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EXECUTIVE SUMMARY 
 
Highway-rail grade crossings (HRGCs) are a specific spatial location where two transportation modes of 
rail and road intersect with each other at grade level. HRGC accidents are mostly associated with 
potential points of conflict between roadway traffic and train traffic. Because of the substantial mass 
difference between automobiles and trains, crashes usually have relatively severe results. In addition, 
traffic delays of both the railway and the roadway can considerably extend the economic loss of crashes at 
HRGCs, and the expenditures from disruptions to both the roadway and railway networks can also be 
significant. 
 
The research proposed an innovative statistical method, competing risk modeling (CRM), to identify the 
contributors, quantify marginal effects of geometric factors and control devices, and predict crash 
occurrence and severity simultaneously. Traffic exposure variables such as annual average daily traffic, 
day through train, night through train, train speed, and percentage of trucks are all significant 
contributors. The type of train services, commercial power availability, and train detection technologies 
are also identified as significant contributors. Moreover, the research also further quantified the four 
geometric contributors’ effects and conducted detailed marginal effectiveness analysis for traffic control 
devices considering the pre-control conditions. The four geometric factors are distance between a crossing 
and its nearest intersection, crossing angle as a continuous variable, number of lanes, and number of 
tracks. These geometric factors are spatially calculated with GIS software if they are not readily available. 
 
The research also proposed an approach investigating the potential use of the effectiveness and prediction 
results from the CRM to rank and prioritize crossings in North Dakota based on the predicted cumulative 
crash likelihood assuming equal weight on property damage only (PDO), injury crashes, and fatal crashes. 
Inverse distance weighted (IDW) interpolation is utilized to map the crossings’ crash likelihood (𝑪𝑪𝑪𝑪𝑪𝑪𝒄𝒄) 
resulted from CRM in North Dakota. This assigned value is a geographically weighted average of crash 
likelihoods, estimated by considering the distance between interpolated spots and the known crossings 
nearby. IDW assumption is that the calculated crash likelihoods have a local effect, and this effect 
decreases as the distance increases. Moreover, an interactive app is developed to illustrate the findings of 
the study. 
 
The applied approach suggests that the method is easy to use and interpret in practical applications, and the 
following conclusions are drawn from the study:  

1) Hazard index should include both crash severity and crash occurrence likelihoods.  
2) Prediction model should be able to predict both crash severity and crash occurrence 

simultaneously to account for unmeasurable variances with the same set of predictors.  
3) Some contributors can be found significant to certain crash levels but not significant to others.  
4) One contributor can positively impact certain crash levels but negatively impact others.  
5) The dependency between competing risks exists, so the prediction model should consider such 

dependency. The independent censoring assumption could result in under-estimated contributor 
effects.  

6) Marginal countermeasure effectiveness should be dependent on the pre-existing conditions. In 
other words, adding a same device to crossings with different existing control devices will present 
different effectiveness.  

7) Adding a traffic control device to a crossing does not always result in improved safety 
performance.  

8) Adding a traffic control device to a crossing may result in a positive improvement effect on 
certain crash levels but a negative improvement effect on others. 
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1. INTRODUCTION 

Highway-rail grade crossings (HRGCs) are a specific spatial location where two transportation modes of 
rail and road intersect with each other at grade level. HRGCs crashes are mostly associated with potential 
points of conflict between roadway traffic and train traffic. Because of the substantial mass difference 
between automobiles and trains, crashes usually have relatively severe results. In addition, traffic delays 
of both the railway and the roadway can considerably extend the economic loss of crashes at HRGCs, and 
the expenditures from disruptions to both the roadway and railway networks can also be significant. 

Safety concerns at HRGCs in the United States have been social concerns for decades because crashes at 
those locations are often catastrophic and result in greater economic loss for both highway and railway 
users. There are about 205,000 at-grade crossing in the United States. The number of HRGC accidents 
declined substantially over time because more safety research promotions and more transportation safety 
infrastructure improvements have been conducted. However, from Figure 1.1, one can tell that 
incidents/million train miles traveled show an upward U-shaped curve trending. It is important for 
transportation agencies, decision makers, and stakeholders to be more innovative and rethink the realm of 
possibilities to enhance safety (Andersen, 2013).  

 
Figure 1.1  U.S.A. HRGC Incident Trends Overview, 2000-2021 

About 11% of HRGC crashes resulted in 11,269 fatalities, while only 0.5% of all roadside crashes led to 
deaths nationwide (Zheng et al., 2018). Compared with national data, as seen in Figure 1.2, North Dakota 
(ND) is one of the safest states in terms of at-grade crossing crash frequency. However, crashes in the 
state tend to be more severe than the national average. Based on the past 22 years of data, on average, 
there are about 3.4 incidents per million train-miles at the national level, but the ND at-grade crossing 
crash rate is nearly 0 per million train miles traveled; however, 10.5% of all national-level HRGC crashes 
are fatal and the ND value is 15%, compared with a 0.5% roadside fatal ratio. 

