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ABSTRACT 

Precipitation-induced landslides pose risks to humans through property damage, disruption of 
infrastructure, injury, and loss of life. These risks may be altered by climate change, as changes in 
vegetation cover and associated root cohesion might lead to a change in areas susceptible to landslides. 
We investigate this possibility through Monte Carlo simulations of slope stability in the Colorado Front 
Range, where climate change is expected to significantly change vegetation cover across the landscape. 
Climate change simulations predict an overall increase in the areas susceptible to landslides and a shift to 
more instability on north-facing slopes. Our study suggests that vegetation changes due to climate change 
could result in major shifts in the people and infrastructure susceptible to landslides. 

We also apply a landslide runout model to a large spatial scale to determine whether simplified 
assumptions using easily accessible data can provide realistic estimates of landslide stopping locations. 
We consider stopping rules using slope, curvature, and travel distance and find that a combination of a 
critical angle and a distance the landslide must maintain beneath the critical angle best predicts stopping 
locations in our study area.  
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EXECUTIVE SUMMARY 

Precipitation-induced landslides pose risks to humans through property damage, disruption of 
infrastructure, injury, and loss of life. Due to the spatial and temporal heterogeneity of soil moisture and 
landscape characteristics that impact slope stability and potential impacts of climate change on landslide 
location, quantifying landslide risk to humans is difficult as uncertainties are not represented in available 
datasets. Recent developments have improved our ability to probabilistically model landslide initiation, 
thus allowing for the incorporation of spatial and temporal uncertainty in the prediction of the onset of 
hillslope failures. The ability to incorporate uncertainty in landslide models is particularly valuable for 
considering how climate change, which could impact vegetation cover and associated root cohesion, 
might alter the vulnerability of people and infrastructure to landslides. The aim of this analysis is to 
probabilistically forecast landslide susceptibility under climate change by incorporating changes in the 
type and distribution of vegetation while accounting for uncertainties in key properties. Using Landlab, a 
Python-based toolkit for landscape modeling, we perform Monte Carlo simulations with an infinite slope 
stability model to make spatially explicit calculations of the probability of landslide initiation. The soil 
moisture input to the landslide model is from the Equilibrium Moisture from Topography, Vegetation, 
and Soil (EMT+VS) model, which downscales coarse-resolution soil moisture by incorporating the 
dependence of soil moisture on topographic, vegetative, and soil characteristics. We evaluate model 
sensitivity and identify that vegetation, which impacts cohesion and soil depth, has a large impact on the 
model. We evaluate model performance by simulating landslide susceptibility over a 1333 km2 area of the 
Colorado Front Range as there is a large inventory of more than 1,300 landslides from an extreme 
precipitation event in 2013. One anticipated effect of climate change in the Colorado Front Range is a 
reduction in the survivability of trees, which we incorporate through applying reductions to vegetative 
cohesion and vegetation cover. For the 2013 event, the model predicts 79.6% of the mapped landslides 
and 5.8% of the rest of the study area as being unstable. A deterministic model using mean values from 
the probability model and assuming FS ≤ 1 is unstable captures only 42% of observed landslides, 
supporting the use of the probabilistic model. The probabilities are low (P(F) < 0.2) for the majority of 
predicted failures with a concentration at higher (P(F) > 0.8) values, with the latter having higher slopes 
and lower vegetation. Among nodes with P(F) > 0, 66% occur on south facing slopes where trees are less 
abundant. After incorporating climate change, we see an increase in the areas susceptible to landslides 
and a shift to more instability on north-facing slopes. Our study suggests that vegetation changes due to 
climate change could result in major shifts in the people and infrastructure susceptible to landslides in the 
Colorado Front Range.  

In conjunction with landslide initiation, determining landslide runout is important to fully analyze 
landslide risk. Landslide runout modeling for large areas is difficult due to limited information and the 
complexity of landslides. The difficulties of physically modeling landslides on large spatial scales have 
led to the development of empirical methods based on topographic attributes. While empirical models are 
limited in that they require calibration in new areas and thus can only be applied to areas with landslide 
inventories, they provide a way to model landslide runout at large spatial scales and identify areas for 
further, potentially more physically based, analyses. We investigate whether topographic controls can be 
used to predict landslide termination. We develop a landslide runout model and apply it to a 10-m 
elevation grid. Our model routes landslides downslope with a d8 flow direction method and uses a critical 
slope, defined as a minimum slope a landslide must encounter to end, and slope persistence, defined as 
the distance the landslide must travel under the critical slope, to represent landslide stopping locations. 
We apply our model to see if it can replicate landslide runout in the Colorado Front Range due to a large 
landslide inventory from a 2013 precipitation event that induced approximately 1,300 mapped landslides. 
The calibrated model has a critical slope of 3° and a slope persistence of 20 m and predicts landslide 
distance in both the calibration and evaluation areas with a Nash-Sutcliffe (NS) value of 0.69 and 0.58, 
respectively. We compare our calibrated model to an angle of reach approach, an approach that has been 
applied previously for landslide runout mapping that determines the slope between the start and end of a 
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landslide, and determine that the best NS value of 0.14 occurs at an angle of 20°. Our results show that 
within our study area, topographic controls provide plausible initial estimates of runout endpoints and an 
improvement over similarly simplistic methods such as the angle of reach. The potential of using critical 
slope combined with slope persistence to capture topographic controls to predict runout endpoints is a 
promising opportunity for landslide hazard mapping at large spatial extents.   
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1. INTRODUCTION AND BACKGROUND 

1.1  Introduction 

Landslides pose risk through economic losses to infrastructure, damage to the environment, and loss of 
human life. Quantifying risk considers where landslides will occur and where they will travel once 
initiated to determine what people, infrastructure, and downslope environments are susceptible.  

Modeling landslide initiation at large extents requires accurate spatial data for all input variables, 
including topography, hydrology, and vegetation. While some input data, such as elevation, are readily 
available for most parts of the world, other data may be unavailable, of low resolution, or deemed highly 
uncertain. Soil moisture, due to its dependence on elevation, vegetation, soil type, and soil texture, is one 
variable that is particularly difficult to quantity for precipitation-induced landslides. Soil moisture is often 
coarse in resolution, requiring downscaling for accurate values if applied to regional models. Peng et al. 
(2016) discuss approaches to soil moisture downscaling, which includes relating land surface temperature 
with vegetation and relating vegetative dryness and vegetation temperature controls. Another variable that 
is difficult to quantify at large spatial extents is soil texture, which impacts infiltration rates and water 
holding capacity of a soil, both of which impact soil moisture and thus slope stability. Pauly et al. (2020) 
found that spatially averaged soil texture worked as well as spatially varied soil texture for soil moisture 
downscaling due to uncertainties. Grieco et al. (2018) identified that using global land use data in soil 
moisture downscaling did not improve performance due to variable uncertainties and potential 
misclassifications. These studies demonstrate that while accurate soil data are necessary for soil moisture 
evaluation, and thus precipitation-induced landslide models, providing accurate soil characteristics for 
input into models applied over broad spatial extents is challenging. Deterministic predictions for landslide 
susceptibility are particularly challenging due to these issues. A probabilistic approach can improve upon 
a deterministic approach by incorporating some of these uncertainties.  

Landslide runout can be considered in a variety of ways. While all approaches are aimed at quantifying 
risk, modeling approaches might consider rules-based, topographic control approaches (Milledge et al., 
2019), hazard mapping based on representing the frictional and momentum losses of landslides as they 
travel (Gibson and Sanchez, 2020; Horton et al., 2013; Quan Luna et al., 2016), and empirical evaluations 
of landslide inventories (Clerici et al., 2010). Similar to landslide initiation, many modeling approaches 
have limitations, particularly when applied at large spatial extents. One setback is that the data required 
for some modeling approaches, such as relating distance traveled to landslide volume, are not readily 
available in all landslide inventories, leading to the inability to apply models that use that approach over 
broad extents. Another limitation is that physically characterizing mass movements, particularly debris 
flows, is a challenge due to the complexity and unsteady spatial extents and temporal aspects (Iverson, 
1997), due in part to solid-fluid interactions leading to non-Newtonian behavior (De Blasio, 2011). This 
leads to challenges in applying runout models to large spatial extents if the physical components of the 
landslides are fully represented. We aim to develop a simple landslide runout model that evaluates 
topographic controls to determine whether they represent landslide end points, which could allow for 
easier and more rapid applications of landslide runout to large spatial extents.  

A final component of modeling precipitation-induced landslide risk across large spatial extents is 
considering how to incorporate the impacts of climate change. Understanding the difference between 
current and future landslide initiation locations is important to consider but is challenging to quantify. 
Predicting the impacts of climate change on precipitation-induced landslides requires considering both the 
changes to hydrologic factors and changes to vegetation as they both can impact landslide susceptibility 
(Bernardie et al., 2021). Climate models themselves have built-in assumptions and limitations, including 
often having large spatial extents and thus having similar downscaling problems as soil moisture. In 
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considering the hydrologic impacts of climate change, downscaling is often needed as the duration and 
intensity of rainfall can differ between regional-level models and local weather (Mahoney et al., 2013). 
Hydrologic changes are most often incorporated into landslide models through changes to soil moisture. 
In considering changes to vegetation, the compounding considerations of changes to vegetation patterns 
due to temperature, precipitation, and competition is difficult to quantify (Cannone et al., 2007). The 
impacts of climate change on vegetation are less often incorporated into landslide models, though changes 
in forest makeup associated with climate change have been considered previously and do impact slope 
stability (Bernardie et al., 2021). We aim to assess the changes to the risk of landslide initiation due to the 
impacts of climate change on vegetation in the Colorado Front Range by applying a probability model.  

1.2  Case Study 

In September 2013, a storm stalled over the Front Range in Colorado. The corresponding rainfall, which 
lasted almost a week, led to flooding and landslides that resulted in several deaths, thousands of houses 
being damaged, and millions of dollars in damage to infrastructure. More than 1,300 landslides were 
initiated by the precipitation event, some traveling as far as 5 km (Coe et al., 2014). The storm was 
unprecedented in the Front Range due to both the large spatial extent and the duration it remained 
stationary (Coe et al., 2014). The impacts of the event provide an opportunity to consider regional impacts 
of precipitation events on landslide susceptibility in the Front Range. The mapped landslides from the 
event are used to assess model performance for both models applied in this study.  

1.3  Structure of This Report 

This report is divided into two analyses. The second chapter considers a probabilistic landslide initiation 
model, which includes consideration of soil moisture downscaling, sensitivity of landslide initiation to 
landslide model inputs, and a comparison of methods to analyze a probabilistic model. These analyses 
guide an evaluation of the impacts of climate change on landslide susceptibility in the Front Range. The 
third chapter presents the development, calibration, and implementation of a landslide runout model. A 
brief synthesis is provided in the conclusion.  
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2.  LANDSLIDE SUSCEPTIBILITY IN CURRENT AND FUTURE 
CLIMATES IN THE COLORADO FRONT RANGE  

2.1  Introduction 

Landslides pose a risk to society in the form of property and infrastructure damage, personal injury, and 
loss of life. Petley (2012) estimated that 2,600 landslides resulted in more than 32,000 deaths worldwide 
between 2004 and 2010. With climate change influencing multiple variables that impact slope stability, 
the distribution of predicted landslide locations is expected to change (Alvioli et al., 2018; Bernardie et 
al., 2021; Kim et al., 2015) thus impacting the areas, infrastructure, and people that are susceptible to 
them. Haque et al. (2019) evaluated landslides that resulted in loss of life and determined that between 
1995 and 2014, there was an increasing trend of loss of life due to landslides and increased landslides 
from extreme precipitation events. There is a global trend of increasing high-intensity precipitation events 
(Wuebbles et al., 2017), and this shift toward extreme precipitation is projected to increase in frequency 
under climate scenarios (Pendergrass and Knutti, 2018), thus increasing the potential for precipitation-
induced landslides. This means that determining which areas of the landscape are susceptible to landslides 
under current and projected climate scenarios is increasingly important to minimize risk to people and 
infrastructure.  

Quantifying landslide risk requires considerations of the spatial and temporal aspects affecting landslide 
susceptibility. Landslide risk can be calculated from multiplying frequency, which is how often a 
landslide will occur, with vulnerability, which is the damage to infrastructure and people once they occur 
(van Westen et al., 2006; Salvati et al., 2010). Landslide initiation models can also be combined with 
landslide runout to distinguish the full area susceptible to landslides, leading to the ability to fully capture 
and represent landslide risk.  

Factors that impact slope stability include topography, soil texture, and vegetation. Accurate topographic 
data are readily available for most areas. Soil texture, which can impact soil moisture and pore water 
pressures that lead to slope failures, can be difficult to quantify. Pauly et al. (2020) found similar model 
performance for a soil moisture downscaling model applying spatially averaged soil texture as applying 
spatially varied texture due to uncertainties. Vegetation includes both vegetation cover and type of 
vegetation. Vegetation indirectly impacts slope stability by influencing soil moisture, thus affecting the 
hydrologic component of landslides, and directly impacts slope stability through vegetative cohesion 
forces. Grieco et al. (2018) found that due to uncertainties and misclassifications in global land use data, 
model performance for a soil moisture downscaling model did not improve by incorporating land use. 
These studies demonstrate the difficulty in representing precipitation-induced landslides due to the 
uncertainties in available datasets. Applying deterministic landslide models can be challenging due to not 
representing the spatial uncertainties in vegetation and soil characteristics. Probabilistic approaches can 
improve upon a deterministic approach by incorporating and representing some of these uncertainties.  

Particularly for risk analyses for regional applications, climate change is important to consider in 
landslide modeling to assess how landslide susceptibility and location might be impacted. The impacts of 
climate change on precipitation-induced landslides are primarily considered in one of two ways: through 
assessing changes to hydrologic drivers that could lead to landslides (Alvioli et al., 2018; Bernardie et al., 
2021; Rosso et al., 2006; Mahoney et al., 2013) and through assessing the impacts of changes in 
vegetation or land use on landslide susceptibility (Bernardie et al., 2021; Gariano et al., 2018; Vanacker et 
al., 2003). Bernardie et al. (2021) evaluated the impacts of climate change on landslide susceptibility in 
the French Pyrenees by considering both hydrological and vegetative factors, incorporating the latter by 
adjusting cohesion values based on modeled changes in land use. They found that slope stability was 
impacted by land use types, where areas with decreased slope stability had increased human activity and 
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thus reduced vegetation and soil water content, which increased in some areas leading to decreased slope 
stability. The incorporation of climate change is challenging due to spatial and temporal uncertainties, 
such as when and how vegetation and precipitation will change, but is vital to consider in landslide 
studies to evaluate site-specific impacts. Due to the large uncertainties in model projections, a probability 
model can better address and represent changes to the environment.  

