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ABSTRACT 

In an ever-evolving world characterized by environmental challenges and technological advancements, 
the confluence of natural disasters, particularly increasing wildfire threats, and the role of connected and 
autonomous vehicles (CAVs) stands as a critical focal point for research and innovation. This study 
embarks on a comprehensive exploration of this dynamic landscape, encompassing disaster management 
strategies, wildfire evacuation, and the integration of innovative CAV technology. Additionally, it delves 
into the intricate tapestry of public attitudes and perceptions surrounding CAVs, shedding light on the 
nuanced dynamics that influence technology acceptance. As our planet grapples with the escalating risks 
of natural disasters driven by climate change, and CAVs become an emerging reality, this research seeks 
to unravel the potential these vehicles hold in enhancing disaster response and reshaping the 
transportation landscape. 
 

 

  
 

  

To understand how individuals perceive CAV technology, the research conducts a stated preference 
survey in distinctive environments, such as medium-sized towns marked by cold climates and significant 
academic populations. It reveals that the acceptance of CAVs is intertwined with factors like the 
perceived utility, perceived risk, and the potential for safety improvements under adverse weather 
conditions. These insights underscore the multifaceted nature of public sentiment and acceptance 
surrounding CAVs, highlighting the importance of grasping user perspectives in diverse urban settings. 

In sum, this research navigates the complex terrain of natural disaster management and the burgeoning 
CAV technology landscape, uniting technology’s transformative capabilities with the intricate interplay of 
human attitudes, and offering a comprehensive view of a world evolving in response to both 
environmental challenges and technological innovations. 
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EXECUTIVE SUMMARY 
This research addresses the urgent need for enhanced emergency evacuation strategies in the MPC region 
during natural disasters, particularly wildfires, by capitalizing on data from connected and autonomous 
vehicles (CAVs). Leveraging a dataset from connected vehicles, the study evaluates driving behavior and 
traffic conditions during wildfire evacuations, providing crucial insights for disaster response. 
Furthermore, it investigates the role of CAVs in disaster management and assesses public attitudes toward 
their integration in a medium-sized metropolitan area with cold weather. This research offers a data-
driven foundation for optimizing emergency evacuation plans and underscores the potential of CAVs in 
improving disaster response, highlighting the importance of public perception in realizing this potential. 
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1. INTRODUCTION 

Natural disasters have become more common and expensive in recent years. Extreme and no-notice 
disasters, defined as events that occur with little to no official warning, pose a significant threat to human 
life, property, and integrity of the ecosystem. These catastrophic damages are often caused by wildfires, 
which are uncontrolled fires that spread quickly under extreme weather conditions such as severe drought 
and high wind and in the presence of dry vegetative fuel and steep topography. Unfortunately, because of 
climate change, these conditions are becoming more common, particularly in the western United States 
[1], [2]. Large-scale wildfires can cause mass evacuations which can create social disruption, long-term 
infrastructure damage, and injuries or deaths of evacuees and first responders  [3], [4]. Statistics show that 
between 1980 and 2007, there were, on average, 20 evacuations per year in Canada with some years 
recording as many as 53 evacuations [5]. Moreover, in recent years the state of California witnessed more 
than one million people evacuate their neighborhoods and about 30,000 structures destroyed due to fire 
incidents [6]. Additionally, communities living near undeveloped wildlands or vegetative fuels, 
constituting wildland-urban interface (WUI) zones, are most vulnerable to fire due to their proximity to 
flammable vegetation and limited egress routes [7], [8]. Many of these communities are experiencing 
rapid population growth, but the traffic infrastructure and number of exits are unable to keep up with the 
rising traffic demand, putting the lives of residents at risk (Cova et al., 2021) [9]. 

In the event of an emergency evacuation such as in WUI areas, having a reliable transportation system is 
necessary. It gives residents safe passage out of the affected area and essential timely access for first 
responders to reach the impacted region. Large-scale hazardous events (such as wildfire, tornado, 
hurricane, earthquake, flood, or chemical spill) often require mandatory evacuation of residents [10]. In 
these situations, the amount of time available for evacuation is critically important, especially in the event 
of wildfire where evacuees must watch out for smoke, flying debris, and flames, as well as avoid conflict 
with emergency services [11], [12]. The population density and traffic infrastructure of the area affected 
by the fire also have a significant impact on the safe and well-planned evacuation of people. When there 
is a sudden evacuation, high-density areas can cause more traffic congestion and create longer vehicular 
queues on the exiting routes, endangering the lives of stranded evacuees [13], [14]. The response of the 
local authorities and first responders is also considered important in determining the behavior of residents 
during an evacuation. Pre-evacuation warnings and explicit instructions from emergency personnel can 
help evacuees make thoughtful decisions about the fire risk and safely depart the affected area [[15], 
[16]]. Additionally, the population’s demographics, including household size, income, education level, 
ownership of a car or home, ethnicity, and previous experience with mass evacuations, can have a 
significant impact on the evacuation rate [17], [18] 