In ND, the need to improve HRGC safety has been a major social concern for decades. Transportation 
agencies and other stakeholders must identify the factors that contribute to the likelihood of various levels 
of HRGC crashes to better predict crash and severity probability and understand the marginal 
effectiveness of the countermeasure treatments to provide direction for RGC designs and improvement 



2 

strategies that will reduce crash numbers. This research intends to improve agencies’ understanding of 
HRGC safety performance and safety improvement treatment selections.   

 
Figure 1.2  ND HRGC Incident Trends Overview, 2000-2021 

The following research report is organized with chapter two focusing on the literature review on the 
HRGC safety research. Chapter three introduces the crash prediction models. Chapter four focuses on 
improvable contributor effects analysis. Chapter five summarizes countermeasure effect analysis to 
improve HRGC safety performance. Chapter six explains the interactive display app developed by the 
team. Chapter seven illustrates ND HRGC hazard ranking, and the last chapter focuses on summary and 
future research directions. 
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2. LITERATURE REVIEW 

2.1  Literature on HRGC Crash Frequency and Severity  

A large volume of literature has been found to analyze and predict transportation incidents. Most of the 
previous research studies have focused on roadway intersection or roadway crashes (Cai et al., 2017; 
Geurts et al., 2005; Hao et al., 2019; Huang et al., 2017; Islam and Brown, 2017; Kumar et al., 2017; Lee 
et al., 2017; Li et al., 2017; Paul, 2019; Qin et al., 2004; Ulak et al., 2019; Veeramisti et al., 2019; Wang 
and Abdel-Aty, 2006; Zheng et al., 2018). Relatively little research effort has focused on HRGC crashes 
compared with roadway crashes (Cho and Rilett, 2006; Ghomi et al., 2016; Haleem, 2016; Khattak et al., 
2012a; Lu and Tolliver, 2016; Tung and Khattak, 2015; Yue and Jones, 2010; Zhao and Khattak, 2017; 
Zheng et al., 2019; Zheng et al., 2016). Moreover, among all the previous HRGC crash analyses, the 
majority of them focus only on either crash frequency, often based on crossing inventory databases (Lu 
and Tolliver, 2016; Austin and Carson, 2002; Guadamuz-Flores and Aguero-Valverde, 2017; Heydari et 
al., 2018; Heydari and Fu, 2015; Hu et al., 2012; Hu and Lin, 2012; Khattak et al., 2012b; Khattak and 
Luo, 2011; Lee et al., 2004; Medina and Benekohal, 2015; Millegan et al., 2009; Oh et al., 2006; 
Saccomanno et al., 2007; Saccomanno and Lai, 2005; Yan et al., 2010), or on crash severity analysis, 
often based on historical crash police report databases (Ghomi et al., 2016; Eluru et al., 2012; Fan et al., 
2015; Haleem and Gan, 2015; Hao and Daniel, 2016; Hao and Daniel, 2014; Hao and Daniel, 2013; Hu et 
al., 2010; Kang and Khattak, 2017; Liu and Khattak, 2017;  Ma et al., 2018; Savolainen et al., 2011; Zhao 
et al., 2019; Zhao and Khattak, 2015). To understand and predict crash frequency and severity 
simultaneously and consistently is important for agencies seeking to improve safety so they can account 
for the common factors affecting both crash frequency and severity. Separate forecasting models help to 
determine what factors affect the likelihoods of a crash occurrence or crash severity levels; however, there 
are several application obstacles: (1) Identified contributors are not consistent. Policy-reported surface 
conditions are often used in severity models but are not available for crash occurrence models. (2) 
Estimated crash severity likelihoods are conditional probabilities given crash occurrences based on a 
unique set of identified contributors and not transferable for agencies to calculate absolute probability for 
a specific crash level. For example, separate forecasting models could provide 20% crash likelihoods with 
one set of contributors, say A to E, and 25% level-one crash severity, 30% level-two crash severity, and 
45% level-three severity with another set of contributors, say D to H. Because of F, G, and H 
contributors, the probabilities are not transferable among different models; however, safety improvement 
agencies need consistent and commonly available information to assist in safety improvement decision-
making based on both crash occurrence and crash severity. The same forecasting model to account for 
both crash frequency and severities with commonly available contributors is needed so that unmeasurable 
variance can be accounted for in the same error term and the estimated likelihoods can be directly used by 
agencies.  