Assessment of the impacts of climate change on vegetation must consider a range of variables, including 
changes to temperature, precipitation, and general vegetation dynamics (Cannone et al., 2007). The 
literature generally shows that vegetation is highly susceptible to climate change, though whether the 
population of a plant species increases or decreases is dependent on several other factors (Brice et al., 
2020; Buma and Wessman, 2013; Wang et al., 2018). Stoddard et al. (2015) evaluated the impacts of 
climate change on forest management practices for a mixed-conifer forest in the San Juan Mountains in 
southwestern Colorado. They performed field analyses before treatment and five years after treatment. 
The field data were used as growth rates for a forest vegetation dynamics model used to evaluate the 
impacts of climate change on tree survivability. Their model predicted a significant reduction in tree 
populations under future climate scenarios, a conclusion that has been identified previously in the western 
U.S. (Tarancón et al., 2014; Charnie et al., 2016). Vegetation cohesion is dependent on species type 
(Norris et al., 2008), so a reduction in tree abundance or a shift in the distribution of plant species may 
cause changes in landslide susceptibility. 

This study aims to probabilistically model landslide susceptibility to evaluate the impacts of climate 
change on vegetation distribution and vegetation cover. A probabilistic model is particularly appropriate 
for climate change analyses as spatial and temporal uncertainties can be directly incorporated into the 
model. We model landslide probability by combining a soil moisture downscaling model and a 
probabilistic landslide initiation model, aiming to have consistent variables and assumptions between the 
two models, and applying the model to the Colorado Front Range. We evaluate the Colorado Front Range 
because it experienced an extreme precipitation event in 2013 that induced 1,300 mapped landslides, 
providing an opportunity to evaluate regional landslide susceptibility under current and potential future 
climates. We model the impacts of climate change on predicted landslide locations based on changes to 
vegetation to answer the question of what the landslide risk would be for a storm event of similar 
magnitude to the base scenario under climate scenarios. We do not consider other impacts of climate 
change, such as fires, changing precipitation patterns both spatially and temporally, and impacts of pests 
or diseases on vegetation. The goal of the application is to consider regional impacts of changes to 
vegetation and the consequent relative impacts and uncertainties of landslide initiation.  

2.2  Model Design 

2.2.1  Soil Moisture Model  

A key variable for precipitation-induced landslides is soil moisture. Accurately representing soil moisture 
for a storm event is difficult as it requires consideration of both antecedent conditions and the timing of 
rainfall and infiltration to determine when, if ever, a critical loss of slope stability occurs due to saturation 
(Wicki et al., 2020). Increased soil moisture increases pore water pressure and decreases matric suction, a 
combination that can lead to slope failure (Wicki et al., 2020). The failure mode caused by increased soil 
moisture is impacted by soil texture: finer soils are more likely to fail due to the loss of suction while 
coarser soils are more likely to fail due to positive pore water pressures (Collins and Znidarcic, 2004).  

Providing accurate soil moisture values for a landslide model applied to large spatial extents requires the 
incorporation of the impact of heterogeneity of topography and vegetation on soil moisture. Soil moisture 
data resolution is often coarse, limiting its accuracy (Wicki et al., 2020; Coleman and Niemann, 2013; 
Vereecken et al., 2008). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) is 
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a soil moisture downscaling model (Ranney et al., 2015). The model is based on the research of Coleman 
and Niemann (2013), who studied the relationship between hydrologic processes (evapotranspiration, 
lateral flow, and deep drainage) and the spatial structure of soil moisture patterns. The EMT+VS model 
requires topographic, vegetative, soil, and climate variables to determine soil moisture downscaling 
(Ranney et al., 2015). Additional analyses have considered how best to downscale multiple coarse grid 
cells (Hoehn et al., 2017) and have incorporated the dependence of soil moisture on orographic 
precipitation and potential evapotranspiration (Cowley et al., 2017). The model can represent soil 
moisture in wet and dry states, can represent temporally unstable patterns, and explicitly incorporates 
topographic dependence of soil moisture (Coleman and Niemann, 2013). The model has been applied to a 
variety of areas, including the Colorado Front Range, and produced realistic results (Ranney et al., 2015; 
Timilsina et al., 2021). The use of the EMT+VS model allows for fine-resolution soil moisture to be 
incorporated into a landslide initiation model and an increased understanding about which variables 
impact soil moisture downscaling.   

Four hydrologic processes are modeled in EMT+VS to downscale soil moisture: infiltration, deep 
drainage, lateral flows, and evapotranspiration (ET). As an abbreviated model description is provided in 
Timilsina et al. (2021) and a full model description can be found in Cowley et al. (2017), here we 
summarize only the main model equations. 

The first component is infiltration, which is calculated by considering orographic dependence of 
precipitation and interception by vegetation cover: 

 𝐹𝐹 = 𝑃𝑃� [1+𝜏𝜏(𝑍𝑍#−𝑍𝑍�#)]�1+𝜉𝜉[𝑆𝑆# cos�𝑅𝑅#−𝜐𝜐)−𝑆𝑆# cos(𝑅𝑅#−𝜐𝜐)��������������������� 
1+𝜏𝜏𝜏𝜏�𝑍𝑍#𝑆𝑆# cos(𝑅𝑅#−𝜐𝜐)����������������������− 𝑍𝑍�# 𝑆𝑆# cos(𝑅𝑅#−𝜐𝜐)������������������� �

(1 − 𝜆𝜆𝜆𝜆)       (2.1) 

where 𝐹𝐹 [mm/d] is the infiltration rate, 𝑃𝑃� [mm/d] is the spatially averaged precipitation, 𝜏𝜏 [1/m] specifies 
the elevation dependence of precipitation, 𝜉𝜉 [-] determines orientation dependence of precipitation, 𝑍𝑍# 
[m], 𝑆𝑆#, and 𝑅𝑅# are average elevation, slope, and aspect around the grid cell at the spatial scale of the 
orographic effects, 𝜐𝜐 [-] specifies the direction from which the orientation dependence is calculated, 𝜆𝜆 [-] 
specifies the efficiency of vegetation intercepting precipitation, and 𝑉𝑉 [-] is the fractional vegetation 
cover. This expression neglects surface runoff because Pauly et al. (2020) showed that incorporating 
surface runoff does not improve the accuracy of the downscaled soil moisture due to associated data 
limitations.  

The second component considers deep drainage by applying Darcy’s law under gravity drainage and 
calculating unsaturated hydraulic conductivity based on Campbell (1974):  

 𝐺𝐺 = 𝐾𝐾𝑠𝑠,𝑣𝑣 �
𝜃𝜃
𝜃𝜃𝑠𝑠
�
𝛾𝛾𝑣𝑣

           (2.2) 

where 𝐺𝐺 [mm/d] is deep drainage, 𝐾𝐾𝑠𝑠,𝑣𝑣 [mm/d] is the vertical saturated hydraulic conductivity, 𝜃𝜃𝑠𝑠 is the 
saturated water content [-], 𝜃𝜃 is the volumetric water content or soil moisture [m3/m3], and 𝛾𝛾𝑣𝑣 [-] is the 
vertical pore disconnectedness index.  

The third component, lateral flow, applies Darcy’s law assuming that the lateral hydraulic gradient is a 
function of topographic slope. The hydraulic conductivity is again calculated based on Campbell (1974) 
and soil depth is assumed to be related to topographic curvature, specifically: 

 𝐿𝐿 = 𝛿𝛿0 �
𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚−𝜅𝜅
𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑐𝑐𝑐𝑐𝐾𝐾𝑠𝑠,𝑣𝑣 �
𝜃𝜃
𝜃𝜃𝑠𝑠
�
𝛾𝛾ℎ
𝑆𝑆𝜖𝜖         (2.3) 
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where 𝐿𝐿 [mm/d] is the lateral flow, 𝛿𝛿0 [m] is the soil depth where topographic curvature is zero, 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 [-] 
is the minimum curvature where the soil is present, 𝜅𝜅 [-] is the curvature, 𝑐𝑐 [m] is the dimension of the 
digital elevation model (DEM) grid cells, 𝜄𝜄[-] is the hydraulic conductivity anisotropy, 𝛾𝛾ℎ [-] is the 
horizontal pore disconnectedness index, and 𝜖𝜖 is the function relating topographic slope with the 
horizontal hydraulic gradient.  

The final soil moisture component is evapotranspiration (ET). Based on the work of Priestley and Taylor 
(1972), the equation incorporates ET based on the fractional vegetation cover 𝑉𝑉, shading effects, and 
water uptake from soil layers below the current soil layer: 

 𝐸𝐸 = 𝐸𝐸�𝑝𝑝[1 + 𝜔𝜔(𝑍̅𝑍 − 𝑍𝑍)][𝜂𝜂𝜂𝜂 + (1 − 𝑉𝑉)𝜇𝜇] � 𝐼𝐼𝑝𝑝
1+𝛼𝛼

�𝜃𝜃
𝜃𝜃𝑠𝑠
�
βr

+ 𝛼𝛼
1+𝛼𝛼

�𝜃𝜃
𝜃𝜃𝑠𝑠
�
𝛽𝛽𝑎𝑎
�      (2.4) 

where 𝐸𝐸 [mm/d] is the ET, 𝐸𝐸�𝑝𝑝 [mm/d] is the spatially average of potential ET, 𝜔𝜔 [1/m] incorporates the 
elevation dependence into the potential ET, 𝜂𝜂 [-] is the transpiration from the modeled soil, 𝜇𝜇 [-] is the 
impact of shading within the cell, 𝛼𝛼 [-] is the Priestley Taylor coefficient minus 1, 𝐼𝐼𝑝𝑝 [-] is the potential 
solar radiation index (Dingman, 2002), 𝛽𝛽𝑟𝑟 [-] specifies limitations on the radiation component of ET due 
to moisture, and 𝛽𝛽𝑎𝑎 [-] specifies limitations on the aerodynamic component of ET due to moisture.  

The final downscaled soil moisture is calculated as a weighted average: 

 𝜃𝜃 = 𝜔𝜔𝐺𝐺𝜃𝜃𝐺𝐺+𝜔𝜔𝐿𝐿𝜃𝜃𝐿𝐿+𝜔𝜔𝑅𝑅𝜃𝜃𝑅𝑅+𝜔𝜔𝐴𝐴𝜃𝜃𝐴𝐴
𝜔𝜔𝐺𝐺+𝜔𝜔𝐿𝐿+𝜔𝜔𝑅𝑅+𝜔𝜔𝐴𝐴

        (2.5) 

where 𝜃𝜃𝐺𝐺 ,𝜃𝜃𝐿𝐿 ,𝜃𝜃𝑅𝑅 ,𝜃𝜃𝐴𝐴 are soil moisture estimates calculated assuming deep drainage, lateral flow, radiative 
ET, and aerodynamic ET dominate the water balance and 𝜔𝜔𝐺𝐺 ,𝜔𝜔𝐿𝐿 ,𝜔𝜔𝑅𝑅 ,𝜔𝜔𝐴𝐴 are the weights associated with 
each of the soil moisture estimates. The expressions for the analytical soil moisture estimates and weights 
can be found in Cowley et al. (2017). We apply a filtering method based on a shifting window approach 
to avoid unrealistic transitions between the coarse-level soil moisture data; the method and justification 
for its use is explained in Hoehn et al. (2017), who suggest it is most applicable in broader applications as 
it requires no additional variables. 

2.2.2  Infinite Slope Stability Model 

2.2.2.1 Landslide Initiation Model 

Landslide modeling approaches vary significantly, though broadly they are sorted into empirically based 
(Metternicht et al., 2005; Lee et al., 2007; Wu and Sidle, 1995) and process-based analyses (Raia et al., 
2014; Strauch et al., 2018; Vandromme et al., 2020). Empirical landslide models establish behaviors 
using landslide inventories while process-based models physically represent characteristics that lead to 
slope failures (Bernardie et al., 2021). As such, process-based models can be applied more broadly both 
spatially, e.g., in areas that do not have landslide inventories, and temporally, which allows the 
consideration of future climate scenarios (Bernardie et al., 2021). The infinite slope model, which 
compares the resisting forces to the stabilizing forces on a hillslope (Raia et al., 2014), is one process-
based approach for representing landslide susceptibility. The ease of application makes it a widely applied 
physically based approach for landslide modeling across a range of spatial scales (Baum et al., 2010; 
Borga et al., 2002; Collins and Znidarcic, 2004; Mergili et al., 2014; Montgomery and Dietrich, 1994; 
Raia et al., 2014; Strauch et al., 2018; Wu and Sidle, 1995).  

As establishing landslide risk requires considerations of the spatial and temporal aspects affecting 
landslide susceptibility, an important consideration is how to quantify uncertainties. Uncertainties can 
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arise from spatial heterogeneity, such as differences in vegetation and soil characteristics, and 
measurement limitations and errors (Strauch et al., 2018). One way to incorporate these uncertainties is to 
probabilistically model landslide initiation. Strauch et al. (2018) developed a probabilistic Monte Carlo 
model for landslide initiation using the infinite slope equation. Their model, developed in the Python-
based Landlab package (Hobley et al., 2017; Barnhart et al., 2020), is aimed at applications applied to 
regional extents. The consideration of probability allows their model to incorporate spatial uncertainty 
within the variables. A probabilistic model can also consider landslide risk more broadly as it can 
incorporate temporal uncertainty. Borga et al. (2002) discusses how landslide probability models often 
have higher rates of predicted failures across a landscape than the number of observed landslides from a 
particular landslide initiation event. These predicted landslides could represent landslide hazard potential 
through time, thus incorporating an aspect of temporal uncertainty (Borga et al., 2002).  

