight and pressure distribution. 
Additionally, the data provides insights into stress patterns, informing future decisions regarding 
structural integrity and vehicle performance assessment strategies. The application of the proposed 
computer vision method, as detailed in Section 2.2, plays a vital role in enhancing the precision of 
distance measurements. This digital accuracy is paramount in accurately determining the stress factors 
associated with different wandering distances. By leveraging computer vision, the hybrid WIM system 
overcomes the limitations inherent in traditional WIM systems, offering a more nuanced understanding of 
vehicle-road interactions. 

Accuracy Evaluation of Vehicle Weight Monitoring 
As vehicles traverse the road, the FBG sensor’s center wavelength changes can detect the strain changes 
inside the pavement in horizontal direction and through Poisson’s effect, the strains in vertical direction 
can be calculated and further converted into weight of the passing vehicles , as illustrated in Figure 8.13. 
Each peak signifies a notable alteration in center wavelength, indicating of the strain endured by the road 
surface under the vehicle's weight. By analyzing the wavelength changes captured by the GFRP-FBG 
sensor and the temperature sensors, strain can be calculated using equations 4 to 11, and the resulting 
values are presented in Table 8.4. Subsequently, vehicle weights were determined based on these 
calculated strain values and the stress factors outlined in Table 8.3. This study specifically focuses on 
evaluating the weight of the first right single wheel of the truck, with an axle weight of 5,352 kg, resulting 
in an expected weight of 2,676 kg for the first right single wheel. As demonstrated in Table 8.4, the WIM 
system is capable of calculating the weight of a single wheel, ranging from 2316 to 3099 kg, with an 
accuracy of 84.2% to 97.5%, and this performance is indicative of a WIM system with excellent accuracy. 
Computer vision plays a crucial role in accurately determining the wandering distance between the 
vehicle wheels and the sensors. This precision is vital, as even minor deviations in distance can 
significantly impact the accuracy of weight estimations. By providing digital precision, computer vision 
enhances the overall reliability and effectiveness of the hybrid WIM system. 

 
Figure 8.13 Wavelength change peaks induced by vehicle passage 
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Table 8.4 Strain calculation results and vehicle weights 
Vehicle 
Number 

Wavelength Change 
(FBG) (nm) 

Wavelength 
Change (T) (nm) 

Strain 
(× 10−4) 

Distance  
(m) 

Weight 
(kg) 

Accuracy 
(%) 

1 0.143 −0.002 1.194 0.028 2744 97.5 
2 0.151 −0.001 1.252 0.038 2920 90.9 
3 0.142 −0.002 1.183 0.053 2851 93.5 
4 0.132 −0.003 1.111 0.074 2856 93.3 
5 0.113 −0.002 0.951 0.114 3046 86.2 
6 0.112 −0.001 0.931 0.119 3099 84.2 
7 0.105 −0.001 0.875 0.124 3031 86.8 
8 0.143 0.001 1.186 0.003 2679 99.9 
9 0.153 0.002 1.260 0.015 2861 93.1 
10 0.127 0.000 1.057 0.058 2582 96.5 
11 0.136 −0.002 1.153 0.061 2839 93.9 
12 0.121 0.001 0.998 0.069 2519 94.1 
13 0.126 −0.001 1.055 0.094 2977 88.7 
14 0.082 −0.002 0.696 0.119 2316 86.5 

 

The accuracy of weight estimation is found to be influenced by the wandering distance between the 
vehicle wheel and the sensor, with closer proximity resulting in higher accuracy. With distances ranging 
from 0.028 m to 0.124 m from FBG 1, the average accuracy exceeds 90%. Similarly, distances from the 
wheel loading position ranging from 0.003 m to 0.119 m result in an average accuracy exceeding 93%. 
The highest accuracy is achieved when the distance between the sensor and the wheel loading position is 
0.003 m. Figure 8.14 illustrates the relationship between accuracy and the different wandering distances 
of all 14 vehicles from the sensors and wheel loading positions. The results indicate that when the 
distance is less than approximately 0.1 m, the accuracy exceeds 90%. Furthermore, for wandering 
distance less than 0.13 m, the accuracy is consistently higher than 85%.  