2.2  Literature on Contributor Effects of HRGC Safety Performance 

There is extensive literature on identifying safety performance contributors. Contributing factors can be 
geometric factors of crossings like crossing angles and distance to a nearby intersection or traffic 
exposure factors, such as daytime train traffic, roadway traffic, and train speed. Table 2.1 demonstrates 
the contributors that 39 state DOTs consider in their grade crossing safety improvement projects based on 
the reports provided by Sperry et al. (2017a, 2017b)  and FHWA (2014). Table 2.1 indicates that the three 
most common contributors that state DOTs considered are annual average daily traffic (AADT), train 
volume, and crossing control types, which are all used by more than 90% of state DOTs. Other key 
contributors are crash history (crash frequency), train speed, and the number of main tracks. 
 

  



4 

Table 2.1  Contributing Factors Adopted by States (Sperry et. al., 2017a) 
Contributors Number of States 
Annual Average Daily Traffic (AADT)  39 
Train Volume  39 
Crossing Control Types  36 
Crash History  29 
Train Speed 29 
Number of Main Tracks  28 
Number of Traffic Lanes 24 
Roadway Paved Condition 23 
Highway Speed Limit 5 
Distance to the Nearest Intersections 3 
Type of Train Service 3 
Crash Severity  1 
Crossing Angle  1 
Pavement Markings 0 
Train Detection System 0 
Commercial Power 0 
Percent of Trucks 0 

 
The most researched contributors are either traffic exposure variables such as AADT and travel speed or 
traffic control devices such as gates. In general, the traffic exposure contributors are believed to have 
positive impacts on crash frequency and severity (Chadwick et al., 2014; Djordjević et al., 2018; Liu et 
al., 2015; Lu and Tolliver, 2016; Ma et al., 2018; Saccomanno et al., 2007; Witte and Donohue, 2000; Wu 
et al., 2014; Zhang et al., 2018; Zhao and Khattak, 2015); in other words, the higher the traffic exposures 
the more likely the crash occurs.  

A complete understanding of how HRGC geometric factors affect HRGC crash severity and frequency is 
also critically important. Motor vehicle drivers have more flexibility in terms of their route and speed of 
traveling choices; in contrast, trains are restricted to a fixed guided path and strict traveling speed (Ogden 
and Cooper, 2019). Moreover, with reduced friction between the steel wheel and the steel rail, trains take 
much longer distance to stop compared with trucks on the road. Consequently, to avoid HRGC collisions, 
trains have the right of way. Because of this, highway and railroad engineers who design, operate, and 
improve the safety performance of HRGCs not only need to identify contributing factors such as 
geometric variables but also need to understand their effects on safety performance (Ogden and Cooper, 
2019).  

Distance between a crossing and its nearest highway intersection indicates the potential number of 
vehicles to be queued up by the intersection traffic control. Moreover, it also impacts the highway users’ 
sight distance. A short distance indicates less storage capacity, which will potentially increase the chances 
of secondary crashes for the vehicles trapped between crossings and intersections; however, a short 
distance provides better vision, which will help alert drivers to the existence of the crossing and the rail 
traffic.  Crossing angles, number of tracks, and number of highway lanes could also impact the vehicle 
struck position such as T-bone crashes or side-swipe collisions. T-bone crashes, which will more likely 
happen when the crossing angle is close to 90°, can be one of the most serious types of crashes. While 
side-swipe collisions are more likely to happen with acute angles and with more highway traffic lanes. On 
the other hand, acute crossing angles and multiple main tracks will increase track clearance distance 
(Transport Canada, 2019). Increased track clearance distance will certainly increase the chances that 
highway users become trapped on crossings, which will in turn have an impact on severity.  
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It is commonly agreed that geometric features can affect collision frequency because these features can 
impact travel operations and sight distances at HRGCs. However, their overall quantitative effects on 
crash frequency and crash severity likelihood are unclear. Moreover, the long-term effects of geometric 
features also need to be explored to fully understand their effects on safety performance over time.  

