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ABSTRACT 
 

 
  

Transportation planning, traffic monitoring, and traffic safety analysis require detailed information about 
pedestrian volumes, but such data are usually lacking. Fortunately, recent research has demonstrated the 
accuracy of pedestrian volumes estimated from push-button data contained within high-resolution traffic 
signal controller log data. Such data are available continuously for many locations. This project takes 
advantage of these novel pedestrian traffic signal data to advance pedestrian traffic monitoring and 
improve pedestrian traffic safety by applying them as estimates of volume and exposure, often alongside 
advanced machine learning techniques. Through a series of five studies, we identify temporal patterns in 
pedestrian activity; study the accuracy of pedestrian volume estimation methods over time; use machine 
learning methods to improve the quality and completeness of pedestrian time-series data; analyze crashes 
to identify a “safety in numbers” effect for pedestrians; and apply a new deep learning model to better 
understand factors affecting pedestrian crash severity. Altogether, this work leverages novel pedestrian 
traffic signal data to further research and efforts in pedestrian traffic monitoring and safety.  
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EXECUTIVE SUMMARY 

Multimodal transportation planning, traffic monitoring, and traffic safety analyses all require information 
on how many people walk in various locations throughout the day. Unfortunately, pedestrian volumes are 
rarely available for these purposes. Luckily, a novel “big data” source of pedestrian information that is 
relatively ubiquitous in both time and space (24/7 at many locations) is now available: pedestrian push-
button actuations recorded in high-definition data logs from traffic signal controllers at signalized 
intersections. A recent research project studied pedestrian traffic signal data at 90 signalized intersections 
in Utah, compared push-button presses to video-based ground-truth pedestrian counts, and demonstrated 
that pedestrian traffic signal data can estimate pedestrian volumes at signalized intersections with 
reasonable levels of accuracy.  
 

 

 

 

Armed with these novel pedestrian data, this study had three primary objectives: (1) advance pedestrian 
traffic monitoring by developing methods and models for estimating pedestrian volumes at intersections, 
based on traffic signal pedestrian push-button data and environmental characteristics; (2) improve 
pedestrian traffic safety by developing methods and models for analyzing pedestrian crashes at 
intersections, utilizing traffic signal pedestrian push-button data and environmental characteristics; (3) 
apply novel machine learning techniques to aid in the advancement of pedestrian traffic monitoring and 
improvement of pedestrian traffic safety. To achieve these objectives, we conducted a series of five 
studies, all centered around pedestrian traffic monitoring, pedestrian safety, pedestrian traffic signal data, 
and/or machine learning methods.  

This work advances pedestrian traffic monitoring. The first study takes pedestrian traffic signal data from 
around 1,500 intersections in Utah, uses time series clustering to identify temporal patterns, and links 
these patterns with spatial characteristics. The second study investigates how pedestrian push-button press 
behavior changed at 11 Utah intersections from 2019 to 2020 (during the COVID-19 pandemic), finding 
no degradation in the accuracy of pedestrian volume estimation models developed before the pandemic 
when applied to data collected during the pandemic. The third study applies a variety of statistical, 
machine learning (ML), and deep learning (DL) methods to pedestrian traffic signal data, finding that ML 
and DL methods—alongside environmental and epidemiological information about temperature, 
precipitation, air quality, and COVID-19 case rates—can aid in improving the quality and completeness 
of pedestrian time series data.  

This work also improves an understanding of pedestrian traffic safety. The fourth study analyzes 
pedestrian crash frequency and severity at over 1,000 Utah intersections—utilizing exposure measures 
obtained from pedestrian traffic signal data—and identifies a “safety in numbers” effect for pedestrians, 
in which crash rates decrease with increasing pedestrian volumes. The fifth study applies a new deep 
learning model (TabNet) to the analysis of pedestrian crash severity data, identifying important factors 
affecting pedestrian injury severity when involved in a traffic collision.  
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1. INTRODUCTION

Multimodal transportation planning, traffic monitoring, and traffic safety analyses all require information 
on how many people walk in various locations throughout the day. Pedestrian volumes can be used as 
outputs when developing pedestrian travel demand forecasting models and as measures of walking 
exposure when conducting pedestrian safety and health analyses. Unfortunately, traditional data 
collection methods for levels of pedestrian activity are insufficient for these purposes (FHWA, 2022; 
Ryus et al., 2014). Manual counts on intersection or street segments are time consuming and often 
infeasible to conduct over long periods of time. Instruments such as infrared counters can record 
continuous data on non-motorized trail users, but they are costly to deploy across multiple locations. 
Video-based pedestrian data collection methods via computer image processing are promising, but video 
cameras are also costly to install everywhere in a network.  

Fortunately, a novel “big data” source of pedestrian information that is relatively ubiquitous in both time 
and space (available 24/7 at many locations) is now available: pedestrian push-button actuations recorded 
in high-definition data logs from traffic signal controllers at signalized intersections. Thanks to recent 
advances (Smaglik et al., 2007), archived and near-real-time pedestrian push-button data can be more 
easily accessed, such as through the Automated Traffic Signal Performance Measures (ATSPM) system 
(Day et al., 2016). A recent research project in Utah studied pedestrian traffic signal data at 90 signalized 
intersections in Utah (Singleton, Runa, & Humagain, 2020). The authors collected ground-truth video-
based pedestrian counts, compared them to pedestrian push-button data, and developed factoring and 
adjustment methods. They demonstrated that pedestrian traffic signal data can estimate pedestrian 
volumes at signalized intersections with reasonable levels of accuracy (Singleton & Runa, 2021). This 
advancement opens opportunities to use estimated pedestrian volumes obtained from traffic signal data 
for a variety of pedestrian planning and safety tasks.  

In transportation planning, traffic monitoring is a critical activity that involves collecting data and doing 
calculations to understand how the use of different transportation modes varies over time and in different 
places. As described above, pedestrian traffic monitoring lags behind data collection for motor vehicles 
(Ryus, 2014) because of a lack of permanent stations continuously counting pedestrian volumes. 
Pedestrian traffic signal data offer an opportunity to improve pedestrian traffic monitoring activities 
because push-button data are collected 24/7 at many locations. Such data could be used to extract 
common temporal patterns (by time-of-day, day-of-week, and season) of pedestrian activity, often called 
“factor groups” in the traffic monitoring literature (FHWA, 2022). These patterns (and factors derived 
from them) are then used to convert short-term counts into long-term averages, such as annual average 
daily pedestrian volumes. In this way, pedestrian traffic signal data could be used to advance pedestrian 
traffic monitoring.  

Pedestrian traffic signal data can also overcome a major obstacle to improved pedestrian safety: the lack 
of pedestrian volume exposure data. Pedestrian safety is a critical current issue given the troubling 
national trend of increased numbers and shares of pedestrian injuries and fatalities (NHTSA, 2023). 
Safety predictive methods—safety performance functions, crash modification factors, and crash severity 
models—usually require the use of exposure data for estimation and application. While motor vehicle 
volumes are often available, pedestrian volumes rarely are, thus limiting our understanding of and ability 
to address pedestrian safety issues. Ubiquitous pedestrian signal data can help safety analyses include 
more robust data on pedestrian exposure, including the existence and magnitude of a potential “safety in 
numbers” effect (Jacobsen, 2015): as pedestrian volumes increase, walking gets safer and pedestrian crash 
rates (crashes per exposure) decrease.  
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At the same time, it is critical to assure the quality of pedestrian volume data being used for such 
purposes, including for traffic monitoring and safety analysis. First, the estimated pedestrian volumes 
from traffic signal data rely on empirical relationships established in Utah in one year (2019). Whether 
these relationships continue to hold over time—especially during and after societal disruptions due to the 
COVID-19 pandemic—is an important question. Second, all sensor-based longitudinal datasets are 
susceptible to erroneous or missing data; pedestrian traffic signal data are no exception. It is important to 
help develop quality control methods to identify potentially erroneous and missing records and, if desired, 
impute the missing values. With all of these activities (traffic monitoring, traffic safety, data quality), new 
analytical tools like machine learning methods are starting to be applied that can provide enhanced 
understanding and predictability across multiple domains, possibly including pedestrian travel.  
 

 

 

 

 

 

 

1.1 Research Objectives 

This study has three primary research objectives:  
1. Advance pedestrian traffic monitoring by developing methods and models for estimating 

pedestrian volumes at intersections, based on traffic signal pedestrian push-button data and 
environmental characteristics.  

2. Improve pedestrian traffic safety by developing methods and models for analyzing pedestrian 
crashes at intersections, utilizing traffic signal pedestrian push-button data and environmental 
characteristics.  

3. Apply novel machine learning techniques to aid in the advancement of pedestrian traffic 
monitoring and improvement of pedestrian traffic safety.  

1.2 Research Approach and Overview 

To achieve these objectives, we conducted a series of five studies, all centered around pedestrian traffic 
monitoring, pedestrian safety, pedestrian traffic signal data, and/or machine learning methods. Taken as a 
whole, they help achieve the three research objectives. A summary of each study (one per chapter) is 
contained in the following paragraphs.  

Chapter 2, “Advances in pedestrian travel monitoring: Temporal patterns and spatial 
characteristics using pedestrian push-button data from Utah traffic signals” takes pedestrian traffic 
signal data from around 1,500 intersections in Utah, uses time series clustering to identify temporal 
patterns, and links these patterns with spatial characteristics. This work demonstrates the great utility of 
pedestrian traffic signal data for advancing understanding of pedestrian behaviors and improving the 
transportation planning practice of pedestrian traffic monitoring.  

Chapter 3, “Impacts of the COVID-19 pandemic on pedestrian push-button utilization and 
pedestrian volume model accuracy in Utah,” investigates how pedestrian push-button press behavior 
changed at 11 Utah intersections from 2019 to 2020 during the COVID-19 pandemic. This work finds no 
degradation in the accuracy of pedestrian volume estimation models developed before the pandemic when 
applied to data collected during the pandemic, suggesting that the prior models (Singleton & Runa, 2021) 
may still work acceptably well for estimating pedestrian volumes from traffic signal data during/after 
COVID.  

Chapter 4, “Imputing time series pedestrian volume data with consideration of epidemiological-
environmental (EpiEnv) variables,” applies a variety of statistical, machine learning, and deep learning 
methods to pedestrian traffic signal data, thus informing an important topic in transportation planning and 
traffic monitoring: detecting anomalies and imputing missing data. Results suggest that ML and DL 
methods—alongside environmental and epidemiological information about temperature, precipitation, air 
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quality, and COVID-19 case rates—can aid in improving the quality and completeness of pedestrian time 
series data.  
 

 

 

 

 

 
  

Chapter 5, “Evaluating pedestrian “safety in numbers” at signalized intersections in Utah with 
pedestrian exposure data from traffic signals,” analyzes pedestrian crash frequency and severity at 
over 1,000 Utah intersections, utilizing exposure measures obtained from pedestrian traffic signal data. 
Importantly, this work identifies a “safety in numbers” effect for pedestrians, in which crash rates 
decrease with increasing pedestrian volumes.  

Chapter 6, “Exploring factors affecting pedestrian crash severity using TabNet: A deep learning 
approach,” applies a new deep learning model (TabNet) to the analysis of pedestrian crash severity data. 
In addition to identifying important factors affecting pedestrian injury severity when involved in a traffic 
collision, linear and nonlinear results from this “black box “model are interpreted to aid in 
understandability. This work highlights emerging advanced computational methods that are helping to 
better understand and address pedestrian safety issues.  

Note that Chapters 2, 3, and 4 have been previously published as peer-reviewed manuscripts in academic 
journals. They are being reprinted here with permission.  

1.3 References 
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2. ADVANCES IN PEDESTRIAN TRAVEL MONITORING: 
TEMPORAL PATTERNS AND SPATIAL CHARACTERISTICS 
USING PEDESTRIAN PUSH-BUTTON DATA FROM UTAH 
TRAFFIC SIGNALS 

 

 

 

 

 

 

This chapter is the accepted manuscript of an article published by the University of Minnesota Center for 
Transportation Studies in the Journal of Transport and Land Use. It is reprinted here under a Creative 
Commons Attribution-NonCommerical-NoDerivatives 4.0 (CC BY-NC-ND) International License. To 
cite, please use this reference:  

• Humagain, P., & Singleton, P. A. (2021). “Advances in pedestrian travel monitoring: Temporal 
patterns and spatial characteristics using pedestrian push-button data from Utah traffic signals.” 
Journal of Transport and Land Use, 14(1), 1341-1360. https://doi.org/10.5198/jtlu.2021.2112 

2.1 Abstract 

In this study, we advanced pedestrian travel monitoring using a novel data source: pedestrian push-button 
presses obtained from archived traffic signal controller logs at more than 1,500 signalized intersections in 
Utah over one year. The purposes of the study were to: (1) quantify pedestrian activity patterns, (2) create 
factor groups and expansion/adjustment factors from these temporal patterns, and (3) explore 
relationships between patterns and spatial characteristics. Using empirical clustering, we classified signals 
into five groups based on normalized hourly/weekly counts (each hour’s proportion of weekly totals, or 
the inverse of the expansion factors), and three clusters with similar monthly adjustment factors. We also 
used multinomial logit models to identify spatial characteristics (land use, built environment, socio-
economic characteristics, and climatic regions) associated with different temporal patterns. For example, 
we found that signals near schools were much more likely to have bimodal daily peak hours and lower 
pedestrian activity during out-of-school months. Despite these good results, our hourly/weekday patterns 
differed less than in past research, highlighting the limits of existing infrastructure for capturing all kinds 
of activity patterns. Nevertheless, we demonstrate that signals with push-button data are a useful 
supplement to existing permanent counters within a broader pedestrian traffic monitoring program. 

2.2 Introduction 

Despite recent advances and interest from researchers and practitioners, pedestrian monitoring and data 
collection remains incomplete and insufficient, especially compared with motorized data collection. In 
practice, there are two methods for counting pedestrian activity at intersections: manual and automatic 
approaches (Greene-Roesel et al., 2008; FHWA, 2016). Manual counts involve collecting pedestrian 
volumes (by an observer) in real-time in situ or later using video recordings. Although manual counts are 
accurate and advantageous for making modal distinctions (walking vs. cycling) and determining 
directional flows (left, straight, or right), the count accuracy depends upon the observer’s characteristics 
(e.g., attentiveness) (Diogenes et al., 2007). More critically, manual counts are infeasible over longer time 
periods because of the need for direct human supervision. Another method based on automated 
instruments—such as microwave, ultrasonic, or infrared—are feasible for longer-duration counts, thus are 
ideal for identifying variations in pedestrian activity over time (Bu et al., 2007; Green-Roesel et al., 
2008). However, automated counts can be susceptible to adverse weather or crowding, are expensive to 
install, and sometimes require periodic validation from manual counts (FHWA, 2016; Ryus et al., 2014). 

https://doi.org/10.5198/jtlu.2021.2112
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2.2.1 Pedestrian Push-button Data to Measure Pedestrian Activity 
 

 

 

 

  

Alternatively, one novel source of pedestrian data is from pedestrian push-buttons at signalized 
intersections. Many (but not all) traffic signals require people walking who want to cross an approach to 
press a pedestrian push-button to request (actuate) the walk phase. Given readily available hardware and 
software, each pedestrian push-button press event can be timestamped, logged (Smaglik et al., 2007; 
Sturdevant et al., 2012), archived, and made available (for example) through the Automated Traffic 
Signal Performance Measures (ATSPM) system (ATKINS, 2016; Day et al., 2014, 2016). Such high-
resolution traffic signal controller log data are relatively ubiquitous in both time and space (available 24/7 
at many intersections), making them a potentially rich source of information about pedestrian activity 
levels. Some of the limitations of existing methods—such as requirement of manual labor or upfront costs 
for installation of automated counters—and the lack of pedestrian data could be addressed by the use of 
this novel pedestrian data source.  

Until recently, few studies investigated the use of pedestrian data from traffic signal controller logs to 
estimate walking activity. Day et al. (2011) analyzed data on pedestrian actuations per hour at one 
signalized intersection in Indiana over an 18-month period, finding impacts of time-of-day, day-of-week, 
weather and other seasonal effects, special events, and a change in pedestrian phase configuration on 
pedestrian actuations. Similarly, Blanc et al. (2015) and Kothuri et al. (2017) conducted studies of 
pedestrian activity at one intersection in Oregon that had actuated pedestrian crossings (using push-button 
detection) for all four crosswalks. The two Oregon studies used video data to manually count pedestrians, 
which they then compared to pedestrian actuations for each crosswalk, usually finding correlations of 
around 0.80 or greater. Recently, a large-scale validation study of pedestrian push-button use and walking 
activity at signalized intersections was conducted in Utah by Singleton, Runa, and Humagain (2020). The 
authors compared hourly pedestrian signal activity metrics derived from push-button presses against 
observed pedestrian counts—obtained from manual counts of over 20,000 hours of videos recorded in 
2019 for 320 crosswalks at 90 signalized intersections—using simple nonlinear regression models. The 
models’ estimated pedestrian volumes were strongly correlated with observed pedestrian crossing 
volumes (0.84) and had a low mean absolute error (3.0 pedestrians per hour) (Singleton, Runa, & 
Humagain, 2020; Singleton & Runa, 2021). Overall, these studies demonstrate that traffic signal data can 
be used to estimate pedestrian crossing volumes and monitor levels of pedestrian activity at intersections. 
We utilize pedestrian data from traffic signals in this chapter.  

2.2.2 Applications of Continuously-measured Pedestrian Data 

Temporally rich pedestrian data—measured continuously over time—has many applications. Quantifying 
and understanding the characteristics of pedestrian activity patterns in different spatial locations over time 
can assist planners and/or researchers in any (or all) of the following ways:  

1. Planning: Pedestrian data can help planners prioritize pedestrian infrastructure investments in 
specific areas and predict the impacts of new transportation or urban development projects on 
walking.  

2. Safety: Pedestrian safety analysis could use temporal patterns of pedestrian activity to better 
quantify risks related to exposure to traffic at crossings.  

3. Traffic operations: Hourly distributions of pedestrian activity by location can assist with 
optimizing traffic signal timing for pedestrian delay or safety, as well as scheduling/permitting 
maintenance or construction work for areas and times with low pedestrian activity.  

4. Traffic monitoring: Automated pedestrian counters cannot be deployed in all areas, so long-term 
count data are used to develop expansion factors that translate short-duration (e.g., manual) 
counts into estimated average annual daily pedestrian volumes, information which is useful for all 
of the activities listed above. 
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This chapter contributes to the fourth application, traffic monitoring.  
 

 

 

 

 

 

2.2.3 Pedestrian Expansion Factors  

To develop expansion factors, locations with similar pedestrian activity patterns (quantified either daily or 
weekly) are often grouped together into “factor groups” (Medury et al., 2019; FHWA, 2016; Ryus et al., 
2017), each with a unique set of expansion factors. Short-duration pedestrian volume measurements (e.g., 
manual peak-period or daily counts) are then multiplied by the expansion factors—for the specific factor 
group to which that short-duration count location best belongs—in order to estimate long-term average 
pedestrian volumes more precisely (FHWA, 2016; Ryus et al., 2017). In current practice, there are two 
common approaches to constructing factor groups of multiple locations with similar pedestrian activity 
patterns. The first method is the land use classification approach (Medury et al., 2019), which involves 
classifying locations based upon their surrounding land use characteristics, under the assumption that 
locations with similar land uses will generate similar pedestrian activity patterns. Studies implementing 
this approach have identified distinct patterns for commercial areas, employment areas, university areas, 
trail areas, and others. (Schneider et al., 2009; Medury et al., 2019). The second method is the data-driven 
empirical clustering approach, which essentially groups locations based upon their pedestrian activity 
patterns, referred to as clusters. In short, the clustering algorithm works by minimizing differences in 
patterns within each cluster while simultaneously maximizing differences in patterns between clusters. 
Miranda-Moreno and Lahti (2013) classified bicycle traffic patterns into four distinct groups as utilitarian, 
mixed-utilitarian, mixed-recreational, and recreational. Griswold et al. (2018) compared land use and 
empirical clustering approach and concluded that both approaches provided better results than a “single 
factor” method (where all locations are combined into single factor group). No matter the approach, the 
process of constructing factor groups is limited by the number and variety of locations with long-duration 
pedestrian count data.  

2.2.4 Research Objectives 

In this study, we aim to overcome limitations surrounding the lack of long-term automated pedestrian 
count data for traffic monitoring through the use of pedestrian push-button information from hundreds of 
sites in one U.S. state. Specifically, we utilize high-resolution data collected from traffic signal controller 
logs at more than 1,500 signalized intersections throughout Utah—available from the Utah Department of 
Transportation (UDOT)’s ATSPM system—to investigate the temporal patterns of pedestrian activity and 
develop expansion factors and factor groups that relate to spatial characteristics. As such, the objectives 
of this chapter are threefold, to:  

1. Quantify and understand pedestrian activity patterns at signalized intersections, using continuous, 
archived data from pedestrian push-buttons at more than 1,500 signalized intersections in Utah.  

2. Calculate time-of-day/day-of-week expansion factors and create factor groups based on empirical 
clustering of pedestrian activity patterns at signalized intersections, while accounting for seasonal 
variation.  

3. Explore relationships between pedestrian factor groups and land use, built environment, and 
socio-economic neighborhood characteristics.  

2.3 Data and Methods 

In this section, we present the data and an overview of the analysis methods. First, we describe calculating 
the pedestrian activity metrics for two temporal dimensions—hourly/weekday patterns and monthly 
(seasonal) patterns—from traffic signal controller log data, as well as assembling data on spatial 
characteristics from various sources. Second, we explain the analysis methods employed, including 
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empirical clustering, regression modeling, and expansion/adjustment factor accuracy. The data and scripts 
used in this chapter are publicly available (Singleton, Runa, & Humagain, 2021).  
 

 

 

 

 

 

 

 

2.3.1 Data Sources and Preparation 

2.3.1.1 Pedestrian traffic signal data 

Traffic signal controller log data from most of the over 2,000 signalized intersections in Utah were 
collected from UDOT’s ATSPM system (UDOT, 2020) for one full year (July 2017 through June 2018). 
In total, data from 1,697 signals with pedestrian push-buttons were usable. The remainder of the signals 
either did not have pedestrian push-buttons (either in isolated rural/industrial locations or in the heart of 
downtown Salt Lake City) or were missing data for a significant portion of the year.  

In order to prepare time series pedestrian datasets for clustering, a suitable metric that defines 
intersection-level “pedestrian activity” from traffic signal data was required. For this purpose, we relied 
upon the research by Singleton, Runa, and Humagain (2020) that validated pedestrian push-button data 
against observed pedestrian counts using over 20,000 crossing-hours of observations in Utah. That 
research, using regression models and various fit statistics, determined that a new pedestrian activity 
metric of imputed pedestrian calls registered, “45B” was the best predictor of actual pedestrian crossing 
volumes in many cases. More details about this validation and modeling process can be found elsewhere 
(Singleton, Runa, & Humagain, 2020; Singleton & Runa, 2021). Specifically, the 45B pedestrian activity 
metric is defined as: 

• For each pedestrian phase, in a time-ordered sequence of traffic signal controller events with just 
events {0, 21, 90}, the number of 90 events immediately preceded by a 0 or 21 event, where:  

o Event 0, Phase On: This event occurs with the activation of the phase on, such as the start 
of green or the start of the walk interval.  

o Event 21, Pedestrian Begin Walk: This event occurs with the activation of the walk 
indication for a particular phase.  

o Event 90, Pedestrian Detector On: This event occurs when the signal from the pedestrian 
push-button is activated, after any delay or extension is processed, for a particular 
pedestrian detector channel. 

In simple terms, the pedestrian activity metric 45B (imputed pedestrian calls registered) counts the 
number of times the walk signal appeared as a result of a pedestrian push-button press.  

We analyzed two types of temporal patterns in pedestrian activity: hourly/weekday patterns and monthly 
(or seasonal) patterns. For hourly/weekday patterns, we did the following for each intersection 𝑖𝑖: First, we 
calculated the pedestrian activity metric (45B) for all pedestrian phases over the entire year, removing any 
hours with missing data (i.e., due to communication outages or maintenance work). Second, we averaged 
these year-long hourly observations into 168 values 𝑣𝑣𝑖𝑖,𝑡𝑡,𝑑𝑑, one for each of the unique hour-of-day 𝑡𝑡 and 
day-of-week 𝑑𝑑 combinations (e.g., 4–5 p.m. Mondays). Third, we calculated normalized counts ῡ𝑖𝑖,𝑡𝑡,𝑑𝑑 
according to the following equation (Ryus et al., 2014; Griswold et al., 2018):  

ῡ𝑖𝑖,𝑡𝑡,𝑑𝑑 = 𝑣𝑣𝑖𝑖,𝑡𝑡,𝑑𝑑
∑ ∑ 𝑣𝑣𝑖𝑖,𝑡𝑡,𝑑𝑑

7
𝑑𝑑=1

24
𝑡𝑡=1

(1)

These normalized counts ῡ𝑖𝑖,𝑡𝑡,𝑑𝑑 are really the average hourly counts as a proportion of total average 
weekly counts of pedestrian activity at each signal, or essentially the (inverse of) hour-to-week expansion 
factors specific to each intersection. By averaging across the entire year, this process mitigates some of 
the effects of temporal variation caused by special events, abnormal weather, or other unusual 
occurrences. These intersection-specific normalized counts (inverse expansion factors) of pedestrian 
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activity (45B) were used as the data input into the empirical clustering analysis for hourly/weekday 
patterns.  