In the context of wildfire evacuations, the integration of connected and autonomous vehicles (CAVs) 
represents a promising advancement that can significantly enhance the evacuation process. These 
vehicles, equipped with real-time communication capabilities and autonomous navigation systems, bring 
efficiency and safety to evacuations. Connected vehicles can share critical information about traffic 
conditions, road closures, and alternate routes, while autonomous vehicles can adapt swiftly to changing 
circumstances, selecting the safest and most efficient evacuation routes. The coordination between CAVs 
not only optimizes traffic flow but also prevents congestion and bottlenecks, which are essential steps 
during large-scale evacuations. Furthermore, CAVs can provide accessible transportation for individuals 
with mobility challenges, ensuring inclusivity in evacuation efforts. Additionally, the data collected by 
these vehicles can be invaluable for emergency response teams and future evacuation planning. By 
reducing the risk of human error, enhancing traffic management, and improving accessibility, CAVs offer 
a new dimension of safety and efficiency to wildfire evacuations, potentially saving lives and mitigating 
the impact of these disasters on communities. 
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This project proposes to address the MPC region’s urgent need for emergency evacuation analysis during 
natural disasters such as wildfires by taking advantage of the rapid development of data collection from 
CAVs. Such an analysis is expected to provide emergency evacuation officials and residents with a 
suggested action plan based on the simulation predictions of a hazard spreading. Specifically, three 
objectives will be aligned to achieve such an overarching goal: 

1. Obtaining and transferring the real-time data from the database obtained from connected and 
autonomous vehicles, followed by converting the data into the appropriate format for 
microsimulation software. 

2. Setting up and validating the microsimulation model for emergency evacuation analysis based 
on the collected traffic data during previous evacuation experiences within the MPC region. The 
focus will be given to the states of Wyoming, Colorado, and Utah based on those states’ higher 
frequency of wildfire disasters. 

3. Predicting and making recommendations for future evacuation needs.  

In addition, the team will use the results from this development to enhance curricula that would engage 
and mentor students in the practice of developing safe smart cities. This project will involve 10 graduate 
students and several undergraduate students. The trainings through this project will prepare students for 
potential careers in smart city development. 

Thus, this report is organized according to objectives. Chapter 2 provides a brief introduction to the real-
time data extraction and conversion for microsimulation. Chapter 3 introduces the microsimulation model 
validation for wildfire emergency evacuation. Chapter 4 explains future evacuation needs and gives 
recommendations. Chapter 5 shows the curriculum and educational development of this project, including 
student mentoring and outreach activities. Finally, Chapter 6 summarizes the conclusions and 
recommendations from the study. 
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2. REAL-TIME DATA EXTRACTION AND CONVERSION FOR 
MICROSIMULATION 

2.1 Connected Vehicles (CVs) Data 

Over the last decade, large sets of data about human mobility, facilitated by extensive use of sensors, such 
as global positioning system (GPS) devices in many modes of transportation and mobile phones, have 
become the fundamental component of the new smart cities paradigm [19]. Detailed information about a 
driver’s location, speed, and other information can be gathered from a mobile device or vehicle by a 
public or private entity and can be used to obtain travel times [20]. Many independent third-party 
companies compile large amounts of crowdsourced data and provide high-quality real-time traffic 
information [21-24]. Moreover, modern vehicles, known as connected vehicles (CVs) produced by 
leading automobile manufacturers, are equipped with sensors that record temporal and spatial information 
about the vehicle trajectory and the surrounding environment and transmit it to the cloud computing 
databases [25]. Several big data companies have also emerged (such as Otonomo, Wejo). These 
companies segregate and normalize historical CV data and share it with vehicle manufacturers, 
researchers, and technology developers for research and development [26]. For instance, Wejo has 
partnered with multiple global automobile manufacturers that record vehicle trajectory data from vehicle 
onboard sensors. The data are collected at 3-second intervals and each data-point is recorded within a 3-
meter radius with an accuracy of 95%. Each data point includes a unique identifier, the location of the 
data point, a timestamp, the vehicle’s speed, and its direction of movement. 

2.2  Elevating Data Insights: The Superiority of CV Data 

Although the anonymized CV dataset has recently become available to explore historical traffic patterns 
at the location of interest, several researchers have already tested Wejo’s vehicle movement dataset. Li et 
al. (2021) estimated border crossing time at Paso del Norte International Bridge in El Paso, TX, using 
Wejo’s CV dataset and observed a correlation rate of around 0.8 with the existing Bluetooth-generated 
border crossing time information system. They also discovered that the temporal coverage rate of Wejo’s 
dataset was around 60% to 70% for estimating border crossing time at the selected site [27]. In another 
study, Desai et al. (2021) used this dataset to study the impact of interstate construction work zone 
diversions on traffic signal performance measures [28] Khadka et al. (2022) identified queue propagation 
at freeway bottlenecks and arterial traffic intersections using these CV data [29]. Furthermore, Saldivar 
Carranza et al. (2021) estimated operational performance measures for various traffic signals in 
Indianapolis, and Abdelraouf et al. (2022) developed a sequence-to-sequence deep learning model to 
forecast traffic volume and speed on four expressways in Orlando, FL [30], [31]. Hence, because of the 
lack of empirical data on WUI fire evacuation clearance times and the inability of existing travel data 
collection technologies to comprehend such data, the CV datasets provide an opportunity to evaluate 
traffic delays resulting from historical wildfire events. 

2.3  Conversion of CV Data for Analysis in GIS 

The dataset was delivered in smaller parcels of JSON files to Amazon Web Services (AWS) S3 cloud 
storage; the parcels were stored in the local storage using the AWS Command Line Interface (CLI). 
Initially, the stored JSON files were pre-processed into CSV files and compiled together in MS Excel to 
create a readable format for later use. Next, to visualize the processed tabular data, it was imported into 
the ArcGIS Pro software, and the location attributes of the data (i.e., latitude and longitude) were utilized 
to create a feature class of the entire dataset.  