Most existing identification and analysis of various contributors to HRGC safety performance focus on 
the investigation of their association with injury severity levels (Eluru et al., 2012; Fan et al., 2015; 
Ghomi et al., 2016; Haleem and Gan, 2015; Hao and Daniel, 2016, 2014, 2013; Hu et al., 2010; Kang and 
Khattak, 2017; Liu and Khattak, 2017; Lu and Tolliver, 2016; Ma et al., 2018; Savolainen et al., 2011; 
Zhao et al., 2019; Zhao and Khattak, 2015; Zheng et al., 2016). Hao and Daniel (2013) applied an ordered 
probit model with 10 years of crash data to identify the significant variables impacting crash severity at 
HRGCs in the United States. Their study indicated that, compared with male and younger drivers, female 
and older drivers are more likely to be involved in severe injury crashes. Hao and Daniel (2014) 
continued their studies and found that peak hour, visibility, motor vehicle speed, train speed, driver’s age, 
area type, and traffic volume have effects on driver injury severity at both active and passive highway-rail 
crossings. Eluru et al. (2012) used the latent ordered response model with 10 years of U.S. HRGC crash 
data and found that travel time, truck sequence, and aggressive driving maneuvers impact crash severity. 
Hu et al. (2010) investigated three years of crash data from Taiwan with a generalized logit model and 
found that volumes of train traffic and truck traffic have positive relationships with crash severity. 
Recently, Zhao et al. (2019) used binary logit models and a generalized linear mixed model and found 
that train speed, freight train service, absence of flashing lights, advance warnings, rural areas, and lower 
visibility significantly impact crash severity. Although extensive research has focused on identifying 
safety performance contributors, there have been relatively few attempts (Austin and Carson, 2002; Berg 
et al., 1982) at quantifying the effects of geometric factors on safety performance at HRGCs. This gap 
could result from the lack of detailed HRGC geometric measurements (Washington and Oh, 2006). The 
most commonly used database for grade crossing geometric information is the Federal Railroad 
Administration’s (FRA) highway-rail grade crossing inventory data. Crossing angle and the distance 
between a crossing and its nearest roadway intersection are continuous numerical variables. However, the 
recorded values provided by FRA have been categorized into truncated groups. Thus, these two variables 
are shown as nominal variables with three crossing angle levels (0°–29°, 30°–59°, and 60°–90°) and two 
distance levels (no greater than 500 feet [152.4 m] and greater than 500 feet [152.4 m]). Ogden and 
Cooper (2019) indicated that these two variables could have an effect on collision frequency because of 
their potential impacts on sight distance and vehicle storage capacity. A few studies examined these two 
HRGC geometric factors’ effects on crash severity levels. However, all the researchers used the geometric 
variables as nominal variables in their research. Zhao et al. (2019) considered the smallest crossing angle 
as one of the potential factors associated with pedestrian injury severity levels. They used the smallest 
crossing angle factor as a nominal variable with two levels (1: less than 60°; 0: otherwise). Haleem (2016) 
investigated the effects of distance to the nearest intersection with four levels (≤ 75 feet [23 m], 75–200 
feet [23–61 m], 200–500 feet [61–152.4 m], and>500 feet [152.4 m]) and found that the variable is not 
significant in both models. Yan et al. (2010), Liu and Khattak (2017), and Oh et al. (2006) also 
considered both variables as nominal variables with different levels in their analysis and concluded they 
are not always significant contributors to HRGC crash frequency or crash severity. 

A few researchers also tried to identify the effects of some other HRGC geometric factors in their crash 
severity/frequency analyses (Austin, 2000; Liu and Khattak, 2017; Oh et al., 2006; Yan et al., 2010). Yan 
et al. (2010) indicated that number of traffic lanes has a significant impact on crash frequency with the 
negative binomial (NB) model but not with a hierarchical tree-based regression (HTBR) model; but the 
number of tracks is significant in both models. Moreover, Liu and Khattak (2017) showed that the 
number of traffic lanes has a significant impact on injury severity while the number of tracks does not. 
However, the number of tracks was found to have a strong association with gate violations. 
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2.3  Literature on HRGC Hazard-Ranking 

Transportation officials and decision makers need systematic approaches to evaluate and identify 
crossings that need safety improvements. Identifying these systematic methods is essential to ensure that 
federal and state funds for highway-rail grade crossing improvement projects are allocated to locations 
and crossings at a higher risk for crashes (Ogden and Cooper, 2019). The most prevalent prioritization 
approaches for ranking highway-rail grade crossings are hazard index and collision prediction formula 
techniques. While the hazard index is used to estimate a value that ranks crossings in relative terms (the 
higher the quantified index, the more hazardous the crossing), the collision prediction formula (prediction 
model) is utilized to quantify the predicted crash frequency or severity. A few research projects and state 
DOTs used hybrid models, which consist of both a crash frequency (as the output of the collision 
prediction formula) and a hazard index approach (Niu et al., 2014; Weissmann et al., 2013).  