For monthly (seasonal) patterns, we did the following for each intersection i: First, we took the whole-
year hourly pedestrian activity (45B) dataset from the first step of the previous paragraph and summed the 
hourly values to generate 365 daily totals. Second, for each month m, we calculated the monthly average 
daily volume (𝑑𝑑𝑖𝑖,𝑚𝑚); we also calculated the overall annual average daily volume (𝑦𝑦𝑖𝑖,𝑦𝑦). Third, we 
calculated the 12 monthly adjustment factors (𝑚𝑚𝑖𝑖,𝑚𝑚) according to the following equation:  

𝑚𝑚𝑖𝑖,𝑚𝑚 = 𝑑𝑑𝑖𝑖,𝑚𝑚
𝑦𝑦𝑖𝑖,𝑦𝑦

(2) 

These intersection-specific monthly adjustment factors were used as the data input into the empirical 
clustering analysis for monthly (seasonal) patterns.  

2.3.1.2 Spatial data 

To explore relationships between temporal patterns in pedestrian activity and spatial characteristics, we 
assembled land use, built environment, and socio-economic attributes for the area surrounding each 
signalized intersection. Specifically, measures were calculated using quarter-mile network buffers. Data 
came from various sources, including population and employment data from the 2013-2017 American 
Community Survey and the 2017 Longitudinal Employer-Household Dynamics dataset for Census block 
groups, as well as 2019 land use and transportation data from the Utah Automated Geographic Reference 
Center. (See Singleton, Park, and Lee [2021] for details on these data.) Due to a lack of data, this 
information was available for only 1,161 signals. Descriptive statistics for these attributes are presented in 
Table 2.1.  

Table 2.1  Descriptive statistics for land use, built environment, and socio-economic attributes  
(N = 1,161) 

Attribute Mean SD 
Land use attributes 
 Residential land use (%) 31.264 22.006 
 Commercial land use (%) 30.756 19.360 
 Industrial land use (%) 2.007 8.190 
 Schools (#) 0.344 0.665 
 Places of worship (#) 0.593 0.850 
 Parks (acres) 1.537 3.622 
Built environment attributes 
 Population density (1,000/mi2) 5.263 2.923 
 Employment density (1,000/mi2) 8.365 12.888 
 Intersection density (#/mi2) 105.228 46.549 
 4-way intersections (%) 30.988 20.036 
 Transit stops (#) 43.065 23.491 
Socio-economic attributes 
 Vehicle ownership (#, mean) 1.646 0.418 
 Household size (#, mean) 2.972 0.850 
 Household income ($1,000) 57.655 20.152 



 

 

 

 

 

 

 

 

 

 

     

9 
 

2.3.2 Analysis Methods 

For each type of temporal pattern (hourly/weekday, monthly), we conducted a series of analyses: (1) 
empirical cluster analysis to identify clusters of signals with similar temporal patterns; (2) multinomial 
logit regression modeling to understand spatial factors associated with temporal clusters; and (3) 
calculating the accuracy of applying the expansion/adjustment factors.  

2.3.2.1 Identifying temporal patterns using empirical cluster analysis 

Critical steps in the cluster analysis process—selecting a (dis)similarity measure, choosing a clustering 
algorithm, and determining an optimal number of clusters—are discussed in this section.  

Because the objective of this study focuses on grouping intersections based on similar hourly/weekly 
patterns, we used a structural-based (dis)similarity measure—temporal correlation (CORT)—since it 
allows us to compare the relative trajectories of normalized counts across intersections. Basically, CORT 
measures the proximity of temporal variation between two time series, which aligns better with our 
objective than other conventional distance measures such as Euclidean distance, which works with the 
difference in magnitude between data points (Montero & Vilar, 2014). The equation for CORT is:  

𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝐹𝐹𝑖𝑖,𝐹𝐹𝑗𝑗� =
∑𝑇𝑇−1𝑡𝑡=1 �𝐹𝐹𝑖𝑖(𝑡𝑡+1)−𝐹𝐹𝑖𝑖𝑡𝑡��𝐹𝐹𝑗𝑗(𝑡𝑡+1)−𝐹𝐹𝑗𝑗𝑡𝑡�

�∑𝑇𝑇−1𝑡𝑡=1 �𝐹𝐹𝑖𝑖(𝑡𝑡+1)−𝐹𝐹𝑖𝑖𝑡𝑡�
2�∑𝑇𝑇−1𝑡𝑡=1 �𝐹𝐹𝑗𝑗(𝑡𝑡+1)−𝐹𝐹𝑗𝑗𝑡𝑡�

2
(3) 

where 𝐹𝐹𝑖𝑖 and 𝐹𝐹𝑗𝑗 represent two time series i and j, measured over 𝑇𝑇 time points t.  

In terms of clustering algorithms, we applied a k-means algorithm, which basically has the objective of 
minimizing differences within each cluster and maximizing differences between other clusters. The k-
means algorithm is found to be computationally efficient and can group intersections based on subtle 
nuances in temporal patterns of pedestrian activity.  

The final step in cluster analysis is to determine the optimal number of clusters (between one and the 
number of observations) that adequately represent patterns within a dataset. Common tools to assist in the 
selection of the number of clusters include the following:  

• Calinski-Harabasz (CH) criterion: This is the ratio of between-cluster variation to within-cluster 
variation, so a higher value reflects distinct clusters.  

• Sum of squared differences (SSD): This calculates the sum of squared differences between each 
observation’s values and the mean values of the cluster to which the observation belongs. Smaller 
differences indicate more homogenous clusters.  

• Average silhouette width (ASW): This measures the similarity (ranging from −1 to +1) of 
patterns of observations within each cluster (cohesion) compared with observations of other 
clusters (separation). A more positive value implies that observations are well matched within 
clusters and poorly matched to neighboring clusters.  

By performing k-means clustering for various numbers of clusters (2 to 7 for hourly/weekday, 2 to 5 for 
monthly), we computed the various fit statics and also visualized the patterns of resulting clusters. 
Generally, Table 2.2 shows that CH, SSD, and ASW values decreased with increased numbers of clusters, 
although not exclusively so. More clusters generally means an increase in both the distinctiveness and 
compactness of clusters; hence, the optimum number of clusters can be the number at which more/fewer 
clusters provides neither a significant improvement nor degradation in the fit statistics. Hence, the 
optimum number of hourly/weekday clusters was determined to be five, as it provides reasonable fit 
statistics and a relatively lower decrease in SSD (compared with six clusters). Similarly, the optimum 
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number of monthly clusters was determined to be three, as it provides a reasonable tradeoff between low 
SSD and higher ASW.  

Table 2.2  Fit statistics for various numbers of clusters 
 

# clusters 
Hourly/weekday clusters Monthly (seasonal) clusters 

CH SSD ASW CH SSD ASW 
2 1,424.71 4,715.61 0.72 700.38 668.42 0.54 
3 1,082.93 3,226.85 0.54 585.93 539.92 0.40 
4 1,052.84 3,612.17 0.54 539.65 475.59 0.30 
5 985.61 2,285.66 0.57 502.74 307.44 0.27 
6 973.47 1,970.04 0.31    
7 995.75 1,520.18 0.28    

2.3.2.2 Predicting clusters with spatial factors using multinomial logit regression models 

In order to explain which signals belonged in each cluster on temporal patterns of pedestrian activity, we 
performed multinomial logit regression using the spatial factors shown in Table 2.1 (land use, built 
environment, and socio-economic attributes) as explanatory variables. Variables with statistically 
significant coefficients indicate spatial characteristics associated with signals having different temporal 
patterns in pedestrian activity.  

2.3.2.3 Assessing the accuracy of expansion/adjustment factors 

When applying the cluster results and expansion/adjustment factors to convert short-duration counts to 
longer-term average volumes, there will be some discrepancy even with the same data due to using 
expansion/adjustment factors based on the cluster mean values. For hourly/weekday factors, this 
expansion accuracy is expressed as the absolute percentage error of the expanded weekly counts at a 
location relative to the average expanded weekly counts of the cluster to which that location belongs. As 
presented in Griswold et al. (2018) and Medury et al. (2019), the expansion accuracy ∈𝑖𝑖,𝑡𝑡,𝑑𝑑

𝑐𝑐  for 
hourly/weekday expansion factors is given by the following equation:  

∈𝑐𝑐𝑖𝑖,𝑡𝑡,𝑑𝑑= �ῡ𝑖𝑖,𝑡𝑡,𝑑𝑑
𝛾𝛾𝑐𝑐𝑖𝑖,𝑡𝑡,𝑑𝑑

�× 100 (4) 

where: ῡ𝑖𝑖,𝑡𝑡,𝑑𝑑 is the normalized count and 𝛾𝛾𝑖𝑖,𝑡𝑡,𝑑𝑑
𝑐𝑐  is the applicable expansion factor for cluster 𝑐𝑐, location 𝑖𝑖, 

and time period 𝑡𝑡. A similar equation applies to the accuracy of monthly adjustment factors.  

2.4 Results 

2.4.1 Hourly/weekday Patterns 

2.4.1.1 Results of hourly/weekly clusters 

To recap, we used the CORT (dis)similarity measure and the k-means algorithm to classify the 
normalized counts of pedestrian activity at 1,697 signalized intersections into five clusters. The cluster 
analysis results are summarized in Table 2.3 and the text below, and the mean and distributions of the 
hourly/weekly patterns are depicted in Figure 2.1.  
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Table 2.3  Summary of hourly/weekly cluster results 
Pattern Cluster (#, %) Visual characteristics 
Uniform 1 (871, 51.3) Evening peak, increase from morning to evening, weekdays > weekends, 

peak hour volume ~1-1.5% of weekly volume 
2 (278, 16.4) Evening peak, increase from morning to evening, weekdays > weekends, 

peak hour volume ~1-1.5% of weekly volume 
Bimodal 3 (302, 17.8) Morning and evening peaks, evening > morning, weekdays > weekends, 

peak hourly volume ~1.5-2% of weekly volume 
4 (188, 11.1) Morning and evening peaks, evening > morning, weekdays > weekends, 

peak hourly volume ~1.5-2% of weekly volume 
5 (58, 3.4) Morning and evening peaks, evening > morning, weekdays > weekends, 

peak hourly volume ~2-2.5 of weekly volume 

 

 

 

 

 

Overall, the hourly/weekday clusters can be classified into two general patterns of pedestrian activity: (a) 
unimodal, with one (usually evening) peak hour that is approximately 1% to 1.5% of the weekly total, and 
(b) bimodal, with two distinct peak hours (usually evening is greater than morning) and where the 
(usually evening) peak hour is approximately 1.5% to 2% of the weekly total. Besides these general 
observations, the clusters themselves show some (albeit more minor) differences. Unimodal clusters 1 and 
2 are slightly differentiated in their daytime vs. evening patterns: for cluster 1, the pattern is somewhat 
more uniform (or smooth) than for cluster 2, and the mean is slightly more peaked. The bimodal clusters 
3, 4, and 5 are distinguished by the magnitude of their peaks—cluster 5’s peaks are more than 2% of the 
weekly total, whereas peaks for clusters 3 and 4 are 1.5% to 2%—and somewhat by the difference 
between the morning and evening peaks (difference: cluster 5 > cluster 4 > cluster 3).  

There were also some similarities between all the hourly/weekday clusters. Unsurprisingly, pedestrian 
activity was highest during daytime and evening hours, with most intersections recording little to no 
activity overnight. Peak pedestrian hours were more common in the afternoon and early evening than in 
the morning. Weekend pedestrian activity (especially on Sundays) was lower than on weekdays, but often 
without a clear single peak hour (usually midday). Tuesdays often had the largest peak hour of pedestrian 
activity, while Mondays and Fridays tended to have slightly lower peaks than other weekdays (although 
Mondays had the highest peaks for clusters 3 and 4). 
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i. Unimodal – Cluster 1 ii. Unimodal – Cluster 2 

iii. Bimodal – Cluster 3 iv. Bimodal – Cluster 4 
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v. Bimodal – Cluster 5 

Figure 2.1  Mean and distribution of pedestrian activity patterns by hourly/weekday cluster  
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2.4.1.2 Spatial Factors Affecting Hourly/weekly Patterns 

Some past studies have investigated the influential role of land use, the built environment, and socio-
economic characteristics in shaping temporal patterns of pedestrian activity across locations (e.g., Hankey 
et al., 2012; Medury et al., 2019; Schneider et al., 2009). The presence of offices, schools/colleges, and 
different land use characteristics surrounding count locations are found to influence the hourly/weekday 
temporal patterns. For instance, locations near schools displayed multiple peaks on weekdays and 
relatively lower pedestrian activity during weekends, whereas recreational trails had higher activity 
during weekday evenings and relatively higher pedestrian activity during weekends (Medury et al., 2019). 
We add to this literature using our larger dataset of over 1,000 signalized intersections in Utah.  

To understand the relationships between pedestrian activity patterns and spatial characteristics, we 
estimated a multinomial logit model on 1,161 signalized intersections with such data, where membership 
in an hourly/weekly cluster (1 to 5) was the dependent variable and spatial characteristics were the 
independent variables. Results are presented in Table 2.4 and described below.  

Table 2.4  Multinomial logit model results of hourly/weekday cluster membership 

Variable 
Cluster-specific coefficients (ref. = 1) 

2 3 4 5 
Intercept 0.751 1.409 0.006 -0.576 
Population density (1,000/mi2) -0.234 -0.240 -0.373  
Residential land use (%) -0.035    
Commercial land use (%) -0.046 -0.053 -0.055  
Industrial land use (%)  -0.034  0.058 
Intersection density (#/mi2)  -0.005 -0.010 -0.019 
4-way intersections (%)  -0.017 -0.018 -0.039 
Schools (#)  0.515 1.039 1.166 
Vehicle ownership (#, mean) -0.555    
Household size (#, mean) 0.275  0.325  
Household income ($1,000) 0.021 0.012 0.016  
McFadden pseudo-R2 0.170    
Sample size (N) 1,161    
Statistical significance: bold for p < 0.05, italics for p < 0.10, not shown 
for p > 0.10. 

The model results help to explain why we see some of the differences in the pedestrian activity patterns 
across clusters. Notably, the bimodal patterns (multiple peaks) of clusters 3, 4 and 5 is partially explained 
by the result that these locations were much more likely to located within a quarter-mile walking distance 
of one or more schools, indicated by the significant positive coefficients for number of schools. Signals 
were also more likely to have a bimodal pattern in areas with less street network connectivity, as shown 
by the significant negative coefficients for intersection density and percentage of four-way intersections. 
Based on the results for population density, percentage of commercial land use, and household income, 
signals were more likely to have the smooth unimodal pattern of cluster 1 when they were in areas with 
greater population density, more commercial land uses, and lower household incomes. Looking at 
differences between unimodal signals, belonging to cluster 1 was more likely in neighborhoods with more 
residential land uses, greater vehicle ownership, and smaller household sizes.  

2.4.1.3 Expansion factor accuracy 

Figure 2.2 displays the average expansion accuracy for each hour in the week by hourly/weekly cluster.  
Overall, expansion accuracy is greater (lower error) for clusters and during times with higher pedestrian 
activity levels. Average error is less than 75% to 100% for all clusters when counts are taken during 
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daytime hours, but greater than 75% (and as much as 150%) when overnight counts are expanded. 
Expansion errors for daytime counts at signals in clusters 1 and 3 (the largest clusters) are around 25% or 
less, suggesting that only a few hours of counts at these locations may be enough to accurately estimate 
longer-term pedestrian volumes. Conversely, counts taken at signals in the smallest cluster (5) may need 
to be of a longer duration in order to produce similarly accurate estimates of pedestrian activity.  

Figure 2.2  Expansion accuracy for hourly/weekday clusters 

2.4.2 Monthly Patterns 

2.4.2.1 Seasonal (monthly) Clusters 

The normalized counts (inverse expansion factors) for the hourly/weekday clusters shown in Figure 2.1 
depict average hourly and weekday pedestrian activity patterns expressed as a proportion of weekly totals. 
Homogeneity within those clusters may obscure other sources of temporal variations in pedestrian activity 
patterns between locations, such as those differences due to seasonal variation. In fact, factoring processes 
in traffic monitoring to convert short-duration counts to annual average daily volumes require seasonal 
adjustment factors as well.  

Therefore, we performed a similar empirical clustering process to generate monthly clusters of similar 
seasonal pedestrian activity patterns. In traffic monitoring, such seasonal variation in activity at 
intersections is addressed during the calculation of annual volume by using monthly adjustment factors. 
After calculating the monthly adjustment factors as described in section 2.3.1.1, some of the intersections 
were removed due to unusually high factors above 3.0, which could have resulted from missing data or 
technical errors, resulting in total of 1,446 intersections. To recap, the optimum number of monthly 
(seasonal) clusters was determined to be three (based on fit statistics and visualization).  

The mean values of the adjustment factors for the three monthly clusters are shown in Figure 2.3. On 
average, the largest cluster A (1,076, 74.4%) has the least variation in pedestrian activity patterns from 
month to month, peaking in the summer months (especially June, but with a slight decrease in July) and 
bottoming out in the winter months (especially December). Higher pedestrian activity during the summer 
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is warranted because of pleasant weather (warm and dry) throughout most of Utah. Similarly, cold 
temperature and snow conditions result in lower levels of pedestrian activity during Utah winter months. 
The other two clusters, B and C, show greater (and different) variations on this trend. Signals in cluster B 
(111, 7.7%) have something of a more extreme version of cluster A’s pattern, with even higher relative 
volumes in the summer (from June through September) and lower volumes in winter (especially 
February). The pattern suggests that pedestrian activity for signals in cluster B is more sensitive to 
weather. Conversely, cluster C (259, 17.9%) shows a distinctly different pattern, peaking in September 
and having less than average pedestrian activity during the summer months (June through August). 
Signals in cluster C could be near schools or universities, which are usually not in session during these 
three summer months. These hunches about the reasons motivating seasonal variations in pedestrian 
activity could be confirmed through comparisons with spatial characteristics, as presented in the 
following section. 
 

 

 

 

 

Figure 2.3  Means of pedestrian activity patterns by monthly cluster 

2.4.2.2 Spatial factors affecting seasonal (monthly) patterns 

As described earlier, seasonal variation in pedestrian activity patterns is mostly influenced by climatic 
conditions (i.e., snow, temperature, rainfall) (Runa, 2020). To help explain these seasonal variations in 
Utah, we estimated another multinomial logit model on 1,161 signalized intersections, this time where the 
dependent variable was membership in a monthly cluster (A, B, or C). In addition to the same land use, 
built environment, and socio-economic characteristics as used previously, we added climatic division 
classifications from the National Climate Data Center. The assumption is that signals in the same climatic 
division experience similar weather patterns throughout the year. As shown in Figure 2.4, Utah contains 
seven climatic divisions, although most signals in our dataset are located in the North Central region (also 
known as the Wasatch Front), with some in the Northern Mountains and Dixie regions. (We did not have 
spatial characteristics data for signals in the other climatic divisions.) Note that although many of the 
signals appear to lie along the border of the North Central and Northern Mountains divisions, almost all 
are truly located in the urbanized valleys of Utah’s Wasatch Front (such as in Salt Lake City). These 
signals experience weather patterns that are much more similar to each other than they are with higher-
elevation locations in the Northern Mountains (such as in Park City).  
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Figure 2.4  Map of signalized intersections and climate divisions 

The results of the multinomial logit model for monthly clusters are shown in Table 2.5; the largest cluster 
A is the reference alternative. Signals were less likely to be in cluster A and more likely to be in clusters 
B or C if they were in areas with greater employment density, lower traffic volumes, and larger household 
sizes. Cluster B was associated with less commercial land use, greater intersection density, and fewer 
places of worship. Signals in the Dixie climatic region were much more likely to belong to cluster B or C 
than to A. Typically, this region experiences hotter summers and milder winters than other areas of Utah, 
which could explain the greater monthly variation for cluster B and the summer trough of cluster C. Also, 
signals near schools were much more likely to be in cluster C, which supports our hypothesis about a lack 
of school attendance being an explanation for lower pedestrian activity levels in summer months.  
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Table 2.5  Multinomial logit model results of monthly cluster membership 

Variables 

Cluster-specific 
coefficients (ref. = A) 

B C 
Intercept -2.233 -3.521 
Climate division: Dixie (ref. = North Central) 2.852 4.666 
Employment density (1,000/mi2) 0.029 0.046 
Commercial land uses (%) -0.031  
4-way intersections (%) 0.019  
Schools (#)  0.734 
Places of worship (#) -0.399  
Vehicle ownership (#, mean) -1.001 -0.880 
Household size (#, mean) 0.722 1.053 
McFadden pseudo-R2 0.186  
Sample Size (N) 1,161  
Statistical significance: bold for p < 0.05, italics for p < 0.10, not 
shown for p > 0.10.  

2.4.2.3 Adjustment factor accuracy 

The average error (expansion/adjustment accuracy) for the three monthly clusters is shown in Figure 2.5. 
Accuracy is remarkably good (around 10% error) for the largest cluster A all year round, but even cluster 
C has reasonably good expansion/adjustment accuracy (10% to 20% error) throughout most of the year. 
The smallest cluster B shows the potential for more error (30% to 40%). As with the hourly/weekday 
clusters, accuracy for the monthly clusters tends to be worse during months with lower levels of 
pedestrian activity (December for all clusters, July for cluster C).  

Figure 2.5  Expansion accuracy for monthly clusters 
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2.4.3 Cross-classification of Hourly/weekday and Monthly Clusters 

As hourly/weekday and monthly pedestrian activity pattern trends differ in nature (due to variations in 
climatic conditions and some spatial characteristics), it is useful to examine the frequency of signals in 
each of the hourly/weekday clusters that belonged to a particular seasonal trend produced by the monthly 
clusters. Therefore, we cross-tabulated the number of intersections that belonged to each combination of 
hourly/weekday and monthly clusters. Table 2.6 indicates that most unimodal hourly/weekday clusters (1 
and 2) pertain to the more uniform seasonal variations of cluster A. However, most of the intersections 
that belonged to the bimodal hourly/weekday clusters 4 and 5 (those with high relative peak pedestrian 
activity levels) were grouped under monthly cluster C, where pedestrian activity dips during summer 
months. This makes sense, given that a bimodal daily pattern and a summer lull in pedestrian activity are 
both indicative of school-driven pedestrian activity patterns.  

Table 2.6  Cross-classification of hourly/weekday and monthly clusters 
(N = 1,446) 

Hourly/weekday 
clusters 

Monthly Clusters 
A B C 

1 661 38 85 
2 152 36 39 
3 199 11 50 
4 53 19 70 
5 11 7 15 

2.5 Discussion and Conclusions  

In this study, we provided an empirical clustering approach to grouping locations with similar long-term 
pedestrian activity patterns using pedestrian push-button data from over 1,500 signalized intersections in 
Utah. After calculating the proxy measure of pedestrian activity (imputed pedestrian calls registered), we 
performed cluster analysis to classify signals based on the normalized hourly/weekly counts (each hour’s 
proportion of weekly totals, or the inverse of the expansion factors) and account for seasonal variation 
using monthly adjustment factors. We also used multinomial logit models to identify spatial and climatic 
characteristics (land use, built environment, and socio-economic characteristics, as well as climatic 
regions) that help predict and explain which locations see different temporal patterns in pedestrian activity 
levels. Finally, we assessed the accuracy of applying the expansion/adjustment factors.  

The ultimate objective of this work was to investigate the temporal patterns of pedestrian activity and 
develop expansion/adjustment factors and factor groups that relate to spatial characteristics. Utilizing the 
hourly/weekday and monthly clusters that we developed, each with an average temporal pattern, one can 
expand a short-duration count (for a specific hour, weekday, and month) through multiplication and/or 
division to get an estimate of the long-term average pedestrian volume at a particular location. In the 
process of achieving this aim, our chapter made several contributions to travel monitoring for pedestrian 
travel.  

• Most notably, we utilized a much greater quantity of pedestrian data than has been possible to 
examine before; specifically, one year of data from 1,697 signalized intersections throughout 
Utah. This larger sample size allowed us to examine more nuanced differences in pedestrian 
activity patterns and have the power to identify significant associations with spatial 
characteristics.  

• Our use of separate hourly/weekday and monthly clusters allowed us to distinguish the influences 
of time-of-day and day-of-week from seasonal variations.  