 

4 
 
 

2.4 Evaluation of Driving Behavior During Evacuation 

For the selected study areas, the connected vehicle driving events data (i.e., hard-braking and hard-
acceleration) provided by Wejo Data Services, Inc., were used to analyze the behavior of drivers in a 
mass evacuation. To analyze the extent of aggressive driving in the selected wildfire evacuation cases, the 
period of data collection consisted of evacuation as well as non-evacuation time frames to allow us to 
evaluate driver behavior under varying driving conditions. Considering that Saratoga Springs in Utah was 
evacuated on June 28, 2020, data were collected for the period of June 20-30, 2020. Three towns in 
Colorado were evacuated on October 21, 2020, (Grand Lake) and October 22, 2020 (Granby and Estes 
Park), so data were collected from three days in September and five days in October, as detailed in Table 
2.1.  

Table 2.1  Driving events data collection 
S No. City Fire event Date of 

evacuation 
Data collection period 

1 Saratoga Springs, 
UT, USA 

Knolls Fire June 28, 2020 June 20, 2020 – June 30, 2020 

2 Grand Lake, CO, 
USA 

East Troublesome Fire Oct. 21, 2020 Sept. 23, 2020 – Sept. 25, 2020, 
Oct. 21, 2020 – Oct. 25, 2020 

3 Granby, CO, USA East Troublesome Fire Oct. 22, 2020 Sept. 23, 2020 – Sept. 25, 2020, 
Oct. 21, 2020 – Oct. 25, 2020 

4 Estes Park, CO, 
USA 

Cameron Peak Fire & 
East Troublesome Fire 

Oct. 22, 2020 Sept. 23, 2020 – Sept. 25, 2020, 
Oct. 21, 2020 – Oct. 25, 2020 

2.4.1 Data Collection and Analysis  

The data were delivered in smaller parcels consisting of around 14,000 JSON files to AWS S3 cloud 
storage and were stored in the local storage using the AWS CLI. The key attributes of the data used for 
processing and analysis are listed in Table 2.2. 

Table 2.2  Key driving events data attributes 
S No. Data attributes Definitions 

1 Data-point ID Records a unique data-point whenever a vehicle applies a HB or a HA 
event. 

2 Captured date & time Records the time and date of the event when a data-point is recorded in 
Universal Coordinated Time (UTC). 

3 Time zone offset Records the location time zone offset for the data-point. The time zone 
offset of (UTC - 6 hours) was used for all study areas for the collected 
data period. 

4 Latitude Provides the north-south positioning of the vehicle on the Earth’s 
surface. 

5 Longitude Provides the east-west positioning of the vehicle on the Earth’s surface. 

6 Acceleration change type Signifies an HA event when a vehicle detects an acceleration of over 
2.77 m/s2 or an HB event when a vehicle detects a deceleration of over 
2.77 m/s2. 



The study area analyzed for the city of Saratoga Springs consisted of five miles of SR-68 between mile 
markers (MM) 25 and 30 along with the residential neighborhoods evacuated during the 2020 Knolls 
Fire, as illustrated in 1(a). As can be seen in 1(b), the analysis of the data for this city revealed that the 
day of evacuation (June 28, 2020) observed almost twice as many HA events and more than twice as 
many HB events as the reference day the week before (Sunday, June 21, 2020). This suggests that the 
residents reacted aggressively to the short-notice evacuation orders and drove their vehicles with higher 
acceleration and deceleration rates to safely exit the impacted region from the fire, as discussed 
previously in the literature. 
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Figure 2.1  Saratoga Springs, UT, USA (a) driving-events map, (b) driving-events data 

It was also observed that throughout the study period, the southern neighborhoods of the city, which were 
initially asked to evacuate, observed the highest number of HB and HA events on the day of evacuation, 
as noted in Table 2.3 and depicted in the call-out drawn in Figure 2.1(a). Additionally, the southern 
neighborhoods observed almost 83% of the day’s HB and 73% of the day’s HA events during the 
evacuation period (2:45 p.m. to 7:00 p.m.). This highlights the significant temporal and spatial impact of 
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the fire and the subsequent hurried evacuation driving behavior in the affected neighborhoods. 
Furthermore, the data evaluation also revealed that the traffic intersections are critical congestion points 
where the highest number of driving events are observed. This implies that vehicles formed queues at the 
intersections requiring drivers to apply HB to stop the vehicle and then HA to leave the area quickly, as 
previously noted in the literature. The driving event data for this city demonstrate the driving behavior of 
people evacuating the city on very short notice out of fear for their lives, as supported by the studied case 
reported in the previous section. 

Table 2.3  Call-out area daily driving events 
Date Number of hard brakes Number of hard accelerations 

Saturday, June 20, 2020 17 30 

Sunday, June 21, 2020 11 19 

Monday, June 22, 2020 8 39 

Tuesday, June 23, 2020 7 28 

Wednesday, June 24, 2020 10 27 

Thursday, June 25, 2020 7 21 

Friday, June 26, 2020 9 14 

Saturday, June 27, 2020 7 18 

Sunday, June 28, 2020 24 41 

Monday, June 29, 2020 3 10 

Tuesday, June 30, 2020 5 15 

 
The data for the three towns in Colorado were analyzed, including the Grand Lake area consisting of 
neighborhoods along U.S. Highway 34 (MM 5 to 17) and the Granby area consisting of neighborhoods 
along U.S. Highway 40 (MM 207 to 216), U.S. Highway 34 (MM 0 to 3), and State Highway 125 (MM 0 
to 3). The Estes Park area consisted of neighborhoods along U.S. Highway 34 (mile marker 54 to 70), 
U.S. Highway 36 (MM 1 to 7) and State Highway 7 (MM 0 to 7).  