The most common hazard-ranking approaches used by state DOTs are 1) the U.S. DOT Accident Prediction 
Formula, 2) the New Hampshire Hazard Index Formula, 3) the NCHRP Report 50 Accident Prediction 
Formula, and 4) the Peabody–Dimmick Formula. Figure 2.1 indicates the distribution of HRGC hazard-
ranking models and formulas utilized by state DOTs according to a review of the state Section 130 program 
reports (FHWA,  2014). Among all the states, 39 (78%) utilize one or more hazard-ranking formulas in 
grade crossing evaluation for project prioritization and selection (Sperry et al., 2017a). One of the earliest 
hazard-ranking approaches for grade crossings is the New Hampshire Hazard Index, which depends on the 
hazard index formula. Kansas, Louisiana, Massachusetts, Michigan, and Nevada utilize the New Hampshire 
Hazard Index as their primary approach for ranking highway-rail grade crossings and their crossings’ safety 
improvements (Sperry et al., 2017a).   

The crash prediction model is another approach to prioritize grade crossings by utilizing the mathematical 
formula to calculate the predicted crash frequency (or severity) at a crossing. Therefore, the predicted value 
is used as the ranking metric for HRGCs’ prioritization targets. Figure 2.1 shows that, among states, 19 
(38%) have utilized the U.S. DOT accident prediction model and 11 (22%) developed their own state-
specific prediction model for hazard-ranking purpose. The advantage of the crash prediction model is that 
it considers several characteristics or factors that have significant effects on the crossings’ crash risk.  
Moreover, prediction models’ output can be integrated with economic data (e.g., crash costs) to produce a 
comprehensive economic analysis associated with grade crossing improvement projects (Ogden and 
Cooper, 2019).  

38%

22%

22%

10%
4% 2% 2%

U.S. DOT accident prediction model
State-specific formula or method
None, no formula mentioned
New Hampshire hazard index
Multiple formulas
NCHRP 50 accident prediction model
Peabody–Dimmick formula 

 
Figure 2.1  State DOTs’ Grade Crossing Hazard-Ranking Models 
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Although the USDOT Accident Prediction Model, NCHRP 50 Accident Prediction Model, and Peabody-
Dimmick formula are common hazard-ranking methods for state DOTs, some states (Niu et al., 2014; 
Sperry et al., 2017a; Weissmann et al., 2013) have developed state-specific hazard-ranking models in 
accordance with their accident trends and available crash records. However, most state DOTs’ hazard-
ranking models have focused on either crash prediction models (Farr, 1987b; Ogden, 2007; Schoppert and 
Hoyt, 1967) or calculation of hazard index (Abioye et al., 2020; Faghri & Demetsky, 1986; Qureshi et al., 
2003; Tustin et al., 1986), and only a few studies have explored a hybrid model incorporating both the 
accident prediction model and hazard index (Niu et al., 2014; Weissmann et al., 2013).  

Moreover, the vast majority of prioritization systems designed by state DOTs only consider the crash 
frequency at crossings. According to Sperry et al. (2017a), only one state considered crash severity as a 
factor in grade crossing hazard-ranking. Therefore, a comprehensive hybrid risk-method, which is able to 
consider both crash frequency and severity in identifying crossings that have higher priority in receiving 
improvement services, is needed.  

2.4  Current Research Gap 

Several research gaps are identified and will be the focus of this study based on the literatures 
summarized in the previous three sections: 

1) To measure and predict crash frequency and severity simultaneously, which is critical for 
transportation decision makers seeking to improve safety at grade crossings so they can identify 
and investigate the common factors affecting both crash frequency and severity changes.  

2) To better understand the effectiveness of grade crossings’ geometric factors on crash occurrence 
and severity level changes. 

3) To investigate countermeasures’ effectiveness on both crash occurrence and severity levels. 

4) To establish a prioritization or ranking system to classify crossings risk levels based on both crash 
frequency and crash severity. 

In this study, a novel competing risk algorithm and Cox proportional hazard regression is proposed to 
predict crash frequency and severity simultaneously through the application of ND at-grade crossing data. 
Mover, four critical crossings’ geometric parameters are investigated and measured at 3,194 public grade 
crossings in North Dakota. These four geometric features of crossings are: 1) acute crossing angle, 2) 
number of tracks, 3) the roadway distance between each crossing and the nearby intersection, and 4) 
number of highway traffic lanes. Note that distance to the nearest intersections and grade crossing angles 
are spatial calculations drawn from geographic information systems (GIS). The proposed CRM approach 
is also used to estimate countermeasures’ effects on crash occurrence and severity likelihood 
simultaneously by estimating their marginal effect and instantaneous risk. In addition, spatial risk analysis 
is performed based on ranking by crash frequency and severity. 
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3. CRASH PREDICTION MODELS 

3.1  Research Efforts and Publications 

As summarized in the previous sections, prediction models on grade safety performance have focused on 
either crash occurrence frequency or crash severity. Those studies shed light on the modeling and 
understanding of crash occurrence and severity separately; however, they do not provide applicable 
assistance for highway agencies to account for the common factors affecting both crash frequency and 
severity simultaneously to control unaccounted covariates affecting prediction variations. In this study, 
the competing risk method is developed and proposed for grade crossing accident safety analysis. The 
method is a well-developed algorithm that has been widely applied in the medical field but is still 
relatively new in transportation safety analysis. The detailed methodology explanations can be found in 
Keramati et al. (2020a) and Keramati et al. (2020b), which are the two journal papers published from this 
research effort and which summarized the key research efforts under this research goal. 
 