The additional statistical findings depicted in Table 8.5 reveal that among the 14 runs, the estimation 
process achieves an average accuracy of 91.8%, emphasizing its effectiveness in approximating true 
values. Considering a confidence level of 95%, the calculated MOE of 127.9 kg for a real weight of 2676 
kg provides insight into the range within which the true weight is likely to fall, given the variability in the 
estimation process. Additionally, the small MAPE of 8.2% underscores the average deviation between 
estimated and true accuracy values. Therefore, compared to traditional WIM systems, our hybrid 
approach demonstrates superior accuracy, particularly in scenarios where vehicle positioning varies. The 
ability of computer vision to precisely measure wandering distances, combined with the sensitive 
response of GFRP-FBG sensors, results in a more robust and reliable system for vehicle weight 
monitoring. 
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Figure 8.14 Accuracy trends in vehicle weight estimation at varying distances 

Table 8.5 Statistical analysis results for accuracy assessment 
Degree 
Freedom 

Confidence 
Level T Score Standard 

Deviation 
Average 
Accuracy MOE MAPE 

13 95% 2.160 221.442 91.8% 127.9 8.2% 
 

8.3 Summary of Hybrid WIM Systems: Using GFRP-FBG Sensors and 
Computer Vision to Mitigate the Wander Effect 

In conclusion, this study proposed a novel hybrid system for WIM that effectively mitigates the wander 
effect in vehicle weight assessment. The system can detect wandering distances by utilizing computer 
vision and when combined with data from in-pavement strain sensors and a temperature sensor, it 
established a cost-effective and minimally human-involved approach for WIM measurements. Key 
contributions of this study are summarized below: 

This study addresses the challenges encountered by the two main WIM systems and proposes a hybrid 
system for accurately measuring vehicle weight. The hybrid system is designed for WIM achieved 
accurate measurements with a low equipment cost, incorporating only two in-pavement sensors, one 
temperature sensor, and a standard camera.  
 
This study minimizes human involvement and addresses the wander effect by integrating computer 
vision, which enables automatic distance calculation and calibration. Considering cost-effectiveness and 
minimizing limitations, this study opts to utilize a standard camera with low cost and low-resolution 
imagery, which may pose challenges in adverse weather conditions. To address this issue, computer 
vision technology is employed to accurately determine the distance between the sensor and wheel 
position. 
 
To minimize disruption to traffic flow, this study positions the camera to the right of the road, capturing 
images of vehicles from the front right side. However, this arrangement presents challenges in distance 
calibration, as objects appear closer when nearby and farther when distant. To address this issue, a 
calibration process is implemented to effectively resolve distance discrepancies. 
 



125 

 

In adverse weather conditions like strong winds, which can shift the camera angle and lead to inaccurate 
distance evaluation, this study implements automatic calibration methods to ensure precise distance 
measurement. 
The hybrid system achieves heightened accuracy at closer sensor distances, exceeding 90% for distances 
under 0.1 m and consistently surpassing 85% for distances under 0.13 m. 

This paper holds significant implications for the transportation sector, offering a cost-effective, real-time 
detection solution for vehicle wheel weight. By minimizing human intervention and enhancing accuracy, 
the proposed system contributes to improved efficiency in transportation operations and road 
maintenance. Future research will focus on analyzing the impact of vehicle speed and weather conditions 
on computer vision results, particularly regarding the determination of the distance between the sensor 
and wheel loading position, to enhance accuracy. In addition, refinement of the hybrid system will 
involve exploring the integration of additional embedded sensors to enhance accuracy and broaden 
applications. The adaptability of the system to diverse vehicle scenarios will be investigated for 
effectiveness across various transportation contexts. This study will also delve into multi-axle vehicle 
assessment, including dual-wheel weight evaluations and analysis of load distribution and strain patterns, 
aiming to advance WIM technology for practical solutions in the evolving transportation industry. 
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9. CONCLUSION AND FUTURE WORK 

The series of studies significantly contributes to the field of pavement engineering and vehicle weight 
monitoring, focusing on the importance and innovation of WIM systems. In the analysis of traffic loading 
impacts on pavement performance, SVR models demonstrate the ability to accurately predict pavement 
distress caused by varying traffic loads. The research highlights that integrating WIM systems into this 
analysis provides crucial data on real-time axle loads, which enhances the predictive accuracy of machine 
learning models. This integration enables infrastructure managers to better assess pavement conditions 
and optimize maintenance strategies, ensuring more efficient use of resources and extending the lifespan 
of pavement infrastructure. 