Starting with the evacuation of Grand Lake, it was observed that the majority of evacuation day driving 
events occurred on U.S. Highway 34 with traffic traveling south toward Granby, as reported in the 
previous section and illustrated in Figure 2.2(a). The increasing occurrence of HA events for vehicles 
traveling south in particular demonstrates the urgency of evacuees to leave the affected area. Secondly, 
since both lanes of U.S. Highway 34 were used to reduce congestion during the evacuation, a high 
increase in HB events was not observed, as detailed in Figure 2.2(b). Another reason for the lack of 
significant increase in driving events during evacuation might be that the town received fewer visitors 
because the west side of Rocky Mountain National Park toward Grand Lake was closed for visitors on the 
evacuation day. 
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Figure 2.2  Grand Lake, CO, USA (a) driving events map, (b) driving events data 

In Granby, we observed an increase in driving events on October 21 and 22, particularly HA events as 
depicted in Figure 2.3(b). One likely reason for the increase in such events was the rushed arrival of 
evacuees from Grand Lake on October 21 to shelter in Granby, as explained earlier, and later all residents 
of Granby and Grand Lake evacuated the town using a southbound route on October 22, which led to 
congestion on the exiting route. Figure 2.3(a) gives further evidence that all driving events within the 
town’s proximity were reported either in the center of the town or in the traffic moving south on U.S. 
Highway 40 away from the fire-impacted paths to the north (State Highway 125 and U.S. Highway 34).  
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The data analysis for Estes Park showed the formation of clusters of HA and HB events on all major exit 
routes, particularly U.S. Highways 34 and 36 and State Highway 7, during the evacuation period, as 
depicted in Figure 2.4(a). This suggests that congestion and stop-and-go traffic situations were observed 
at traffic intersections and junctions, as reported in the previous section. Secondly, the number of driving 
events reported from the study period October 20-22, 2020, as detailed in Figure 2.4(b), suggests that the 
town received fewer visitors due to the closure of Rocky Mountain National Park in this period, as 
previously reported in the literature. 
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Finally, the data comparison for the three Colorado towns showed the least number of driving events for 
many days following the evacuation day in the study period, demonstrating the state of evacuated towns 
as explained previously.  
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2.5 Evaluation of Traffic Operation Conditions: A Case Study of Knolls 
Fire 2020, Utah  

The fire event selected for evaluation was the 2020 Knolls Fire that occurred in Saratoga Springs, Utah, 
on June 28, 2020. The fire erupted between 2:00 p.m. and 2:30 p.m. east of Lake Mountain and south of 
Saratoga Springs and spread quickly toward the city driven by 60 mph gusting winds [105]. Saratoga 
Springs is one of the fastest-growing cities in Utah, with a population density of around 1,625 people/sq. 
mi. [106]. The city is surrounded by Utah Lake on the eastern border and Lake Mountain on the western 
border with State Route 68 (SR-68), also called “Redwood Road,” serving as the main exit corridor for 
the city. Following the fire’s ignition, mandatory evacuation orders were issued for more than 3,100 
homes or 13,000 residents, i.e., almost one-third of the population of the city [105], [107], [108]. The 
evacuation began at 2:45 p.m., initially in the southern neighborhoods of the city, and residents were 
forced to evacuate their homes with very short notice amid high winds, smoke, and dust. Later in the 
afternoon, all residents who lived south of Grandview Boulevard on the west side of Redwood Road were 
asked to evacuate their homes because of the rapid spread of the fire, as seen in Figure 2.5 [107], [109].  

 

Figure 2.5  Knolls Fire 2020 evacuation area [32] 

Emergency responders used Redwood Road to redirect the evacuation traffic northbound (NB) toward 
Westlake High School, which served as a shelter area for the affected evacuees. Additionally, due to 
downed powerlines near the fire perimeter, the road was closed for southbound traffic [111]. The 
evacuation process created heavy traffic congestion and vehicular queues on NB SR-68, especially in the 
evening period, as detailed in Table 2.1, which contains operator response notes on the incident obtained 
from the Utah Department of Transportation (UDOT). 
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2.5.1 Data Collection and Analysis  

In this study, Wejo’s vehicle trajectory data were collected for 10 days from June 20-29, 2020, to evaluate 
the travel time variation between evacuation and non-evacuation time frames for the selected study area. 
The definition of key attributes of the dataset is provided in Table 2.4. 

Table 2.4  Wejo CV data attributes 
S No.  Data 

attributes 
Definitions 

1  Data-point ID Records’ a unique identifier for an individual captured data-
point every 3 seconds. 

2  Journey ID Records’ a unique identifier for an individual vehicle’s 
movement through an ignition of an event. 

3  Timestamp Records the time and date of each data-point along with location 
time zone offset. 

4  Heading Records the heading of each data-point with 0 = North moving 
clockwise to 359°. 

5  Speed Records the speed of vehicle at each data-point. 

6  Latitude Provides the north-south positioning of the vehicle on the 
Earth’s surface. 

7  Longitude Provides the east-west positioning of the vehicle on the Earth’s 
surface. 

 