• We also considered the expansion/adjustment accuracy for our factor groups (clusters), which has 
implications for the selection of times-of-day and durations for short-term pedestrian counts.  
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In the remaining section of this chapter, we discuss key findings, their applications for understanding 
pedestrian behavior and monitoring pedestrian traffic, and study limitations.  

Overall, the clustering of average hourly proportions of weekday counts revealed common 
hourly/weekday pedestrian activity patterns at most signalized intersections, as shown for the five clusters 
altogether in Figure 2.6. All clusters saw their highest pedestrian volumes during weekday daytime hours, 
with peak pedestrian volumes in the afternoon or early evening, lower volumes on weekends, and slightly 
lower volumes on Mondays and Fridays. In fact, the differences between clusters were more nuanced. 
Three clusters (3, 4, and 5) showed bimodal morning and evening peaks, with the other two clusters (1 
and 2) having just a single evening peak. The weekday peak hours varied from 1% to 2.5% of weekly 
totals, depending on the cluster. The fact that the clustering algorithm picked up even these small 
differences in temporal patterns highlights the utility of an empirical data-driven approach to constructing 
pedestrian factor groups.  

On the other hand, the small differences between locations shown here suggests that a coarser factor 
grouping might not result in significantly inferior count expansion results. Compared with past research 
defining pedestrian or non-motorized count factor groups (Schneider et al., 2009; Miranda-Moreno & 
Lahti, 2013; Medury et al., 2019), the hourly/weekday factor groups (clusters) we identified are not as 
distinct. This is likely due to several factors, most notably the limitation of our source data. Research 
relying on permanent non-motorized counters can cover a wider range of temporal use pattern types—
commuting vs. recreational vs. mixed—precisely because the locations where counters are deployed were 
selected to capture a variety of behaviors and uses. In this study, we relied upon existing infrastructure 
(traffic signals) in locations that were not chosen with pedestrian count programs in mind. In other words, 
location selection was exogenous to our study purpose. Since most traffic signals are located in areas with 
higher traffic volumes (such as along arterials) or where walking for utilitarian/transportation purposes is 
expected, they may not be able to detect the full variety of pedestrian temporal patterns that exist, such as 
along trails or in recreational areas.  
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Figure 2.6  Means of pedestrian activity patterns by hourly/weekday cluster: 1 (N = 871), 2 (N = 278), 3 (N = 302), 4 (N = 188), and 5 (N = 58) 



 

 22 

Despite the less noticeable differences between hourly/weekday pedestrian activity patterns in different 
clusters, the model illuminated land use, built environment, and socio-economic differences that help to 
explain these pattern variations. Notably, having schools nearby significantly increased the chances of a 
signal having a bimodal pedestrian activity pattern, coincident with the morning and afternoon/early 
evening time periods bracketing the school day. Several other built environment attributes—population 
density, residential and commercial land uses, connected street networks—were linked to signals 
belonging to cluster 1, with unimodal, smoother, and less varied weekday pedestrian activity patterns. 
This information about spatial characteristics—along with insight into expansion accuracy—aids planners 
and pedestrian traffic monitoring program managers by suggesting the types of locations where different 
expansion/adjustment factors are needed or even where longer or shorter short-duration counts are needed 
to provide accurate pedestrian volume estimates.  
 

 

 

 

 

Our clustering of monthly adjustment factors showed more significant differences in the seasonal patterns 
of pedestrian activity across intersections (see Figure 2.3) than were found for hourly/weekday patterns. 
Specifically, we captured both the general seasonal trend (higher pedestrian activity in summer, lower 
activity during winter months) and also trends specific to certain locations, such as the drop in pedestrian 
activity during out-of-school months from June through August. By linking these monthly groupings to 
spatial characteristics, we confirmed that this latter specific pattern occurred more often near schools and 
universities. We also demonstrated that pedestrian activity was more sensitive to weather in certain 
regions (southwestern Utah) with higher summer temperatures and mild winters.  

Another finding of this study is about expansion factor accuracy. Confirming past research, our results 
suggest that the expansion accuracy is cyclical in nature, with higher errors during low-volume overnight 
hours and greater accuracy during daytime. This implies that manual counts should be conducted at 
intersections during the daytime and longer counts may be beneficial, especially during off-peak hours 
and at locations with more variability (i.e., cluster 5). The expansion accuracy from empirical clustering 
should be more accurate than the “single factor” approach of having just one factor group, as shown by 
previous studies (Griswold et al., 2018; Medury et al., 2019).  

2.5.1 Limitations  

The study is not without additional limitations. First, the pedestrian activity metrics derived from 
pedestrian push-button data do not provide the actual pedestrian volume, and may contain errors, because 
of imperfect correlation and nonlinearities. However, correlation between push-button data and volumes 
is high (Singleton, Runa, & Humagain, 2020; Singleton & Runa, 2021), and we suspect the benefits of 
being able to analyze data from hundreds if not thousands of locations outweigh the inaccuracies of the 
source data. Second, the clustering approach produced five clusters, but in reality there were only two 
distinct groupings (unimodal and bimodal). However, the tradeoff between cluster fit and the number of 
clusters is difficult to control for, and empirical clustering does offer the benefit of identifying smaller 
differences that may be obscured using a different approach. Third, the sample size decreased somewhat 
when incorporating spatial characteristics, which might cause bias or lack of generalizability of the spatial 
analysis results. Fourth, the relatively coarse nature of the climatic divisions used in the study could not 
exactly pinpoint what causes the variation in seasonal patterns (i.e., snow, rainfall, wind), and there may 
be additional influential weather variations within each climatic division. Fifth, the use of empirical 
clustering and Utah-specific climate zones may limit the generalizability of these temporal patterns to 
areas outside of Utah. Nevertheless, a similar process may be useful for developing pedestrian expansion 
and adjustment factors in other states. In summary, despite these limitations, we have demonstrated that 
traffic signals with pedestrian push-button data are a very useful supplement to—but not a complete 
replacement for—existing permanent counters within a broader pedestrian traffic monitoring program.  
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2.5.2 Future Research 
 

 

 

  

There are many opportunities to refine this research or extend it in new directions. Future research could 
look at using alternative data sources (such as the Google Places API) to calculate the attributes near 
intersections, which could provide more detailed insights into specific land uses or place types than some 
of the aggregate metrics used in our study. Correlating traffic signal-based pedestrian activity levels with 
weather is a potential fruitful area of inquiry. In this regard, more fine-grained data—temperature, 
humidity, snow, air quality—collected from nearby weather stations could be assembled and correlated 
with pedestrian activity patterns at intersections (Runa & Singleton, 2021). If there are common patterns 
in how pedestrian activity changes when it, for example, snows or rains, it may be possible to develop 
expansion/adjustment factors that work for short-duration counts conducted during mildly inclement 
weather. Additionally, another promising area for future research could be the investigation of the effects 
of major events such as concerts or sporting events on changes in pedestrian activity compared with 
normal days. More research could also be done using these pedestrian traffic signal data to inform the 
duration and timing of short-term pedestrian counts. For example, one could extend this study to 
determine the average expansion/adjustment accuracy of different count durations (anywhere from one 
hour to one week) in an attempt to find the optimum tradeoff between cost and accuracy. Finally, research 
also could look at using pedestrian push-button data to calculate and compare other types of traffic 
monitoring count data expansion factors, such as hour-to-year or day-to-year, as these have been 
suggested as potentially more accurate alternatives for estimating annual average volumes (Medury et al., 
2019).  
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3. IMPACTS OF THE COVID-19 PANDEMIC ON PEDESTRIAN 
PUSH-BUTTON UTILIZATION AND PEDESTRIAN VOLUME 
MODEL ACCURACY IN UTAH 
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3.1 Abstract 

This work investigated the impacts of COVID-19 on pedestrian behavior, answering two research 
questions using pedestrian push-button data from Utah traffic signals: How did push-button utilization 
change during the early pandemic due to concerns over disease spread through high-touch surfaces? How 
did the accuracy of pedestrian volume estimation models (developed pre-COVID based on push-button 
traffic signal data) change during the early pandemic? To answer these questions, we first recorded 
videos, counted pedestrians, and collected push-button data from traffic signal controllers at 11 
intersections in Utah in 2019 and 2020. We then compared changes in push-button presses per pedestrian 
(to measure utilization), as well as model prediction errors (to measure accuracy), between the two years. 
Our first hypothesis of decreased push-button utilization was partially supported. The changes in 
utilization at most (seven) signals were not statistically significant; yet the aggregate results (using 10 of 
11 signals) saw a decrease from 2.1 to 1.5 presses per person. Our second hypothesis of no degradation of 
model accuracy was supported. There was not statistically significant change in accuracy when 
aggregating across nine signals, and the models were actually more accurate in 2020 for the other two 
signals. Overall, we conclude that COVID-19 did not significantly deter people from using push-buttons 
at most signals in Utah, and that the pedestrian volume estimation methods developed in 2019 likely do 
not need to be re-calibrated to work for COVID conditions. This information may be useful for public 
health actions, signal operations, and pedestrian planning.  

3.2 Introduction 

The outbreak of the coronavirus disease COVID-19 first started in Wuhan, China, in December 2019. In 
March 2020, the World Health Organization (WHO) announced COVID-19 as a global pandemic after it 
spread rapidly all over the world, including in the United States. To slow the spread of the virus, different 
countries took various public health actions. Many U.S. states and communities implemented stay-at-
home orders or recommendations, schools and restaurants were closed or limited, working from home 
became the norm in some fields, and many public events and large gatherings were canceled. Mandates or 
recommendations also often included social distancing (6 ft or 2 m), face coverings (masks), and frequent 
hand washing and surface cleaning.  

The COVID-19 pandemic led to major changes in travel patterns around the world and across multiple 
modes (De Vos, 2020; Beck & Hensher, 2020; Jenelius & Cebecauer, 2020; Shamshiripour et al., 2020, 
Shakibaei et al., 2021). Travel restrictions also appear to have resulted in significant changes in walking 
activity in Utah (Singleton Transportation Lab, 2020). There is a need and desire to accurately monitor 
traffic patterns, including pedestrian activity, in order to inform agencies in their traffic management and 
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other operational and planning decisions. It is also of scientific interest to know how pedestrian behavior 
changed in response to COVID-19 concerns. In this chapter, we focus on one specific area of COVID-19 
influences on pedestrian behavior: pedestrians’ utilization of push-buttons at traffic signals (button-press 
behavior), and corresponding impacts on the accuracy of pedestrian volume estimation from push-button 
traffic signal data.  
 

 

 

 

 

 

3.2.1 Background and Research Questions 

Early in the pandemic, fears over the virus spread; the fear of contracting COVID-19 by interacting with 
high-touch public surfaces—including pedestrian push-buttons at traffic signals—led some transportation 
agencies to eliminate the need to press the push-button in order to get a walk indication (Combs, 2020), 
switching to a signal timing technique called pedestrian recall. For example, Salt Lake City and the Utah 
Department of Transportation (UDOT) placed several dozen signals in downtown Salt Lake City on 
pedestrian recall from April through June 2020 (Singleton et al., 2023). These actions were in response to 
fears that could have manifested in different pedestrian behaviors when interacting with traffic signals 
that had not been switched to pedestrian recall. Specifically, people may have been less willing to press 
the pedestrian push-button in times and locations during community spread of COVID-19. However, 
these actions were taken without knowing whether pedestrian push-button utilization or button-press 
behavior actually changed. In fact, later in the pandemic, studies showed that infected surfaces (especially 
those exposed to sunlight) were not a leading cause of COVID-19 spread.  

• Research Question 1: How did the utilization of pedestrian push-buttons at traffic signals change 
during the early months of the COVID-19 pandemic?  

• Hypothesis 1: Pedestrians were slightly less likely to press pedestrian push-buttons due to 
concerns about COVID-19.  

Recent research in Utah has investigated the use of pedestrian push-button data from traffic signals for 
pedestrian traffic monitoring and pedestrian volume estimation (Singleton et al., 2020). UDOT has been a 
leader in developing the Automated Traffic Signal Performance Measures (ATSPM) system (UDOT, 
2021; ATKINS, 2016), which allows access to high-resolution traffic signal controller event logs 
(Smaglik et al., 2007), including information about pedestrian push-button presses (Sturdevant et al., 
2012). Work by Singleton and Runa (2021) in 2019 recorded more than 22,000 crossing-hours of video 
and collected observed counts of over 170,000 pedestrians at 90 signals throughout Utah. Comparisons of 
pedestrian counts to pedestrian signal data (including pedestrian actuations and time-filtered pedestrian 
push-button presses) used simple quadratic or piecewise linear regression models applied to different 
situations (e.g., pedestrian recall or not, short vs. long cycle lengths). Overall, the model-estimated 
pedestrian crossing volumes had a low error (±3.0 pedestrians per hour) and were strongly correlated 
(0.84) with observed volumes (Singleton & Runa, 2021).  

The application of these models allows for the estimation of pedestrian volumes (directly from traffic 
signal data) at around 1,500 signals throughout Utah, providing information that is useful for pedestrian 
planning and safety analysis efforts (Singleton, Park, & Lee, 2021; Singleton, Mekker, & Islam, 2021). 
However, these models rely on empirically derived relationships from 2019 about pedestrian behavior at 
signals, specifically, the utilization of pedestrian push-buttons. Any change in pedestrian push-button 
press behavior due to COVID-19 might yield less accurate volume estimates and require a recalibration of 
these pedestrian volume estimation methods.  

• Research Question 2: How did the accuracy of pedestrian volume estimation models based on 
traffic signal data (developed pre-COVID) change during the early months of the COVID-19 
pandemic?  
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• Hypothesis 2: Pedestrian push-button utilization (button-press behavior) did not change enough to 
degrade the accuracy of the pedestrian volume estimation models.  

 

 

 

 

 

 

3.3 Data and Methods 

In order to answer our research questions, we had to first collect pedestrian data from recorded videos, 
then assemble pedestrian push-button data from traffic signals, and finally analyze push-button utilization 
and the accuracy of the pedestrian volume estimation models.  

3.3.1 Pedestrian Data Collection 

Observed pedestrian data were obtained from recorded videos at different signals in Utah. In 2019, we 
collected pedestrian volume data at 90 signals (Singleton et al., 2020). For 2020, we collected data at 11 
signals (see Figure 3.1 and Table 3.1), where we had the most 2019 data, in order to increase the 
likelihood that any differences in pedestrian behavior were not due to random chance. These locations 
also captured a range of estimated traffic volumes—annual average daily pedestrian (AADP) crossing 
volumes and entering motor vehicle volumes as measured by annual average daily traffic (AADT)—as 
well as different regions and urban contexts. (None of these locations were placed under continuous 
pedestrian recall by Salt Lake City or UDOT.) For each location in each year, we used UDOT traffic 
cameras to record more than 200 crossing-hours of video. We then watched the videos and tabulated the 
number of pedestrians (walking, running, on a skateboard, or in a wheelchair) using each crossing in each 
hour.  

Figure 3.1  Map of locations with data collected in 2019 and 2020 
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Table 3.1  Details about data collection in 2019 and 2020 

Signal Location 
Crossing-hours Months Crossing AADP a Entering AADT b 
2019 2020 2019 2020 2019 2020 2019 2020 

1021 1300 S & 300 W, Salt 
Lake City 

489 310 03 06, 07  1,871   1,578  37,100  33,200  

1094 S Temple & 700 E, Salt 
Lake City 

294 212 04 06, 07  305   196  41,800  37,300  

1229 2100 S & 1300 E, Salt 
Lake City 

274 253 03 06, 07  1,489   1,274  62,800  56,100  

4130 6200 S & Margray Dr, 
Taylorsville 

471 215 02, 07, 
08, 11 

05  57   86  24,800  22,200  

5108 Antelope Dr & Hill 
Field Rd, Layton 

416 326 03, 10 06  470   318  44,500  39,800  

5306 400 N & Main St, Logan 498 251 01, 02, 
09, 11 

04, 05  291   225  50,900  44,300  

5349 2600 S & US-89, 
Bountiful 

508 288 07, 11 05  380   277  47,300  42,300  

6307 800 N & Palisades Dr, 
Orem 

281 353 07 06, 07  83   137  37,200  32,400  

7184 900 S & 700 E, Salt 
Lake City 

558 694 01, 02, 
08, 11 

04, 05, 
06 

 822   790  54,700  44,200  

8119 St. George Blvd & 400 
E, St. George 

730 368 01, 02, 
08, 11 

04, 05  102   84  27,100  26,900  

8302 Center St & Main St, 
Moab 

789 358 02, 03, 
06, 07, 
10 

05  6,146   5,163  18,500  17,600  

a Estimated AADP values were calculated by applying the modeling methods developed by Singleton and Runa 
(2021) to a full year of pedestrian push-button data. Pedestrian crossing volumes across the 11 signals decreased 
an average 16% from 2019 to 2020.  
b Estimated AADT values were obtained from products of UDOT’s traffic monitoring program. Motor vehicle 
traffic volumes across the 11 signals decreased an average 11% from 2019 to 2020.  

 

 

 

 

3.3.2 Pedestrian Push-button Data Assembly 

Time-stamped pedestrian push-button presses are recorded in high-resolution traffic signal controller log 
data (Smaglik et al., 2007). We used UDOT’s ATSPM system (UDOT, 2021) to obtain push-button data 
for the time periods corresponding to the videos at each signal. Based on an earlier work by Singleton et 
al. (2020), we then calculated—for each hour and pedestrian phase (crossing)—several different measures 
of pedestrian traffic signal activity.  

• Pedestrian push-button presses: The most direct measure of pedestrian push-button utilization 
or button-press behavior is event code 90 (“pedestrian detector on”). This occurs whenever a 
pedestrian push-button is activated (pressed), which could happen multiple times per cycle.  

• “Unique” pedestrian push-button presses: Because one person may press the push-button 
multiple times in quick succession, we used time filters to remove successive push-button presses 
within a certain time interval. Testing indicated that a 15-second filter was the best fit to the 
observed volume data (Singleton & Runa, 2021).  

• Pedestrian actuations: Other research (Kothuri et al., 2017) has used actuations rather than 
push-button presses to correlate pedestrian volumes. An actuation occurs upon the first time a 
push-button is pressed before being served, so usually just once per cycle. This measure was the 
best predictor of pedestrian volumes for crossings when on pedestrian recall (Singleton & Runa, 
2021).  
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3.3.3 Analysis of Changes in Pedestrian Push-button Utilization 
 

 

 

 

 

 

 

 

To determine if pedestrian push-button utilization changed during the COVID-19 pandemic, we 
compared the ratio of pedestrian push-button presses to pedestrian crossing volumes, which we define as 
the push-button use rate or utilization (presses per person). Our use of rates to measure pedestrian push-
button utilization behavior is admittedly simplistic, but it was appropriate for our hourly data collection 
method, and it provides a first-stage look at COVID-related changes. Also, our second analysis (model 
prediction accuracy) better addresses the (nonlinear) relationship between push-button presses and 
pedestrian volumes.  

To statistically analyze changes in utilization between the two years, we estimated a fixed-effects 
multilevel linear regression model (hours i at level one, signals j at level two) with no intercept (Yij = βj × 
Xij), predicting hourly pedestrian volumes (Yij) as a function of pedestrian push-button presses (Xij) across 
all crossings/phases, where the slopes (βj) are fixed parameters that vary across signals j. Note that the 
slope (β) is the average number of pedestrians per push-button press, while the inverse slope (1/β) is the 
average number of push-button presses per pedestrian, our utilization rate. We allowed βj to be different 
for each signal in each year (Yij = βj,2019 × Xij,2019 + βj,2020 × Xij,2020); also, by dummy coding for 2020 (Yij = 
βj × Xij + βj,Δ2020 × Xij,2020), null hypothesis tests of βj,Δ2020 provided statistical significance of the change in 
slope at each signal from 2019 to 2020. Specifically, a decrease in the utilization rate (an increase in the 
slope) would suggest that people may have been avoiding push-buttons out of fears of contracting 
COVID-19.  

3.3.4 Analysis of Changes in the Accuracy of Pedestrian Crossing Volume 
Estimates 

To assess any changes in the accuracy of the pedestrian volume estimation models, we compared the 
model prediction errors between the two years. First, we applied the models developed by Singleton and 
Runa (2021) to estimate hourly pedestrian crossing volumes from traffic signal and pedestrian push-
button data for both 2019 and 2020 and calculated the prediction errors (observed minus estimated). As 
previously mentioned, Singleton and Runa (2021) developed five piecewise linear or quadratic linear 
regression models for different situations: pedestrian hybrid beacon signals, crossings with pedestrian 
recall at high or low volume signals, and crossings with pedestrian recall at signals with short or long 
cycle lengths. To aid with application, the models used just one independent variable: whichever 
pedestrian signal activity measure best fit the data (unique push-button presses or pedestrian actuations).  

Then, for each signal, we performed a Welch’s (unequal variances independent samples) t-test on the 
model prediction errors for 2019 vs. 2020. Specifically, a significant difference (especially an increase) in 
prediction error would suggest that the pedestrian volume estimation models may need to be adjusted to 
remain accurate during the COVID-19 pandemic.  

3.4 Results and Discussion 

3.4.1 Analysis of Changes in Pedestrian Push-button Utilization 

Table 2 summarizes the findings of the first analysis of changes in pedestrian push-button utilization. For 
most signals (seven out of 11 signals), the change in the utilization rate (push-button presses per person) 
from 2019 to 2020 was not statistically significant (change in slope: p > 0.10). Two other signals (1094 
and 7184) had significant decreases in push-button utilization, while the utilization rate increased 
significantly at the final two signals (5108 and 8302). Aggregating across all 11 signals, the utilization 
rate increased from 1.08 in 2019 to 1.40 in 2020, which would suggest that people were pressing push-
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buttons more often at signals during the early months of the COVID-19 pandemic. However, aggregate 
results appeared to have been greatly influenced by the noticeably different results at signal 8302; when 
removing that signal, the new aggregate results (for 10 signals) indicated a statistically significant 
reduction in push-button utilization from 2.11 to 1.47 presses per pedestrian.  

Table 3.2  Pedestrians push-button utilization, 2019 vs. 2020, by signal and overall 

Signal 

Push-button presses per 
pedestrian (utilization 
rate) 

Pedestrians per push-button press (β from 
model) 

2019 2020 Δ 2019 2020 Δ Δ SE. p 
1021 1.18 1.10 n.s. 0.85 0.91 0.06 0.04 0.104 
1094 3.62 2.08 − 0.28 0.48 0.21 0.10 0.043 
1229 1.26 1.35 n.s. 0.80 0.74 -0.06 0.08 0.511 
4130 3.13 2.83 n.s. 0.32 0.35 0.03 0.31 0.912 
5108 2.44 3.65 + 0.41 0.27 -0.14 0.06 0.032 
5306 3.34 2.50 n.s. 0.30 0.40 0.10 0.09 0.259 
5349 3.19 2.56 n.s. 0.31 0.39 0.08 0.07 0.286 
6307 5.84 4.10 n.s. 0.17 0.24 0.07 0.10 0.479 
7184 2.16 1.38 − 0.46 0.72 0.26 0.03 <0.001 
8119 6.05 3.24 n.s. 0.17 0.31 0.14 0.16 0.381 
8302 0.50 0.63 + 2.01 1.58 -0.43 0.07 <0.001 
All 11 signals 1.08 1.40 + 0.93 0.71 -0.21 0.02 <0.001 
10 signals (not 8302) 2.11 1.47 − 0.47 0.68 0.20 0.01 <0.001 
9 signals (not 7184, 8302) 2.10 1.64 − 0.48 0.61 0.13 0.01 <0.001 
Notes: n.s. = not significant 

Figure 3.2, which shows plots of the relationships between pedestrians and push-button utilization at the 
four signals with the highest pedestrian activity in our study, illustrates these varied findings. Signal 1021, 
located in a transit-accessible area of Salt Lake City with numerous big-box stores, experienced a small 
(but not statistically significant) decrease in push-button utilization (from 1.18 to 1.10 push-button presses 
per pedestrian). Signal 1229, located in a neighborhood commercial district in Salt Lake City, saw a small 
(but not statistically significant) increase in the utilization rate (from 1.26 to 1.35). In both cases, 2020 
observations generally fell in the same range as 2019 observations.  

Signal 7184, located in a residential neighborhood of Salt Lake City near a large park, saw a significant 
decrease in pedestrian push-button utilization that is also apparent from the increased slope in the figure. 
Most pedestrians crossing at this intersection were observed going to/from the park, so it may be that 
people who were walking for recreation (rather than for transportation purposes) during the early 
pandemic were more cautious and concerned about COVID-19 spread from touching pedestrian push-
buttons.  