We apply the probabilistic Monte Carlo landslide model developed by Strauch et al. (2018), which is 
available in Landlab, a Python-based package. The model solves the infinite slope factor of safety (FS) 
equation based on the equation presented by Pack et al. (1998). The model uses a topographic grid and 
gridded input data to model slope stability, where an FS value less than 1 is unstable, FS greater than 1 is 
stable, and FS equal to one is quasi-stable. The FS equation compares stabilizing forces, which include 
internal friction and cohesion, to destabilizing forces, which include gravity and pore water pressure.  

The FS equation is modified to explicitly incorporate volumetric soil moisture and suction stress, based 
on the work of Timilsina et al. (2021). The final equation applied in the Landlab model is: 

𝐹𝐹𝐹𝐹 = 𝐶𝐶𝑣𝑣+𝐶𝐶𝑠𝑠
ℎ𝛾𝛾𝑠𝑠 sin 𝑆𝑆

+ tan𝜙𝜙 cot 𝑆𝑆 − tan𝜙𝜙 cot 𝑆𝑆 𝜌𝜌𝑤𝑤
𝜌𝜌𝑠𝑠
�𝜃𝜃−𝜃𝜃𝑟𝑟
𝜃𝜃𝑠𝑠−𝜃𝜃𝑟𝑟

� �ψs  �𝜃𝜃𝑠𝑠
𝜃𝜃
�
𝑏𝑏
� � 1

ℎ cos 𝑆𝑆
�      (2.6) 

where 𝐹𝐹𝐹𝐹 [-] is the factor of safety, 𝐶𝐶𝑣𝑣 is vegetative cohesion [Pa], 𝐶𝐶𝑠𝑠 is soil cohesion [Pa], h is the 
vertical soil depth [m], γ is the specific weight of soil [kN/m2], S is the slope [m/m], 𝜙𝜙 is the internal 
friction angle [∘], 𝜌𝜌𝑤𝑤 is the density of water [kg/m2], 𝜌𝜌𝑠𝑠 is the density of soil [kg/m2], 𝜃𝜃𝑠𝑠 is the saturated 
water content [-], 𝜃𝜃 is the volumetric water content or soil moisture [m3/m3], 𝜃𝜃𝑟𝑟 is the residual soil 
moisture [m3/m3], 𝜓𝜓𝑠𝑠 is the air entry matric potential [m of water], and 𝑏𝑏 is the pore size distribution [-].  

2.2.2.2 Monte Carlo Simulations 

FS has limitations, particularly for risk analyses due to not incorporating uncertainties. A key source of 
uncertainty in landslide models is spatial variation in the datasets for properties that can impact slope 
stability. The goal of the probability analysis is to translate FS values into probabilities of failure [P(F)] to 
consider those uncertainties and allow for increased understanding about the relative P(F) between 
unstable sites.  

To determine P(F), the model is run for a specified number of simulations. Uncertain variables have a 
specified distribution, and for each model simulation a randomly selected value is used based on the 
distribution. Upon completion, the number of times FS was recorded as unstable is divided by the total 
number of simulations to determine the P(F) for each cell in the domain.  

The variables randomly sampled in the Monte Carlo simulation in the probability model are chosen due to 
mean spatial variations not capturing uncertainty in the data. The original model by Strauch et al. (2018) 
varied 𝐶𝐶𝑣𝑣, 𝜙𝜙, ℎ, and soil transmissivity. Due to the approaches we apply to represent FS and the 
uncertainties therein, we modify the model by removing the uncertainty related to soil transmissivity and 
ℎ, treat 𝜃𝜃 as uncertain, and make different assumptions regarding the spatial variability of 𝐶𝐶𝑣𝑣 and 𝜙𝜙. Our 
FS equation does not include soil transmissivity, so we instead represent uncertainty in 𝜃𝜃. ℎ is not varied 
due to unknown variations in soil depth.  
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Cohesion considers both 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑠𝑠. We assume 𝐶𝐶𝑠𝑠=0, an assumption applied previously (Strauch et al., 
2018), and we evaluate this by considering soil textures, because soil cohesion is only present in areas 
with clay. We apply two approaches to modeling 𝐶𝐶𝑣𝑣 based on the land use type. The cohesion for grid 
cells with land use classified as evergreens or shrubs is varied in the Monte Carlo simulation, assuming a 
positively skewed, triangular distribution for each vegetation type (Strauch et al., 2018), which requires a 
minimum, maximum, and mean value. Per the probability model development and literature review by 
Strauch et al. (2018), the use of a positively skewed distribution is consistent with previous landslide 
probability applications (e.g., Hammond et al., 1992). The final vegetative cohesion value for each cell is 
calculated:  

 𝐶𝐶𝑣𝑣 = (𝐶𝐶)(𝑉𝑉)          (2.7) 

where C is the cohesion selected from the distribution and V is the fractional vegetative cover (Timilsina 
et al., 2021).  

For areas with all other land use classifications, 𝐶𝐶 is not varied in the Monte Carlo simulation. 𝐶𝐶 for these 
other land uses is calculated by a linear relationship between 𝐶𝐶 and 𝑉𝑉 (Timilsina et al., 2021). 

In considering the 𝜙𝜙, we make the same assumption as in the original landslide model and assume a 
positively skewed, triangular distribution (Strauch et al., 2018). Triangular distributions have been applied 
previously in Monte Carlo analyses (Hammond et al., 1992), and the positive-skew as applied by Strauch 
et al. (2018) is based on a literature review. We assume a spatially constant value for the mean value. This 
is different from the original work by Strauch et al. (2018), who related 𝜙𝜙 to the soil texture resulting in a 
spatial variation. The classification of soil characteristics is difficult as outlined in previous studies. For 
example, Pauly et al. (2020) showed limited improvements when considering the EMT+VS model in 
applying spatially varied versus spatially averaged soil characteristics. The uncertainty is meant to 
incorporate the variability within the soil characteristics.  

Due to the uncertainty in 𝜃𝜃 downscaling, we vary 𝜃𝜃 based on the uncertainty in the downscaling method. 
To determine values for 𝜃𝜃, we analyze uncertainties incorporated into the EMT+VS downscaling that 
were in the form of a normal distribution, which we expand on in the methods (2.4.2.3).  

Randomly selecting a value for each uncertain variable assumes independence, an assumption applied in 
the original probability model by Strauch et al. (2018). The downscaled 𝜃𝜃 does not consider land use type, 
thus can be considered independent of the 𝐶𝐶𝑣𝑣, and can be considered independent of 𝜙𝜙 as soil texture is 
not incorporated into EMT+VS. The independence between 𝜙𝜙 and 𝐶𝐶𝑣𝑣 is based on assuming independence 
between vegetation type and soil characteristics. Boyce et al. (2005) found that changes in alpine plant 
community composition in Colorado were strongly correlated with water availability and temperature, but 
not soil texture.   

2.3  Case Study 

2.3.1  2013 Event  

On September 9-13, 2013, a storm stalled over the Colorado Front Range, leading to precipitation 
exceeding 10 inches in some areas (Lukas et al., 2013). Woolridge et al. (2020) identified the storm as a 
midlatitude cyclone, which is a low-pressure storm that occurs over a large spatial scale. The storm was 
an anomaly for the area as it had a longer duration, lower rainfall intensity, and larger spatial extent than 
many historic storms (Lukas et al., 2013). The storm resulted in more than 1,100 mapped debris flows and 
more than 200 earth slides, debris slides, and rockfalls across 3,400 km2 (Coe et al., 2014). The landslides 
mapped after the 2013 event are used to evaluate probability model performance, and the storm 
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conditions are used to better understand the potential changes to shallow landslide initiation under climate 
scenarios in the Colorado Front Range. Per the analyses of Coe et al. (2014), the landslides typically 
occurred at lower elevations, below 2,600 m. The landslides were biased toward slopes greater than 25 
degrees, and 78% of the debris flows occurred on south facing slopes (SFS). Previous studies (McGuire et 
al., 2016; Rengers et al., 2016) identified reduced vegetation on SFS in the Front Range; Woolridge et al. 
(2020) demonstrated that SFS were more prone to saturation during the event, which contributes to the 
aspect dependence of the landslides.  

2.3.2  Application Region 

We apply the same study area as Timilsina et al. (2021), who evaluated a deterministic FS model, which 
allows us to apply many of the same assumptions and determine the difference between their 
deterministic and our probabilistic landslide model. The study area is located within the Colorado Front 
Range, which is in the Rocky Mountains in north-central Colorado (Figure 2.1). At 1,333 km2, the study 
area contains 836 of the landslides mapped from the 2013 storm event. Within the study area, elevation 
ranges from 1,555 m to 3,481 m. The land use is predominately evergreen trees (NLCD, 2016). The soil 
is largely coarse in texture, including sandy loams, loams, and sandy clay loams (Soil Survey Staff, 
2020).  

 
Figure 2.1  The study area located in the Colorado Front Range  
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The evaluation subarea is used for model sensitivity to consider the impacts of each variable to validate 
further model evaluations. The area is also used for more in-depth insights into visual behaviors for 
different modeling considerations. The subarea is contained within the full study area and is 109 km2, 
about 10% of the total study area, and contains 298 landslides. The soil and land use characteristics in the 
evaluation subarea are representative of the full study area.  

Within the full study area, there are two types of landslides we consider: debris flows and debris slides. 
To avoid confusion regarding terminology, debris flows are defined as precipitation-induced soil failures 
that lead to the fluidization of the surface (Varnes, 1978). Debris slides are slower and lack the 
fluidization present in debris flows. Coe et al. (2014) suggests that some debris flows are initiated from 
debris slides. Considering that the mechanisms of initiation between debris flows and debris slides are the 
same and the difference occurs in their movement after initiation, we assume our landslide initiation 
model can predict both mass movement events. We henceforth refer to these as landslides.  

2.4  Methods 

2.4.1  Data Acquisition 

For spatially varied data, the probability model requires topographic information, vegetative 
characteristics, and soil texture data. The spatially varied EMT+VS model variable requirements include 
the soil moisture to be downscaled, topographic variables, and vegetative characteristics. We use ArcGIS 
10.6 for topographic processing, MATLAB R2019a for the EMT+VS model, and Landlab version 1.9.0 
in Python 3.7 for all other analyses. 

2.4.1.1 Topography 

Elevation data include a 1/3 arcsecond resolution DEM resampled in the study area to a 10 m resolution 
(USGS, 2015). The DEM is from 2015, which could result in changes from landslides from pre-event 
topography. Using the TauDEM GIS toolbox (TauDEM Version 5), a pit finder tool is applied to the 
DEM and the d-infinity contributing area and the slope are calculated. Aspect is calculated using ArcGIS 
tools. The spatially varied topographic variables as used in EMT+VS and Landlab are shown in Figure 
2.2.  



   

 

  11  
 

 
Figure 2.2  The (a) elevation, (b) slope, and (c) aspect for the EMT+VS and the probability models  

2.4.1.2 Soil Texture 

Soil data for the study area are from the Gridded National Soil Survey Geographic Database for the state 
of Colorado (Soil Survey Staff, 2020). The percent sand, silt, and clay are applied to the Module Soil 
Texture Classification in QGIS to determine the USDA soil texture classification (Massei, 2007).  

2.4.1.3 Fractional Vegetation Cover 

𝑉𝑉 is calculated using Landsat 5 data from USGS (2016). The data are from September 28, 2011, which 
was the last September date before the flood event without excess cloud cover, which obscures the land 
surface and reduces the accuracy of EMT+VS. The Normalized Difference Vegetation Index (NDVI) is 
calculated from Landsat data using (Rouse et al., 1973):  

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅

              (2.8) 
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where NIR is the near-infrared (Band 4 in Landsat 5) and RED is the visible band (Band 3 in Landsat 5). 
The NDVI is used to calculate 𝑉𝑉: 

 𝑉𝑉 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼0
𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼∞+𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼0

            (2.9)  

where NDVI0 is the observed NDVI in pixels with no vegetation and NDVI∞ is the observed NDVI for 
fully vegetated pixels, with V ranging from 0-1. Based on the work of Timilsina et al. (2021), the 
minimum vegetation is 0.04 and the maximum vegetation is 0.7 (Figure 2.3).  

 
Figure 2.3  𝐕𝐕 as applied to the probability model  

2.4.1.4 Soil Moisture 

Large-resolution 𝜃𝜃 was downloaded from NLDAS Mosaic hourly data (Xia et al., 2012a; Xia et al., 
2012b) for the Front Range at 00:00 MDT on September 12, 2013. This was one of the wettest periods 
during the storm (Timilsina et al., 2021) and a time when multiple landslides are known to have occurred 
(Coe et al., 2014). The Mosaic model is one of four 𝜃𝜃 models in NLDAS and has been shown to have 
better accuracy in Colorado than the other three (Xia et al., 2015). The Mosaic model has hourly soil data 
for various soil depths, and we apply 0-40 cm as this is closest to observed soil depth values in the Front 
Range (McGuire et al., 2016; Timilsina et al., 2021). Per comparisons conducted by Timilsina et al. 
(2021), the NLDAS model is biased during the storm event and as such, before processing in the 
EMT+VS model, 0.08 m3/m3 is subtracted from the values in the study area. The average 𝜃𝜃 value within 
our full study area is 0.27 m3/m3.  

2.4.1.5 Land Use 

Land use is obtained from the National Land Cover Database (NLCD) (NLCD, 2016). Initial analyses 
showed that most of the study area is evergreens and shrubs (Figure 2.4). Because of this, the evergreen 
and shrub classifications are maintained while all other land use types are combined for the calculations. 
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Figure 2.4  The land use types within the study area. NCLD 2016 imagery courtesy of the U.S. 

Geological Survey  

2.4.2  Parameter Estimation 

The values for the probability model are found in Table 2.1 and the uncertainty ranges for 𝐶𝐶𝑣𝑣, 𝜙𝜙, and 𝜃𝜃 
can be found in Table 2.2. The EMT+VS model variables can be found in Timilsina et al. (2021), where 
we applied the values from their combined scenario. We do not further discuss EMT+VS here.  

2.4.2.1 Soil Characteristics 

Soil texture is used to determine 𝜓𝜓𝑠𝑠 and 𝑏𝑏 using the values in Cosby et al. (1984). 𝜓𝜓𝑠𝑠 is spatially varied 
based on USDA soil texture classification, with a range of 0.04 to 0.76 m of water (Figure 2.5  Air entry 
matric potential (𝛙𝛙𝐬𝐬) as applied to the probability modelFigure 2.5). 𝑏𝑏 is a spatially averaged value based 
on soil texture, which results in a value of 5.14 for the full study area. 
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Figure 2.5  Air entry matric potential (𝛙𝛙𝐬𝐬) as applied to the probability model 

2.4.2.2 Porosity 

𝜃𝜃𝑠𝑠 is held constant in the EMT+VS model with a recommended value of 0.409 (Grieco et al., 2018; 
Timilsina et al., 2021). For consistency between the EMT+VS model and the landslide model, we assume 
the same 𝜃𝜃𝑠𝑠 in the probability model. 