The competing risk model as a novel prediction model was proposed to examine crash frequency and 
severity simultaneously for public highway-rail grade crossings in North Dakota from 1990 to 2018. The 
competing risk model has the capability to identify specific crossings’ characteristics and to 
simultaneously model collision occurrence and crash severity probabilities. Easy-to-interoperate outputs 
are one of the advantages of the model. These outputs include the estimated coefficients, hazard ratios, 
and cumulative probabilities. Moreover, the model indicates its ability to consider the dependence of 
contributors’ effects on crash severity levels.  
 
3.2  Results Discussion 

Table 3.1 summarizes the identified important contributors by their importance and estimated percent of 
hazard ratio change for all three severity levels and for crash frequency. The hazard ratio reveals critical 
risk information regarding the contributors’ influence on instantaneous crash and severity likelihood. 
Results estimated from the short-term instantaneous hazard ratio can be underestimated because of 
independent censoring assumption. Hazard ratio is a direct isolated influential indicator to a specific 
failure event like crash occurrence in this study. The isolated influential effect is not able to consider the 
same contributor’s impact on other competing events. Consequently, it causes the underestimating of the 
covariate’s impact when HR estimations are applied for analyzing the marginal likelihood of cause-
specific events considering the competing nature of multiple causes to the same event of interest.  

To account for contributors’ effects on hazard ratio and long-term effects, the cumulative-incidence-based 
effect analysis is also conducted. Wolbers et al. (2014) demonstrated that a covariate does not have a 
significant effect on the risk of a competing-event failure based on the results of cause-specific hazard 
function; however, it still might have a significant impact on the competing event based on cumulative 
incidence function (cumulative risk probability). Subsequently, a covariate, which has no direct effect on 
one specific type of failure event, might still significantly affect the cumulative injury probability (CIF) of 
that failure event. The marginal probability of a specific failure event can be estimated by its cause-
specific probability and the overall cumulative survival probability. The detailed explanations of the 
methodology can be found in Keramati et al. (2020a) and Keramati et al. (2020b). 

Figure 3.1 displayed the estimated cumulative probabilities of failure for a selected contributor, train 
service. One can see that the cumulative crash probabilities have an increasing trend over time at different 
rates with fluctuations. In general, grade crossings with intercity passenger train service are more likely to 
have all severity and crash occurrence risks, except for injury risk, in comparison with the crossings with 
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freight train services. The figure also shows that the overall increase in cumulative PDO crash probability 
is faster than the injury and fatal crash probability for both types of train service. 

Table 3.1  Contributors and Hazard Ranking Based on Hazard Ratio 

Variable PDO Injury Fatal Crash 
Rank %Impact Rank %Impact Rank %Impact Rank %Impact 

Type of Train Service: 
Intercity Passenger 1 82% 5 18% 2 101% 2 49% 
Train Detection: 
CWT 5 22% 1 65% 1 172% 2 49% 
DC 3 50% 3 45% 3 86% 1 50% 
Is Commercial Power Available? 
No 8 10% 2 50% 6 35% 6 18% 
Is Roadway/Pathway Paved? 
No  2 55% 4 33% 8 18% 3 45% 
Total Daylight 
Through Trains 6 22% 7 11% 7 33% 5 22% 

Total Night-time 
Through-Trains 7 18% 6 18% 4 65% 7 10% 

Total Switching 
Trains 10 1% 11 3% 5 65% 9 3% 

Maximum Train 
Speed 11 0.4% 10 5% 10 3% 10 2% 

Annual Average 
Daily Traffic 14 0.01% 14 0.004% 14 0.01% 13 0.01% 

Percent Trucks 9 8% 9 10% 9 4% 8 9% 
 
In addition, Figure 3.1, part c reveals that the absolute magnitude of the increasing rate is also small 
between freight and intercity services, but over 30 years, the increased fatal probability proportion is 
almost doubled for HRGCs with intercity passenger train services in comparison with HRGCs with 
freight train services. With the short-term effect analysis, the grade crossings with intercity passenger 
service did not have a significant influence on instantaneous injury crash risk compared with crossings 
with freight train services regardless of competing risks. However, grade crossings with intercity 
passenger service were identified as significant to CIF compared with the ones with freight train services 
when considering competing risks. Similar findings are observed for other contributors such as CWT 
detection systems. 