Signal 8302, located in downtown Moab in eastern Utah, was one of two signals to see a significant 
increase in utilization rate (push-button presses per person) from 2019 to 2020. Due to its proximity to 
popular Arches and Canyonlands National Parks, Moab is a tourist-oriented small city that attracts many 
visitors annually, making signal 8302 one of the highest pedestrian volume intersections in Utah 
(Singleton & Runa, 2021). The COVID-19 pandemic hit Moab hard after the National Park Service 
closed the parks to all visitors on March 28, 2020. Thus, the most noticeable difference for this signal in 
Figure 3.2 is that 2020 saw dramatically fewer pedestrians (during the months studied) than in 2019. We 
suspect that the “increase” in pedestrian push-button utilization found in our analysis (for this signal and 
overall) is more the result of lighter crowds and smaller pedestrian group sizes (perhaps due to social 
distancing) than any major change in pedestrians’ willingness to press push-buttons due to COVID-19 
concerns. In fact, results by Singleton et al. (2020) suggest that the relationship between pedestrians and 
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push-button presses is nonlinear: the slope increases (more pedestrians per push-button press) as push-
button activity (per hour) increases. This also highlights a limitation of our linear analysis method: if 
overall activity decreased (as it did at signal 8302), then the overall slope would also decrease as well. 
Thus, we also performed a second analysis (described in the following subsection) that accounted for 
nonlinear relationships between pedestrian volumes and push-button utilization.  
 

 

 

 

 

Figure 3.2  Pedestrian push-button use, 2019 vs. 2020, for signals 1021, 1229, 7184, and 8302. 
Each data point is one crossing observed for one hour on a given day, either in 2019 
(empty red downward-pointing triangles) or in 2020 (filled blue upward-pointing triangles). 

3.4.2 Analysis of Changes in the Accuracy of Pedestrian Crossing Volume 
Estimates 

Table 3.3 shows the results of the analysis of changes in accuracy of the pedestrian volume estimation 
models, including the mean and standard deviation of the model prediction errors (observed minus 
estimated) in 2019 and 2020, and the results from the Welch’s t-tests on those errors. Most signals (nine 
of 11) showed no statistically significant difference (p > 0.05) in the average error (pedestrians per hour) 
between the two years. Furthermore, the small changes in the mean errors did not show a consistent trend 
for all signals: some moved closer to zero (four) or farther from zero (seven), and some became more 
negative (five) or more positive (six). Aggregating across all 11 signals, the average error actually became 
less negative from 2019 to 2020 (−1.38 to −0.68); however, this improvement in accuracy was completely 
driven by significant differences at two signals (7184, 8302), as discussed later. The change (or lack 
thereof) in error does not seem to have been caused by more extreme but counteracting (i.e., larger 
positive and negative) errors, because the overall standard deviation of the prediction errors was smaller 
in 2020 than in 2019.  
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Results suggest that, in general, the models were still producing similarly accurate (if not more accurate) 
estimates of pedestrian crossing volumes during the COVID-19 pandemic. We suspect this may be due to 
the modest changes in pedestrian push-button utilization behavior identified in the first analysis: no 
statistically significant change for seven of 11 signals. Also, it could be that the models’ methods of time-
filtering the push-button data (the 15-second filter for “unique” presses and the use of actuations in some 
situations) are robust to COVID-induced changes in push-button utilization.  

Table 3.3  Pedestrian volume model prediction errors, 2019 vs. 2020, by signal 

Signal 
2019 2020 Welch’s t-test 

Mean SD Mean SD t df p 
1021 -5.02 11.58 -5.23 12.12 0.24 635 0.809 
1094 -0.08 5.59 0.36 2.60 -1.17 440 0.241 
1229 -4.00 10.00 -3.04 5.33 -1.38 423 0.168 
4130 -0.19 1.26 -0.40 1.51 1.81 356 0.071 
5108 -0.54 5.61 -0.86 2.06 1.10 549 0.272 
5306 -0.16 2.61 -0.32 2.46 0.79 529 0.430 
5349 -1.05 2.85 -0.80 1.66 -1.55 793 0.122 
6307 -0.50 2.47 -0.85 3.51 1.49 623 0.137 
7184 -1.46 5.78 0.20 7.10 -4.55 1,250 <0.001 
8119 0.06 1.71 0.25 1.60 -1.78 781 0.076 
8302 -2.42 26.51 1.69 9.89 -3.81 1,114 <0.001 
All 11 signals -1.38 11.59 -0.68 6.31 -3.68 8,553 <0.001 
10 signals (not 8302) -1.20 5.91 -0.94 5.72 -1.94 7,170 0.052 
9 signals (not 7184, 8302) -1.16 5.93 -1.24 5.25 0.60 5,951 0.550 

As noted, we did find statistically significant differences in the prediction errors for two signals: 7184 and 
8302. Nevertheless, we should also note that the absolute value of the mean errors for these two signals in 
2020 was smaller than the absolute value of the mean errors in 2019, indicating that the model was 
actually more accurate (on average) during the COVID-19 pandemic. We have a few potential 
explanations for why these signals in particular saw changes and why the accuracy of the models might 
have increased.  

As previously mentioned, signal 8302 in Moab saw greatly reduced pedestrian activity during the early 
months of the COVID-19 pandemic. Smaller crowds and pedestrian group sizes (and lower activity 
overall) provide fewer opportunities for large prediction errors, and the models tend to be more accurate 
(smaller magnitude errors) for lower-activity signals (Singleton & Runa, 2021).  

In contrast, this explanation cannot account for the improved accuracy at signal 7184, since this 
location—near a popular large park in Salt Lake City—saw increased pedestrian activity early in the 
pandemic, especially on days with pleasant weather. One potential explanation unique to this location is 
that there was an open-streets installation on 900 S (Salt Lake City, 2020) during the study period that 
converted the outer travel lanes to space for active transportation, including a pop-up bike lane in the WB 
direction (an EB bike lane already existed). In 2019, we noticed that many people bicycling through this 
intersection used the crosswalks and push-buttons; thus, these cyclists added push-button presses but were 
not counted as pedestrians. Therefore, in 2020, perhaps there were fewer people bicycling on the sidewalk 
and “contaminating” the push-button counts, yielding more accurate model estimates of pedestrian 
volumes.  
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3.5 Conclusion 
 

 

 

 

The first objective (Research Question 1) of this research was to examine how the utilization of pedestrian 
push-buttons at traffic signals changed during the early months of the COVID-19 pandemic. We expected 
push-button utilization to have decreased slightly due to concerns about using high-touch surfaces. At 
seven of the 11 signals, the change in utilization rate (push-button presses per pedestrian) was not 
statistically significant. Push-button utilization decreased at two signals (1094 and 7184) but increased at 
two others (5108 and 8302). Aggregated across all 11 signals, push-button utilization (presses per person) 
actually increased slightly in 2020, yet this was mostly driven by unique changes at one signal: 8302. 
Given this signal’s location in a tourist town with high pedestrian volumes, we suspect this result is due to 
reductions in pedestrian group sizes. If there were fewer crowds or people traveled in smaller groups (due 
to social distancing), then we expected the observed increase in push-button presses per person (decrease 
in pedestrians per push-button press). Excluding signal 8302, the new aggregate results (for 10 signals) 
showed a statistically significant decrease in push-button utilization, from 2.1 to 1.5 presses per person. 
Thus, Hypothesis 1 was partially supported.  

Our second objective (Research Question 2) focused on the accuracy of pedestrian volume estimation 
models based on traffic signal (push-button) data and developed in 2019, during the early months of the 
COVID-19 pandemic. We expected that button-press behavior had not changed enough to degrade the 
accuracy of the models (especially considering the 15-second filtering of extraneous push-button presses). 
Indeed, nine of the 11 signals saw no statistically significant change in accuracy between 2019 and 2020, 
while two signals (7184 and 8302) actually had more accurate pedestrian volume estimates in 2020 than 
in 2019. Aggregated across all 11 signals, the average model prediction error decreased from −1.4 to 
−0.7; this may have been the result of smaller crowds and pedestrian group sizes at signal 8302. 
Excluding signals 7184 and 8302, the new aggregate results showed effectively no change in average 
error (−1.16 to −1.24). Thus, Hypothesis 2 was supported. This is not surprising given the results of the 
first analysis, but it is still “good news” that the pedestrian volume estimation models seem to be similarly 
(if not more) accurate and do not need to be recalibrated to work during COVID conditions.  

Overall, this research provides insights into the impacts of the COVID-19 pandemic on walking and 
pedestrian behavior, specifically regarding push-button utilization at traffic signals. Despite this narrow 
focus, the research addressed an important public health and signal operations question, indicating that, 
overall, people in Utah were not significantly deterred from using pedestrian push-buttons due to fears of 
contracting/spreading COVID-19. More recent understanding of COVID transmission sources (more 
from air than from surfaces) suggests that even modest changes in button-press behavior may not persist 
post-pandemic. Also, by investigating the accuracy of pedestrian volume estimation models based on 
traffic signal data, this research also addressed an important question for planning. Our results suggest 
that pedestrian volume estimates obtained during the COVID-19 pandemic (using models calibrated on 
pre-pandemic data) are no less accurate and may even be more accurate. Greater model accuracy could be 
the result of reduced pedestrian activity overall (by an estimated 16%; see Table 3.1) as well as smaller 
pedestrian group sizes (due to social distancing), both of which reduce large prediction errors. This 
indicates that the models can continue to be used. Pedestrian volume estimates from traffic signal data 
have been used for various planning (Singleton, Park, & Lee, 2021) and safety analysis (Singleton, 
Mekker, & Islam, 2021) purposes.  

Still, this study was not without limitations that could be addressed through future work. There may be 
other factors for which we are not controlling that might explain differences in push-button utilization. 
Reduced motor vehicle traffic volumes (by an estimated 11%; see Table 1) may have encouraged/allowed 
some pedestrians to cross against traffic or in mid-block locations without pressing the push-button. Our 
data collection covered different months in different years, and button-press behavior may vary over the 
year; however, studying a seasonal effect is challenging because utilization or accuracy differences may 
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be related to volume differences, and also since we know that pedestrian volumes are affected by weather 
(Runa & Singleton, 2021) and the models are more accurate for lower-volume locations (Singleton & 
Runa, 2021). Although we studied 11 signals of different types and in different locations, certain locations 
could have seen larger or different changes in pedestrian push-button use behavior. Locations with 
different compositions of users or travel purposes (e.g., walking for recreation vs. transportation) might 
have seen different results. Even though the models remained similarly accurate during the pandemic, 
relationships may change or not be applicable outside of Utah. Thus, there is a continued need to validate 
the models with new data on a periodic basis (every couple of years). Also, our method of data collection 
and analysis limited us to hourly and more aggregate observations. Studying other pedestrian behaviors at 
traffic signals that may be of interest during the COVID-19 pandemic—group sizes, social distancing, 
walking speed, signal violations—would require more fine-grained data collection from videos. We 
encourage such research to continue to advance our limited understanding of how the COVID-19 
pandemic affected pedestrian travel.  
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4. IMPUTING TIME SERIES PEDESTRIAN VOLUME DATA WITH 
CONSIDERATION OF EPIDEMIOLOGICAL-ENVIRONMENTAL 
(EPIENV) VARIABLES 
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4.1 Abstract 

In this study, we investigate the quality of pedestrian volume data, which holds significance for safety and 
urban planning purposes. We employ statistical methods, machine learning (ML) methods, and deep 
learning (DL) methods to first detect anomalies in pedestrian activity data, and then impute missing 
values. We accomplish this by analyzing daily time series data of pedestrian activity at traffic signals in 
the state of Utah from 2018 to 2022. Our approach utilizes vector autoregression (VAR) analysis—a 
multivariate time series analysis—by incorporating epidemiological-environmental (EpiEnv) variables, 
which consist of average temperature, precipitation, air quality index, and COVID-19 pandemic data. 
Additionally, we scrutinize the influence of built environment variables when mixed with EpiEnv 
variables on fluctuations in pedestrian volume data. Our findings suggest that the density-based spatial 
clustering of applications with noise (DBSCAN) method provides superior performance in anomaly 
detection, and that the random forest, long short-term memory (LSTM), and gated recurrent unit (GRU) 
techniques excel at imputing various categories of missing value patterns within temporal-based 
pedestrian volumes. The VAR analysis results also indicate that EpiEnv variables significantly affect the 
process of anomaly detection and imputation across all traffic signals. Our findings can assist urban and 
transportation planners in identifying the most impactful EpiEnv variables on pedestrian activity, which in 
turn can aid in the development of suitable strategies to promote walking as a mode of transportation. 

4.2 Introduction 

Walking is a vital part of active transportation, and it is important to understand how pedestrians move 
around the city. The way intersections are designed and operated can make a big difference for pedestrian 
safety, accessibility, and comfort. By collecting data on pedestrian volumes, urban planners and 
transportation engineers can identify where people walk the most and prioritize improvements such as 
crosswalks, traffic signals, and sidewalk infrastructure. However, collecting reliable and consistent data 
on pedestrian volume over time and years is challenging and costly (Ryus et al., 2022). Pedestrian volume 
can vary significantly depending on the location, season, weather, time of day, and other factors 
(Schneider et al., 2009). Additionally, the methods employed for pedestrian counting, such as manual and 
automated techniques utilizing video cameras or infrared sensors, pose challenges and can be costly to 
implement and maintain (Schneider et al., 2009). Consequently, there is a pressing need for innovative 
and cost-effective approaches to measuring pedestrian volume and utilizing this information for planning 
purposes. 

https://doi.org/10.1177/03611981241240758
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To address the limitations of collecting real-time and updated pedestrian data for transportation studies, 
Schneider et al. (2012) and other researchers have developed direct-demand models. These models enable 
the estimation of pedestrian volumes at intersections by incorporating easily accessible variables, such as 
land use and socioeconomic features (Sobreira & Hellinga, 2023). However, it is important to note that 
most of these direct-demand models of pedestrian volume were derived from short-duration manual 
counts conducted at a limited number of locations, which in turn introduced limitations in the accuracy, 
generalizability, and sensitivity of the model results (Singleton, Park, & Lee, 2021). To overcome these 
restrictions, some researchers (Day et al., 2011; Blanc et al., 2015; Kothuri et al., 2017; Singleton & 
Runa, 2021) have utilized pedestrian data extracted from traffic signal controller logs to estimate walking 
activity at signalized intersections. Based on push-button presses and validated against observed 
pedestrian counts (Singleton & Runa, 2021), these estimated pedestrian volumes can be presented as time 
series data (hourly, daily, weekly, etc.) and are highly valuable for understanding pedestrian behavior in 
the context of planning (Singleton, Park, & Lee, 2021; Park et al., 2023) and for purposes of safety 
analysis (Singleton, Mekker, & Islam, 2021). 
 

 

 

 

 

No matter the source, pedestrian volume data may exhibit anomalies due to a variety of factors, such as 
measurement inaccuracies, data entry errors, or disruptive events like inclement weather, special events, 
or construction activities (Ryus et al., 2014; Nordback et al., 2016). These anomalies are observations that 
significantly deviate from the rest of the dataset. Importantly, such deviations may either indicate true but 
atypical values—large crowds attending a public event; few pedestrians during a blizzard—or false values 
due to error sources such as data entry mistakes or faulty measurement tools. Therefore, the identification 
and handling of these anomalies are crucial to derive accurate conclusions and make appropriate 
decisions. To this end, we plan to implement rigorous anomaly detection techniques to distinguish 
between true atypical values and false values. In addition to anomalies, missing data is another challenge 
in pedestrian volume studies. The absence of data can distort the analysis, leading to misleading 
conclusions. To address this issue, we plan to employ appropriate imputation techniques to fill in the gaps 
where data are missing. 

The objective of this study is to examine the performance of various methods for detecting and imputing 
anomalies in pedestrian volume data, taking into consideration the influence of environmental variables 
and disease epidemics, which we refer to as epidemiological-environmental (EpiEnv) factors. 
Specifically, we analyzed time series data of pedestrian volume at traffic signals in Utah, along with 
weather, air quality, and COVID-19 pandemic data from 2018 to 2022. We implemented statistical, ML, 
and DL methods to detect anomalies and impute missing values for each traffic signal. Through this 
process, we aim to establish a comprehensive framework for improving pedestrian data collection or 
estimation and identify the most effective method for detecting true anomalies and impute them using 
spatiotemporal variables (EpiEnv factors and land uses). In the following sections, we will present a 
literature review that explores the existing methods for detecting and imputing anomalies in pedestrian 
activity data. We will then describe our data and methods, present our results, and finally discuss the key 
findings. 

4.3 Literature Review 

As previously mentioned, pedestrian volume data, collected through various counting and estimation 
methods, may contain anomalies and missing data due to factors such as inaccurate or inconsistent data 
collection methods, environmental influences, alterations in infrastructure or traffic patterns, 
malfunctioning equipment (like infrared sensors or push-buttons), and other elements that impact 
pedestrian behavior (Ryus et al., 2022; Ryus et al., 2014). Our research has uncovered a scarcity of 
literature specifically dedicated to addressing the detection and handling of anomalies in datasets related 
to pedestrian activity. 
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Turner and Lasley (2013) proposed an automated method for detecting inaccurate counts of pedestrians 
and bicyclists. Their approach involved identifying outliers in the count data for each type by utilizing the 
interquartile range. The authors recommended performing a targeted manual review of select portions of 
the data by an experienced specialist to identify any anomalies that the automated method might have 
overlooked. In a separate study, Wang et al. (2013) employed a set of 10 variables, encompassing 
sociodemographic, built environment, weather, and temporal characteristics, to forecast pedestrian 
volume on urban multiuse trails. They utilized negative binomial regression models for this purpose, 
while also suggesting the application of this method to address missing pedestrian count data. Moreover, 
Ryus et al. (2014) proposed various strategies for detecting and managing anomalies in pedestrian volume 
data. One approach involves employing quality control procedures to identify and remove outliers or 
inaccurate data from both manual and automated counts. Another method is to compare count data with 
historical trends, seasonal patterns, or other sources of information to identify deviations from the 
expected patterns. Additionally, interpolation or imputation techniques can be utilized to fill in missing or 
anomalous data points. Finally, temporal and land use adjustment factors or models can be applied to 
account for variations in weather, day of the week, season, or other factors that may influence pedestrian 
volume. These approaches provide valuable strategies to enhance the accuracy and reliability of 
pedestrian volume data. 
 

 

 

Recent advancements in quality assurance and quality control (QA/QC) methods for nonmotorized traffic 
data underscore the need for robust methodologies capable of adapting to diverse data sources and urban 
contexts. Kothuri et al. (2022) emphasize the integration of emerging data sources like Strava and 
StreetLight with traditional methods of traffic data collection, such as permanent and short-duration 
counts, using ML techniques to enhance bicycle volume estimates in various cities. This blending of 
newer and conventional data sources not only augments but also relies on traditional traffic count 
methods to achieve a more precise analysis. This approach underscores the importance of traditional data 
collection in complementing big data, thereby challenging the idea that big data alone is sufficient for 
comprehensive traffic analysis. Additionally, Lindsey et al. (2024) detail QA methods for hourly 
nonmotorized traffic counts, addressing the gap in standard procedures for validating such data. Their 
work with the Minnesota Department of Natural Resources provides a template for employing statistical 
tests to identify outliers and impute missing counts, thereby enhancing the validity of traffic flow 
estimates. This empirical approach aligns with the broader push in nonmotorized traffic monitoring 
toward incorporating QA principles outlined by foundational studies, such as those by Turner and Lasley 
(2013), and adapting to the variability inherent in nonmotorized data. Furthermore, Jackson et al. (2017) 
illustrated the practical application of QA/QC principles within North Carolina’s Nonmotorized Volume 
Data Program, outlining a comprehensive approach to data management, including the incorporation of 
hourly checks to detect outliers. Similarly, Nordback et al. (2015) contributed to the standardization of 
QA checks, developing measures to address data gaps and anomalies that have been adopted by state 
departments of transportation. The evolution of QA procedures over the last decade reflects a shift toward 
more nuanced and comprehensive methodologies that recognize the complex nature of nonmotorized 
traffic data and the importance of data quality tailored to specific applications.  

In broader contexts, a wide range of techniques are employed for detecting anomalies and performing 
imputation in spatiotemporal traffic and transportation data. These techniques encompass statistical 
models (Lam et al., 2017), distance measures, pattern analysis, as well as ML (Wang et al., 2015) and DL 
(Banifakhr & Sadeghi, 2021) learning methods.  

In addition to finding suitable methods for detecting anomalies and imputing missing values in pedestrian 
data, it is crucial to explore the factors that can cause significant shocks, leading to sharp decreases or 
increases in pedestrian volume within specific time periods. Environmental factors, such as weather, play 
a substantial role in shaping changes in pedestrian volume and walking behavior. Temperature, 
precipitation, air quality, and season are among the various factors that can influence the number of 
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pedestrians and their walking patterns. According to a study conducted by de Montigny et al. (2012), a 
5°C increase in temperature was associated with a 14% increase in pedestrian volume. Additionally, 
research by Runa and Singleton (2021) indicated that very hot maximum temperatures (≥ 90°F) were 
found to be linked to lower pedestrian activity at approximately one-third of the observed locations, while 
very low minimum temperatures (< 20°F) also resulted in decreased pedestrian activity. Precipitation is 
another significant factor affecting pedestrian volume. Rain has been identified as having the most 
substantial impact on pedestrian volumes at a given location, with cloud cover, wind, and extreme 
temperatures (both hot and cold) also contributing to decreased pedestrian volumes (Attaset et al., 2010). 
Moreover, Shaaban and Muley (2016) found that, on average, precipitation reduced the hourly volume of 
pedestrians by approximately 13%. Additionally, the study by Montigny et al. (2012) demonstrated that a 
transition from snowy conditions to dry conditions was associated with a notable increase of 23% in 
pedestrian volume. In addition, Holmes et al. (2009) highlighted the significant impact of weather 
conditions on walking behavior in their study conducted in Indianapolis, IN. They emphasized that 
increased hours of sunshine are positively associated with higher urban trail traffic, while rainfall, 
particularly heavy rainfall, discourages trail use. Interestingly, the research also noted a unique increase in 
trail traffic during snowfall, suggesting a regional or cultural enthusiasm for snowy conditions. 
 

 

 

 

Regarding the impact of air quality on walking activity, recent studies have underscored the influence of 
air pollution and air quality warnings on pedestrian travel behavior. Yu and Zhang (2023) revealed that a 
10-unit increase in the daily air quality index (AQI) was associated with a reduction in daily physical 
activity by six minutes of moderate-to-vigorous physical activity and 230 walking steps. Tribby et al. 
(2013) highlighted that such alerts significantly affect behavior, especially during high-exposure activities 
like outdoor exercise, though the impact is not uniform and varies by context and activity. A study by Xu 
et al. (2022) found no direct correlation between air quality alerts and micromobility usage in Austin, TX. 
However, they observed a decrease in usage on days with high pollution levels, suggesting a nuanced 
impact of air quality on travel decisions, particularly for short-distance trips. Additionally, Chung et al. 
(2019) discovered that the concentration of PM10 (particulate matter with a diameter of 10 micrometers 
or less) influenced individuals’ intention to walk and had an impact on the volume of pedestrians at street 
level. These insights collectively highlight the importance of considering moderate air pollution when 
studying levels of pedestrian activity. Moreover, Holmes et al. (2009) underscored the influence of air 
quality on walking, with high levels of ozone and fine particulate matter correlating with reduced trail 
traffic, indicating that air pollution concerns may deter individuals from engaging in outdoor walking 
activities. 

In addition to the environmental factors, epidemiological issues, such as the COVID-19 pandemic, have a 
notable impact on pedestrian volume and walking behavior. A study conducted in Utah found that 
pedestrian crossing volumes decreased by an average of 16% from 2019 to 2020, while motor vehicle 
traffic volumes decreased by an average of 11% during the same period (Runa & Singleton, 2023). 
Additionally, Hunter et al. (2021) discovered that COVID-19 response measures resulted in significant 
declines in walking, particularly utilitarian walking. However, recreational walking has shown a recovery 
and even surpassed pre-pandemic levels in various U.S. cities (Hunter et al., 2021). On the other hand, 
Beck and Hensher (2020) conducted a study examining the effects of COVID-19 on travel behavior in 
Australia. They found that lockdown measures led to a significant decrease in the use of private and 
public transportation, while active transportation modes like walking and cycling saw an increase from 
14% to 20%. As restrictions began to ease, travel activity experienced a 50% increase, reaching 66% of 
pre-COVID-19 levels; however, the use of active transportation methods continued to trend upward. 