2.4.2.3 Internal Friction Angle 

φ is assigned a spatially constant mean value of 30° based on Timilsina et al. (2021). The variability for 
the Monte Carlo simulation is from Strauch et al. (2018), where the study area is comprised largely of 
sandy loams, a soil texture to what is in the Front Range. Strauch et al. (2018) generated distributions of φ 
based on the mode and ranges in the Unified Soil Classification System (USCS); we apply their ranges 
for uncertainty, where calculating the minimum and maximum values uses: 

 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 0.18 ∗ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚            (2.10)  

𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 0.32 ∗ 𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                       (2.11) 

2.4.2.4 Soil Depth 

𝑉𝑉 is used to calculate ℎ in the probability model. McGuire et al. (2016) determined that south facing 
slopes in the Colorado Front Range have a mean ℎ of 0.56 m while north facing slopes (NFS) have an ℎ 
of 0.64 m. Following Timilsina et al. (2021), we represent ℎ as a linear function of 𝑉𝑉 where ℎ = 0.56 +
(𝑉𝑉)(0.64).  

2.4.2.5 Soil Moisture 

Soil moisture for the probability model requires specifying 𝜃𝜃𝑟𝑟, which is the soil water content under 
which hydraulic conductivity is assumed to be zero (Pauly et al., 2020). Pauly et al. (2020) showed that 
incorporating 𝜃𝜃𝑟𝑟 into the 𝜃𝜃 downscaling in the EMT+VS model provides no improvements to the model. 
To maintain consistency between the EMT+VS model and the probability model, the same assumption is 
applied and the 𝜃𝜃𝑟𝑟 is assumed to be 0, akin to work by Timilsina et al. (2021).  
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The EMT+VS model has been calibrated to the Cache la Poudre watershed (Ranney et al., 2015), which 
is located farther north in the Colorado Front Range than the full study area. We apply the values from 
Timilsina et al. (2021), who applied the values from the Poudre watershed, estimated some variables 
based on data, and applied global values from Grieco et al. (2018) when the variables were not well 
represented by the Poudre dataset.  

The probability model incorporates the stochastic variability in 𝜃𝜃 using a normal distribution, as this is the 
distribution used to represent 𝜃𝜃 variability evaluated by Deshon (2018), which requires specifying a mean 
and a standard deviation. We apply the so-called direct approach developed by Deshon (2018), which 
considered stochastic variations in 𝜃𝜃. Their approach incorporates stochastic variations multiplicatively: 

 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜃𝜃(1 + 𝑎𝑎∗ + 𝑏𝑏∗)                 (2.12)  

where 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the soil moisture [m3/m3] applied directly to the probability model, 𝜃𝜃 is the downscaled 
soil moisture from the EMT+VS model, 𝑎𝑎∗ is a spatially correlated random variable, and 𝑏𝑏∗ is a spatially 
uncorrelated random variable.  

Both 𝑎𝑎∗ and 𝑏𝑏∗ have means of zero. Deshon (2018) calibrated the standard deviations of 𝑎𝑎∗ and 𝑏𝑏∗ for the 
Cache la Poudre catchment and obtained 𝜎𝜎𝑎𝑎 = 0.14 and 𝜎𝜎𝑏𝑏 = 0.12. Deshon (2018) also determined that 
in the Cache la Poudre catchment, 41% of the variability is a time-stable pattern that is consistent with 
porosity variations. We assume the remainder (59%) of the stochastic variation is due to 𝜃𝜃 variability. Our 
final 𝜃𝜃 calculation becomes:   

𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜃𝜃[1 + (1 − 0.41)(𝑎𝑎∗ + 𝑏𝑏∗)]          (2.13) 

If this variability results in 𝜃𝜃 >  𝜃𝜃𝑠𝑠, 𝜃𝜃𝑠𝑠 is used instead, and negative values of 𝜃𝜃 are disallowed. We 
neglect spatial correlation because it is not relevant to the objectives of this study and greatly simplifies 
the generation of the random variations. We also neglect any large-scale stochastic variations in 𝜃𝜃, which 
would not have been observed by Deshon (2018) within the small Cache la Poudre catchment. 

2.4.2.6 Cohesion 

Total cohesion is the combination of 𝐶𝐶𝑣𝑣 and 𝐶𝐶𝑠𝑠. 𝐶𝐶𝑠𝑠 is assumed to be 0 after determining that soils with 
high clay contents only made up a small portion of the full study area, a modeling approach applied in 
other probability model applications (Strauch et al., 2018).  

𝐶𝐶𝑣𝑣 is varied based on both land use and 𝑉𝑉. For land use classifications of “other,” the linear relationship 
applied between 𝐶𝐶𝑣𝑣 and V assumes 𝐶𝐶𝑣𝑣 = (𝑉𝑉)(6200) (Timilsina et al., 2021). This is a small percentage of 
the study area and contains a range of land use types that impact properties such as vegetation, 
infiltration, and compaction. While Timilsina et al. (2021) predominately justified this assumption for 
shrubs and evergreens, we only apply it to other land uses. 

The areas with land use of evergreen and shrubs have 𝐶𝐶 varied in the Monte Carlo simulations, where the 
minimum, mean, and maximum cohesion values for fully vegetated grid cells are found in Table 2.2. The 
values are the same as applied in Strauch et al. (2018). These values are consistent with literature values 
for shrubs and evergreen tree cover (Bernardie et al., 2021; Norris et al., 2008).  
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Table 2.1  Values for the landslide probability model 
Variable Symbol Units Value(s) 

Pore size distribution index b - 5.14 
Saturated water content 𝜃𝜃𝑠𝑠 m3/m3 0.409 
Residual soil moisture 𝜃𝜃𝑟𝑟 m3/m3 0 

Soil cohesion Cs Pa 0 
Soil density γs kg/m3 2,000 

Air entry matric potential 𝜓𝜓𝑠𝑠 m H2O 0.04 to 0.76 
Soil thickness h m 0.56 to 0.64 

Specific weight of water γw kg/m3 1,000 
 
Table 2.2  The values for the uncertain variables 

Variable Symbol Units Value(s) (min/mean/max) 

Cohesion  
Evergreen Forest C Pa 3,000 10,000 20,000 

Shrubs/Scrubs C Pa 1,200 4,000 10,000 
Other C Pa 0  6,200 

Soil internal friction angle 𝜙𝜙 ° 24.6 30 39.6 
Soil moisture 𝜃𝜃 m3/m3 0.217 to 0.409 

Note: Soil moisture is the range for the downscaled soil moisture  

2.4.3  Climate Change Estimation 

We incorporate climate change by changing vegetation in the infinite slope stability model and 
determining the impacts on landslide susceptibility. We apply the impacts of climate change on 
vegetation as evaluated by Stoddard et al. (2015). Stoddard et al. used the Central Rockies Variant of 
Climate-Forest Vegetation Simulator (FVS) model, which models the growth and mortality rates of trees 
as well as competition within a stand under climate change scenarios (Crookston et al., 2010; Crookston, 
2014). The model incorporates climate change by considering changes in site quality, growth, and 
adaptiveness of trees to climate change (Crookston et al., 2010). The model does not consider the direct 
impact of increased CO2 on tree growth (Crookston et al., 2010).  

In a field experiment, Stoddard et al. (2015) considered the impacts of various forest management 
practices (a control, thinning and burn, and a burn) for a mixed-conifer forest in the San Juan Mountains, 
southwestern Colorado. The management practices were evaluated five years post-treatment to establish 
growth rates, in which the tree basal area for the control scenario was 26.8 m2/ha. The growth rates from 
the field data were applied in FVS. FVS was used to model vegetation dynamics from 2013-2063 for 
climate scenarios, including an RCP 4.5 and an RCP 8.5 scenario. The climate scenarios are based on the 
Intergovernmental Panel on Climate Change (IPCC) representative climate pathways (RCPs), which 
consider the impacts of climate change based on greenhouse gas emissions and land use trajectories and 
incorporates some socio-economic considerations, including expected technological improvements, to 
mitigate climate change impacts and anticipated population growth (van Vuuren et al., 2011). RCP 4.5 
assumes a maximum radiative forcing of 4.5 W/m2, or about 650 ppm CO2 equivalent, by 2,100, while 
RCP 8.5 assumes a maximum radiative forcing of 8.5 W/m2, or about 1,370 ppm CO2 equivalent, and 
assumes increased energy use, increased population, and minimal technological improvements (van 
Vuuren et al., 2011). In their evaluation of the FVS model for the RCP 4.5 scenario, tree basal area 
decreased in their control scenario to 1.9 m2/ha in 2063, a 93.0% change, and in the RCP 8.5 scenario, 
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tree basal area decreased to 1.3 m2/ha in 2063, a 95.3% change (Stoddard et al., 2015). A follow-up field 
study in the area showed increases in shrubs (Korb et al., 2020).  

This suggests that given the similar climate and forest composition between the study site and the 
Colorado Front Range, a potential effect of climate change is a reduction of the trees currently present and 
a potential increase in shrubs. Because the exact composition of the understory is unknown and tree 
species could migrate into the area not represented in the model, the change in vegetation due to climate 
change is modeled in our study by assuming that trees are replaced by shrubs. We implement this 
potential change by reducing the mean cohesion in areas with evergreen land use classification. Due to 
the similarities between the reductions in vegetation for the RCP 4.5 versus the RCP 8.5 scenario, we 
apply the values from the RCP 8.5. The base scenario uses a mean cohesion of 𝐶𝐶 = 10,000 𝑃𝑃𝑃𝑃 for areas 
with evergreens, which becomes a reduction of 𝐶𝐶∆ = −5,715 𝑃𝑃𝑃𝑃.  

Vegetation type can impact vegetation cover and as such, vegetation cover could be impacted by land use 
changes. In present-day land use, evergreens have greater 𝑉𝑉 than shrubs in our study area (Table 2.3), so a 
transition from evergreen trees to shrubs in future climates may be accompanied by a reduction in 
vegetation cover. 

Table 2.3  V based on land use and aspect 
Variable Aspect Shrubs Evergreens 

Mean  
NFS 0.51 0.78 
SFS 0.50 0.70 

IQR 
NFS 0.14 (0.44 - 0.58) 0.17 (0.71 - 0.88) 
SFS 0.13 (0.44 - 0.57) 0.16 (0.62 - 0.78) 

 
Based on these values, we apply a weighting based on the difference between the mean V for shrubs and 
evergreens. We identify the difference between the mean V in shrublands and the mean V in evergreens 
on NFS and SFS. For example, based on the values in Table 2.3, the difference between the mean 
evergreens and mean shrubs on NFS is 0.78 − 0.51 = 0.27. This is multiplied by the reduction in tree 
cover (95.3%) to identify the maximum reduction in vegetation cover while results in 𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁 =
0.27 × (0.953) = 0.26. 𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁 is the reduction to vegetation cover for areas on NFS with evergreens. For 
SFS, the maximum reduction to vegetation cover is 𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.18.  

The adjusted vegetation cover is used to re-calculate 𝜃𝜃 using EMT+VS. Both EMT+VS and the 
probability model are modified to use the vegetation from the base scenario to calculate ℎ. This assumes 
that even if vegetation changes in a shorter period of time, ℎ will take longer to adapt to changes in 
vegetation.  

Due to the uncertainty in timing, vegetation composition during transitioning, and the potential for other 
species to migrate into the area that are not represented in the model, we evaluate the impacts of 
combinations of reduced cohesion and reduced vegetation cover on landslide initiation. We apply a full 
reduction, which assumes 95.3% of evergreens transition to shrubs, and a half reduction. The half 
reduction in cohesion values corresponds to around the year 2035 for the RCP 8.5 scenario; the RCP 4.5 
scenario reaches this same reduction in 2038, while the full reduction corresponds to the year 2063. These 
reductions are applied by evaluating nine scenarios considering different combinations of vegetation 
cover and cohesion reductions ( 

Table 2.4). The values provided in the table include the title for each scenario, the mean value for 
cohesion, and the reduction for vegetation cover, which is aspect-dependent, for each scenario.  
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Table 2.4  The title for nine scenarios and the corresponding reduction in mean C and V as applied to 
areas with evergreen cover 

  Cohesion adjustment 

  None 
(0.0) Half reduction (0.46) Full reduction (0.95) 

Vegetation 
cover 

adjustment 

None 
(0.0) 

C(-0.0) _V(-0) 
𝐶𝐶∆: No reduction 
𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: No reduction 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: No reduction 

C(-0.46) _V(-0.0) 
𝐶𝐶∆: -2858 Pa  

𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: No reduction 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: No reduction 

C(-0.95) _V(-0.0) 
𝐶𝐶∆: -5715 Pa  

𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: No reduction 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: No reduction 

Half reduction 
(0.46) 

C(-0.0) _V(-0.46) 
𝐶𝐶∆: No reduction 
𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: -0.09 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: -0.13 

C(-0.46) _V(-0.46) 
𝐶𝐶∆: -2858 Pa 
𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: -0.09 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: -0.13 

C(-0.95) _V(-0.46) 
𝐶𝐶∆: -5715 Pa 
𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: -0.09 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: -0.13 

Full reduction 
(0.95) 

C(-0.0) _V(-0.95) 
𝐶𝐶∆: No reduction 
𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: -0.18 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: -0.26 

C(-0.46) _V(-0.95) 
𝐶𝐶∆: -2858 Pa 
𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: -0.18 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: -0.26 

C(-0.95) _V(-0.95) 
𝐶𝐶∆: -5715 Pa 
𝑉𝑉∆𝑆𝑆𝑆𝑆𝑆𝑆: -0.18 
𝑉𝑉∆𝑁𝑁𝑁𝑁𝑁𝑁: -0.26 

 
In considering the limitations of our approach to climate change, Stoddard et al. (2015) only modeled 
vegetation for their study site, which is a small area at a set elevation, so the elevation-dependence shift in 
trees cannot be further quantified from their research. This means that the elevation-dependence and 
aspect-dependence of vegetation is not incorporated into their modeled reduction in vegetation, and thus 
is not quantified in our application of changes to vegetation. There might be other large-scale variations 
on the impacts of climate change on vegetation not captured by Stoddard et al. (2015) in their study area. 
We do not consider other impacts of climate change, such as fires, changing precipitation patterns both 
spatially and temporally, and impacts of pests or diseases on vegetation. The goal of the application is to 
consider regional impacts of changes to vegetation and the relative impacts and uncertainties therein.  