2.5.2 Temporal Coverage Assessment 

In this study, the hourly average travel time for all shorter segments in the 10-day study period was 
calculated based on the number of Journey IDs available for the one-hour slots. It was considered that to 
accurately estimate travel time for each shorter segment, enough Journey IDs for the one-hour slots must 
be obtained. The data’s temporal coverage was assessed to calculate the percentage of the uncovered one-
hour slots for 24 hours of the 10-day study period. It is assumed that a one-hour slot with an average zero 
number of Journey IDs for the entire road segment is considered as an uncovered one-hour slot, as 
assumed in an earlier study [100]. Furthermore, several minimum Journey ID threshold values were also 
set to tighten the criteria for calculating the percentage of the uncovered one-hour slots. 
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2.5.3 Traffic Signal Performance Metrics 

In April 2012, UDOT began implementing an automated traffic signal performance measures (ATSPM) 
program statewide on signalized intersections in collaboration with Purdue University, the Federal 
Highway Administration (FHWA), and the Indiana Department of Transportation (INDOT). The ATSPM 
program installed on signalized intersections contains historical and real-time information on various 
traffic signal performance metrics, such as approach volume, turning movement counts, and Purdue 
coordination diagrams, which can be used to evaluate the quality of traffic progression along corridors 
and identify maintenance issues that affect traffic flow on signalized intersections. This information is 
collected every 10 to 15 minutes with high-resolution traffic signal controllers as well as detector data 
associated with each equipped intersection. The system is installed at most of Utah’s signalized 
intersections, and historical performance metrics for signalized intersections are accessible for public use 
via the UDOT ATSPM website.  

Therefore, this system, installed at signalized intersections along the selected section of SR-68, provides 
an opportunity to gather historical performance metrics for the defined time frame in the study area. 
These performance metrics can be fed into traffic simulation platforms for historical traffic modeling. The 
calibrated model can then generate travel time estimates of the study area, which can be compared with 
CV data travel times. In this context, the PTV VISSIM microsimulation platform was adopted to develop 
a model of the selected study region, which is detailed in the following section. 

2.6 Network Simulation in VISSIM 

The study area for travel time calculation consisted of five miles of the NB SR-68 roadway between mile 
markers (MM) 25-30 to analyze the impact that the Knolls Fire had on SR-68 traffic conditions. This 
section of SR-68 consisted of several connecting roads and five traffic signals, allowing vehicular traffic 
to enter and exit the affected neighborhoods. The entire city dataset containing more than 11 million data-
points for the studied time frame was segregated to include only data-points from the studied section of 
SR-68, and the heading attribute of each data-point was used to eliminate the traffic heading south. 

  



3. MICROSIMULATION MODEL VALIDATION FOR WILDFIRE 
EMERGENCY EVACUATION  

3.1 PTV VISSIM Modeling 

For this study, historical imagery of the road network was obtained from Google Earth, and a VISSIM 
model that consisted of three miles of SR-68 between MM 27-30 was created. This also contained five 
traffic signals and several roads interconnecting the selected section of the state highway. The historical 
performance metrics at the five signalized traffic intersections were obtained from the UDOT ATSPM 
website for a two-day traffic period, i.e., June 21-22, 2020, because the data for the evacuation day event 
were not available on the system, possibly due to communication loss or power outage at the selected 
intersections, as confirmed by UDOT. The collected data consisted of approach volume, turning 
movement counts, and Purdue coordination diagrams, which were used to calibrate the model parameters 
such as traffic flow and signal phasing. The speed limits on the study corridor were 50-55 mph over the 
three-mile section, so the VISSIM input volumes were assigned a speed distribution based on the posted 
speed limit. In addition, the traffic composition was considered based on vehicle class data obtained from 
UDOT Performance Measurement System (PeMS). 

3.2 Similarity Assessment Measures  

To assess the similarity of travel time calculated using a CV dataset and VISSIM modeling for the two-
day assessment period, the hourly average travel times of the shorter segments obtained from the two 
datasets were compared by calculating the correlation coefficients, RMSE and MAPE, to quantify their 
similarities and differences. The following Equations (1) to (3) were used to calculate these measures 
based on the two datasets with the same sample size as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  ∑𝑛𝑛𝑡𝑡=1(𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)
�∑𝑛𝑛𝑡𝑡=1(𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)

Equation (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
�𝑛𝑛

𝑡𝑡=1(𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑛𝑛
    Equation (2) 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 =  1
𝑛𝑛
�

𝑛𝑛

𝑡𝑡=1
�𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖

𝑥𝑥𝑖𝑖
� Equation (3)

where, x and y represent two sample groups. Each of them contains n samples, xi and yi represent the t-th 
sample in each group, and x� and y� represent the mean values of these two groups. 
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3.3 Wejo Travel Time Calculation Results 

This section presents the hourly average travel time for the five-mile segment over the 10-day study 
period for the hours NB SR-68 was impacted by the Knolls Fire 2020, as illustrated in Figure 3.1. The 
comparative analysis showed that the non-evacuation days observed consistent travel time, while a 
significant increase in the travel time values was observed on the evacuation day. 

 

 

 
 

 
  

Figure 3.1  CV travel time calculation results before, during, and after the evacuation period 

The highest traffic delays were seen during evening peak hours, which is further evident by the 
observation of slow-moving traffic between MM 26-30 after 6:00, as depicted by the speed profile 
illustrated in Figure 3.2. These traffic operation conditions were consistent with the operator response 
notes provided by UDOT on the incident, showing high traffic delays on the four-mile section of NB SR-
68. This indicates that the evacuees were forced to spend a considerable amount of time stuck in traffic as 
their exit options were limited, putting their lives in danger. 