Overall, the review of literature highlights a gap in the investigation of time-series pedestrian data and the 
manipulation of such data in the context of detecting anomalies and imputing missing values, particularly 
in relation to EpiEnv factors. 
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4.4 Data  

4.4.1 Estimated Pedestrian Volumes from Traffic Signal Data 

For this study, we utilized daily estimated pedestrian volume data from January 2018 to December 2022 
in Utah. The pedestrian volumes were estimated based on research conducted by Singleton and Runa 
(2021). In their study, they utilized high-resolution data on pedestrian push-button activations obtained 
from traffic signal controller event logs in Utah. After collecting over 10,000 hours of observed 
pedestrian counts at 90 locations, they developed piecewise linear and quadratic regression models to 
estimate pedestrian volume from pedestrian signal data. The authors found that hourly pedestrian volumes 
predicted by the model from push-button data were highly correlated (𝑅𝑅2 > 0.80) with observed crossing 
volumes and had low mean absolute error (±3.0 pedestrians per hour) (Singleton & Runa, 2021). These 
models can estimate the annual average daily pedestrian crossing volumes at signalized intersections and 
identify locations with high pedestrian volume. Therefore, we employed their model to estimate daily 
pedestrian volume for 2,113 traffic signals across Utah (see Figure 4.1) using data from the Automated 
Traffic Signal Performance Measures (ATSPM) system (UDOT, 2023). Most of these signals are situated 
in the northern region of Utah; 1,031 (49%) are located in Salt Lake County. From 2018 to 2022, across 
all signals, we estimated approximately 807 million pedestrian crossings.  

Figure 4.1  The dispersion of investigated traffic signals through a tree and point map 

Table 4.1 presents the descriptive statistics of estimated daily pedestrian volume data by year. In 2019, 
Utah traffic signals exhibited the highest mean daily pedestrian volume: approximately 251 pedestrians 
per signal per day. However, 2020 witnessed a significant decrease in pedestrian activity, likely attributed 
to the outbreak of COVID-19. All maximum values were observed in traffic signals located near 
educational land uses, such as the University of Utah, Utah State University, and certain high schools. 
Notably, these peaks were observed during January, February, August, and September, which coincide 
with the beginning of the spring and fall school semesters. 

Table 4.1  Descriptive statistics of estimated daily pedestrian volume data, by year 
Year Min Median Max Mean SD 25th 75th 
2018 1.09 73.37 53,973.43 230.73 651.01 18.23 192.92 
2019 1.11 77.95 41,431.38 251.63 693.08 21.37 200.48 
2020 1.06 66.92 53,330.00 187.90 635.12 20.66 155.52 
2021 1.05 70.47 57,340.10 205.04 666.71 22.23 168.89 
2022 1.08 78.14 50,428.73 235.90 711.80 24.30 191.08 
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4.4.2 Epidemiological-environmental (EpiEnv) Data 

As mentioned earlier, one of our objectives is to investigate the influence of EpiEnv variables on the 
temporal variation in pedestrian volume. The first category of environmental variables we focused on is 
weather. We collected information on precipitation, high temperature, and low temperature (ISU, 2023) 
for each traffic signal from 2018 to 2022. Figure 4.2 displays a sample time series of these data 
specifically around a traffic signal located in Cache County. During the study period, temperatures ranged 
from a high of 109°F (in 2021) to a low of -11°F (in 2022).  

Figure 4.2  Time series of daily high and low temperature (above) and precipitation (below) around a 
traffic signal in Cache County 

The second type of environmental variable we examined is air pollution, measured using the air quality 
index (AQI). These data were collected using AirNow API (US EPA, 2023) for each signal from 2018 to 
2022 and were based on measurements of PM2.5, ozone, NO2, PM10, and CO. Figure 4.3 illustrates a 
heatmap of the yearly-monthly matrix of average AQI values around traffic signals in Utah, highlighting 
the variations in AQI levels throughout the year. The heatmap reveals higher AQI values occurring during 
the months of June, July, and August consistently each year. Additionally, Figure 4.4 presents the AQI 
categories for each year in Utah, providing an overview of the distribution of air quality conditions. The 
figure indicates that Utah experienced a higher number of days with good air quality in 2020, while in 
2021, there was an increase in the occurrence of unhealthy air quality days for both sensitive and general 
populations. 
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Figure 4.3  Heatmap of AQI (yearly-monthly matrix) around a traffic signal in Utah 

 

 
Figure 4.4  The yearly AQI categories in Utah 

 
In addition to these environmental variables, we also extracted information about the built environment 
surrounding each traffic signal within a quarter-mile buffer, which is considered a typical distance by 
which the built environment likely affects walking behaviors. This allowed us to analyze the trends in 
pedestrian volume and identify patterns of anomalies and missing values in relation to built environment 
variables. To conduct this analysis, we followed the methodology outlined in the Singleton, Park, and Lee 
(2021) study, which involved extracting several variables related to the built environment, including 
density, diversity, design, destination accessibility, and distance to transit. Table 4.2 provides descriptive 
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statistics of the built environment variables that were extracted for each signal. It is important to note that 
the built environment variables were not utilized in the anomaly detection and imputation steps, but were 
instead applied in the analysis phase to provide deeper context and enhance our understanding of the 
results derived from these processes. 

Table 4.2  Descriptive statistics for built environment variables 
Variable Mean SD 
Population density (1000 per sq. mi.)  4.49 3.01 
Vehicle ownership (average) 1.73 0.45 
% residential land use 31.00 23.72 
% commercial land use 28.03 20.92 
# schools 0.28 0.59 
# places of worship 0.48 0.78 
# transit stops 5.94 3.54 

In the second part of EpiEnv variables, we obtained COVID-19 data from the Utah coronavirus dashboard 
(Utah DHHS, 2023) as epidemiological information. We collected these data for 13 local health districts 
and assigned the data to the respective traffic signal locations within each district. Utah has gone through 
different phases of COVID-19 response since March 2020. The first phase was the urgent phase, which 
lasted from mid-March to late April 2020, when the state implemented strict public health measures to 
slow down the spread of the virus. The second phase was the stabilization phase, which lasted from late 
April 2020 to early June 2021, when the state gradually eased some restrictions and reopened some 
sectors of the economy while maintaining social distancing and mask wearing. The third phase was the 
recovery phase, which lasted from early June 2021 to late February 2022, when the state lifted most of the 
remaining restrictions and focused on increasing vaccination rates and testing capacity. The fourth and 
current phase is the endemic phase, which started on March 1, 2022, when the state declared that COVID-
19 is no longer a public health emergency but a seasonal respiratory disease that can be managed with 
routine measures. Figure 4.5 displays the daily COVID-19 case rate per 100,000 in Utah, providing an 
overview of the trends in COVID-19 cases. Based on the information presented in the figure, the highest 
number of COVID-19 cases in Utah occurred in January 2022 during Phase 3.  

 
Figure 4.5  The daily COVID-19 case rate per 100,000 in Utah 

In interpreting the COVID-19 case rates presented in Figure 4.5, particularly during Phases 3 and 4, it is 
crucial to consider the effects of the widespread adoption of at-home testing. This trend likely contributed 
to an underestimation of reported cases as not all at-home test results would be officially recorded (Rader 
et al., 2022). While this underreporting could influence the absolute case numbers, it does not impact the 
efficacy of the methodologies employed in our study. 
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4.5 Method 

To develop a comprehensive framework for analyzing pedestrian volume data in this study, we applied 
and examined the performance of a wide range of anomaly detection and imputation methods. After the 
data preparation process, as depicted in Figure 4.6, this study consists of two main parts: anomaly 
detection and imputation. 

4.5.1 Anomaly Detection 

In this section, we begin by exploring the concept of data and identifying periods during which pedestrian 
volumes experience significant changes. Since our pedestrian volume data exhibit non-stationarity, we 
employ the least absolute deviation (LAD) method (Bai, 1995) to detect change points in the time series 
data. The LAD cost function, 𝐶𝐶(𝑠𝑠), defined in Equation 1, is instrumental in detecting where substantial 
changes in the median level of pedestrian volume occur within the time series. Here, “substantial” refers 
to deviations that exceed the typical variability observed in our data, which is informed by historical 
median values and the interquartile range—providing a robust and tailored threshold for our specific 
dataset. The segmentation 𝑠𝑠, the pedestrian volume 𝑃𝑃(𝑡𝑡) at time 𝑡𝑡 and the median value 𝑚𝑚(𝑠𝑠) within 
segment 𝑠𝑠 are the core components of this function. We assign penalties across segmentations of the time 
series data to ultimately identify a segmentation pattern that minimizes this cost. A key aspect of our 
approach is the incorporation of a dynamic programming method to determine an optimal number of 
change points, which serves as a constraint. The chosen number of change points is crucial as it balances 
the sensitivity of the method to detect true changes against the risk of overfitting to random fluctuations. 
This methodology allows for an efficient computation that avoids exhaustive comparisons across all 
possible segmentations. The dynamic programming method, therefore, offers an optimization process that 
is computationally manageable and methodologically sound, ensuring the integrity of our anomaly 
detection process. 

𝐶𝐶(𝑠𝑠) =  𝛴𝛴 |𝑃𝑃(𝑡𝑡) −  𝑚𝑚(𝑠𝑠)|  (1) 

After identifying the change points and segment periods for each signal, we applied the vector 
autoregression (VAR) model on pedestrian data within each time segment. This model identifies and 
extracts time periods during which pedestrian volume is influenced by exogenous EpiEnv variables. For a 
(𝑛𝑛 × 1) vector of 𝑃𝑃(𝑡𝑡) = [𝑃𝑃1(𝑡𝑡), … ,𝑃𝑃𝑛𝑛(𝑡𝑡)] representing the pedestrian volume time series, the VAR 
model is formulated as follows: 

𝑃𝑃(𝑡𝑡)  =  𝑐𝑐 +  
𝑝𝑝
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𝑏𝑏4𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡 − 𝑗𝑗)  +  𝑒𝑒𝑡𝑡 (2)

where, 𝑐𝑐 is the constant term, 𝑡𝑡 is a 𝐷𝐷 × 1 vector of time series, 𝑎𝑎𝑖𝑖 is the coefficient for the ith lag of the 
pedestrian volume at time (𝑡𝑡 − 𝑖𝑖), 𝑏𝑏1𝑖𝑖 , 𝑏𝑏2𝑖𝑖 , 𝑏𝑏3𝑖𝑖 are the coefficients for the ith lags of the exogenous 
variables 𝑇𝑇𝑇𝑇 (average temperature), 𝑃𝑃𝑃𝑃 (precipitation), and 𝐴𝐴𝐴𝐴𝐴𝐴 at time (𝑡𝑡 − 𝑖𝑖) in the lag period 𝑝𝑝, and 
𝑏𝑏4𝑗𝑗 for 𝐶𝐶𝐶𝐶𝐶𝐶 (COVID-19) at time (𝑡𝑡 − 𝑗𝑗) in the lag period 𝑞𝑞, and 𝑒𝑒𝑡𝑡 is the error term at time 𝑡𝑡.  



 

 46 

 

 
Figure 4.6  Conceptual framework of anomaly detection imputation for pedestrian volume data 
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Given that the COVID-19 data begin from 2020, we accounted for the different lag periods by 
determining the appropriate values of 𝑝𝑝 and 𝑞𝑞 based on the smallest Akaike Information Criterion (AIC) 
(Akaiki, 1974). We conducted the VAR analysis for each segment (time duration between two change 
points) or shorter period, in some cases, to identify the duration of time where the pedestrian volume is 
influenced by at least one of the exogenous variables or none of them. These durations, which we call 
analysis durations (AD), serve as the foundation for subsequent steps. 
 

 

 

 
  

In the next step, to apply unsupervised anomaly detection methods and assess their performance, we 
selected a sample dataset and injected synthetic outliers into the data. This allowed us to evaluate which 
methods are more effective in detecting these outliers. We chose all 59 traffic signal data from Cache 
County as our sample dataset. For injecting synthetic outliers, we randomly selected values within each 
AD and increased or changed them to alter the trend in neighboring data points by a random percentage 
ranging from 50% to 85%. This approach allowed us to account for shocks from exogenous variables that 
are extracted from change point detection and VAR analysis steps, as well as atypical values. Figure 4.7 
presents the original data along with the data containing the injected outliers, while the gray vertical lines 
represent the boundaries of the ADs. 

 
Figure 4.7  The pedestrian volume data with and without the injected outliers for a sample traffic signal 

We then applied various statistical, ML, and DL unsupervised anomaly detection methods to the sample 
data. 

• Statistical method 
o Z-score: Identifies anomalies based on how many standard deviations away from the mean a 

data point lies, providing a measure of its abnormality. 
• ML algorithms 

o K-nearest neighbor (KNN) (Hautamaki et al., 2004): Flags data points as anomalies if they 
differ significantly from their nearest neighbors in the dataset. 

o One-Class SVM (OCSVM) (Ma & Perkins, 2003): Differentiates between “normal” and 
“anomaly” data points by learning a boundary around most data points. 

o Isolation Forest (iForest) (Liu et al., 2008): Detects anomalies by isolating points; the fewer 
splits required, the more likely a point is an anomaly. 

o Density-based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996): 
Groups closely packed points and mark low-density areas as anomalies. 

o Seasonal Autoregressive Integrated Moving Average (SARIMA) (Hanbanchong & Piromsopa, 
2012): A time series modeling technique that can highlight anomalous points by contrasting 
them with seasonal trends and cycles. 
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• DL models 
o Long Short-Term Memory (LSTM) (Malhotra et al., 2016): An advanced RNN variant capable 

of learning order dependence in sequence prediction problems, effective in pinpointing 
anomalies over time. 

o Generative Adversarial Networks (GANs) (Li et al., 2019): A pair of neural networks contest 
with each other to respectively generate potential anomalies and evaluate their authenticity. 

o Gated Recurrent Units (GRU) (Li et al., 2019): A streamlined alternative to LSTMs, which 
also excels at modeling temporal sequences for anomaly detection. 

 

     

 

 

 

 

To assess the effectiveness of each method, we utilized performance metrics such as accuracy, precision, 
recall, and F1 score. The accuracy of a model is determined by the percentage of observations that are 
correctly classified; precision measures the proportion of true positives among positive predictions; recall 
measures the proportion of true positives among actual positives; and F1 score is the harmonic mean of 
precision and recall. These metrics are calculated in Equations 3 to 6: 

𝑎𝑎𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑦𝑦 =  
𝑇𝑇𝑇𝑇𝑇𝑇 

𝑇𝑇𝑇𝑇𝑇𝑇     
(3) 

𝑝𝑝𝑎𝑎𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑃𝑃𝑛𝑛 =  
𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇 
(4) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇 
(5) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
(6) 

After calculating these metrics, we ranked the methods based on their performance on the sample data (59 
signals). The highest-ranked anomaly detection method was then applied to the pedestrian volume data 
for all signals in Utah. Finally, detected anomalies were replaced with missing values.  

During the anomaly detection process on the sample data, in addition to the injected outliers, the methods 
detected some other outliers in certain signals. To investigate these outliers, we relied on domain 
knowledge and examined whether there were any special events on the dates identified as anomalies. We 
utilized web scraping methods and Utah events calendar websites for this purpose. Therefore, in cases 
where we identified anomalies that were confirmed to be genuine anomalies based on domain knowledge, 
we classified them as true positives.    

4.5.2 Imputation 

In this part, the imputation of missing values was carried out by first categorizing the traffic signals based 
on their missing value patterns: signals with randomly scattered missing values, signals with missing 
values covering complete periods of time, and signals with a hybrid pattern of missing values (a 
combination of complete and random missing values). Subsequently, for each AD, we examined whether 
the EpiEnv variables had a significant effect on pedestrian volume using the VAR model output. If the 
pedestrian data in an AD with missing values were found to be influenced by the EpiEnv variables, we 
applied multivariate imputation methods. Conversely, if there was no significant effect, we utilized 
univariate imputation methods. To impute the missing values, we employed ML-based and DL-based 
methods. 
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• ML-based method 
o Random Forest: An ensemble learning method that uses a multitude of decision trees to 

predict missing values based on the patterns found in the data, making no assumptions about 
data linearity. 

• DL-based methods 
o Recurrent Neural Network (RNN): Designed to recognize patterns in sequences of data; 

RNNs use their internal state (memory) to process variable length sequences; ideal for 
imputing missing values in time-series data. 

o Long Short-Term Memory (LSTM): A type of RNN that is capable of learning long-term 
dependencies, making it highly effective for sequential prediction tasks, such as time-series 
imputation where past information is crucial. 

o Gated Recurrent Units (GRU): Like LSTMs, GRUs streamline the model architecture to 
improve efficiency while still capturing temporal dependencies necessary for accurately 
predicting missing values. 

o Temporal Convolutional Networks (TCN) (Bai et al., 2018): Utilize a series of dilated 
convolutions to capture temporal correlations, which makes them well-suited for imputation 
where the missing data points are in sequences. 

To assess the performance of these methods, we employed the mean absolute error (MAE) and root mean 
square error (RMSE) as evaluation metrics. 

𝑀𝑀𝐴𝐴𝑇𝑇 =
𝑀𝑀𝑀𝑀  

𝑛𝑛
(7) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑇𝑇 = �𝑅𝑅

 

𝑅𝑅
(8) 

where, 𝑛𝑛 is the total number of missing items, 𝑃𝑃𝑖𝑖 is the real value of the ith missing item, and 𝑃𝑃�𝑖𝑖 is the 
imputed value of the ith missing item. By calculating the MAE and RMSE, we can assess the accuracy and 
quality of the imputation methods in capturing the differences between the actual and imputed values of 
the missing items for each missing pattern. To access additional details about our study’s methodology, 
sample data, and analysis scripts, visit our study’s GitHub repository (Rafe & Singleton, 2023). 

4.6 Results 

In the first phase of this study, we performed VAR analysis and identified ADs based on the lag values 
derived from the smallest AIC. Subsequently, we applied various unsupervised anomaly detection 
methods to our sample data, the 59 traffic signals in Cache County. The performance results of these 
methods are presented in Table 4.3. One important metric for evaluating anomaly detection methods is 
accuracy, which indicates the extent to which the methods are successful in classifying anomalies. The 
results indicate that DBSCAN achieved the highest accuracy (86.7%), followed by GRU, iForest, and 
KNN, which had similar accuracy scores. In terms of F1 score, DBSCAN also achieved the highest score 
(0.836) compared with the other methods, followed by KNN, iForest, and LSTM. 
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Table 4.3  Performance comparison of different anomaly detection methods 
on Cache County traffic signals with injected synthetic outliers 

Anomaly detection method Accuracy Precision Recall F1 score 
Z-score  0.730 0.724 0.681 0.702 
KNN 0.753 0.796 0.796 0.796 
OCSVM 0.593 0.686 0.661 0.673 
iForest 0.760 0.798 0.763 0.780 
DBSCAN 0.867 0.836 0.836 0.836 
SARIMA 0.667 0.754 0.688 0.719 
LSTM 0.699 0.891 0.683 0.773 
GRU 0.767 0.855 0.611 0.713 
GANs 0.645 0.636 0.523 0.574 

 
Another important aspect in the anomaly detection process is the tuning of hyperparameters and the 
computation time or speed of the methods. To evaluate these parameters, we applied the top three ranked 
methods (DBSCAN, iForest, and KNN) to the full Utah traffic signals dataset. Our findings indicate that 
the computation times for DBSCAN and KNN are comparable, but tuning the hyperparameters of 
DBSCAN can be more challenging compared with KNN. On the other hand, the iForest method exhibited 
good accuracy in detecting anomalies and had a lower computation time than both DBSCAN and KNN. 
As a result, there is a tradeoff to consider when selecting the best method, weighing accuracy against the 
simplicity of hyperparameter tuning and computational speed, with DBSCAN, KNN, and iForest offering 
different advantages. Table 4.4 displays the optimal hyperparameters for DBSCAN, KNN, and iForest in 
this study. Additionally, Figure 4.8 illustrates the cleaned pedestrian volume data for a traffic signal in 
Cache County, where anomalies detected by the DBSCAN method have been replaced with missing 
values.  
 

 

Table 4.4  Optimum hyperparameters for anomaly detection methods in this study  
Anomaly 
detection 
method 

# hyper-
parameters Hyperparameters 

Optimum 
hyperparameter for 
the database 

DBSCAN 4 

Metric to calculating distance between instances in a feature 
array, Algorithm compute pointwise distances and find 
nearest neighbors, Maximum distance between two samples, 
Number of samples in a neighborhood of a core point 

Euclidean, Ball 
Tree (Omohundro, 
1989), 0.5, 11 

iForest 2 Number of base estimators, outlier fraction 150, 0.25 
KNN 2 Outlier fraction, number of neighbors 0.15, 8 

 
Figure 4.8  The cleaned pedestrian volume data (replace anomalies with missing values) with DBSCAN 

method in a sample traffic signal in Cache County 
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In this study’s second phase, we applied imputation methods to handle the dataset’s missing (and 
anomalous) values. To begin with, we categorized the traffic signals based on their missing value 
patterns. Among the 2,113 traffic signals in Utah, 67% exhibited a hybrid missing value pattern, 21% had 
a complete missing values pattern, 9% had random point missing values, and 3% did not have any 
missing values. This categorization allowed us to tailor the imputation methods to the specific 
missingness patterns. Table 4.5 presents the evaluation performance of each imputation method for the 
different missing value patterns observed. Figure 4.9 illustrates the polar plot for each imputation method, 
showcasing their performance based on MAE and RMSE.  

Table 4.5  The performance evaluation of imputation methods for each missing value pattern 
Random point missing value pattern 
Imputation method MAE RMSE 
Random Forest 5.359 8.928 
LSTM 15.921 18.717 
GRU 10.974 14.530 
TCN 29.234 31.921 
RNN 13.323 17.179 
Complete missing value pattern 
Imputation method MAE RMSE 
Random Forest 19.469 23.703 
LSTM 11.686 12.366 
GRU 15.902 17.708 
TCN 35.628 39.802 
RNN 13.543 17.361 
Hybrid missing value pattern 
Imputation method MAE RMSE 
Random Forest 24.515 27.053 
LSTM 9.434 10.785 
GRU 5.358 6.619 
TCN 21.047 24.167 
RNN 7.734 9.264 

  
Figure 4.9  The polar plot of performance evaluation data of imputation methods based on MAE (left) 

and RMSE (right) 

As seen in the table and figure, the random forest method performed better in the random point missing 
value pattern category, the LSTM method demonstrated better performance for complete missing value 
patterns, and the GRU method showed better performance among hybrid missing value patterns. These 
results indicate that each method excelled in imputing missing values in specific patterns, highlighting the 
importance of considering the nature of the missing data when selecting an appropriate imputation 
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method. Figure 4.10 displays the results of imputation performed by each of the mentioned methods on 
various sample traffic signals in Utah. 

(a) Imputation by Random Forest method on random point missing value pattern 

(b) Imputation by LSTM method on complete missing value pattern 

(c) Imputation by GRU method on hybrid missing value pattern 

Figure 4.10  The results of imputation performed by random forest (a), LSTM (b) and GRU (c) on various 
sample traffic signal in Utah 



 

 53 

 

 

 

 

 

4.7 Discussion 

Given the unique data imputation methods used in our study, including random forest, LSTM, GRU, 
TCN, and RNN, the pattern of missing values takes on increased significance. The models employed, 
such as the LSTM, GRU, and RNN, are sequence-based models that can capture temporal dynamics, but 
varying patterns of missingness could affect their learning process and predictive accuracy. The 
experience of imputing missing values in this study reveals that when dealing with time-series data that 
exhibit various patterns of missing values, random forest, LSTM, and GRU methods each present unique 
challenges in terms of computation time and hyperparameter tuning. Random forest, while powerful, can 
become computationally intensive and slow with high-dimensional multivariate time series and large 
datasets, requiring substantial computational resources. Hyperparameter tuning in random forest, such as 
determining the optimal number of trees and depth, can also be a time-consuming task. LSTM and GRU 
models, given their complex nature, often require significant training time, especially with larger datasets, 
making them less suitable for scenarios needing frequent updates. These models also have many 
hyperparameters (like the number of hidden layers, hidden units, learning rate, etc.) that need tuning, and 
this process can be quite time consuming and computationally demanding, adding to the overall 
complexity. Further, the risk of overfitting in LSTM and GRU models necessitates the use of 
regularization techniques, which introduce additional hyperparameters to tune, thereby adding another 
layer of complexity and resource demand. Although both LSTM and GRU are specialized types of RNNs 
that were developed to address some of the limitations of basic RNNs, the regular RNN showed good 
performance in handling the last two missing value patterns (completely missing value and hybrid 
missing value). Additionally, the regular RNN exhibits less complexity in terms of tuning 
hyperparameters compared with LSTM and GRU. 

In relation to the VAR analysis and investigation of EpiEnv variables, the results indicate that pedestrian 
volumes on all traffic signals in Utah are influenced by EpiEnv variables in at least two ADs. Among all 
the traffic signals, 63% of them are influenced by average temperature in some ADs. The results of the 
VAR analysis indicate that pedestrian volume exhibits more changes during colder months, particularly in 
December and January, as well as in months with higher precipitation, such as March and April. The 
duration of VAR lag, which represents the number of previous data points used as input variables to 
model the current data point, is longer during colder months with lower average temperatures. 
Furthermore, the number of ADs influenced by average temperature tends to increase with a higher 
number of schools and percentage of residential land use in the vicinity of the traffic signals, while it 
decreases with an increasing number of transit stops within a quarter-mile buffer from the traffic signals. 