2.4.4  Analyses 

For the probability analysis, each scenario is iterated 3,000 times, consistent with previous studies 
(Strauch et al., 2018). Abbaszadeh et al. (2011) demonstrated that more than 1,200 simulations had 
minimal model improvements for MC simulations of slope stability. In assessing the performance of the 
probability model, true positives (TP) are mapped landslide locations the model predicts as being 
unstable, false negatives (FN) are mapped landslide locations the model predicted as being stable, false 
positives (FP) are non-mapped landslide areas the model predicts as unstable, while true negatives (TN) 
are non-mapped landslide areas the model predicts as stable.  

Due to a lack of information about landslide size in our applied inventory, we identify the eight 
surrounding cells for point where a landslide occurs. We identify the highest P(F) in the 30 m by 30 m 
area and assume that the highest P(F) is where the landslide occurs. The nodes applied in the buffer are 
not considered in the FP and TN fractions. This allows for considering some spatial variability regarding 
the exact starting location of the landslide.  

2.4.4.1 Sensitivity 

We perform a sensitivity analysis on the probability model to determine the relative impact of each 
variable on predicted stability. The sensitivity is applied to the evaluation subarea, which is representative 
of the full study area but can be evaluated more quickly. A base scenario is run assuming mean values for 
the uncertain variables, and returning the FS. Each variable is adjusted by 5%, 10%, and 15% of the full 
range of the variables within the study area, considering both an increase and a decrease. The FS is 
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identified for the observed landslides within the evaluation subarea. Only the observed landslides are used 
as these values have lower FS values and thus the adjustment on the variables consider the impacts on the 
probability model nearer to the stable/unstable transition. The nodes within each landslide buffer are 
evaluated and the node with the lowest FS is identified for the base scenario. These nodes are then used 
for the sensitivities. The mean FS value for all the landslides under the base scenario is compared to the 
mean FS value calculated with the perturbed variable values. By only considering observed landslides 
with the evaluation subarea, large-scale impacts of adjusting model variables might not be represented.  

2.4.4.2 Probability Model Evaluation 

To analyze a probability model, there are two key components to consider: the TP/FP and the 
probabilities for those nodes. In considering the TP/FP nodes, one decision is what constitutes a stable 
versus an unstable node. One approach that allows for considering a range of probability is calculating the 
area under the curve (AUC) for receiver operating characteristics curves (ROC-AUC) (Fawcett, 2005) 
and precision recall (PR-AUC) curves. ROC curves are a non-threshold-based analysis, meaning a range 
of probabilities can be considered and evaluated. In the case of landslide risk, identifying unstable areas 
as stable would be non-conservative and lead to potential loss of infrastructure and loss of life, while on 
the other extreme, identifying areas that are stable as unstable would potentially lead to increased costs 
for preventative measures (Beguería, 2006). ROC curves can be used to determine a probability threshold 
to apply in risk analyses and can establish whether a model distinguishes stable from unstable in the 
landscape (Beguería, 2006). ROC curves compare the true positive fraction (TPF) to the false positive 
fraction (FPF) (Beguería, 2006; Vakhshoori and Zare, 2018): 

 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

             (2.14) 

 𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

             (2.15) 

To develop an ROC curve, TPF is plotted on the vertical axis and FPF is plotted on the horizontal axis. A 
series of probabilities are chosen, 0, 0.1, etc., as the “threshold” that determines whether an area is stable 
or unstable and the corresponding TPF and FPF are determined, resulting in a line that extends from the 
lower left (0,0) to the upper right (1,1). A line of randomly selected values will be a straight line from the 
bottom left to the upper right. The AUC ranges from 0.5 to 1, where a line closer to the upper left corner, 
and thus a higher AUC value, is a better performing model that can distinguish between stable and 
unstable areas (Beguería, 2006). 

A PR curve compares recall, same as the TPF, to precision (Davis and Goadrich, 2006):  

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

            (2.16) 

The same approach is taken as an ROC curve by identifying a series of probabilities and the 
corresponding precision (vertical axis) compared with recall (horizontal axis). A better performing model 
will be toward the upper right corner. A PR curve differs from an ROC curve in that it does not consider 
the TN fraction. This allows behaviors in highly skewed datasets to be more distinguishable (Davis and 
Goadrich, 2006).  

Considering the number of nodes in the TP/FN/FP/TN fractions applied to the ROC and PR curves is 
important. The imbalance ratio is calculated for all ROC-AUC and PR-AUC analyses (Zhu et al., 2020): 
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 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
          (2.17)  

where 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚is the number of values in the majority class and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the number of values in the 
minority class. For the ROC analysis, the 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the FP plus the TN, while for the PR analysis, 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
is the FP. In both analyses, the 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the TP plus the FN. The imbalanced ratio is used to consider 
both model performance and whether the model is being well represented by the analyses. In general, a 
large imbalance ratio can negatively impact model performance by having decreased ability to correctly 
classify variables (Zhu et al., 2020). Our analysis uses the imbalanced ratio to evaluate differences in the 
ROC-AUC and PR-AUC to determine whether the model distinguishes between stable and unstable 
locations and which selection of nodes should be applied to future analyses.   

We compare areas predicted to fail with those predicted to be stable to evaluate whether there are 
significant differences between stable and unstable locations in the spatially varied variables. We apply 
the two-sided non-parametric Mann-Whitney statistical test, which considers the null hypothesis P(x > y) 
≠ 0.5, where x and y are groups that in our application are the FP and TN values (Helsel and Hirsch, 
2002, Fagerland and Sandvik, 2009). The test analyzes inequality to determine whether one group is 
biased toward having higher values than the other group (Helsel and Hirsch, 2002).  

2.5  Results 

2.5.1  Model Sensitivities  

We perform a sensitivity analysis of the model by evaluating the ratio of the FS of observed landslide 
nodes using the perturbed values to the FS of landslides nodes using the base scenario (Figure 2.6). The 
variables shown are calculated or estimated in our analyses. The landslides are located in the evaluation 
subarea, though percent changes are based on the variable ranges from the full study area. 

 

Figure 2.6  The model sensitivity compares the percent change in each variable to the average of the 
adjusted FS values divided by the base scenario FS values for all landslides in the evaluation 
subarea 
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Within the considered ranges, many variables shown in the sensitivity analysis demonstrate relatively 
linear sensitivity. 𝜃𝜃 and 𝜓𝜓𝑠𝑠 are the exceptions and show some slight non-linearity. 𝑉𝑉 and 𝐶𝐶𝑣𝑣 have the 
largest impact on the results, and 𝜙𝜙 is also impactful. This implies that probabilistic modeling accounting 
for uncertainties in 𝐶𝐶𝑣𝑣 and 𝜙𝜙 is critical for assessing the probability of landslide initiation. It also supports 
considering the impacts of changes to 𝐶𝐶𝑣𝑣 and 𝑉𝑉 under climate change scenarios. While variables 
demonstrate relative linear responses within the ranges we consider, outside of the chosen percent 
adjustments the variables could have non-linear responses that would yield different results. 

2.5.2  Base Scenario Evaluation 

The 2013 storm event is used to evaluate model performance. The downscaled 𝜃𝜃 provides increased 
accuracy and incorporates aspect and elevation dependence (Figure 2.7). 

 

Figure 2.7  The non-downscaled 𝛉𝛉 (a) compared to the downscaled 𝛉𝛉 (b) for September 12, 2013, at 
00:00 MDT. The evaluation subarea is shown for better visualization of variations within the 
downscaled.  

To evaluate model performance, we compare the probabilistic model results to a deterministic FS 
approach, which uses mean values for 𝐶𝐶𝑣𝑣, 𝜃𝜃, and 𝜙𝜙. We evaluate a range of FS values to determine the 
percent of both observed landslides and FP values that are predicted as unstable by that threshold (Figure 
2.8). We evaluate thresholds for P(F) in a similar manner for comparison.   
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Figure 2.8  The percent of observed landslides predicted by different FS (a) and P(F) (b) thresholds and 
the FP values predicted by different FS (c) and P(F) (d) thresholds  

Figure 2.8a shows that when FS = 1 is the instability threshold, 42% of the observed landslides are 
predicted. In comparing this to probability thresholds, P(F) > 0 results in 79.6% of the observed landslides 
being predicted (aboveFigure 2.8b). Using FS = 1 results in less than 1% of the full study area having FP 
values (Figure 2.8c) while using P(F) > 0 results in 5.8% of the full study area having FP values (Figure 
2.8d).  

Additionally, we compare the deterministic approach to P(F) through developing an ROC curve (Figure 
2.9). The FS ROC curve is determined in the same way as the P(F) curve by choosing different thresholds 
and determining the TPF and FPF, which considers which nodes are equal to or less than the FS 
threshold. We randomly select 100,000 nodes for the FPF fraction for FS and the P(F). The ROC curve is 
similar between the two, with the AUC being slightly higher for the FS at 0.942 as compared with the 
P(F) value of 0.890.  
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Figure 2.9  The ROC curve comparing FS and P(F)  

We further evaluate P(F) by determining the ROC-AUC and the PR-AUC (Table 2.5). In addition to 
considering all the nodes in the study area, we consider “valid” nodes, which are nodes with a slope 
greater than 5°. We randomly select nodes (1000, 10,000, and 100,000) greater than 5° to consider the 
impacts on the ROC-AUC and the PR-AUC with different imbalanced ratios. All ROC-AUC values are 
greater than 0.5, indicating the model performs better than random. In considering the imbalanced ratios, 
there is little difference between the ROC-AUC values associated with different imbalanced ratios. The 
impacts are more obvious for the PR-AUC, which shows that the lower the imbalanced ratio the higher 
the AUC. The random selection of 10,000 nodes leads to an imbalanced ratio closest to 1. The analysis 
highlights that quantifying probability results is challenging as the imbalanced ratio impacts how well the 
model performs within ROC and PR analyses. Determining both the initial imbalanced ratio to understand 
how different the ratios are between TPF and FPF values and selecting a scenario to consider the 
imbalanced scenario closest to 1 are performed here to evaluate the differences and be able to move 
forward with analyses. 

Table 2.5  Results for different evaluation approaches 

Count Imbalanced Ratio, 
ROC 

Imbalanced Ratio, 
PR ROC-AUC PR-AUC 

1,000 1.20 0.08 0.891 0.904 
10,000 11.96 0.82 0.892 0.682 

100,000 119.62 8.48 0.890 0.214 
Valid Nodes 11940.35 919.45 0.894 0.023 

Full Area 15012.78 919.45 0.890 0.023 
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To further evaluate the probabilistic model, we consider the P(F) associated with the unstable areas 
(Figure 2.10). In considering the full range of probabilities, the values are skewed toward low values with 
most failures having a P(F) < 0.2. There is also a higher concentration of values at probabilities near 1. 

 
Figure 2.10  A histogram showing the P(F) for the full study area  

To identify differences and similarities between distributions, we consider observed landslides, P(F) > 
0.8, 0.8 > P(F) > 0, and P(F) = 0. A histogram shows the distribution for elevation, slope, 𝑉𝑉, 𝜃𝜃, and aspect 
(Figure 2.11). The 0.8 > P(F) > 0 and P(F) = 0 fractions are from a random selection of 10,000 nodes with 
slopes greater than 5° and the P(F) > 0.8 fraction contains all nodes with that probability of failure 
(~24,000). 
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Figure 2.11 Histograms (a-e) and cumulative distribution functions comparing the observed 

landslides with the FP and TN fraction node types across the spatially varied variables 

Based on the histogram, there are three key observations. The first observation is that the 0.8 > P(F) > 0 
fraction has similar distributions to the observed landslides, suggesting that the model accurately 
represents the conditions leading to failure. The second observation is that the 0.8 > P(F) > 0 fraction is 
unique from the P(F) = 0 fraction by having a higher slope and a lower 𝑉𝑉. The third observation is that the 
P(F) > 0.8 fraction is unique from the other three fractions, exhibiting lower 𝑉𝑉 and higher slope.  

To consider the differences between 0.8 > P(F) > 0 and P(F) = 0, we apply a Mann-Whitney test to 
compare the distributions to see whether there are significant differences (Table 2.6). Higher probabilities, 
P(F) > 0.8, are not considered in the Mann-Whitney test as the histogram analysis suggests more extreme 
differences than between lower probabilities and P(F) = 0. We apply the same 10,000 nodes shown in the 
histograms for the statistical test. The Mann-Whitney test indicates statistical significance between the 0.8 
> P(F) > 0 and P(F) = 0 fractions for both slope and 𝑉𝑉.  

Table 2.6  Mann-Whitney test comparing 0.8 > P(F) > 0 and P(F) = 0 

  Elevation Slope Vegetation Soil moisture Aspect 

Statistic 2535622 6007425 1746586 3023307 3510283 
P value 0.00 0.00 0.00 0.35 0.00 

Significance  < 0.05 < 0.05 < 0.05 - < 0.05 
Note: The n values for the two variables are: 0.8 > P(F) > 0, n = 664 and P(F) = 0, n = 9308 
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We determine the percent of each type of land use on NFS versus SFS for the full study area, observed 
failures, and predicted failures (Figure 2.12). Within the full study area, there are differences between 
SFS and NFS. SFS have more shrubs while NFS have more evergreens. In predicted failures, there is both 
an aspect-dependence and more predicted failures in areas with shrubs. In considering observed 
landslides, there is more prevalence on SFS and in areas with shrubs.  