 

Figure 3.2  NB SR-68 MM 26-30 speed profile heatmap June 20-29, 2020 (6 PM - 7 PM) 
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3.4 Temporal Coverage Assessment 

Considering the criterion explained earlier, a high temporal coverage rate of 90.00% was observed in the 
base case scenario, where only 24 out of 240 slots were marked as CV-uncovered, as detailed in Figure 
3.3. These uncovered slots mostly occurred during low-volume early midnight hours. Additionally, the 
threshold for determining the minimum number of Journey IDs to define CV uncovered slots was 
increased from zero to three with an interval of one, considering that more trips can result in more 
accurate travel time results. Here, we observed a noticeable decrease in CV-covered slots with the 
increase in the minimum threshold values, i.e., 81.25% (threshold = 1), 72.50% (threshold = 2), and 
67.50% (threshold = 3). Given the low penetration rate of Wejo CV data in 2020, this evaluation showed 
roughly 67% to 90% of the one-hour slots with enough Wejo samples to estimate travel times in the 
studied region. In addition, the test results showed a significant increase in CV volume on June 28, 2020, 
during the peak evacuation time frame when compared with the same day the week before. 

 

  

Figure 3.3  CV data temporal coverage June 20-29, 2020 
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3.5 Similarity Assessment 

This test reports the hourly average travel time of CV and VISSIM for the selected 24-hour evaluation 
period of June 21 and 22, 2020. Figures 3.4(a) and (b) show that the CV and VISSIM travel times appear 
to be closer in estimating hourly average travel times for most hours of the day. However, considering that 
the low-volume midnight hours had the most CV uncovered slots, as observed in the temporal coverage 
analysis, the dataset lacked the needed sample size to estimate travel times for these hours. 

                         
 

 

 
  

 

                        

(a)

(b)
Figure 3.4  Travel time results using CV and VISSIM modeling (a) June 21, 2020, (b) June 22, 2020 
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To better assess the statistical relationship between the travel times of the two datasets, the similarity 
assessment measures were calculated for the two-day period defined in the earlier section. Table 3.1 
shows that a high correlation was observed between the travel time calculated using CV and VISSIM 
modeling at the base calculation threshold, which increased to a maximum of 0.99 for the weekend day 
and 0.97 for the weekday when tightening the calculation criteria. The RMSE and MAPE were also 
estimated to be relatively low at the base calculation threshold for both days, showing a strong 
relationship between the two calculated travel times, which further improved with the increase in 
minimum threshold values. This validates the earlier assumption that more trips result in more accurate 
travel time estimation results. Hence, the CV data were determined to be a valuable data source that could 
generate travel time estimates comparable to those of the VISSIM results that simulated historical 
ATSPM data. 
 

 

  

 

 

 

 

 

 

 

 

 

Table 3.1  CV data similarity assessment June 21-22, 2020 
Calculation Threshold 1 2 3 4 

Sunday, June 21, 2020 

Correlation Coefficient 0.97 0.98 0.99 0.99 

RMSE (in seconds) 9.85 8.75 7.95 7.54 

MAPE (%) 9.63 8.61 7.67 7.08 

Monday, June 22, 2020 

Correlation Coefficient 0.89 0.94 0.96 0.97 

RMSE (seconds) 18.95 17.51 16.44 16.40 

MAPE (%) 10.25 9.15 7.93 7.80 
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4. FORECASTING FUTURE EVACUATION NEEDS AND MAKING 
RECOMMENDATIONS 

Automation advancements in the vehicle industry are a continuous process that delivers several benefits, 
such as reduced driver’s fatigue, improved road safety, greater fuel efficiency, and smart parking options. 
Autonomous vehicles (AVs) are also known as self-driving cars that require little driver’s assistance [1]. 
It is important to understand the difference among the terms AV, “connected vehicle (CV),” and 
“connected autonomous vehicle (CAV).” Atkins provided brief definitions for AV as “a car that is 
capable of fulfilling the operational functions of a traditional car (e.g., driving, lane-change, parking, etc.) 
without the aid of a human operator,” and CV as “a car that is equipped with a technology enabling it to 
connect and communicate with other devices within the car, and also to other surrounding cars and 
external networks (e.g., internet, navigation, environment data, etc.)” [2]. Thus, a CAV is supposed to be 
a vehicle that can fulfill the operational functions of a traditional vehicle by itself and can communicate 
with nearby vehicles and infrastructures for safer driving. 

4.1 Arrival of CAVs and People’s Attitude  

The advent of AVs will be one of the most influential changes that the transportation sector has ever 
experienced. Depending on the level of automation, these vehicles can control some of the entire driving 
operation such that, in a fully automated vehicle, there is no need for driver intervention and the vehicle 
can drive itself [33], [34]. It is expected that the highest level of automation will be deployed around 2030 
[34]. In a study by Litman, 2045 has been suggested as the year when 50% of new vehicle sales and 40% 
of vehicle travel could be done by AVs, and fleet penetration has been estimated to be up to 60% by 2060 
[35].  

The users’ perception of AVs is one of the contributing factors to the adoption and acceptance of AVs as 
new technology [36], [37]. In this regard, the behavioral intention of users, which stems from their 
attitude, plays a key role in the use of this newly introduced technology. The attitude toward a concept 
represents its mental assessment and comprises three elements: cognition, affect, and conation elements 
[38]. The cognition variables include different factors such as perceived usefulness, ease of use, risk, and 
trust, which are also known as psychological factors. The affect element refers to whether or not a person 
likes a concept, and the conative element represents a person’s intention in the context, such as the 
intention of riding in an AV [39]. Different studies usually consider various measures to define each of 
the attitudinal variables. For the AVs, there are several measures for perceived usefulness or benefits, 
perceived risks or concerns, and for trust. 