The full report of the results and discussions can be found in the two journal publications (Keramati et al., 
2020a; and Keramati et al., 2020b). In general, this study found: 1) except night train traffic, all the 
analyzed contributors have direct positive cause-specific effects on certain crash severity levels but not on 
all the levels, 2) contributors can be identified as significant based on long-term cumulative probability 
analysis with competing risk dependency assumed but may not be significant based on short-term hazard 
ratio analysis, 3) contributors’ effects on safety performance are different for different levels of severity 
and crash occurrence.  
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Figure 3.1  CIF of Crash and Severity for Train Services 
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4. GEOMETRIC CONTRIBUTORS’ EFFECTS ANALYSIS 

This section presents the research efforts, publications, and findings on geometric contributors’ effects 
analysis. As indicated earlier, it is critical to truly understand safety improvement effects of the geometric 
contributors so that safety improvement agencies can utilize such information to make design, planning, 
and improvement decisions. Previous research has identified grade crossing geometric factors that 
significantly impact safety performance. In this chapter, the proposed competing risk model (CRM) is 
applied to identify contributing geometric factors and calculate their effects on grade crossing crash 
frequency and severity probabilities. Correspondingly, the aims of this chapter are to 1) investigate the 
crossing geometric factors’ significance on safety performance considering both crash severity and crash 
occurrence in the same model (CRM), and 2) calculate geometric factors’ instantaneous and long-term 
effects on grade crossing safety performance. 

4.1 Research Publications and Findings 

The complete research report can be found in Keramati et al. (2020b), which is the main journal 
publication from this section’s research effort. Four main grade crossing geometric contributors shown 
below are researched in this study: 1) distance between crossings and their nearest roadway intersections, 
2) highway-railway crossing angle, 3) number of traffic lanes, and 4) number of main tracks. 
 
Table 4.1 summarizes the estimated coefficient and hazard ratio for short-term hazard analysis. As 
expected, all four geometric factors are identified as significant contributors to crash occurrence except 
the distance between crossing and its nearest intersection.  Note that factors can be identified as 
significant contributors on the likelihood of certain crash severity levels, but not necessarily on others. 
For example, crossing angle is a significant contributor for injury, fatal, and crash occurrence but not for 
PDO. These results can be a consequence of under-estimation because of the independent censoring 
assumption in cause-specific function of the short-term hazard ratio analysis.  
 
Table 4.1  Hazard Ratio and Estimated Coefficients 

Geometric Factors PDO Injury Fatal Crash 
Occurrence 

Coef Pr(>|z|) Coef Pr(>|z|) Coef Pr(>|z|) Coef Pr(>|z|) 
Crossing-Intersection 
Distance -0.001 0.024 ** -0.00006 0.87 0.0005 0.32 -0.0005 0.13 

Acute Crossing Angle -0.003 0.48 -0.01 0.02 ** 0.004 0.63 -0.005 0.01 * 
Number of Road Lanes 0.38 0.054 * 0.20 0.37 -0.07 0.88 0.30 0.03 ** 
Number of Main Tracks 0.44 0.45 1.80 0.03 ** 1.79 0.11 0.93 0.03 ** 

 
Additional findings from short-term hazard ratio are 1) distance between crossing to its nearest 
intersection is found to be positively significant on fatal crashes but not the others, 2) angle positively 
impacts fatal crash likelihood but not the others, 4) number of road lanes have negative impacts on fatal 
crashes but not the others, and 4) number of tracks has positive impacts on all four likelihoods. 

Figure 4.1 summarizes the findings for geometric factors’ impacts with long-term cumulative probability 
analysis and competing risk assumption with the calculated cumulative probability and its trends for each 
geometric factor. The range of values for each geometric feature is defined based on the actual data 
information used in this study. Distance range between a crossing and the nearest intersection is defined 
from 0 meters to 3,000 meters. Acute crossing angle ranges from 1° to 90°. The number of roadway lanes 
ranges from 1 to 4. And the number of main tracks ranges from 1 to 3.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.1  Cumulative Crash/Severity Probabilities for Geometric Factors 