 

 

Figure 2.12  The land use types within the general landscape, where the sum of the SFS and NFS for each 
subset is equal to 1  

2.5.3  Climate Change Modeling 

Using the sensitivity results and the current understanding of landslide behaviors within the study area to 
guide the analyses, we consider the impacts of climate change, and the uncertainty therein, on landslide 
risk. The original, half, and full reduction adjustment applied to V and the corresponding Cv values for the 
scenarios C(-0.0)_V(-0.0), C(-0.46)_V(-0.46), and C(-0.95)_V(-0.95) are shown in Figure 2.13. 
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Figure 2.13  The base scenario V (a), a half reduction (b), and a full reduction (c) and Cv values 

for C(-0.0)_V(-0.0) (d), C(-0.46)_V(-0.46) (e), and C(-0.95)_V(-0.95) (f)  

The percent increase in areas with P(F) > 0 between the base scenario and the climate scenarios are 
identified in Table 2.7. All climate scenarios lead to an increase in areas with P(F) > 0. Reducing 
cohesion leads to more unstable areas than reducing vegetation cover.  

Table 2.7  Percent increase between the scenario and the base scenario for the area with P(F) > 0 
  Cohesion adjustment 

  No Reduction Half Reduction Full Reduction 

Vegetation cover 
adjustment 

No Reduction Base scenario 33% 84% 
Half Reduction 17% 50% 102% 
Full Reduction 38% 72% 119% 

 
To evaluate which areas of the landscape transition from stable in the base scenario to unstable in the climate 
change scenarios, we select 2,000 random nodes with a P(F) > 0 in the climate scenarios and P(F) = 0 in 
the base scenario and compare the elevation, slope, 𝑉𝑉, 𝜃𝜃, and aspect (Figure 2.14). As the climate scenarios 
lead to reductions in slope stability, all the areas with P(F) > 0 in the base scenario are still unstable in the 
climate scenarios. We show the climate scenarios with a full reduction in V, C, or both. The new unstable 
points have lower slopes than the base scenario. The aspect-dependence of the base scenario being biased 
toward SFS is no longer visibly present and there is more uniformity across aspects.  
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Figure 2.14  Histograms (a-e) and cumulative distribution functions comparing node types between the 

base scenario and some of the climate scenarios for nodes with P(F) > 0 

To quantify the change to aspect-dependence, we determine the percent of new unstable areas in the 
climate change scenarios that are on SFS (Table 2.8). The climate change analyses correspond to a shift in 
the aspect-dependence of areas susceptible to landslides. In the base scenario, a minority of failures 
(33.5%) occur on NFS. In all climate scenarios, there is a shift to increased landslide susceptibility on 
NFS where greater than 60% of failures occur on NFS. 

Table 2.8  Percent of areas with a P(F)>0 on NFS 

  
Cohesion adjustment  

   No Reduction Half Reduction Full Reduction  

Vegetation 
cover 

adjustment 

No Reduction 33.5%  
(n = 768628) 

60.0%  
(n = 253368) 

61.8%  
(n = 657398) 

Half Reduction 64.1%  
(n = 132915) 

62.5%  
(n = 398520) 

62.7%  
(n = 786261) 

Full Reduction 65.4%  
(n = 304602) 

64.1%  
(n = 570586) 

63.4%  
(n = 928671) 

Note: n is the total number of nodes with a P(F) > 0 in the climate scenario and P(F) = 0 in the 
base scenario   

We map the climate change scenarios by computing the climate scenario minus the base scenario (Figure 
2.15). The shift in location of the climate scenarios is most obvious in Figure 2.15d, which considers a 
full reduction in both cohesion and vegetation. The least impacted scenario is Figure 2.15c, which 
assumed no reduction in cohesion and a full reduction in vegetation. 
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Figure 2.15  The P(F) within the evaluation subarea for the base (a) and the difference between the P(F) 
for the climate scenario and the base scenario for C(-0.45)_V(-0.0) (b), C(-0.0)_V(-0.95) (c), 
and C(-0.95)_V(-0.95) (d).  

2.6  Discussion 

We compare a probabilistic landslide model to a deterministic landslide model. Our results show that for 
our application, assuming that FS ≤ 1, indicates instability is less accurate at predicting observed 
landslides than the probability model. Because a number of observed landslides are around the FS = 1 
threshold, slight uncertainties in the input variables can yield large differences in the fraction of observed 
landslides that are correctly predicted. This suggests that a probabilistic approach, which can incorporate 
variable uncertainties, is an improvement over the deterministic approach in terms of being able to better 
represent observed landslides. 

In considering model performance and the predicted probabilities of failure under the base scenario, the 
probabilities associated with the P(F) > 0 fraction are typically low but with a spike at high probabilities 
that are associated with lower vegetation and higher slopes. These areas have distinct characteristics from 
the observed landslides, which suggests that other factors might be impacting the slope stability. The 
division in probabilities in our base scenario exhibits similarities to the probability model application by 
Strauch et al. (2018), who attributed the difference to an ecosystem transition. The prominence of very 
low probabilities is worth analyzing in future model evaluations to determine whether a broader 
distribution of probabilities is expected, as the probabilities themselves are not calibrated. Differences in 
our model between predicted and actual probabilities of failure might stem from variables being too high, 
leading to arbitrarily low probabilities. This is supported by the deterministic FS values for the median 
values having poor model performance, whereas previous deterministic FS analyses such as the model 
developed by Timilsina et al. (2021) had higher model performance and accurately predicted 72% of 
observed landslides in the same study area. Identifying whether P(F) values are genuine, and accurately 
capturing the return interval in terms of the relative impact of landslides, is challenging due to a lack of 
information in most landslide inventories about occurrence intervals (van Western et al., 2006). We 
consider the probabilities in our model relative, where areas with higher probabilities are considered more 
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unstable but we do not consider them to represent a return period of the landslides due to the lack of data 
for more than a single landslide initiation event.  

In further considering the base scenario, we evaluate the ROC-AUC and the PR-AUC. Our model has an 
ROC-AUC value of 0.9 for the full study area. While similar ROC values are found in Gudiyangada 
Nachappa et al. (2019), literature values are typically lower, which highlights an important limitation of 
ROC analyses. ROC analyses require consideration of both the imbalanced ratio and the ratio of FP to 
TN. Our model has a high imbalanced ratio and a high ratio between FP and TN values; the combined 
effect leads to high AUC values in our model, which makes discrimination between model scenarios 
challenging. The tendency for ROC curves to provide overly optimistic results has been identified 
previously in other fields (Fu et al., 2019). To avoid some of the shortcomings of the ROC curve, we 
evaluate the PR-AUC, which is used less often in landslide literature (Bernardie et al., 2021). The 
differences in PR-AUC are more extreme between different imbalanced ratios, suggesting that under 
some conditions, PR curves can be used to understand variations between model scenarios; for example, 
quantifying the differences between calibration model runs. A recent study by Yordanov and Brovelli 
(2020) compared PR and ROC curves for landslide prediction and identified that if balanced data are used 
they perform comparably well for model evaluations, but imbalanced datasets led to improved 
performance based on the PR curves. This suggests that identifying the imbalanced ratio is important to 
determining the correct landslide probability model evaluation technique. The importance of accurately 
evaluating landslide models and additional model evaluation approaches has been presented elsewhere 
(Frattini et al., 2010; Guzzetti et al., 2006; Vakhshoori and Zare, 2018) and while ROC and PR curves 
provide insight into landslide models, combining them with other evaluation methods might be more 
appropriate depending on the goal of the analysis. We consider them appropriate in our application as we 
use them to discuss differences between a deterministic and probabilistic modeling approach, to show that 
our model can distinguish between stable/unstable locations, and as a comparative consideration to assess 
how to select FP/TN nodes for further evaluation.  

In considering the observed landslides from the 2013 event, previous studies have shown that landslides 
in the Front Range have a strong aspect dependence (Coe et al., 2014). Recent studies have identified 
reduced vegetation on SFS in the Front Range (Rengers et al., 2016) and marginally lower soil depths on 
SFS than NFS (McGuire et al., 2016). Timilsina et al. (2021) found increased soil moisture on SFS, 
which is captured in the EMT+VS model. Within our study area, 82% of the observed landslides occur on 
SFS. Figure 2.12NFS have more trees (Coe et al., 2014), which results in higher cohesion and increased 
vegetation cover. This suggests that under current conditions, NFS are more stable but reductions in trees 
due to climate change could impact this stability.  

Under climate change scenarios, we identified a shift in the areas susceptible to landslides in the Colorado 
Front Range. All our climate scenarios predict increased landslide susceptibility on NFS. The decreasing 
prominence of evergreens on NFS is one reason for this, as more areas on NFS are impacted by the 
adjustments than areas on SFS. The shift to increased instability with decreased vegetation has been 
modeled previously. Bernardie et al. (2021) modeled land use changes and predicted increased slope 
stability where forests increased and decreased slope stability in areas where the forest vegetation 
decreased. There is also increased landslide susceptibility at lower slopes within the climate data. The 
increase in areas with P(F) > 0 at lower slopes is due to the decrease in 𝐶𝐶𝑣𝑣 and/or vegetation cover, 
resulting in reduced stability.  

We consider the impacts of climate change through analyzing reductions to trees, which is a simplified 
approach to regional-scale impacts of climate change. We incorporate variation in the values we apply to 
consider some of the uncertainties about which type of vegetation will be present, the vegetation cover 
associated with the vegetation type, and the general vegetation dynamics that can impact slope stability. 
Further, we do not consider aspect, elevation, or spatial heterogeneity that impact changes to vegetation 
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type in incorporating climate change. In our climate scenarios, we are not predicting the exact 
composition of vegetation and are not evaluating the results as an absolute. Rather, we evaluate the 
relative impact of the scenarios to study the effect of vegetation changes to landslide susceptibility in the 
Colorado Front Range.   

2.7  Conclusion 

We combine a mechanistic soil model with a probabilistic landslide model to evaluate landslide 
probability during a storm event in the Colorado Front Range. This provides a baseline for evaluating the 
impacts of climate change on landslide susceptibility assuming a similarly sized storm event. The main 
findings of our work are:  

• Comparing a deterministic model using mean values to the probabilistic model demonstrates that 
the probabilistic model is better at predicting observed landslides. More area is predicted as being 
susceptible to landslides in the probability model as compared with the deterministic model.  

• Under current conditions, most observed landslides are predicted as having P(F) > 0. For FP values, 
values 0.8 > P(F) > 0 exhibit similar vegetative and slope characteristics to the observed landslides, 
suggesting these unstable areas are correctly being captured by the model. A fraction of landslides 
also occurs at P(F) > 0.8, which have higher slope and lower vegetation than areas with lower 
probabilities of failure.  

• Within our study area, a reduction in tree cover due to climate change leads to increased overall 
landslide susceptibility. For areas susceptible under the climate scenarios but stable under the base 
scenarios, there is a shift from predominantly SFS to more uniform risk across all aspects. 

We consider our results applicable to considering how to incorporate probabilistic landslide modeling and 
uncertain climate change projections. Our research can be applied to help improve landslide risk and 
regional changes to landslide susceptibility in the future. We can better understand future landslide risks 
by understanding that current practices, such as planting trees that are native and ideal for the 
environment in current times, might lead to more failures long term due to the species having reduced 
survivability in the future. These considerations allow us to consider the best ways to model and reduce 
mass-sliding on a regional scale in the future. 

There are several avenues for future work to better quantify landslide risk using this approach. Further 
evaluating deterministic approaches as compared with probabilistic approaches to be able to show which 
models are better is important for moving forward with landslide mapping. Quantifying the temporal 
aspect of the landslide probability model would provide insight into appropriate values for probabilities of 
failure and provide increased understanding about representing landslide risk through time. Determining 
ways to incorporate the multi-variable impacts of climate change and incorporate the uncertainty therein 
can improve landslide risk projections for future climate scenarios. Finally, combining the model with a 
landslide runout model would allow for a more complete understanding of landslide risk.   
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3.  A LARGE-EXTENT TOPOGRAPHICALLY DRIVEN LANDSLIDE 
RUNOUT MODEL FOR THE COLORADO FRONT RANGE 

3.1  Introduction 

Landslides can cause widespread damage to infrastructure and the environment and lead to loss of life. 
Between 2004 and 2010, more than 2,000 landslides across the world resulted in more than 32,000 deaths 
(Petley, 2012). Precipitation-induced landslides are likely to increase in frequency due to a trend of 
increasing extreme precipitation because of climate change (Wuebbles et al., 2017). With the far-reaching 
factors of land use changes and climate change impacting projected landslide locations (Alvioli et al., 
2018; Bernardie et al., 2021; Kim et al., 2015), determining the areas most susceptible to both landslide 
initiation and landslide runout is vital to building resilient infrastructure and protecting people. 

There are three components of representing landslides: identifying the areas of initiation, determining the 
landslide direction and travel path once initiated, and representing the landslide end point. Landslide 
runout, which considers both the direction and endpoint of the landslide, is impacted by the physical 
attributes of both the landslide and the topography. The distance traveled by a landslides can be 
influenced by the landslide failure type, such as a slide or a flow, and the type of landslide material, such 
as earth, debris, or rock (Varnes, 1978). The direction of the runout can be impacted by topographic 
controls, such as encountering bends leading to reduced runout distances (Corominas 1996).  

Application of landslide runout models is challenging, particularly at large spatial scales. For one, large 
spatial scales limit the ability to gather detailed information for landslide mapping (Carrara et al., 2008). 
The type of landslide, which may not be known from landslide initiation models, can be difficult to 
represent and capture, particularly for large-spatial scale mapping. Debris flows can be particularly 
challenging to model due to being temporally and spatially varying (Iverson, 1997) due to solid-fluid 
interactions that result in debris flows acting as a non-Newtonian fluid (De Blasio, 2011). Another 
consideration, particularly for large spatial scales, that impacts model performance is data resolution. 
Huggel et al. (2003) applied a 25 m digital elevation model (DEM) in the Swiss Alps and concluded that 
the resolution provided adequate results for risk mapping at large spatial extents. Fischer et al. (2012) 
stated that a 25 m DEM led to appropriate landslide runout distance predictions, with a downside being 
over-predictions of landslide spreading, and that a 10 m DEM provided increased model accuracy. The 
complexity of modeling landslide runout through limited data availability, quantifying how to represent 
different types of landslides, and limitations on data resolution are key elements to consider for large-
scale analyses for hazard mapping and identifying subregions that warrant additional, in-depth analyses.  