AQI is another EpiEnv variable that has an effect on pedestrian volume data for 41% of the traffic signals. 
Most of these traffic signals are in the northern regions of Utah, specifically Weber and Cache counties. 
The VAR analysis results indicate that the ADs with pedestrian volume influenced by the AQI are more 
prevalent in July and August, with relatively low lag periods ranging from one to five days. Additionally, 
the t-test results (𝑡𝑡(865) = 7.2,𝑝𝑝 < 0.05) demonstrate a significant difference in the mean percentage of 
density in commercial areas within a quarter-mile buffer around traffic signals that are affected by the 
AQI, compared with those that are not. In other words, the findings suggest that in areas with a higher 
density of commercial land use, pedestrian activity is more significantly affected by the AQI in Utah.  

COVID-19, as an epidemiological variable investigated in this study, demonstrates a significant effect on 
pedestrian volume across all traffic signals. The majority of the analyzed time periods influenced by 
COVID-19 were observed during Phase 3, from June 2021 to February 2022. Within this phase, various 
lags ranging from four to 13 days were identified, indicating the variability in the impact of this variable 
on pedestrian volume. In relation to the built environment variables, the results of VAR analysis reveal 
that an increase in population density, the percentage of commercial and residential land uses, and the 
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number of schools and places of worship corresponds to a greater number of ADs, where pedestrian 
volume is influenced by COVID-19. Conversely, an increase in vehicle ownership within a quarter-mile 
buffer around traffic signals is associated with a decrease in the number of time periods where COVID-19 
case rates influence pedestrian volume. Another interesting aspect of this EpiEnv variable is the variation 
in VAR lags in relation to the built environment variables. The results indicate that as the percentage of 
density of residential land use and the number of schools around the traffic signals increase, the number 
of lags in the VAR analysis also increases. However, there is no clear relationship observed with respect 
to commercial land use. 
 

 

 

 

 

Our investigation affirms that ML and DL techniques provide a substantial leap forward from traditional 
pedestrian volume data analysis methods. The random forest algorithm, for example, captures complex, 
nonlinear relationships within the data that manual methods cannot, leading to more nuanced insights and 
a higher quality of data imputation. Similarly, DL models like LSTM and GRU offer advanced temporal 
analysis capabilities, enabling us to discern patterns over time with greater precision than is possible with 
basic statistical methods. While the improvements brought about by these sophisticated methods might be 
viewed as incremental when compared with their simpler counterparts, they are nonetheless 
transformative in certain contexts. The precise nature of ML and DL predictions is particularly valuable in 
urban planning, where the granularity of data can inform critical safety assessments and infrastructure 
decisions. Even if the quantitative leap in data quality is challenging to measure, the qualitative 
enhancements—such as improved model responsiveness to dynamic conditions and the ability to handle 
large, diverse datasets—justify the additional complexity for many applications. In considering the 
implementation of these methods, it is essential to weigh the benefits of increased accuracy and predictive 
power against the investment in computational resources and expertise required to operationalize them 
effectively. 

In highlighting the practical applications of push-button data, Singleton, Mekker, and Islam (2021) 
leveraged such data from traffic signals to estimate pedestrian exposure and examine its relationship with 
pedestrian safety at signalized intersections. Their approach utilized high-resolution traffic signal 
controller logs, providing a robust measure of pedestrian exposure. The authors developed regression 
models to predict pedestrian crossing volumes as a function of push-button data, and then used these 
volumes as explanatory variables in crash frequency and severity models. This method enabled a nuanced 
analysis of pedestrian safety and supported the “safety in numbers” hypothesis—the idea that pedestrian 
crash rates decline with an increase in pedestrian volumes—at signalized intersections. Their study 
highlights the potential of detailed push-button data for critical safety analyses, indicating broader 
implications for traffic safety management and policymaking. 

4.8 Conclusion and Future Work 

Generally, anomalies can have a significant impact on the accuracy of predictive models and analyses that 
rely on pedestrian volume data. Therefore, it is crucial to detect and handle anomalies (and impute 
missing/anomalous values) effectively to avoid misleading conclusions and ensure accurate urban 
planning and pedestrian safety. In this study, we examined various anomaly detection methods, including 
statistical, ML, and DL approaches, in conjunction with EpiEnv variables. Additionally, we applied ML 
and DL-based imputation methods to address missing values. 

The evaluation results demonstrated that DBSCAN, KNN, and iForest performed well in detecting 
anomalies, while random forest, LSTM, and GRU showed promising results for imputation across 
different missing value patterns. Moreover, the investigation of the relationship between EpiEnv variables 
and significant changes in pedestrian volume, as discovered by VAR analysis, revealed a self-organized 
pattern between the impact of EpiEnv variables and built environment variables on pedestrian activity. 
Therefore, for future research, we propose conducting a more detailed examination of these patterns by 
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incorporating self-organizing maps (SOMs). This method is capable of recognizing walking behavior 
patterns and, by identifying normal patterns, it provides actionable insights for urban planning. These 
insights can inform decisions related to strategic infrastructure placement and maintenance scheduling.  
 

 

 

 

 

In an effort to make our research accessible to a broad audience, including those without a background in 
advanced computational methods, we have distilled the key aspects of our study into a more digestible 
format. Our work utilized advanced statistical, ML, and DL techniques to enhance the accuracy of 
pedestrian volume data, crucial for urban planning and transportation engineering. We essentially 
employed sophisticated computer algorithms to detect and correct inconsistencies in pedestrian traffic 
data, thereby providing more reliable information for urban infrastructure decision-making. These 
advanced methods, while complex and resource-intensive, offer substantial improvements in data 
precision over traditional methods. By providing more detailed and accurate insights into pedestrian 
behavior, our approach paves the way for creating safer, more efficient urban spaces. This summary aims 
to encapsulate the essence of our research, highlighting its practical implications and the benefits it brings 
to urban planning, making it accessible to a diverse range of stakeholders. 

To incorporate the ML methods demonstrated in this study into everyday practice, agencies would require 
not only the appropriate computational infrastructure but also a level of expertise that may currently be 
lacking. The automation of these methods presents a viable pathway toward operationalization, 
particularly as data collection systems become more sophisticated. However, this evolution must be 
matched by investment in skill development and resources to overcome the initial barriers to 
implementation. The adoption of these advanced techniques could then represent a significant step 
forward in the maturation of quality assurance and quality control processes for nonmotorized traffic data. 

While our study significantly enhances the process of pedestrian volume estimation at signalized 
intersections by detecting anomalies and accurately imputing missing data, it opens a pathway for 
exploring broader applicability and inherent limitations within the transportation network. The potential 
of our methods to enhance traffic safety and management at these critical junctions is clear, yet the scope 
of signalized intersections, despite their strategic importance, is limited within the overall network (i.e., 
there are many more intersections without traffic signals and pedestrian push-buttons). This reality 
underscores the necessity of extending our analytical frameworks to encompass the full spectrum of urban 
and suburban traffic environments, including both signalized and non-signalized intersections. 

Additionally, as we venture into the domain of hourly data, the challenges increase. Transitioning from 
daily to hourly volume estimation not only entails a substantial increase in database size but also 
introduces complexities in data processing and model training. The need for a more robust computational 
infrastructure and sophisticated data management strategies becomes imperative to handle the surge in 
data volume efficiently. Moreover, the heightened variability in pedestrian traffic observed on an hourly 
basis demands the development of complex models capable of accommodating these fluctuations without 
succumbing to overfitting. This level of detail is crucial for models intended for real-time traffic 
management applications, where accuracy and timely processing are paramount. 

In anticipation of these challenges, further research will need to delve into scalable ML architectures and 
efficient data streaming processes. This exploration might include leveraging cloud computing resources 
or distributed computing frameworks for more effective data handling, and adopting incremental learning 
approaches to update models in real time as new data become available. Additionally, to address the 
unique challenges presented by unsignalized intersections, we will explore the integration of advanced 
sensor technologies, alternative data sources such as mobile device signals and video analytics, and 
geospatial analysis techniques. These approaches aim to capture and predict pedestrian movements more 
accurately in areas lacking structured pedestrian data. Our perspective on both extending to hourly data 
and broadening the applicability to unsignalized intersections is one of cautious optimism. Despite the 
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clear technical hurdles, ongoing advancements in ML and computational power enhance the feasibility of 
these ambitious goals. Future iterations of this work will investigate these multifaceted challenges, aiming 
to extend the applicability of our methods to more granular time scales and a broader range of urban 
traffic contexts, ensuring comprehensive traffic safety and management strategies. 
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5. EVALUATING PEDESTRIAN “SAFETY IN NUMBERS” AT 
SIGNALIZED INTERSECTIONS IN UTAH WITH PEDESTRIAN 
EXPOSURE DATA FROM TRAFFIC SIGNALS 
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5.1 Abstract 

The focus of this study is twofold: (1) to estimate models of pedestrian crash frequency and severity at 
signalized intersections using pedestrian and traffic volumes and other predictor variables; and (2) to 
examine whether the “safety in numbers” effect applies to pedestrian safety in the United States using 
robust measures of pedestrian exposure. Specifically, the analysis used pedestrian crossing volumes 
estimated from one year of pedestrian push-button data, and 10 years of crash data at signalized 
intersections in Utah. Data from 1,606 signalized intersections were used to calibrate a zero-inflated 
negative binomial model for crash frequency analysis. The model results indicated that signals with 
longer crossing distances, no prohibitions against turning right on red, more nearby bus stops, and larger 
shares of vacant land uses saw more pedestrian crashes. To analyze injury severity in pedestrian crashes, 
an ordered logit model was fitted with 1,572 pedestrian crash observations. The model results indicated 
that vehicle size, vehicle maneuvering direction, crossing distance, and involvement of 
DUI/drowsy/distracted driving in crashes had significant effects on severity. The study also found a 
nonlinear relationship where pedestrian-vehicle crash rates decreased with an increase in pedestrian 
volumes, supporting the safety in numbers effect. The authors suggest potential countermeasures, policy 
alterations, and scope of future research for improving pedestrian safety at signalized intersections. 

5.2 Introduction 

Pedestrian safety is a growing health concern and a critical transportation issue. People face four times 
higher risk of injury while walking than while driving a car per million kilometers of travel (Elvik, 2009). 
In the U.S., according to the National Highway Traffic Safety Administration, there were nearly 6,300 
pedestrian fatalities, representing about 18% of all traffic fatalities, in 2018 (NHTSA, 2020a). This 
number was an increase from 4,100 and 12% in 2009 and was higher than in any other year since 1990. 
On average, 17 pedestrians were killed daily in the U.S., despite an overall decrease in fatal crashes 
nationwide. Note that around 25% of the total pedestrians killed in the year were at intersections 
(NHTSA, 2020b). 

Given these troubling trends, there is a need for improved pedestrian crash prediction models to better 
understand factors associated with pedestrian safety and to optimize selection of countermeasures to 
improve pedestrian safety at signalized intersections. Pedestrian exposure data are vital in the 
development of such models, as the frequency of pedestrian crashes varies with pedestrian volumes (Tulu 
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et al., 2015; Harwood et al., 2008). Considerable past research estimated pedestrian volumes based on 
assumptions about pedestrian travel and incorporated them into safety analyses (Lam et al., 2014; Raford 
& Ragland, 2006; Tulu et al., 2015). These studies explored physical, social, and environmental 
characteristics related to pedestrian safety but were limited by the unavailability of accurate pedestrian 
volume estimation (Raford & Ragland, 2006). Typically, the biggest barrier to overcome for pedestrian 
safety analysis is the lack of more robust data on pedestrian exposure. 
 

 

 

 

 

 

 

The safety in numbers hypothesis for walking has been examined over the last three decades. This 
concept suggests that pedestrian (and bicycle) crash rates decrease with increasing volumes of people 
walking and bicycling. Although research has yet to clearly identify the specific causes of this observed 
relationship, it is assumed that the more often drivers see pedestrians and bicyclists, the more likely they 
are to anticipate them and have more experience driving safely around them. As with safety predictive 
methods, the challenge with studying the safety in numbers concept is the lack of pedestrian exposure 
data. Most research on the topic was conducted with surrogate measures of pedestrian exposure. For 
example, for the estimation of pedestrian volumes, researchers have taken a “space syntax” modeling 
approach (Geyer et al., 2006; Raford & Ragland, 2006), used travel characteristics survey data (Jacobsen, 
2015), and generated random numbers (Elvik, 2013). An authentic dataset on pedestrian exposure would 
be more reliable for understanding whether the safety in numbers concept applies to pedestrian safety, 
knowledge that could promote more walking and bicycling through policy and planning.  

The primary objective of this study was to calibrate models with actual pedestrian and traffic volumes and 
other predictor variables (including road network characteristics) to investigate their relationships with the 
frequency and severity of pedestrian crashes at signalized intersections. A second objective was to 
examine whether the safety in numbers phenomenon is observed after the inclusion of actual pedestrian 
exposure data. For both of these objectives, the authors used a novel data source to measure pedestrian 
exposure: annual average pedestrian crossing volumes as estimated using push-button-based pedestrian 
data from traffic signals.  

5.3 Literature Review 

5.3.1 Factors Affecting Pedestrian Crash Frequency 

For the improvement of pedestrian safety at intersections, a detailed exploration of crash-related factors is 
required to develop effective countermeasures (Lee & Abdel-Aty, 2005; Stutts et al., 1996). Factors 
studied in the past regarding pedestrian crashes include traffic exposure, built environment characteristics, 
socio-demographic characteristics, site specific characteristics, and other spatial variables.  

Exposure is typically operationalized using average volumes of traffic. Several studies found positive 
associations between vehicle volume and pedestrian crashes (Cotrill & Thankuriah, 2010; El-Basyouny & 
Sayed, 2013; Harwood et al., 2008). But only a few studies explored the link with pedestrian volumes due 
to difficulty in obtaining such data. When included, the volume of pedestrians was the single most 
important variable to explain variations in pedestrian crashes (Brüde & Larsson, 1993; Lyon & Persaud, 
2002; Zegeer et al., 1985). Overall, both pedestrian and vehicular volumes show positive associations 
with pedestrian-vehicle crashes (Harwood et al., 2008; Xu et al., 2019; Yasmin & Eluru, 2016). 

Built environment characteristics include population, job density, and local land use types. 
Confoundingly, population density showed both a positive (Dumbaugh & Li, 2010; Gladhill & Monsere, 
2012) and negative (Loukaitou-Sideris et al., 2007; Graham & Glaister, 2003) association with pedestrian 
crash occurrence in different studies. Job or employee density was found to be positively associated with 
pedestrian crashes (Loukaitou-Sideris et al., 2007). Increased proportions of land used for commercial, 
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mixed use, park, retail, or community use has been associated with increased vehicle-pedestrian collisions 
(Loukaitou-Sideris et al., 2007; Wier et al., 2009).  
 

 

 

 

 

 

 

 

Examples of socio-demographic characteristics are household income, population by age, race/ethnicity, 
and number of children. One study found a relationship between pedestrian crashes and population 
demographics such as income and the presence of children in households (Cotrill & Thankuriah, 2010). 
Children and the elderly are more at risk as they take a longer time to cross the road, increasing their 
exposure to motor vehicle traffic (Demetriades et al., 2004). 

Different road and intersection characteristics—including number of lanes, signal types, and lighting 
conditions—have been investigated. A greater number of lanes was related to higher pedestrian crash 
frequency, whereas speed limit, crosswalk marking conditions, and crosswalk marking types had no 
significant effect on pedestrian crash rates (Zegeer et al., 2005). Pedestrian crash risk was observed to be 
reduced by improved lighting conditions (Lee & Abdel-Aty, 2005). 

5.3.2 Factors Affecting Pedestrian Crash Severity 

As pedestrians are more likely (than other road users) to be injured or killed when involved in crashes, 
identifying factors contributing to pedestrian crash severity is essential for selection of appropriate 
countermeasures (Haleem et al., 2015). Demographic characteristics of pedestrians or drivers showed 
significant associations to crash risk in several studies, with age standing out as a particularly important 
predictor of the crash severity. Lee and Abdel-Aty (2005) suggested that elderly or alcohol-impaired 
pedestrians risked higher injury severity when involved in crashes. Haleem et. al. (2015) observed that the 
involvement of elderly and pedestrians younger than 15 years of age increased the likelihood of fatal 
crashes. Sarkar et. al. (2011) found that male and elderly pedestrians were more likely to have severe 
injuries than other population groups when involved in crashes.  

Vehicle characteristics and conditions, including vehicle size, speed, and trajectory/action, have also been 
related to pedestrian crash severity. Pedestrians involved in crashes with vehicles larger than passenger 
cars experienced higher injury severity (Lee & Abdel-Aty, 2005). Oh et. al. (2005) identified collision 
speed as the most significant factor, where higher speed was associated with increased likelihood of 
pedestrian fatality. Roudsari et. al. (2006) found that a straight-moving vehicle hitting a pedestrian 
increased the injury severity and the chance of fatality.  

A few studies included roadway geometry, traffic volume, and environmental conditions for investigation 
of pedestrian crash severity. Haleem et. al. (2015) included all of these factors when investigating 
pedestrian crash severity at intersections. At signalized intersections, they found that higher average 
annual daily traffic (AADT), rain, and dark conditions were significant predictors of pedestrian crash 
severity. Zajac and Ivan (2003) found that rural, downtown fringe, and low-density residential areas 
experienced more severe pedestrian crashes than downtown, compact residential, and medium- to low-
density commercial areas. Mohammed et al. (2013) demonstrated that the prevalence of mixed land use 
increased the probability of fatal pedestrian crashes.  

5.3.3 Safety in Numbers 

Although a positive relationship was found between pedestrian/bicycle crash frequency and measures of 
exposure, researchers have argued that it is a nonlinear relationship. Specifically, they suggest that while 
there is a steeper increase in crash rate at lower levels of pedestrian/bicycle traffic, the crash rate does not 
increase proportionately and actually becomes smaller with higher levels of pedestrian/bicycle traffic. 
This phenomenon is popularly known as the safety in numbers concept (Carlson et al., 2018; Elvik et al., 
2013; Jacobsen, 2015). Elvik and Goel (2019) stated that the risk of injury to each pedestrian and cyclist 
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becomes lower with a greater number of pedestrians and cyclists. Initially, Elvik (2013) had proposed an 
opposing concept called “hazard in numbers,” which suggests that the number of crashes doubles when 
traffic volume is doubled. He proved that hazard in numbers can co-exist with safety in numbers in a 
dataset of pedestrians, bicyclists, or motorists. Later, in a meta-analysis of estimates, Elvik and Goel 
(2019) reported that although there is considerable variation in estimates, nearly all studies support safety 
in numbers. It was also found that the safety in numbers effect for pedestrians is stronger than for cyclists 
or motorists, and newer investigations support safety in numbers more than earlier studies.  
 

 

 

 

 

 

 

 

 

 

 

5.3.4 Summary of Literature Review 

Most research on pedestrian safety has been limited by the unavailability of pedestrian exposure data. The 
few studies that included pedestrian exposure used a surrogate measure. Additionally, the studies that 
examined the effect of explanatory variables on pedestrian crashes mostly ignored the characteristics of 
different facilities used by pedestrians in the analysis. Also, studies on the safety in numbers concept are 
mostly limited to European settings. This study addresses several of these limitations by: 

• Incorporating stronger measures of pedestrian exposure  
• Including key intersection variables  
• Examining whether the “safety in numbers” concept applies to pedestrian safety in the U.S. 

5.4 Data 

This study investigated pedestrian crashes that occurred over 10 years, from 2010 through 2019, at 
signalized intersections in Utah. The three different datasets used for the analysis—traffic signals and 
intersection data, pedestrian crash data, and pedestrian exposure data—are briefly described in this 
section.  

5.4.1 Traffic Signals and Intersection Data 

At the time of this study, there were 2,214 traffic signals in use across Utah. Among those, 1,606 
signals—excluding pedestrian-activated flashers, pedestrian hybrid beacons, signals without pedestrian 
push-buttons, and signals not connected to the central network—were included in this study.  

As one of the objectives of this study was to identify intersection and road characteristics that are directly 
related to pedestrian crash frequency and severity at signalized intersections, detailed data regarding 
different features at selected sites were gathered using Google Earth and Street View. In addition to 
measuring crosswalk distances, crosswalk presence and marking types (standard, continental, ladder, or 
zebra [Harkey & Zegeer, 2004]) were also recorded. The presence of inbound and outbound bike lanes at 
the intersections were identified, as well as whether a near-side or far-side bus stop was located within 
300 feet of the intersection.  

The study dataset also included vehicle exposure data, land use and built environment characteristics, and 
socioeconomic characteristics of the surrounding area. These independent variables were calculated for 
within a quarter-mile of intersections using data from a variety of state and national sources, including the 
Utah Geospatial Resource Center and the US Census Bureau. 

5.4.2 Pedestrian Crash Data 

Crash data were obtained from the Utah Department of Transportation (UDOT). Each crash record 
includes information on temporal characteristics, spatial characteristics, contributing factors, crash 
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severity, weather conditions, and crash participants. This information was extracted from police crash 
reports, and no personally identifying information was included. There were 2,939 observed pedestrian-
involved crashes at (or related to) signalized intersections from 2010 through 2019.  

For analyzing pedestrian crash frequency, pedestrian crashes that occurred during the study period were 
assigned to the nearest signal location based on the longitude/latitude data of the crash location. Of the 
1,606 study intersections, a plurality (42%) had zero pedestrian crashes during the study period. Figure 
5.1a shows the distribution of pedestrian crash frequency.  

For pedestrian crash severity analysis, additional information, such as environmental characteristics, crash 
characteristics, vehicle characteristics, and driver characteristics, were available in the crash database. 
Each pedestrian crash was designated by one of five injury severity levels: no injury, possible injury, 
minor injury, serious injury, and fatal. Figure 5.1b shows the distribution of pedestrian crash severities.  

(a) Pedestrian crash frequencies 

(b) Pedestrian crash severities 

Figure 5.1  Distributions of dependent variables 
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5.4.3 Pedestrian Exposure Data 
 

 

 

 

 

The pedestrian exposure data came from high-resolution traffic signal controller logs (Sturdevant et al., 
2012). UDOT archives every controller event at almost all traffic signals in the state through the 
Automated Traffic Signal Performance Measures (ATSPM) system. If a traffic signal included walk 
indications and pedestrian detection (usually push-buttons), data regarding push-button presses and walk 
phases were available. Although pedestrian traffic signal data are not perfect measures of pedestrian 
volumes, recent work by Singleton et al. (2020) has demonstrated that such data can be used to predict 
pedestrian crossing volumes at signalized intersections with relative accuracy. They developed simple 
regression models predicting hourly pedestrian crossing volumes as a function of pedestrian signal data 
(detailed model results are available from the authors). Over more than 22,500 hours of data, the 
correlation between observed and model-predicted hourly pedestrian crossing volumes was 0.84, with a 
mean absolute error of only 3.0 (Singleton et al., 2020).   

For this study, one year (July 2017 through June 2018) of pedestrian data was obtained from traffic 
signals in Utah. After cleaning the data, five regression models developed by Singleton et al. (2020) were 
applied to the pedestrian signal data to estimate the annual average daily pedestrian (AADP) crossing 
volume at each signal.  