The investigation into the impact of overweight traffic on pavement survival life utilizes a random 
survival forest algorithm, emphasizing the critical role of WIM systems in collecting accurate axle load 
spectra. Overweight vehicles significantly reduce pavement life, leading to severe distresses like alligator 
cracking and rutting. By providing precise measurements of traffic loads, WIM systems enable the 
development of more effective regulatory measures and maintenance strategies. This study illustrates how 
WIM data, coupled with advanced analytics, can guide infrastructure planning and reduce the adverse 
effects of heavy traffic on road networks. 

In the mechanistic-empirical analysis of pavement performance, considering dynamic axle load spectra 
due to longitudinal unevenness, WIM systems are crucial in capturing the variations in axle loads caused 
by road surface irregularities. The study shows that longitudinal unevenness can lead to increased 
dynamic loads, accelerating pavement deterioration. By utilizing WIM data, researchers can better 
understand the impact of these dynamic loads on pavement performance, offering valuable insights for 
designing more resilient pavements capable of withstanding modern traffic demands. 

The study on asphalt pavement temperature prediction models highlights the importance of incorporating 
environmental factors alongside traffic data from WIM systems. Using multiple regression and ANN 
approaches, the research reveals that temperature, solar radiation, and humidity significantly affect 
pavement temperatures. Pavement temperature data can be used to improve WIM systems accuracy, 
providing more accurate and real-time insights into how traffic conditions interact with environmental 
factors. This comprehensive approach supports the development of pavements that are more resilient to 
climatic variations, ultimately reducing maintenance costs and extending pavement life. 

In addressing vehicle weight monitoring, the development of hybrid WIM systems integrating computer 
vision with in-pavement sensors represents a significant advancement. These systems effectively mitigate 
the wander effect, a major source of inaccuracies in traditional WIM measurements. By combining spatial 
data from cameras with strain measurements from sensors, these systems provide highly accurate vehicle 
weight data, essential for maintaining road infrastructure and ensuring compliance with weight 
regulations. The successful application of these technologies underscores their transformative potential in 
enhancing traffic management and road safety. 

Lastly, the advanced hybrid WIM system that integrates computer vision and in-pavement sensors further 
demonstrates the capabilities of modern vehicle weight monitoring solutions. This approach offers precise 
weight measurements by overcoming challenges related to vehicle position variability and environmental 
factors. The research highlights the system's potential to revolutionize vehicle weight monitoring, 
providing crucial data for infrastructure maintenance and regulatory compliance, ultimately supporting 
more efficient and safer transportation networks. 
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In the future, expanding machine learning models to incorporate a broader range of traffic conditions, 
environmental factors, and material properties will enhance the generalizability of findings across various 
climatic regions and traffic patterns. By integrating real-time data processing capabilities into these 
models, dynamic adjustments in pavement management strategies can be achieved, optimizing 
infrastructure resilience and efficiency. 

Further development of WIM systems should focus on examining the effects of varying vehicle speeds, 
multi-axle configurations, and environmental factors on measurement accuracy. This exploration can 
refine hybrid WIM systems, making them more applicable across diverse road conditions. 

Additionally, the exploration of smart pavements and innovative materials should continue, emphasizing 
the integration of sensors and intelligent systems within pavement structures. This approach will enable 
proactive maintenance and management, reducing the risk of unexpected failures and enhancing road 
safety. Future research should also investigate the integration of these technologies into smart 
transportation networks, optimizing traffic flow and infrastructure utilization to create more efficient and 
responsive transportation systems.  
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