4.2 Research Gap: Reviewing Public Perceptions of CAVs 

There are several shortcomings and research gaps in the study of attitudes toward AVs. First, a majority 
of previous research has been conducted in large U.S. states and areas, such as California [40-42] and 
Austin, TX [43], [44], or in other countries like Korea [37], Australia [45], Austria [46], Ireland [47], and 
China [41]. These studies often relied on survey data. 

One significant research gap pertains to smaller U.S. metropolitan areas with substantial populations of 
college and university students and employees. These areas have received relatively little attention in past 
research. These smaller metropolitan regions have unique community characteristics, including less 
traffic congestion, shorter travel times, and fewer modes of transportation due to their smaller size. 
Furthermore, their travel patterns are influenced by the presence of colleges and universities, which can 
significantly affect transportation dynamics at different times of the year.  
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This study aimed to assess the influence of socioeconomic factors on the perceived usefulness, perceived 
risk, and the acceptance of AVs as a solution to enhance transportation safety during harsh winter 
conditions. To achieve this, a multivariate probit model system was employed to concurrently analyze 
these three perceptual dimensions among respondents, the majority of whom comprised college students 
and employees, making up 98% of the sample. 

4.3 The Attitudes Toward Autonomous Vehicles in a Medium-Sized 
Metropolitan Area with Cold Winters  

4.3.1 Fargo-Moorhead Study Area 

The study focused on the population of college students and employees in Fargo-Moorhead, a medium-
sized U.S. metropolitan area characterized by prolonged severe winters. The adverse weather conditions 
prevalent in this region could pose a significant barrier and raise concerns regarding the performance of 
AVs in such conditions. Consequently, this study sheds light on how these factors influence people’s 
willingness to use or invest in AVs in the future. 

4.3.2  Segmentation by Age and Student Status:  

The research delved deeper into the behavior of respondents by dividing them into two age groups and 
distinguishing between students and non-students. This segmentation provided valuable insights into how 
different demographic groups perceive AVs. 

4.3.3  Realistic Evaluation of Variable Contributions 

The study offered a more realistic assessment of the variables contributing to the acceptance of AVs to 
enhance winter transportation safety. This is achieved through marginal effects (ME), revealing the 
impact of these variables while accounting for respondents’ recognition of the benefits and risks 
associated with AVs. 

4.3.4  Findings  

The study’s results provide insights into the connection between explanatory variables and attitudinal 
factors. This information can be of significant value to policymakers, aiding in understanding how 
students, faculty, and staff in medium-sized college towns with similar environmental conditions perceive 
the usefulness and risks of AVs. The findings suggest that certain factors, such as gender, exhibit 
consistent patterns in relation to perceived benefits and risks, aligning with previous research conducted 
in larger metropolitan areas. However, variables like commute duration or household income levels may 
yield different outcomes, especially when examined within various age groups or among students and 
non-students. 

This research has practical applications for government agencies and urban planners, enabling them to 
make predictions specific to their communities. Additionally, it equips manufacturers and decision-
makers with insights into the factors shaping public perceptions of AVs, allowing them to tailor their 
future guidelines and plans. For instance, manufacturers and public agencies could target individuals with 
boat/RV trailers or households with children under 18, emphasizing the benefits of AVs during extremely 
cold winters to foster a positive attitude toward them. Furthermore, the study highlights disparities in 
acceptance based on race, suggesting a need for planners to address these disparities in transportation 
planning, especially in areas with a predominant enrollment of white students. 
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The findings are also relevant for parking studies in the context of AVs, particularly in regions with a 
substantial population of college students who share characteristics with those in the Fargo-Moorhead 
area. Additionally, the results can inform predictions about willingness to pay, adoption rates, and mode 
preferences related to AVs. 

4.4 Forecasting the Future Needs  

Future studies could explore attitudinal variables that differentiate between privately owned and shared 
AVs. Moreover, given the limitations of the data collected in this study, there is room for future research 
to target more diverse populations in similar metropolitan areas. Altering the conditions of the ME 
function for various scenarios of usefulness and risk perception could reveal how explanatory variables 
influence the willingness to invest in or use AVs with different levels of optimism or pessimism. 
Furthermore, future research may introduce additional attitudinal parameters to further enhance the 
modeling process. 

4.4.1 CAV’s Role in Emergency Evacuations  

Moreover, the study’s focus on extreme weather conditions, such as harsh winters, is highly relevant to 
evacuation scenarios in regions prone to weather-related disasters. AVs equipped to navigate challenging 
weather conditions can be instrumental in ensuring that evacuations proceed smoothly, even in adverse 
environments. Understanding the public’s willingness to use AVs under these conditions can help 
authorities allocate resources effectively. 