5.4.4 Descriptive Statistics 

Descriptive statistics of the dependent and all independent variables for the pedestrian crash frequency 
analysis are presented in Table 5.1. Descriptive statistics for continuous and categorical independent 
variables for the pedestrian crash severity analysis are shown in Table 5.2.  
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Table 5.1  Descriptive statistics of variables in the frequency analysis 
Variable Min. Max. Mean Std. Dev. 
Dependent variable, frequency model 
 # of pedestrian-involved crashes 0 23 1.62 2.32 
Measures of exposure 
 Annual average daily pedestrian volume (AADP) 0.16 6,737 269.95 572.78 
 Average daily traffic in major direction (AADTMAJ) 450 186,000 23,312.09 12,900.82 
 Average daily traffic in minor direction (AADTMIN) 0 57,000 8565.02 7,789.45 
Transportation characteristics 
 Presence of overhead street lighting 0 1 0.97 0.16 
 Intersection type 
  2-leg (mid-block) 0 1 0.00 0.06 
  3-leg 0 1 0.09 0.29 
  4-leg 0 1 0.87 0.33 
  5-leg 0 1 0.00 0.04 
  Diverging diamond interchange (DDI) 0 1 0.00 0.07 
  Single point urban interchange (SPUI) 0 1 0.02 0.14 
 # crosswalks, total 0 4 3.45 0.96 
 # crosswalks with standard markings 0 4 3.14 1.17 
 # crosswalks with continental markings 0 4 0.27 0.71 
 # crosswalks with ladder, zebra, or other markings 0 3 0.01 0.11 
 # crosswalks with continental, ladder, or zebra markings 0 4 0.29 0.72 
 Crosswalk length (mean, ft) 20 185 81.83 19.89 
 # approaches with no pedestrian crossing 0 4 0.44 0.83 
 # approaches with no right-turn-on-red 0 1 0.01 0.12 
 # approaches with channelized right turns 0 4 0.20 0.69 
 # approaches with bike lanes 0 4 0.59 1.03 
 # of bus stops within 300 ft of intersection  0 6 0.93 1.18 
 # approaches with near-side bus stops 0 4 0.31 0.60 
 # approaches with far-side bus stops 0 4 0.62 0.89 
 Intersection density (# per mi2) a 6.07 313.17 97.66 49.12 
Land use and built environment characteristics a 
 % land use residential 0 84 31 23.51 
 % land use commercial 0 92 28 20.75 
 % land use industrial 0 83 2.41 10.51 
 % land use vacant 0 100 4.54 8.74 
 Population density (1,000 per mi2) 0.08 23.51 4.51 3.02 
 Employment density (1,000 per mi2) 0.02 216.03 7.30 11.51 
 Park area (acre) 0 37.15 1.45 3.61 
 # of schools 0 5 0.31 0.61 
 # of places of worship 0 6 0.51 0.78 
Sociodemographic characteristics a 
 Household income (median, $1,000) 20.5 144.61 61.33 21.87 
 Vehicle ownership (mean) 0.55 3.00 1.81 0.45 
 Household size (mean) 1.41 13.72 3.11 0.85 
 % of the population with a disability 2.51 27.06 10.64 4.12 
 % of the population of Hispanic or non-white race/ethnicity 0.00 75.66 17.26 13.50 
a These variables were measured using a quarter-mile network buffer.  
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Table 5.2  Descriptive statistics of independent variables in the severity analysis 
Category Variable name Summary statistics 
Categorical independent variables Frequency Percentage 
Lighting condition Lighted 1,524 59% 

Poorly lighted 898 35% 
Unlighted 152 6% 

Weather condition Clear 1,952 76% 
Cloudy or foggy 347 14% 
Precipitation 261 10% 

Vehicle 
classification by 
body type 

Small (passenger cars) 1,311 54% 
Medium (van/SUV/pickup) 1,063 44% 
Large (bus/truck/tractor/RV) 46 2% 

Roadway surface 
condition 

Dry 2,212 87% 
Wet 345 13% 

Crash involving… More than 1 vehicle 125 5% 
Disregarding traffic control device 89 3% 
DUI, distraction, or drowsy driving 190 7% 
Improper/unrestrained driver 50 2% 
Older/teenage driver 492 19% 

Vehicle movement Turning left 816 34% 
Turning right 953 39% 

Functional class of 
road 

Arterial 1,665 65% 
Collector 261 10% 
Local 666 25% 

Road alignment Horizontal alignment: curve 25 1% 
Vertical alignment: grade 163 6% 

Continuous independent variables Mean Std. Dev. 
Measures of 
exposure 

Annual average daily pedestrian volume (AADP) 493.00 726.80 
Average daily traffic in major direction (AADTMAJ) 27,408.36 11,661.46 
Average daily traffic in minor direction (AADTMIN) 12,015.11 9,206.43 

Intersection 
Characteristics 

Crosswalk length (mean, ft) 86.96 19.08 
# approaches with marked crosswalk 3.78 0.60 
# approaches with no pedestrian crossing 0.16 0.49 
# approaches with no right-turn-on-red 0.01 0.10 
# approaches with channelized right turns 0.12 0.53 
# approaches with bike lanes 0.59 1.04 
# of bus stops within 300 ft of intersection  1.55 1.36 
# approaches with near-side bus stops 0.47 0.72 
# approaches with far-side bus stops 1.08 1.10 
Intersection density (# per mi2) a 105.56 44.11 

Land use and built 
environment 
characteristics a 

% land use residential 31.06 21.57 
% land use commercial 34.32 19.36 
% land use industrial 1.40 6.10 
% land use vacant 3.41 5.56 
Population density (1,000 per mi2) 5.63 2.74 
Employment density (1,000 per mi2) 8.60 11.27 
Park area (acre) 1.60 3.65 
# of schools 0.34 0.63 
# of places of worship 0.56 0.83 

Sociodemographic 
characteristics a 

Household income (median, $1,000) 53.80 17.67 
Vehicle ownership (mean) 1.59 0.40 
Household size (mean) 2.94 0.90 
% of the population with a disability 11.58 4.09 
% of the population of Hispanic or non-white race/ethnicity 20.87 13.76 

a These variables were measured using a quarter-mile network buffer. 
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5.5 Methods 

This study used two different modeling approaches to evaluate the effect of various explanatory variables 
on the frequency and severity of pedestrian crashes at signalized intersections. For pedestrian crash 
frequency, a set of count data models were developed and compared, culminating in a zero-inflated 
negative binomial (ZINB) model. For pedestrian crash severity, an ordered logit model was fitted.  

5.5.1 Pedestrian Crash Frequency Modeling 

Like most crash frequency data, the pedestrian crash frequency data used in this study were discrete, 
random, and non-negative. The modeling framework of generalized linear models (GLMs) are more 
suited to such count data than ordinary linear regressions, which can predict negative, non-integer values 
of the dependent variable. The Poisson regression model has been widely used as a starting point to model 
count data (Lord & Mannering, 2010), but it requires the variance of the count data to equal the mean. 
When count data used are over-dispersed (i.e., the mean is less than the variance), a negative binomial 
(NB) regression model is usually more appropriate for the dataset. An additional error term allows the 
variance to be different from the mean of the dataset. Although this model yielded a more accurate 
hypothesis test, it did not account for the excess zeros in the dataset. 

As mentioned earlier, there were no pedestrian crashes during the study period at a plurality of the 
signalized intersections. Hence, the adoption of ZINB was plausible as it can accommodate 
overdispersion arising from both unobserved heterogeneity and excess zeros (Miranda-Moreno & Fu, 
2006). The probability density function for the ZINB model is as follows: 
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(4) 

where α is dispersion parameter and Г is gamma function for the ZINB model.  

Since the criteria to compare and select appropriate models depends on the presence and the source of 
overdispersion in the crash data, the likelihood ratio test can be used to check for the existence of 
overdispersion (Isgin et al., 2008). The Poisson and zero-inflated Poisson (ZIP) models are nested within 
the NB and ZINB models, respectively, while performing the test. The Vuong test can be used to examine 
the contribution of excess zeros in overdispersion (Vuong, 1989). The test also compares the zero inflated 
models with single count models (Poisson and NB). When the value of the test is significant for the 
Poisson-based models, it indicates that only zero counts contribute to overdispersion, and hence, ZIP is 
more appropriate than the single Poisson model (Hosseinpour et al., 2013). When the value of the Vuong 
test is significant in the case of the NB-based model, it indicates that both excess zero and heterogeneity 
account for overdispersion.  

5.5.2 Pedestrian Crash Severity Modeling 

The study also aimed to identify the factors that contribute to injury severity in pedestrian crashes. While 
the intersection is the unit of analysis in crash frequency models, each crash is typically analyzed for 
crash severity models. In this case, the dependent variable is categorical and ordered (i.e., from no injury 
to fatal injury). An appropriate technique to model these data is the ordered probit or ordered logit 
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models, which assume that there is some underlying continuous version of the ordinal/categorical 
dependent variable. In light of this, an ordered logit model was used in this study.  

The ordered logit can be estimated using several open-source software packages. The specification of an 
ordered logit model is as follows: 

𝑦𝑦𝑖𝑖∗ = 𝛽𝛽′𝑥𝑥𝑖𝑖 + ԑ𝑖𝑖 (5)

where 𝑦𝑦𝑖𝑖∗ is the predicted level of injury severity by a pedestrian 𝑖𝑖, 𝛽𝛽′ is a vector of unknown parameters, 
𝑥𝑥𝑖𝑖 is a vector of explanatory variables, and ԑ𝑖𝑖 is the random error term that follows a standard logistic 
distribution. The classification of observed injury severity is done based on the predicted injury using the 
following criteria: 

𝑦𝑦𝑖𝑖=

⎩
⎪
⎨

⎪
⎧

0 𝑖𝑖𝑖𝑖 𝑦𝑦∗𝑖𝑖 ≤ 0 (no − injury)
1 if 0 ≤ 𝑦𝑦∗𝑖𝑖 ≤ µ1 (possible injury)
2 if µ1 ≤ 𝑦𝑦∗𝑖𝑖 ≤ µ2 (minor injury)
3 if µ2 ≤ 𝑦𝑦∗𝑖𝑖 ≤ µ3 (major injury)

4 if µ3 ≤ 𝑦𝑦∗𝑖𝑖 ≤ µ4 (fatal)

(6)

where µ1, µ2, and µ3 are the thresholds estimated by the model. 

5.6 Results 

5.6.1 Pedestrian Crash Frequency 

The ZINB model was deemed most appropriate (as discussed above) and showed a decent fit 
(McFadden’s pseudo-R2 = 0.327) in the dataset of 1,038 signalized intersections. (Some signals were 
removed due to missing or no pedestrian exposure data or lack of intersection data.) Table 5.3 indicates 
the estimated parameters of the ZINB model, first from the count portion, followed by the zero portion. 
We will focus on interpreting the count model portion of the ZINB model. Variables with positive 
coefficients suggest higher crash frequencies while negative parameter values suggest lower crash 
frequencies relative to the base case. 
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Table 5.3  ZINB model results for pedestrian crash frequency (N = 1,038) 
Variables B SE z p 
Negative binomial portion 
 (Intercept) -6.8573 0.6995 -9.804 0.000 
Measures of exposure 
 Annual average daily pedestrian volume, estimated (AADP) a 0.4005 0.0387 10.352 0.000 
 Annual average daily traffic, major approaches (AADTMAJ) a 0.4063 0.0722 5.624 0.000 
 Annual average daily traffic, minor approaches (AADTMIN) a 0.0607 0.0212 2.866 0.004 
Transportation system characteristics 
 Intersection type (ref. = 4-leg) 
  2-leg (mid-block) -1.2396 0.7981 -1.553 0.120 
  3-leg -0.2217 0.1507 -1.472 0.141 
  5-leg -0.4915 0.5316 -0.925 0.355 
  Diverging diamond interchange (DDI) -1.0314 1.0947 -0.942 0.346 
  Single point urban interchange (SPUI) -0.5658 0.4457 -1.269 0.204 
 # crosswalks with continental, ladder, or zebra markings 0.1157 0.0360 3.219 0.001 
 Crosswalk length, mean (ft) 0.0041 0.0018 2.230 0.026 
 # approaches with no right-turn-on-red -0.4995 0.2694 -1.854 0.064 
 # approaches with bike lanes -0.0775 0.0288 -2.692 0.007 
 # of bus stops within 300 ft of intersection 0.1060 0.0237 4.472 0.000 
Land use and built environment characteristics 
 % land use vacant b 0.0099 0.0055 1.813 0.070 
 Employment density (1,000 per mi2) b -0.0099 0.0031 -3.176 0.002 
Sociodemographic characteristics 
 % of population with a disability b 0.0208 0.0079 2.648 0.008 
 % of population of Hispanic or non-white race/ethnicity b 0.0127 0.0025 5.007 0.000 
Zero-inflated portion 
 (Intercept) 4.0533 0.8469 4.786 0.000 
 Annual average daily pedestrian volume, estimated (AADP) a -0.9666 0.2167 -4.462 0.000 
 Population density (1,000 per mi2) b -0.8187 0.1769 -4.627 0.000 
 % of population of Hispanic or non-white race/ethnicity b 0.0517 0.0169 3.062 0.002 
a The natural log of these variables (+1) entered the model.  
b These variables were measured using a quarter-mile network buffer. 

    

    

    

 

 

The results suggested that pedestrian volume (AADP) and both major and minor leg traffic volume 
(AADT) were significantly associated with crashes. Pedestrian-vehicle collisions occurred more 
frequently at signalized intersections where the volumes of pedestrian and motor vehicle traffic were 
higher. The finding is consistent with the existing literature, which suggests that both the pedestrian and 
vehicular traffic exposure show positive associations with pedestrian-vehicle crashes (5, 20). An increase 
in vehicle volumes by 10% on each of the major and minor legs would be expected to increase the 
number of pedestrian crashes by 4.0% and 0.6%, respectively. Among the road network characteristics 
examined, the mean crosswalk distance was found to be significantly associated with pedestrian crash 
frequency: i.e., intersections with greater crosswalk distances had slightly more pedestrian crashes. A 12-
foot increase in mean crosswalk distance was associated with a 5% increase in crash frequency. Also, 
intersections with more nearby bus stops saw more pedestrian crashes. Notably, signalized intersections 
where right turns on red were prohibited had fewer pedestrian crashes than would otherwise be expected. 
Among the built environment characteristics, pedestrian crashes were more frequent in areas with larger 
shares of vacant land uses. While considering socio-demographic characteristics, there were more 
pedestrian crashes in neighborhoods with a greater share of people with disabilities and in areas with 
more people of Hispanic or non-White race/ethnicity. Specifically, neighborhoods with 1% more people 
with disabilities or Hispanic/non-White populations would be predicted to have 1% to 3% more 
pedestrian crashes. 
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5.6.2 Pedestrian Crash Severity 
 

 

 

Table 5.4 lists the estimation results of the ordered logit model for pedestrian crash severity. The model 
was fitted with a dataset consisting of 1,573 pedestrian crashes—observations were removed due to 
missing data—and had a good fit overall (McFadden’s pseudo-R2 = 0.38).  

The results indicated that involvement of large and medium size vehicles significantly increased severity. 
In comparison with crashes involving small vehicles, large vehicles were associated with a 156% increase 
in the odds of more severe injuries, while medium size vehicle increased the chances of a more severe 
injury by 36%. When left- and right-turning vehicles were involved in pedestrian-vehicle collisions, the 
odds of a more severe crash decreased by 44% and 64%, respectively, with respect to vehicles moving 
straight through the intersection. Results also indicated that involvement of an older or teenage driver in a 
crash was associated with more severe pedestrian crashes at signalized intersections (an increase of 
almost 22% compared with crashes involving drivers of other ages). Involvement of DUI, drowsy, or 
distracted driving was found to increase the probability of more severe crashes involving pedestrians by 
about 160%. Compared with crashes in good light conditions, crashes in poorly lighted or unlighted 
conditions were associated with a 34% increase in the odds of more severe injuries. None of the variables 
related to land use or built environment characteristics were associated with pedestrian crash severity. 
Among other variables, pedestrian crashes at locations with horizontal curves, more near-side bus stops, 
and in areas with more people of Hispanic or non-White race/ethnicity were generally less severe. 
Pedestrian crashes at intersections with more approaches having pedestrian crossings were more severe. 
Neither pedestrian volume nor traffic volume in major direction showed any association with pedestrian 
crash severity at signalized intersections. 
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Table 5.4  Ordered logit model results for pedestrian crash severity (N = 1,572) 
Variable B SE t P 
Vehicle and driver attributes 

Vehicle body type:  Large (bus/truck/tractor/RV) 0.940 0.38 2.46 0.014 
Medium (van/SUV/pickup) 0.310 0.10 3.12 0.002 

Crash involving: DUI, distraction, or drowsy driving 0.954 0.20 4.83 0.000 
Disregarding traffic control device 0.145 0.28 0.51 0.609 
Improper/unrestrained driver -0.239 0.38 -0.63 0.531 
Older/teenage driver 0.202 0.12 1.65 0.099 

Vehicle movement:  Turning left -0.580 0.13 -4.36 0.000 
Turning right -1.022 0.13 -7.86 0.000 

Environmental characteristics 
Lighting condition:  Poor or unlighted 0.291 0.10 2.78 0.005 
Weather condition:  Cloudy or foggy -0.003 0.15 -0.02 0.983 

Precipitation 0.080 0.30 0.26 0.792 
Surface condition:  Wet -0.151 0.27 -0.57 0.569 

Roadway characteristics 
Functional class:  Arterial -0.002 0.11 -0.01 0.989 

Collector -0.163 0.18 -0.90 0.369 
Horizontal alignment: Curve -0.361 0.03 -12.82 0.000 
Vertical alignment:  Grade -0.028 0.21 -0.13 0.896 

Transportation characteristics  
Annual average daily pedestrian volume (AADP) 0.000 0.00 0.29 0.772 
Average daily traffic, major direction (AADTMAJ) (1,000s) 0.002 0.01 0.44 0.661 
Average daily traffic, minor direction (AADTMIN) (1,000s) -0.013 0.01 -1.86 0.062 
Crosswalk length (mean, ft) 0.008 0.00 2.35 0.019 
Speed limit (mph) 0.004 0.01 0.40 0.686 
# of bus stops 0.022 0.02 1.29 0.199 
Intersection density (# per mi2) -0.001 0.00 -0.62 0.533 
# approaches with pedestrian crossing 0.147 0.07 2.06 0.040 
# approaches with no pedestrian crossing 0.073 0.21 0.35 0.730 
# approaches with markings -0.092 0.08 -1.19 0.233 
# approaches with near-side bus stops -0.121 0.07 -1.78 0.076 
# approaches with far-side bus stops -0.007 0.05 -0.14 0.886 
# approaches with bike lanes (inbound) -0.365 0.31 -1.19 0.235 
# approaches with bike lanes (outbound) 0.430 0.31 1.40 0.162 
# approaches with channelized right turn 0.077 0.12 0.64 0.520 

Land use and built environment characteristics 
% land use residential 0.004 0.01 0.61 0.545 
% land use commercial -0.002 0.01 -0.33 0.741 
% land use industrial 0.006 0.01 0.55 0.580 
% land use vacant -0.002 0.01 -0.22 0.828 
Park area (acre) -0.006 0.01 -0.43 0.667 
# of schools -0.105 0.08 -1.34 0.180 

Sociodemographic characteristics 
Household income (median, $1,000) -0.002 0.00 -0.50 0.614 
Vehicle ownership (mean) -0.028 0.16 -0.18 0.857 
Household size (mean) -0.061 0.07 -0.93 0.351 
% of the population with a disability 0.001 0.02 0.07 0.943 
% of the population of Hispanic or non-white race/ethnicity -0.009 0.00 -2.14 0.032 

Bold = p < 0.10, Regular = p > 0.10.  
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5.7 Discussion 
 

 

 

 

 
  

The unique use of robust measures of pedestrian exposure estimated from traffic signal data, especially in 
the frequency model, allows our study to provide stronger insights into the safety in numbers concept for 
pedestrians at U.S. signalized intersections. Specifically, we find strong support of a safety in numbers 
effect for pedestrians: a doubling (10% increase) in pedestrian crossing volumes would be predicted to 
only increase crash frequency by around 4%. In other words, pedestrian crashes increase less than half as 
fast as pedestrian volumes, thus leading to reduced crash rates (on a per-person basis) as pedestrian 
volumes increase. Figure 5.2 depicts this relationship, where pedestrian crash rates (frequency/exposure) 
decline with increasing pedestrian volumes. 

Figure 5.2  Demonstration of the “safety in numbers” effect for pedestrians at signals 

Our study was not without limitations that could be addressed through future work. Due to their small 
sample size and different operations, we excluded pedestrian activated flasher and pedestrian hybrid 
beacon signals from the analysis. Separate (and larger-scale) analysis for these signals may yield useful 
insights related to pedestrian safety. Also, the built environment, sociodemographic, road characteristics, 
and pedestrian volume data were collected for a single time point or year, while models included crashes 
over a 10-year period. Factors such as household income, land use types, crosswalk 
marking/type/distance, the location of bus stops, or pedestrian volumes may have changed slightly (or 
even significantly) over the study period. Future work on the topic may consider using multiyear data of 
predictor variables for a more comprehensive analysis.  
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5.8 Conclusion 
 

 

 

The objective of this study was to develop models of pedestrian crash frequency and severity based on 
traffic signal pedestrian push-button data and other factors, as well as to investigate the safety in numbers 
concept for pedestrians in the U.S. Data from 1,038 signalized intersections and 1,572 pedestrian-
involved crashes at those intersections over 10 years were analyzed. A zero-inflated negative binomial 
model was used to estimate pedestrian crash frequency and an ordered logit model was used to predict 
pedestrian crash severity. Overall, model results agreed with past research findings. Key conclusions from 
this study include: 

• The results indicated a strong safety in numbers effect on pedestrian crash occurrence, showing 
that the number of pedestrian crashes increased by only 40% when pedestrian volume doubled. 

• At signalized intersections with longer crosswalks, no prohibitions against turning right on red, 
higher numbers of transit stops, and larger shares of vacant land uses, the frequency of pedestrian 
crashes was higher. 

• Crashes involving large- or medium-size vehicles; involving DUI, drowsy, or distracted drivers; 
and at intersections with longer crossings had an increased probability of higher severity injury 
outcomes.  
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6. EXPLORING FACTORS AFFECTING PEDESTRIAN CRASH 
SEVERITY USING TABNET: A DEEP LEARNING APPROACH 
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6.1 Abstract 

This study presents the first investigation of pedestrian crash severity using the TabNet model, a novel 
tabular deep learning method exceptionally suited for analyzing the tabular data inherent in transportation 
safety research. Through the application of TabNet to a comprehensive dataset from Utah covering the 
years 2010 to 2022, we uncover intricate factors contributing to pedestrian crash severity. The TabNet 
model, capitalizing on its compatibility with structured data, demonstrates remarkable predictive 
accuracy, eclipsing that of traditional models. It identifies critical variables—such as pedestrian age, 
involvement in left or right turns, lighting conditions, and alcohol consumption—which significantly 
influence crash outcomes. The utilization of SHapley Additive exPlanations (SHAP) enhances our ability 
to interpret the TabNet model’s predictions, ensuring transparency and understandability in our deep 
learning approach. The insights derived from our analysis provide a valuable compass for transportation 
safety engineers and policymakers, enabling the identification of pivotal factors that affect pedestrian 
crash severity. Such knowledge is instrumental in formulating precise, data-driven interventions aimed at 
bolstering pedestrian safety across diverse urban and rural settings. 

6.2 Introduction 

Pedestrian safety remains a critical challenge in traffic systems worldwide, with pedestrians often bearing 
the highest risk of traffic crashes. In 2021 alone, the National Highway Traffic Safety Administration 
(NHTSA, 2023) reported 7,388 pedestrian fatalities in the United States, underscoring the need for 
improved safety measures. Various factors contribute to the severity of pedestrian crashes, with urban 
settings, intersections, and low-light conditions being predominant risk factors.  

Data-driven analysis of crash reports is a key strategy for identifying factors that influence pedestrian 
crash severity. Recently, deep learning techniques have shown promise in this domain due to their ability 
to capture complex patterns from large volumes of data. This study harnesses the potential of TabNet, a 
state-of-the-art deep learning model designed for tabular data, which is prevalent in the field of 
transportation safety. TabNet’s innovative architecture enables it to focus on the most relevant factors for 
crash severity prediction, thereby offering a powerful tool for traffic safety analysis. 

Utilizing pedestrian crash data from Utah spanning 2010 to 2021, this study is the first to apply TabNet to 
pedestrian crash severity analysis. In conjunction with SHAP, we interpret the model’s predictions, 
providing insights into the significance of various contributing factors. This novel approach not only 
enhances model interpretability but also aids in developing targeted strategies to improve pedestrian 
safety. The ensuing sections will detail the methodology, present the findings, and discuss the 
implications of employing TabNet within this vital area of public safety. 

https://doi.org/10.48550/arXiv.2312.00066
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6.3 Literature Review 
 

 

 

 

The severity of traffic incidents involving pedestrians is contingent upon a myriad of factors. A 
comprehensive review of relevant academic literature (Shrinivas et al., 2023) reveals several key 
variables. These include the demographic characteristics of the pedestrian, with a particular emphasis on 
age and gender; the speed and type of the implicated vehicle; the details of the accident location and the 
timing of the incident; the presence of intoxicating substances in the pedestrian or driver; and the use of 
safety equipment such as helmets or high-visibility clothing. These elements collectively contribute to the 
understanding and assessment of pedestrian-related traffic incidents. 

Numerous prediction models have been employed to investigate the impact of various factors on 
pedestrian crash severity. These models encompass statistical techniques, such as negative binomial 
models (Rahman et al., 2022), logistic regression models (Nasri et al., 2022), ordered probit models 
(Fountas & Anastasopolous, 2018; Yang et al., 2019), and structural equation modeling (Kashani et al., 
2021). Machine learning (ML) models, including random forest, AdaBoost (Al-Mistarehi et al., 2022), 
XGBoost (Goswamy et al., 2023), decision trees, k-nearest neighbor, and ensemble models (Yang et al., 
2022), have also been utilized. Additionally, deep learning (DL) models, like deep neural networks 
(DNN) (Kang & Khattak, 2022), have been explored for pedestrian crash severity analysis. To better 
understand the application of these techniques, Table 6.1 presents an overview of the advantages and 
limitations of these methods used in pedestrian crash severity analysis. 