Broadly, runout analyses are categorized into physically based models and empirical models (Peruzzetto 
et al., 2020). Physically based landslide runout models can be applied more broadly on spatial and 
temporal scales as they are based on representing the physical characteristics that cause landslides to 
move. Empirical models are often based on developing relationships from landslide inventories, so they 
have limited applicability to other areas and are more challenging to use for predictions when conditions 
change, such as considering the impacts of climate change (Bernardie et al., 2021). 

Various landslide and topographic characteristics have been evaluated to estimate landslide runout. 
Runout distance has been related to landslide volume (Iverson, 1998), kinetic energy (Lari et al., 2014), 
and the center of mass of the landslide (Feranie et al., 2016; Legros, 2002). One widely applied variable 
to evaluate runout distance is the angle of reach, defined by Corominas (1996) as the angle between the 
initiation point of the landslide and the distal point in the landslide deposit, calculated as the inverse 
tangent of the height divided by the horizontal distance traveled (Lockyear, 2018). The angle of reach is 
smaller for landslides that are larger in volume as they typically have longer runout (Corominas, 1996). 
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This relationship has been evaluated in numerous modeling applications as a baseline, initial analysis, or 
provided as a geometric relationship for landslides inventories (Dai and Lee, 2002; Hunter and Fell, 2003; 
Leng et al., 2018; Lockyear, 2018). Kappes et al. (2011) applied the angle of reach as a worst case 
scenario for landslide runout mapping. The angle of reach has been applied elsewhere as an approach for 
initial hazard mapping (Bathurst et al., 1997; Corominas, 2003; Dahl et al., 2010; Kappes et al., 2011). 
The simplicity of identifying where landslides will stop using the angle of reach makes it convenient for 
broad spatial scale applications.   

Recent developments in landslide runout models have focused on combining large-scale mapping with 
accurate landslide runout modeling. AschFlow (Quan Luna et al., 2016) is a 2D model that provides 
results for landslide runout, spreading, and deposition. AschFlow considers volume, which can be 
difficult to validate if volume is not part of a landslide inventory. Flow-R (Horton et al., 2013) is an 
another recently developed model that requires only elevation data and landslide initiation points to 
determine landslide runout. The Flow-R model, which requires some variable and algorithm selection 
before running, has been applied to a variety of study areas and landslide types. Both models aim to be 
computationally simplistic enough to evaluate landslides at a larger spatial scale through representing the 
physical attributes of landslide runout.   

While the goal of some models, like AschFlow and Flow-R, is to physically represent the landslide 
characteristics that lead to termination, other empirical models are aimed at identifying topographic 
controls that lead to termination. Benda and Cundy (1990) modeled debris flow termination in the Pacific 
Northwest based on the runout reaching a critical slope of 3.5° or having a change in direction of greater 
than 70° on a reach. Fannin and Wise (2000) determine erosion/deposition along the landslide path based 
on slope. Approaches like these topographic evaluations have more limited applicability due to not 
always having explicit analyses about the landslide runout paths and they typically require site-specific 
calibration, but they can be useful in large-scale applications, be applied with ease, and require minimal 
data as input. While previous models have considered topographic controls, they either did it at larger 
spatial scales or adjusted landslide runout based on previously encountered topographic biases, such as 
bends.   

This study aims to develop a large spatial scale landslide runout model using only topography as input, 
allowing for ease of application without computationally intensive demands or large amounts of data. The 
aim is to evaluate whether a rules-based topographic landslide runout model can perform well enough to 
provide a middle ground between a simple angle of reach analysis and more complex mechanistic models. 
We evaluate our model with a landslide inventory from a precipitation-induced event in the Colorado 
Front Range. The precipitation event, which lasted nearly a week in September 2013, led to more than 
1,300 observed landslides across 3,400 km2 where the combined impact of debris flows and flooding 
caused hundreds of millions of dollars in damage to roads and infrastructure, damaged thousands of 
houses, and killed many people (Coe et al., 2014). The study aims to develop an empirical, topographic 
landslide runout model and in doing so, evaluate whether a simple routing can route landslides to the 
same topographic control as the observed landslides, evaluate whether our topographically controlled 
landslide runout model can predict landslide termination, and evaluate how the model performs when 
compared with an angle of reach approach.   

3.2  Model Design 

There are two key components to representing landslide runout: the path and the termination. The 
landslide runout model is developed using tools from the Python package Landlab, version 1.0.9. A pre-
processing step uses a built-in tool for flow accumulation, which is based loosely on the work of Braun 
and Willett (2013). The tool determines which direction flow will travel for each cell in the DEM. We 
apply this step assuming a d8 routing with steepest line of descent, based on the work of Tarboton (1997), 
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which finds the steepest slope between each node and the eight surrounding nodes. We also apply a 
depression finder and router, based on the work of Tucker et al. (2001), to provide routing through 
depressions in the landscape. The output from this processing step is a flow direction grid.  

By assuming a steepest line of descent and applying routing through depressions, there are limitations that 
we are incorporating into our modeling approach. The steepest line of descent means that the landslide is 
continuously going to traverse downhill along the steepest gradient, independent of obstructions and other 
losses in momentum that might impact landslide direction. A depression router assumes that the landslide 
will continue to travel despite slight discontinuities in slope. In reality, a depression would cause a 
decrease in the momentum of the landslides and a potential loss in volume. Iverson and Denlinger (2001) 
discuss the complexity of representing erosion/deposition of debris flows, which can cause significant 
changes in volume, and conclude that accurate assessment of these patterns requires 3D modeling to 
capture the interactions between the debris flow and the boundary conditions. This is beyond the scope of 
this project and is thus neglected, an assumption also applied in previous landslide models (Horton et al., 
2013).   

The landslide runout model is a modified version of the built-in Landlab trickle down tool. The model 
requires the output from the flow accumulation processing step and a list of the landslide initiation points. 
For each initiation point, a path is determined based on the flow direction grid. At each incremental point, 
the cumulative travel distance, local slope, and local curvature is determined. 

Our landslide model predicts termination based exclusively on topography. The model requires specifying 
a critical local slope in degrees, defined as a minimum slope the landslide must traverse, and slope 
persistence in meters, which is the distance under the critical slope the landslide must travel before 
stopping. Landslides will continue traveling until the energy lost surpasses the initial gravitational 
potential energy (Iverson, 1997). The combination of a critical slope and slope persistence is aimed at 
assessing this energy reduction indirectly though considering whether the topographic control of a low 
slope for an extended period predicts where termination occurs.   

In addition to the critical slope and slope persistence stopping condition, we apply the angle of reach as a 
stopping condition. While simplistic, the ease of application for an angle of reach to represent potential 
landslide stopping locations makes it easy to apply and is thus a widespread initial approach to landslide 
runout mapping. The angle of reach is applied as a comparison to our model to assess which approach 
performs better. This involves identifying the distance traveled and noting when, if ever, the landslide 
reaches the specified angle. For each scenario, all modeled landslides use the same specified angle of 
reach.  

3.3  Modeling Methods 

The landslide inventory used in our model calibration is from the 2013 storm event in the Colorado Front 
Range. Landslide initiation points and runout paths are provided by Coe et al. (2014). The initial 
evaluation by Coe et al. (2014) provides insight into landslide behaviors within the Colorado Front 
Range. Of the more than 1,100 debris flows analyzed, they were predominately initiated on open slopes 
and swales. The landslides initiated as debris slides that then transformed into debris flows, leading to 
longer runout. The landslide direction largely impacted the travel distance: landslides that entered a 
channel traveled five times farther than landslides that terminated before reaching a channel (Coe et al., 
2014). 

Two types of mass movements are debris flows and debris slides. We use debris flows, henceforth termed 
landslides, in our model and remove all debris slides and other mass movements from our evaluation. A 
debris slide can be initiated in the same way as a debris flow and as such, we define both terms based on 
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Varnes (1978). Debris slides are comprised of a translational movement of soil. Debris flows are also 
made of soil though the water content is higher, leading to more fluid-like characteristics. This formation 
can lead to increased travel distances when compared with debris slides.  

3.3.1  Study Area 

The model calibration and evaluation areas are located in the Colorado Front Range (Figure 3.1). The 
areas are chosen due to the high concentration of landslides. The calibration area is 109 km2 and contains 
258 mapped landslides from the landslide inventory from the 2013 storm event (Coe et al., 2014). The 
elevation within the calibration area ranges from 1,708 to 2,791 m, the land use is comprised 
predominately of evergreen trees (NLCD, 2016) with some dispersed shrubs, and soils are predominately 
sandy loams (Soil Survey Staff, 2020). The model evaluation area is 150 km2 with 303 landslides from 
the 2013 event. The evaluation area ranges in elevation from 1,792 to 3,215 m and has soil and vegetative 
characteristics similar to the calibration area.  

 
Figure 3.1  The calibration and evaluation areas are located in the Colorado Front Range 



   

 

  36  
 

3.3.2  Model Calibration  

An initial analysis we perform is evaluating the appropriate DEM grid size to use in our study area when 
applying the runout model by comparing 1 m LiDAR data (USGS, 2018) with 10 m DEM data (USGS, 
2015). The LiDAR data, which were collected after the 2013 storm event, are non-continuous in some 
areas, leading to the inability to map all landslides. The 10 m DEM, also collected post-event (2015), is 
1/3 arcsecond resolution and is resampled in the study area to a 10 m resolution. The post-event elevation 
data are the only elevation data readily available. The mapped landslide tracks are discretized such that 
the distance between any two points is a maximum of 1 m or 10 m to correspond to the elevation data cell 
size. The elevations, slopes, and curvature for the landslides are identified to determine differences 
between the 1 m and the 10 m data. We qualitatively and quantitatively compare the results. Based on this 
analysis, the results of which we present later, we determine that the 10 m DEM provides necessary 
model precision and there is not significant loss in accuracy for landslide slope between the start and end 
of the landslide and as such, apply the 10 m DEM to all following analyses. We use MATLAB version 
R2019A for this initial data processing. 

The landslides are processed in Python 3.7 for subsequent modeling efforts. The landslides are mapped to 
each DEM grid by determining the grid cells that the landslides pass through. The distance along each 
landslide is re-calculated using the grid cell distances. The gridded landslides are henceforth termed 
“observed landslides,” while the non-gridded landslides are termed “original landslides.” The observed 
landslide distances are used for comparing with the modeled landslide distances. 

Model calibration requires setting the values for the critical slope and for slope persistence distance. For 
model calibration, two statistics are calculated to compare the modeled with the observed landslide runout 
distances. The Nash-Sutcliffe (NS) value (Nash and Sutcliffe, 1970; Golmohammadi et al., 2014) is:  

 𝑁𝑁𝑁𝑁 = 1 −
1
𝑛𝑛∑ (𝑂𝑂𝑖𝑖−𝑀𝑀𝑖𝑖)2 𝑛𝑛

𝑖𝑖=1
1
𝑛𝑛∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2 𝑛𝑛

𝑖𝑖=1
             (3.1) 

where 𝑂𝑂𝑖𝑖 is the observed distance, 𝑀𝑀𝑖𝑖  is the modeled distance, 𝑂𝑂� is the averaged observed distance, and n 
is the total number of modeled landslides. The maximum NS is a value of 1, which means the modeled 
values are the same as the observed values, while a value less than zero means the model performs worse 
than the average observed distance.  

The ratio of medians (RM) is calculated as: 

 𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑚𝑚
𝑂𝑂𝑚𝑚

,                         (3.2) 

where 𝑀𝑀𝑚𝑚 is the median modeled distance and 𝑂𝑂𝑚𝑚 is the median observed distance. Because RM only 
uses the median value and is not impacted by outliers, it is used to assess whether the model is over- or 
under-predicting observed landslide distances. 
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3.4  Results 

3.4.1  Model Resolution 

The 1 m and 10 m DEM data are compared to assess whether the observed landslides are affected by the 
increased resolution and precision provided by the 1 m DEM (Figure 3.2).  

 
Figure 3.2  Comparisons between the elevation above the endpoint between 10 m and 1 m elevation data 

for two example landslides and a histogram (c) showing the slope between the first and last 
points  

The slight discontinuities in the 1 m data lead to longer areas with low slope, as shown in the close-up in 
Figure 3.2a, and at times slight increases in elevation, as shown in the close-up in Figure 3.2b. The 
general behavior for 1 m versus 10 m data considering overall slope, elevation, and distance along the 
landslide are similar, despite small-scale differences. The histogram (Figure 3.2c), which considers the 
slope between the first and last point of the landslide, has no major differences between the 10 m and the 
1 m elevation data. The 10 m data have marginally higher occurrences of lower slopes. Due to the runout 
model assuming a steepest line of descent, the increases in elevation present in the 1 m LiDAR data 
cannot be captured by our model. Between this and the slope of the landslides being similar, we assume 
that 10 m data are appropriate for application of our model. The histogram considers all the mass 
movements in the landslide inventory, the majority of which (>1100) are debris flows. The 10 m data 
include 1,350 landsides while the 1 m data, which do not cover the entire area containing mapped 
landslides, include 1,255 landslides.   

3.4.2  Landslide Direction 

To validate our assumption about d8 routing, we evaluate the landslide path to determine whether our 
modeled landslide paths encounter the same topographic controls as the observed landslides. For the 
purpose of comparing the model and the observed landslides, the modeled stopping point is assumed to be 
the closest node to the observed end point. For the calibration area,  83% of the end points of the modeled 
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landslides are within 1 node (14 m maximum) of the observed landslides. This suggests that a perfectly 
calibrated model could stop at the same location as the observed landslide based on our routing 
assumption. We visually analyze this and compare the original, observed, and modeled landslides (Figure 
3.3). 

 
Figure 3.3  Examples of original, observed, and modeled landslides in the calibration area 

Figure 3.3 shows that d8 routing generally provides a reasonable initial evaluation of landslide direction. 
While there are some areas with differences between the modeled and observed landslide paths, 
particularly closer to the landslide initiation points and in the flatter areas (Figure 3.3b), the model 
generally reflects the landslide direction.  

3.4.3  Model Calibration  

Our model calibration is aimed at determining whether modeling a critical slope and slope persistence 
identifies a topographic control that leads to landslides stopping. Our initial analysis considers critical 
slope and persistence combinations and the corresponding NS and RM values within the calibration area 
(Figure 3.4).  
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Figure 3.4 Critical slope and the slope persistence combinations compared to the corresponding NS 

(a) and RM (b) in the calibration area 

The analysis shows that the highest performance for NS has two peak values. The first is at a low critical 
slope and a short slope persistence. The second is a marginally higher slope and longer slope persistence, 
and this peak does not have a local maximum. More extreme values in both higher and lower critical 
slopes lead to NS < 0, indicating poor model performance. RM is optimized with both lower critical slope 
and lower slope persistence or moderate critical slope and high slope persistence, leading to values closest 
to 1. While there are numerous NS and RM values that are close to the optimized values, for calibration 
purposes we move forward with the highest NS value.  