In summary, the study’s insights can inform the incorporation of autonomous vehicles into evacuation 
strategies by tailoring messaging, resource allocation, and service provision to align with public attitudes 
and preferences. This can lead to safer, more efficient, and more organized evacuations, ultimately saving 
lives and reducing the impact of disasters. 
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5. CURRICULA AND EDUCATIONAL DEVELOPMENT

This project had involved and trained 13 graduate students, including three master’s students (Hafiz 
Usman Ahmed, Salman Ahmad, Elizabeth Arthur) and 10 Ph.D. students (Asad Ali, Babak Mirzazadeh, 
Xinyi Yang, Mingwei Guo, Yihao Ren, Gul Badin, Awuku Bright, Tofatun Jannat, Leonard Chia, and 
Yasir Mahmood). Four graduate students are from underrepresented groups. Among the 13 graduate 
students, three master’s students (Hafiz Usman Ahmed, Salman Ahmad, Elizabeth Arthur) and two 
Ph.D. students (Babak Mirzazadeh and Leonard Chia) graduated with theses and dissertations 
acknowledging the support. Additionally, this project also provided training to three Fargo and West 
Fargo high school teachers as summer research teacher programs: Martha Nelson from North High, Jill 
Wold from West Fargo High, and Joshua Rogers from Davis High. Based on this project, the teachers 
developed high school course modules, which will be taught to an average of 20 high school students 
annually.

In addition, this project also partially supported various outreach activities for underrepresented 
students, such as female students, minority refugee minors, and Native American students. Specifically, 
there are four different outreach activities: 

1) In October 2021 and 2022, this project partially supported a BrainSTEM Workshop, which was
offered to more than 60 middle school students.

2) From December 2021 to January 2022, this project also partially supported the CORE Outreach
Program, which collaborates with the YMCA of Cass and Clay Counties to promote engineering
to young minority generations. It offered an eight-day workshop series to more than 100
underrepresented elementary school students, including low-income families, refugees, and
young girls.

3) From October to December 2022, this project also partially supported the NATURE SUNDAY
Academy by offering a one-day Sunday camp for Native American high school students
at the five different tribal sites (Turtle Mountain Community College, Sitting Bull
College, Cankdeska Cikana Community College, Nueta Hidatsa Sahnish College, and United
Tribes Technical College) with an average enrollment of 20 students at each tribal site (total ~100
students each year) with fully developed new interactive and hands-on lesson plans.
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6. SUMMARY AND FUTURE RESEARCH 

Connected Vehicle Data for Wildfire Evacuations 

The study addressed the critical need for accurate evacuation time estimates during historical wildfire 
events by leveraging connected vehicle (CV) data. It revealed a significant increase in traffic delays on 
evacuation routes during wildfire events, particularly during evening hours. This real-world data 
supported observations from the relevant state department of transportation, corroborating operational 
challenges during evacuations. The study also highlighted the significance of temporal coverage 
assessment and similarity assessment tests for validating travel time estimates and dataset usability. 
Ultimately, the findings demonstrated the suitability of CV datasets for estimating traffic delays during 
wildfire evacuations, offering valuable insights for emergency responders and planners despite 
acknowledging the need for further research to generalize the findings to different scenarios. 

Driving Behavior in Wildfire Evacuations 

The study also offered a unique perspective on human driving behavior during wildfire evacuations, 
drawing insights from CV data across different regions. It revealed the dynamic nature of driving 
behavior patterns as individuals encountered changing driving conditions during wildfire events. This was 
evidenced through shifts in hard braking (HB) and hard acceleration (HA) patterns. Moreover, the study 
underscored the pivotal role of evacuation warning time in shaping aggressive driving behavior. Short-
notice evacuations led to increased occurrences of HA events, emphasizing the urgency of evacuees to 
leave fire-impacted areas. The research also identified traffic intersections and junctions as critical 
congestion points during evacuations, with clusters of HB events indicating vehicular queues and traffic 
delays. The detailed analysis differentiated between rural and urban evacuation patterns, which is 
essential for tailored planning strategies in diverse environments. 

Autonomous Vehicles in Winter Conditions 

In the exploration of autonomous vehicles (AVs) within the challenging context of inclement winter 
weather, this study uncovered the intricate web of influences on public perception. Factors like 
demographics and socioeconomic parameters play a pivotal role in shaping attitudes toward AVs. Gender 
patterns align with previous studies in larger metropolitan areas, but variables such as travel time to work 
and household income level yield distinct results, particularly when analyzed within specific age groups 
or student and non-student categories. These insights have far-reaching implications, guiding strategies 
for policymakers and AV manufacturers to enhance acceptance and adoption. Understanding that certain 
demographics find AVs more beneficial in extremely cold winters can inform marketing and promotion 
efforts. Additionally, the study highlights the importance of recognizing the unique attitudes of students 
and non-students, particularly in medium-sized U.S. college towns with extended periods of frigid 
winters. 

In summary, these three studies collectively enhance our understanding of transportation safety, 
evacuation preparedness, and human behavior during adverse conditions. They provide valuable guidance 
for policymakers, manufacturers, and emergency responders, emphasizing the importance of considering 
demographic nuances, leveraging real-world data, and understanding the psychology of drivers during 
evacuations.  
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Future Research Directions 

In the pursuit of advancing our knowledge in transportation and emergency evacuation, future research 
should prominently feature the exploration of diverse scenarios. The value of running various scenarios 
cannot be overstated. These scenarios should encompass a wide range of environmental conditions, from 
extreme weather and natural disasters to differing climates and regions. By examining diverse scenarios, 
researchers can uncover how these unique circumstances influence human behavior, vehicle performance, 
and the effectiveness of AVs and other transportation systems. 

Furthermore, the focus of future research should extend beyond wildfire evacuations to other critical 
events such as hurricanes, floods, pandemics, and more. Each of these scenarios poses distinct challenges 
in terms of traffic management, public safety, and technology application. Understanding how 
transportation systems function and how people respond in these various situations is essential for 
developing adaptable and resilient emergency plans. 
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