While TabNet (Arik & Pfister, 2021) (a DL technique designed for tabular data analysis, capable of 
handling both numerical and categorical variables) has been used in crash severity analysis before, our 
study is novel in terms of applying TabNet specifically to pedestrian crash severity analysis. Prior work 
by Sattar et al. (2023) utilized TabNet for modeling injury severity in motor vehicle crashes using 
different ML approaches. However, their study did not focus on pedestrian-related crashes, and they did 
not propose the TabNet interpretation results. Therefore, our study also contributes by introducing the 
interpretation of TabNet results using SHAP, a framework previously employed for interpreting DNN 
models in crash injury severity analysis by Kang and Khattak (2022), and for XGBoost models in similar 
studies by Chang et al. (2022) and Li (2022). By incorporating SHAP, we aim to provide deeper insights 
into the factors influencing pedestrian crash severity predictions using the TabNet model. 
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Table 6.1  Summary of benefits and limitations of various techniques for pedestrian crash severity 
analysis 

Techniques Benefits Limitations 
Statistical 
methods 

- Interpretability: Statistical models, such as 
logistic regression and negative binomial 
models, offer greater interpretability and 
understanding compared with ML and DL 
models (Kashani et al., 2021; Infante et al., 
2022). 

- Simplicity: Statistical models are generally 
simpler and require fewer computational 
resources than ML and DL models (Infante et 
al., 2022). 

- Well-established techniques: Statistical 
methods have a long history of use and 
research, making them reliable and well-
established for analyzing crash severity 
(Kashani et al., 2021). 

- Linearity assumptions: Some statistical 
models, like logistic regression, may assume a 
linear relationship between predictors and the 
outcome, which could be limited in capturing 
more complex real-world scenarios (Infante et 
al., 2022). 

- Limited predictive power: Statistical models 
might have lower predictive accuracy 
compared with ML and DL models, especially 
when handling intricate and nonlinear 
relationships between variables (Infante et al., 
2022). 

ML and DL 
methods 

- Higher predictive accuracy: ML and DL 
methods can achieve superior predictive 
accuracy compared with statistical models, 
particularly when handling complex and 
nonlinear relationships between variables or 
when dealing with large and complex datasets 
(Kang & Khattak, 2022; Komol et al., 2021). 

- Feature importance: ML models can 
effectively identify significant features 
(explanatory variables) and their relationships 
with crash severity, providing valuable 
insights that might be more challenging to 
extract from statistical models (Komol et al., 
2021). 

- Interpretability: ML and DL models can be 
more challenging to interpret and comprehend 
than statistical models, which may hinder the 
ability to explain the relationships between 
variables and crash severity (Infante et al., 
2022). 

- Overfitting: ML and DL models may be 
susceptible to overfitting, particularly when 
dealing with many features or a small dataset. 
This can lead to reduced generalizability and 
accuracy on unseen data (Kang & Khattak, 
2022; Komol et al., 2021). 

- Computational resources: DL models 
typically demand more computational 
resources and longer training times in 
comparison to statistical and ML models 
(Kang & Khattak, 2022). 

 

 

 

 

6.4 Data and Method 

6.4.1 Data and Variables 

In our research, we leveraged crash data (UDPS, 2023) to explore the determinants of pedestrian crash 
severities in Utah from 2010 to 2021. The severity of pedestrian crashes in our study was gauged using 
the KABCO scale. This scale classifies crashes into several categories: fatal, suspected serious injury, 
suspected minor injury, possible injury, and no injury or property-damage-only (PDO). To visually 
represent these data, Figure 6.1 showcases the spatial distribution of these crashes. Additionally, it 
includes a heatmap that accentuates the locations of fatal crashes within the dataset. 
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(a) Pedestrian crashes dispersion (b) Heatmap of pedestrian fatalities 

Figure 6.1  The spatial configuration of pedestrian crashes 
 

 

In this study, we examined 8,812 pedestrian crash incidents, analyzing the impact of 29 different 
variables, as detailed in Table 6.2. The breakdown of crash severities was as follows: fatal crashes 
comprised 5%, serious injuries 15%, minor injuries 44%, possible injuries 30%, and no injuries or 
property-damage-only (PDO) accounted for 6%. Notable insights from the data include a higher incidence 
of injury among male pedestrians and an increased rate of fatalities in the 30 to 59 age group. Factors like 
DUI (driving under the influence) and crashes involving older drivers contributed to 13% and 11% of 
pedestrian fatalities, respectively. A significant majority of these crashes occurred on arterial roads (52%) 
and predominantly in urban areas (97%). Intersections emerged as common sites for pedestrian crashes, 
accounting for 61% of the total, with nearly 3% of these being fatal. The study also found that left-turn 
and right-turn crashes occurred at similar rates. Regarding lighting conditions, 60% of crashes happened 
in daylight, while dark conditions without lighting were present in 37% of fatal crashes. 
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Table 6.2  Descriptive statistics of the variables 
Characteristics Class Total Fatal Serious injury Minor injury Possible injury No injury / PDO 
Pedestrian crashes  8812 (0%) 476 (5%) 1363 (15%) 3856 (44%) 2624 (30%) 493 (6%) 
Sex Male 5282 (60%) 309 (65%) 849 (62%) 2261 (59%) 1514 (58%) 349 (71%) 

Female 3530 (40%) 167 (35%) 514 (38%) 1595 (41%) 1110 (42%) 144 (29%) 
Age group 0 to 9 826 (9%) 33 (7%) 118 (9%) 391 (10%) 240 (9%) 44 (9%) 

10 to 29 4039 (46%) 119 (25%) 556 (41%) 1840 (48%) 1280 (49%) 244 (49%) 
30 to 59 3009 (34%) 202 (42%) 509 (37%) 1265 (33%) 866 (33%) 167 (34%) 
> 59 938 (11%) 122 (26%) 180 (13%) 360 (9%) 238 (9%) 38 (8%) 

Aggressive driving No 8703 (99%) 472 (99%) 1332 (98%) 3812 (99%) 2601 (99%) 486 (99%) 
Yes 109 (1%) 4 (1%) 31 (2%) 44 (1%) 23 (1%) 7 (1%) 

Alcohol-drug test result Both-Positive 11 (0%) 11 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Drug-Positive 34 (0%) 34 (7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Alcohol-Positive 15 (0%) 13 (3%) 2 (0%) 0 (0%) 0 (0%) 0 (0%) 
Negative 9 (0%) 9 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Not related 8743 (99%) 409 (86%) 1361 (100%) 3856 (100%) 2624 (100%) 493 (100%) 

DUI No 8586 (97%) 413 (87%) 1305 (96%) 3786 (98%) 2598 (99%) 484 (98%) 
Yes 226 (3%) 63 (13%) 58 (4%) 70 (2%) 26 (1%) 9 (2%) 

Distracted driving No 8105 (92%) 430 (90%) 1218 (89%) 3554 (92%) 2449 (93%) 454 (92%) 
Yes 707 (8%) 46 (10%) 145 (11%) 302 (8%) 175 (7%) 39 (8%) 

Drowsy driving No 8773 (100%) 463 (97%) 1354 (99%) 3846 (100%) 2620 (100%) 490 (99%) 
Yes 39 (0%) 13 (3%) 9 (1%) 10 (0%) 4 (0%) 3 (1%) 

Older driver involved No 7896 (90%) 423 (89%) 1223 (90%) 3446 (89%) 2366 (90%) 438 (89%) 
Yes 916 (10%) 53 (11%) 140 (10%) 410 (11%) 258 (10%) 55 (11%) 

Teenage driver involved No 7966 (90%) 432 (91%) 1205 (88%) 3496 (91%) 2390 (91%) 443 (90%) 
Yes 846 (10%) 44 (9%) 158 (12%) 360 (9%) 234 (9%) 50 (10%) 

Holiday No 7745 (88%) 397 (83%) 1185 (87%) 3402 (88%) 2324 (89%) 437 (89%) 
Yes 1067 (12%) 79 (17%) 178 (13%) 454 (12%) 300 (11%) 56 (11%) 

Right-turn involved No 7118 (81%) 464 (97%) 1254 (92%) 3113 (81%) 1912 (73%) 375 (76%) 
Yes 1694 (19%) 12 (3%) 109 (8%) 743 (19%) 712 (27%) 118 (24%) 

Intersection involved Yes 5361 (61%) 136 (29%) 718 (53%) 2471 (64%) 1766 (67%) 270 (55%) 
No 3451 (39%) 340 (71%) 645 (47%) 1385 (36%) 858 (33%) 223 (45%) 

Left-turn involved No 7079 (80%) 441 (93%) 1144 (84%) 3016 (78%) 2051 (78%) 427 (87%) 
Yes 1733 (20%) 35 (7%) 219 (16%) 840 (22%) 573 (22%) 66 (13%) 

Overturn rollover No 8785 (100%) 474 (100%) 1358 (100%) 3842 (100%) 2620 (100%) 491 (100%) 
Yes 27 (0%) 2 (0%) 5 (0%) 14 (0%) 4 (0%) 2 (0%) 

Domestic animal involved No 8793 (100%) 469 (99%) 1363 (100%) 3847 (100%) 2622 (100%) 492 (100%) 
Yes 19 (0%) 7 (1%) 0 (0%) 9 (0%) 2 (0%) 1 (0%) 

Commercial vehicle involved No 8559 (97%) 440 (92%) 1302 (96%) 3772 (98%) 2581 (98%) 464 (94%) 
Yes 253 (3%) 36 (8%) 61 (4%) 84 (2%) 43 (2%) 29 (6%) 
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Heavy truck involved No 8534 (97%) 440 (92%) 1297 (95%) 3760 (98%) 2577 (98%) 460 (93%) 
Yes 278 (3%) 36 (8%) 66 (5%) 96 (2%) 47 (2%) 33 (7%) 

Transit vehicle involved No 8732 (99%) 470 (99%) 1349 (99%) 3823 (99%) 2606 (99%) 484 (98%) 
Yes 80 (1%) 6 (1%) 14 (1%) 33 (1%) 18 (1%) 9 (2%) 

Work zone involved No 8425 (96%) 447 (94%) 1298 (95%) 3705 (96%) 2503 (95%) 472 (96%) 
Yes 387 (4%) 29 (6%) 65 (5%) 151 (4%) 121 (5%) 21 (4%) 

Wrong way driving No 8784 (100%) 473 (99%) 1359 (100%) 3841 (100%) 2620 (100%) 491 (100%) 
Yes 28 (0%) 3 (1%) 4 (0%) 15 (0%) 4 (0%) 2 (0%) 

Road type Urban 8548 (97%) 419 (88%) 1296 (95%) 3784 (98%) 2583 (98%) 466 (95%) 
Rural 264 (3%) 57 (12%) 67 (5%) 72 (2%) 41 (2%) 27 (5%) 

Functional class Local 2651 (30%) 71 (15%) 352 (26%) 1256 (33%) 847 (32%) 125 (25%) 
Collector 1578 (18%) 71 (15%) 232 (17%) 703 (18%) 487 (19%) 85 (17%) 
Arterial 4583 (52%) 334 (70%) 779 (57%) 1897 (49%) 1290 (49%) 283 (57%) 

Roadway surface is dry Yes 7607 (86%) 409 (86%) 1181 (87%) 3312 (86%) 2273 (87%) 432 (88%) 
No 1205 (14%) 67 (14%) 182 (13%) 544 (14%) 351 (13%) 61 (12%) 

Lighting condition Dark-Not lighted 1167 (13%) 176 (37%) 285 (21%) 401 (10%) 255 (10%) 50 (10%) 
Dark-Lighted 1912 (22%) 138 (29%) 332 (24%) 824 (21%) 542 (21%) 76 (15%) 
Daylight 5292 (60%) 141 (30%) 678 (50%) 2409 (62%) 1725 (66%) 339 (69%) 
Dusk 244 (3%) 10 (2%) 40 (3%) 115 (3%) 59 (2%) 20 (4%) 
Dawn 197 (2%) 11 (2%) 28 (2%) 107 (3%) 43 (2%) 8 (2%) 

Weather condition Clear 6758 (77%) 355 (75%) 1068 (78%) 2925 (76%) 2030 (77%) 380 (77%) 
Cloudy 1214 (14%) 69 (14%) 176 (13%) 543 (14%) 353 (13%) 73 (15%) 
Rain 509 (6%) 31 (7%) 80 (6%) 220 (6%) 153 (6%) 25 (5%) 
Fog, Smog 25 (0%) 3 (1%) 4 (0%) 9 (0%) 8 (0%) 1 (0%) 
Snowing 213 (2%) 10 (2%) 26 (2%) 112 (3%) 53 (2%) 12 (2%) 
Others 93 (1%) 8 (2%) 9 (1%) 47 (1%) 27 (1%) 2 (0%) 

Vertical alignment Level 6891 (78%) 360 (76%) 1108 (81%) 3005 (78%) 2042 (78%) 376 (76%) 
Uphill 61 (1%) 3 (1%) 7 (1%) 33 (1%) 14 (1%) 4 (1%) 
Downhill 50 (1%) 2 (0%) 12 (1%) 28 (1%) 8 (0%) 0 (0%) 
Others 1810 (21%) 111 (23%) 236 (17%) 790 (20%) 560 (21%) 113 (23%) 
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In the development of our TabNet models, we adhered to the categorization outlined in Table 6.2. To 
ensure a uniform encoding of the dataset, we assigned numerical values to categorical data. For instance, 
we designated “Yes” as 1 and “No” as 0; “Male” received a value of 1, while “Female” was assigned 0; 
similarly, “Rural” was encoded as 1 and “Urban” as 0. Other categories were numerically encoded 
following their sequential arrangement in Table 6.2, starting from 1 and increasing. Furthermore, we 
treated age as a continuous variable, rather than categorizing it into different age groups. 
 

 

 

 

 

6.4.2 Method 

In this study, we utilized the TabNet methodology to delve into the effects of various explanatory 
variables on pedestrian crash injury outcomes. TabNet, a model tailored for tabular data, is celebrated for 
its robust performance and interpretability, initially developed by the team at Google Cloud AI (Arik & 
Pfister, 2021). It ingeniously merges the capabilities of deep learning models with feature selection 
techniques, adept at processing both numerical and categorical data. TabNet’s core functionality lies in its 
use of sequential attention. This feature allows the model to selectively focus on different explanatory 
variables (EVs) at each decision-making step, thereby enhancing its interpretability. Figure 6.2 in our 
study depicts the specific structure of the TabNet model as applied here, highlighting its architecture over 
two steps. Within this framework, the EV transformer plays a crucial role in refining input data, which 
helps in better understanding the interplay between EVs and crash severity levels. Concurrently, the 
attentive transformer assesses the significance of each EV during each decision step. It creates a mask to 
emphasize the most influential predictors, enabling the model to dynamically concentrate on pertinent 
factors such as weather conditions and alcohol involvement, among other EVs. This approach not only 
bolsters the model’s focus but also significantly augments the accuracy of its predictions. 

Figure 6.2  The structure of the TabNet model for predicting crash severity levels using various EVs 

When applying the TabNet model to predict pedestrian crash severity, we implemented several steps to 
optimize its performance and accuracy. To counter the class imbalance in our dataset, we used the 
Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002), enhancing the model’s 
proficiency in predicting less-represented classes. The model’s hyperparameters were fine-tuned with the 
help of Optuna (Akiba et al., 2019), a framework specialized in hyperparameter optimization, to achieve 
the best possible configuration tailored to our specific dataset. Additionally, to prevent overfitting and 
improve the model’s ability to generalize, we conducted multiple training iterations on varied subsets of 
data through bootstrapping. We evaluated the model’s effectiveness using a range of metrics, including 
accuracy, precision, recall, and the F1-score, to ensure a comprehensive assessment of its performance. 
The calculations for these metrics are represented by Eq. 1 to 4: 
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𝑎𝑎𝑎𝑎   𝑇𝑇
𝑇𝑇

(1) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   𝑇𝑇
𝑇𝑇

(2) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   𝑇𝑇
𝑇𝑇

(3) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

(4) 

For interpreting the results of our TabNet model, we employed SHAP (Lundberg et al., 2018; Lundberg 
& Lee, 2017). SHAP assigns an importance value to each EV for a given prediction, making the model’s 
output more understandable in terms of the input EVs. Drawing from cooperative game theory, SHAP 
values distribute the prediction output (crash severity) among the EVs based on their contribution. If we 
denote f(x) as the prediction for a specific instance x and 𝐸𝐸[𝑓𝑓(𝑋𝑋)] as the expected prediction for the 
model, which is calculated as the average prediction over the training dataset, the additive EV attribution 
can be calculated as follows: 

f(x) − 𝑇𝑇[𝑖𝑖(𝑋𝑋)] = ∑𝑁𝑁𝑖𝑖=1𝜑𝜑𝑖𝑖 (5) 

Furthermore, the importance value assigned to each EV or the Shapley value for the i-th EV 𝜑𝜑𝑖𝑖  can be 
calculated as follows: 

𝑓𝑓  


𝑆𝑆
𝑓𝑓      (6) 

where 𝑁𝑁 is the set of all EVs, 𝑆𝑆 is a subset of 𝑁𝑁 that includes the i-th EV, |S| is the size of S, and 𝑓𝑓𝑖𝑖 is a 
version of where only the EVs in S and i (if it is included) are used. For this analysis, the SHAP python 
package (SHAP, 2023) was utilized to determine the importance of EVs in the TabNet model.  

6.5 Model Results 

For evaluating the various models, we partitioned our data, dedicating 80% for training purposes and 
reserving the final 20% for testing and evaluation. With the TabNet model, we employed the SHAP 
method to discern the significance of each EV across different crash severity classes. This approach and 
its findings are illustrated in Figure 6.3, providing a clear visual representation of how each EV influences 
the model’s predictions for each severity level. 
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Figure 6.3  The importance of each EV for each crash severity class in TabNet model 

To enhance the precision of the TabNet model, we meticulously adjusted its hyperparameters through a 
combination of GridSearchCV (Pedregosa et al., 2012) and the Optuna optimization technique. The 
specific values and methods utilized for this fine-tuning process are comprehensively listed in Table 6.3. 
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Table 6.3  Optimum hyperparameters of the TabNet models in this study 
Model Hyperparameter Value/Method 
TabNet - Dimension of the prediction layer 

- Dimension of the attention layer  
- Number of decision steps 
- Sparsity regularization 
- Entmax* temperature** (gamma) 
- Number of independent GLU*** layers  
- Number of shared GLU layers across decision steps  
- Momentum in batch normalization 
- Gradient clipping for each parameter  
- Optimizer function 
- Learning rate (lr) 
- Mask type 

53 
58 
1 
0.023989318 
1.952667709 
8 
6 
0.3 
2 
Adam 
0.007566832 
Entmax 

* It is a combination of “Maximum” and “Entropy,” which signifies the objective of 
maximizing entropy while adhering to specific constraints. ** It is a hyperparameter 
that controls the sharpness of the probability distribution. *** Gated linear unit 

 

 

 

 

 

 

For assessing the TabNet model’s efficacy, we employed a suite of evaluation metrics, including 
precision, recall, F-1 score, and overall accuracy. The outcomes derived from these metrics, offering 
insights into the model’s performance, are detailed in Table 6.4. 

Table 6.4  Performance evaluation metrics 

Crash severity class Evaluation metrics 
Precision Recall F1 score 

Fatal 0.910 0.950 0.930 
Serious injury 0.860 0.860 0.860 
Minor injury 0.927 0.980 0.950 
Possible injury 0.960 0.970 0.959 
No injury/PDO 0.948 0.916 0.927 
Accuracy  0.959 

6.6 Model Interpretation and Discussion 

When we examined the performance metrics, as detailed in Table 6.4, the TabNet model distinguished 
itself with its precise predictions of pedestrian crash severity. It demonstrated particular strength in 
predicting minor and possible injury outcomes, as evidenced by its F1-score in these categories. To 
maintain the integrity of the TabNet model and to address the risk of overfitting due to its notable 
accuracy, we employed a range of methods. These included cross-validation, regularization parameters, 
an early stopping mechanism, the use of SMOTE, and training with diverse bootstrap samples. These 
strategies collectively improved both the performance and dependability of the model in our analysis. 

The TabNet model’s findings highlight pedestrian age, lighting conditions, and road functional class as 
key EVs in predicting crash severity. Figure 6.3 elucidates these influential EVs. To further understand 
the model, Figure 6.4 offers a SHAP summary plot that correlates EV features with crash severity classes. 
In this plot, each row represents an EV, with the color of the dots indicating the EV’s value (red for high, 
blue for low), and their horizontal position indicating how the EV influences the probability of a higher 
severity outcome. The clustering of dots indicates a strong correlation between the feature and the 
prediction, with the spread showing the EV’s impact and dot dispersion highlighting variation due to 
interactions with other EVs. 
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(a) Fatal 
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(b) Serious injury 
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(c) Minor injury 
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(d) Possible injury 

 



 

 91 

 
(e) No inury/PDO 

 
Figure 6.4  The SHAP summary plot for each crash severity class in TabNet model 

 
From the dot plot, certain features stand out for increasing the likelihood of fatal outcomes. Figure 6.4(a) 
shows that alcohol or drug consumption by pedestrians, and crashes in urban areas, are linked with higher 
chances of fatal severity. In serious injury cases [Figure 6.4(b)], the involvement of commercial vehicles 
and heavy trucks is a critical factor, though other EVs show variable impacts, suggesting complex 
interplays within the model. In minor injury cases, factors like disregard for traffic control, distracted 
driving, and holiday-period crashes are predictors, while right and left turns, work zones, and dry road 
conditions are more associated with possible injuries. Contrarily, adverse weather and commercial vehicle 
involvement reduce the odds of possible injuries. For the no injury/PDO category, holidays, left turns, and 
the involvement of older or teenage drivers are inversely related to severity. These insights, provided by 
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the SHAP analysis in Figure 6.4, highlight the nuanced interplay of various factors in pedestrian crash 
severity outcomes, as captured by the TabNet model. 
 

 

 

 

To navigate the complexity of the dot summary plot, especially for intricate categories like serious injury, 
and to delve deeper into how each EV contributes to the final prediction, we employed SHAP force plots, 
exemplified in Figure 6.5 using observation #631 from our dataset. These force plots visually depict the 
influence of each EV on the model’s prediction, starting from the base value (the average prediction) and 
culminating in the specific outcome for an observation. Here, the impact of each EV is shown as a 
horizontal force, indicating its effect in either increasing or decreasing the prediction likelihood. 

In Figure 6.5(a), focusing on observation #631, the TabNet model shows a tendency to classify this case 
as fatal (f(x)=1). Factors like the alcohol result, presence at an intersection, age, involvement in a left 
turn, and roadway surface type all point toward a fatal outcome. Conversely, the lighting condition 
applies a minor negative impact, but it is insufficient to outweigh the substantial positive influences from 
the other variables.  

Additionally, in Figure 6.5(b), the model predicts a non-serious injury outcome (f(x)=0). The base value, 
ranging between 0.15 and 0.20, acts as the starting point in the absence of specific information about this 
observation. A significant blue arrow indicates that the vertical alignment variable heavily influences the 
prediction toward f(x) = 0.00. Factors like age, left-turn involvement, alcohol result, and lighting 
condition also contribute negatively, albeit to a lesser extent. In contrast, the right-turn involvement 
(indicated by a pink arrow) partly mitigates but does not fully offset the negative influences. This pattern 
is representative across other categories as well. From this analysis, it is clear that the model accurately 
classified observation #631 as fatal. Among the influencing features, the most impactful was the alcohol 
result, underscoring its significance in determining crash severity in this instance. 
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(a) Fatal 

 

 
(b) Serious injury 

 

 
(c) Minor injury 

 

 
(d) Possible Injury 
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(e) No injury/PDO 

 

 
Figure 6.5  The SHAP values, explaining the contribution of EVs to the raw TabNet model output for a specific observation 
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6.7 Conclusion 
 

 

 

 

In the realm of transportation safety, understanding pedestrian crash severity is crucial, particularly due to 
the inherent vulnerability of pedestrians. This study focused on employing TabNet, an advanced deep 
learning (DL) method designed for tabular data. Our use of SHAP techniques for interpretation further 
enhanced our understanding of TabNet’s application. The findings indicated that TabNet was 
exceptionally effective in analyzing pedestrian crash data from Utah. However, employing TabNet did 
pose challenges, particularly in hyperparameter tuning and model interpretation. For instance, tuning 
hyperparameters for TabNet required a considerable amount of time—20 hours and 16 minutes—on a 
general computer setup (Core i7- 9th generation with 32 GB RAM). Moreover, interpreting the TabNet 
results using SHAP was a time-intensive process, taking approximately 68 hours and 31 minutes. This 
highlights a crucial trade-off: the choice between achieving high accuracy with DL and ML models, 
which necessitates more time, versus opting for faster but potentially less accurate results from statistical 
methods. 

In summary, our study provides valuable insights for transportation engineers in choosing appropriate 
methods for analyzing pedestrian crash severity. The methodologies and approaches we employed, 
especially focusing on TabNet, offer a framework that can be adapted for broader crash variable 
investigations in the field of transportation safety. 
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