We perform three comparisons between the calibrated model and characteristics that determine the 
validity of the calibration. The calibrated model is the critical slope/slope persistence combination that 
optimizes NS. This scenario is compared with (1) the optimized RM model, (2) a landslide convergence 
analysis, and (3) the evaluation area (Table 3.1).     
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Table 3.1  Geometric data corresponding to the model comparisons  

Variable  Calibrated 
Scenario  

Comparison 
1: 

Calibration 
Variable 

Comparison 2:  
Landslide Convergence  

Comparison 
3: Evaluation 

Area 

RM Maximum Minimum Random Evaluation 
Area 

Critical Slope 
[°] 3 12 3 3 3 3 

Slope 
persistence [m]  20 90 20 20 20 20 

NS 0.69 -0.07 -0.43 0.49 0.44 0.58 
RM 1.72 1.00 2.49 2.02 2.04 1.54 

Mean distance, 
observed [m] 1264 1251 483 538 547 558 

Mean distance, 
modeled [m] 1259 606 695 618 672 555 

Median 
distance, 

observed [m] 
547 542 212 258 258 279 

Median 
distance, 

modeled [m] 
941 540 527 522 525 429 

IQR, observed 
[distance] 1635 1625 402 567 428 594 

IQR, modeled 
[distance] 1053 503 597 565 564 613 

IQR [diff. 
between 

observed and 
modeled 

distances] 

595 1089 480 312 337 92 

IQR [diff. 
between 

modeled and 
observed end 

points] 

707 655 475 325 353 143 

Unique end 
points  80 112 80 119 

Total 
Landslides  244 244 244 303 

Note: IQR = interquartile range 

Comparison 1 contrasts the calibrated scenario, which optimizes NS, to the optimized scenario for RM. 
NS is optimized at a slope of 3° and a slope persistence of 20 m while RM is optimized at a slope of 12° 
and a slope persistence of 90 m. The NS is significantly lower (-0.07 compared with 0.69) for the 
optimized RM. The RM is higher, indicating over-prediction of landslide runout distance, for the 
optimized NS scenario.  
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Figure 3.5  The difference between landslide distances (a) and end point locations (b) in the calibration 

area between the optimization of the two calibration variables 

Figure 3.5 presents histograms comparing the difference between the modeled and observed landslide 
distances (Figure 3.5a) and the distance between the modeled and observed end points (Figure 3.5b). The 
difference in distances (Figure 3.5a) is shifted toward positive values for both NS and RM values. The 
RM optimization results in more equal over- and under-prediction of landslide distance, resulting in a 
number of landslides having distances greater than 2,000 m between the modeled and observed landslide 
values. This validates using NS as the main calibration variable as all the landslides are considered. 

Comparison 2 considers landslide convergence. Within the 290 observed landslides within the calibration 
area that are at least 10 m (two grid cells) long, there are 172 unique end points. All landslides, both 
modeled and observed, that converge are stopping due to the same topographic control. As our model 
evaluates topographic controls, using all the landslides in the calibration where multiple landslides 
converge might lead to skewed model results as the topographic controls are not unique. For end points 
where multiple landslides converge, we consider four scenarios: (1) using all landslides that the model 
predicts as stopping, which is the approach applied in the calibrated NS scenario and the RM scenario in 
Comparison 1, considering landslides that converge and at each unique end point; (2) choosing the 
landslide with the minimum absolute distance between the modeled and observed landslide distance; (3) 
choosing the landslide with the maximum absolute difference between the modeled and observed 
landslide distance; and (4) randomly selecting a landslide that ends at that location (Figure 3.6). These 
modeling analyses will henceforth be termed full, minimum, maximum, and random end point analyses.  
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Figure 3.6  A visual example for the four types of end point analyses in which the model predicts both 

slides terminating: the full analysis uses both landslides 1 and 2; the maximum end point 
analysis using Landslide 1 as the difference between the observed and the modeled landslide 
distance is greater; the minimum end point condition using Landslide 2 as the difference 
between the observed and the modeled landslide distance is smaller; and the random end 
point analysis randomly selects Landslide 1 or Landslide 2 

Comparison 2, which compares the calibrated scenario to the minimum, maximum, and random end point 
analyses assuming the same critical slope and slope persistence, has a range in predictive abilities. The 
maximum analysis has an NS value less than 0 and the largest RM value. The minimum analysis has NS 
of 0.49, which is closer to the calibrated scenario, and an RM value of 2.02. The random analysis has a 
lower NS than the calibrated scenario and a comparable RM value to the minimum analysis.  
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Figure 3.7 The difference between landslide distances (a) and end point locations (b) in the 

calibration area between end point analyses 

In considering the end point analysis histograms (Figure 3.7), there are 244 total landslides in the full 
dataset that are predicted as stopping and 80 landslides in the minimum, maximum, and random analyses. 
The maximum is shifted toward increased variability, which means more spread. The minimum analysis 
minimizes the distance, thus is selecting for the best-fit landslide values. The random selection is variable 
between model runs. The difference between the landslide stopping analyses suggests landslide 
convergence is important to consider in topographic models but in our case, maintaining all landslides as 
in the calibrated scenario is the best way to ensure all landslide lengths and differences between predicted 
and modeled landslides are considered.  

Comparison 3 (Figure 3.8) applies the calibrated model variables to the evaluation area to evaluate model 
performance. The evaluation area has a marginally lower NS value of 0.58 and an RM value of 1.54, both 
of which are lower than the calibrated scenario. The landslides in the evaluation area are shorter with a 
mean of 555 m for modeled versus 558 m for observed landslides as compared with the mean of 1,259 m 
for modeled and 1,264 m for the observed landslides in the calibration area. The IQR is also significantly 
less for the difference between modeled and observed landslides in the evaluation area.  
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Figure 3.8  The difference between landslide distances (a) and end point locations (b) in the calibration 
area compared with the evaluation area  

The histograms for Comparison 3 (Figure 3.8) show that in the evaluation area, differences between 
modeled and observed landslide distances and end points are closer than the calibration scenario. The 
spread in the values for the evaluation area is significantly smaller than in the calibration area.  

The results for the evaluation area are mapped in Figure 3.9.    
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Figure 3.9 A map from the evaluation area demonstrates the final model performance 

comparing the observed landslides with the modeled landslides 

The model captures the general behavior in landslide tracks. The zoomed-in area shows that the model 
tends to predict slightly longer runout paths and that modeled landslides tend to converge more often than 
the observed landslides.  

3.4.4  Comparison to Angle of Reach Modeling 

For an initial consideration, we determine the angle of reach for the observed landslides in the evaluation 
area (Figure 3.10). The observed landslides have an angle of reach ranging from 3.6° to 49.0° with a 
mean value of 25.1° and a median of 25.5°. 

 

Figure 3.10 The angle of reach for the observed landslides in the evaluation area 
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To assess whether our model performs better than an angle of reach approach, we apply the angle of reach 
as a stopping condition by specifying the angle and determining when, if ever, modeled landslides reach 
that angle. We apply an angle of reach ranging from 3° to 50°, increasing in increments of 1°, as a 
stopping condition applied to all the landslides in the evaluation area (Figure 3.11). The results have NS > 
0 between 18° and 24°. RM is greater than 1 from 3° until 23° and less than 1 at higher slopes. The 
maximum NS is at 20° with NS = 0.14 and RM = 1.78. 

 
Figure 3.11  The corresponding NS and RM values for a constant angle of reach being applied 

3.5 Discussion  

Our analyses determine that topographic controls can predict landslide termination in the Colorado Front 
Range. We compare our model to an angle of reach. Angle of reach analyses are often applied through 
considering landslide volume, which can lead to increased model performance (Corominas, 1996). Due to 
a lack of information about landslide volume, we only apply a single angle of reach. Another approach 
that has been taken to improve topographic models is to consider change in direction. Corominas (1996) 
evaluated the angle of reach for unobstructed, obstructed, and channelized landslides. Benda and Cundy 
(1990) applied a landslide stopping condition of whether a junction exceeded 70°. Our model considers 
only the topographic controls that lead to landslides stopping and does not consider additional upstream 
conditions, such as changes in direction. This simplifying assumption, along with the lack of information 
about landslide volume in our landslide inventory, limits the accuracy of the angle of reach in our study. 
The result is that our model performs better, as it can capture more of the variability in the observed 
landslides.  

Our model evaluates the topographic controls on landslides initiated from a single precipitation event in 
Colorado. The modeling goal is to evaluate whether our model provides increased accuracy for large-
scale runout predictions. To make the model applicable on a broader scale, there are tradeoffs to consider 
between our simplistic application and being able to represent landslide runout risk more broadly, 
including considering flow spreading, landslide volume, and landslide type. 

In considering simplifying model assumptions, our model does not consider landslide spreading. Huggel 
et al. (2003) considers glacial outburst floods and found that the d8 routing approach correctly identified 
the flow path but is more impacted by errors in the DEM and represents fewer realistic deposition patterns 
than alternative routing approaches. Horton et al. (2013) discusses that, in terms of runout paths, the d8 
approach provides unrealistically straight paths and leads to limited landslide spreading. To more 
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realistically model landslide spreading while maintaining simple model assumptions, Scheidl and 
Rickenmann (2009) applied a d8 landslide mapping approach combined with a Monte Carlo simulation to 
represent multiple flow paths. A similar modeling approach, or evaluating whether a simple buffer around 
the landslide path could realistically represent conditions, could be incorporated to capture landslide 
spreading more realistically.  

Another consideration is the tradeoff between using a single stopping condition and considering landslide 
volume. Relating landslide stopping location with landslide volume could improve the model by more 
accurately representing observed landslides. Landslide volume could be considered indirectly by 
considering landslide runout distance as higher angles of reach correspond to decreased volumes 
(Corominas, 1996). To maintain simplicity, having unique critical slope and slope persistence 
combinations dependent on landslide volume could be applied by having a range in the predicted 
landslide stopping location instead of a single point. 

Another tradeoff in our model is that we only consider debris flows though a number of debris slides are 
present. Debris slides tend to be shorter than debris flows in our study area, so determining if the same 
critical slope/slope persistence combinations represent the debris slides would need to be evaluated. 
Further, the d8 routing would need to be checked to assess whether this assumption accurately captures 
debris slide routing. Identifying the topographic controls that lead to debris slides stopping could 
contribute to quantifying potential landslide runout distances based on landslide type. 

3.6  Conclusion 

Our landslide model is an empirical, topographically based framework for landslide runout modeling in 
the Colorado Front Range. We apply d8 routing, which assumes a steepest line of descent, and a 
combination of a critical slope and slope persistence to capture landslide end points in the Colorado Front 
Range. We determine that simplistic d8 routing and steepest line of descent assumptions on a 10 m DEM 
provide reasonable predictions for landslide runout paths and predicting landslide termination. Finally, we 
apply an angle of reach to determine landslide termination and determine that the angle of reach performs 
worse than the calibrated combination of critical slope and slope persistence. The model is simplistic and 
requires only elevation and landslide initiation points as input, allowing for ease of application.  

Future model improvements should evaluate model performance in different study areas to determine 
whether the combination of a critical slope and slope persistence can act as topographic control for 
determining where landslides will terminate. Another area for future work is combining the model with a 
landslide probability model. In integrating the two, a more complete understanding about landslide hazard 
mapping can be developed.  
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4.  CONCLUSIONS AND FUTURE WORK 

The landslide probability model provides an initial evaluation of current and future landslide risk in the 
Colorado Front Range. The model predicts the landslides initiated by the 2013 storm event and quantifies 
the potential impacts of climate change. There are areas for further development of the model and 
analyses. Evaluating whether the probabilities associated with the model are appropriate would allow for 
better understanding of the temporal aspect of landslide probability modeling. This could include 
evaluating a broader landslide inventory as all the observed landslides we consider were initiated by a 
single event. The uncertainties with climate change, relating to both vegetation dynamics and hydrologic 
changes, should be further analyzed to determine how best to represent uncertainties over large spatial 
extents and the resulting impacts on landslide susceptibility.   

The landslide runout model showed that the topographic controls of a specified distance under a critical 
slope provide reasonable results for determining landslide end points within our study area. Future model 
development can focus on applying the model to different areas to determine if the same assumptions 
yield realistic results. The analyses could also be improved by incorporating landslide volume to better 
quantify topographic controls. Additional research can also focus on whether there are easily applied 
variables that could represent landslide spreading. Incorporating landslide spreading would provide 
additional understanding about areas susceptible to landslides. Finally, considering whether debris slides 
have topographic controls would benefit model applicability. Because debris flows and debris slides are 
initiated by the same mechanisms, being able to predict the runout of both types is important for 
integration with a landslide initiation model.  

The landslide probability and landslide runout models provide a basis for mapping landslide risk in the 
Colorado Front Range, and an area for future work is combining the two models. Areas with a predicted 
probability of failure from the landslide probability model can be used as the initiation points for the 
landslide runout model. In the landslide runout model, once a stopping condition is met, a probability for 
that landslide location can be determined based on the initial landslide probability of failure and the 
percent of landslides in the study area the model accurately represents with those stopping conditions. 
This would allow for more complete understanding about current landslide risk and could be combined 
with climate modeling to provide more complete understanding about areas susceptible to landslides 
under climate change scenarios.  

Our landslide modeling applications contribute to the general understanding about shallow, precipitation-
induced landslides, the drivers for accurately capturing landslide probability of failure on a broad spatial 
extents, the impacts of climate change induced changes to landslide susceptibility in the Colorado Front 
Range, and the topographic characteristics that make landslides stop. This information can be used by 
researchers to perform to further analyses of landslide probability and runout, risk managers in 
considering which practices might impact slope stability, and infrastructure developers who might 
consider landslide risk in current and future projects. Particularly with climate change potentially 
increasing the areas susceptible to landslides in the Front Range, determining under what conditions 
landslides occur and where they will travel is important to guide decision making in the present and in 
moving forward.  
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