Figure 4.1 indicated that distance to intersection has a relatively smaller impact on injury than on PDO 
and fatal accident cumulative likelihood. The distance to nearest intersection positively impacts fatal 
accident probability but negatively impacts PDO probability. Around 1,423 meters, the lowest crash 
occurrence probability is about 4.6%. The distance between a crossing and the closest intersection can 
define vehicle storage capacity. The crash likelihood declined before reaching 1,423 meters, with the 
vehicle storage capacity increasing. On the other hand, when the distance to the intersection is more than 
1,423 meters, the benefit of a larger capacity of vehicle storage will be hindered by more limited highway 
user’s sight distance. The Railroad-Highway Grade Crossing Handbook (RHGCH) verified the minimum 
safe sight distance must be between 21 to 284 meters to guarantee safe stopping distances at various 
travel speeds (Ogden, 2007; Ogden and Cooper, 2019). This study results suggest a substantially longer 
distance, 1,423 meters, when considering traffic operational effects with the nearest roadway intersection. 
Figure 4.1 also shows that cumulative probabilities of crash, PDO, and injury crashes decrease while the 
acute crossing angle increases. One possible explanation for this result might be related to improved 
sightlines. According to Wigglesworth (2001), at acute-angled crossings, it may be difficult for highway 
users to detect a train while it is approaching from one of the rear quadrants. It increases the risk of an 
“over-the-shoulder” accident. On the other hand, with the increasing crossing angle, the fatal crash 
likelihood increases moderately, from about 0.8% to 1%. This increase might be because improved travel 
conditions may promote aggressive driving behavior, and perpendicular angle is associated with T-bone 
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crashes, which often end with fatal crashes. According to Figure 4.1, when the number of traffic lanes 
increases from 1 to 4, crash likelihood increases from 5% to 12%; when the number of tracks increases 
from 1 to 3, crash likelihood increases from 3.3% to 21%. To clearly represent the four geometric factors’ 
effects, the average marginal impact (change in likelihood for one unit change in a contributor) is 
calculated and presented in Table 4.2.   
 
Table 4.2 Average Marginal Effects 

Severity 
Level Crossing Angle Distance to 

Intersection 
Number of Road 

Lanes 
Number of Main 

Tracks 
PDO -0.01% -0 .0014% 44% 48% 
Injury -0.03% -0.00008% 21% 443% 
Fatal 0.0033% 0.0013% 7% 440% 
Crash -0.036% -0.00025% 31% 155% 
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5. COUNTERMEASURES’ EFFECTS ANALYSIS 

This section focuses on exploring the effects of traffic control devices, such as crossbuck signs, gates, and 
stop signs, as countermeasures with our developed models. As summarized in the literature, all existing 
research findings have shed light on understanding the effect of specific crossing warning devices on 
either crash rate or severity levels. However, these researches have not accounted for 1) the impact of 
modifying the crossing controls’ combination on crash frequency and severity changes considering 
different pre-improvement control conditions (pre-improvement condition difference), or 2) the long-term 
time impact of HRGC warning device improvements on crash frequency and severity changes. In 
addition, grade crossing characteristics, including crossing traffic controls, might be changed over time, 
including before and after a collision occurrence (Liu & Khattak, 2017). Correspondingly, estimating 
crash rate and crash severity level changes need to consider the long-term time effect and recorded 
information changes for all crossing characteristics annually. The detailed study on quantifying 
countermeasures’ effects on crash frequency and severity likelihood in our model is published as a journal 
paper, which can be found in Keramati et al. (2020b)  
 
Figures 5.1 and 5.2 show the 29-year prediction of cumulative crash severity and occurrence likelihoods 
by comparing eight pairs of crossing control device options. The alternative options are compared by 
adding a specific device into a device or combination of devices as a base option, except for Figure 5.1(a). 
In Figure 5.1(a), the base case is crossbucks-only, and the alternative option is upgrading the control 
device to gate-only. Figure 5.1(a) reveals that upgrading from a passive control device to active control 
will likely decrease injury and fatal crash probability. However, this switching will increase both crash 
occurrence and PDO probabilities. These findings seem counterintuitive as it is normally expected to 
improve safety performance in crash occurrences and in all severities if a change is made from passive 
control to active control. However, the result reveals that changing the control device from crossbucks-
only to gate will reduce the effects on more severe crashes (fatal and injury crashes) but will not decrease 
PDO crashes and crash occurrence in general. Figure 5.1(b) shows that adding gates to the crossings 
equipped with cantilevered flashing lights, standard flashing lights, and audible warning devices will 
decrease both crash occurrence and PDO probabilities but increase injury and fatal crash likelihood. In 
other words, upgrading crossings already equipped with flashing lights and audible devices will only 
decrease the likelihood of crash occurrence and PDO crashes but will not decrease the likelihood of more 
severe crashes. Figure 5.1(c) shows that adding stop signs to crossings with crossbucks will considerably 
increase the crash occurrence and severity likelihoods. These likelihoods are increased significantly by 
284%, 235%, 333%, and 364%, respectively (annually). Figure 5.1(d) indicates that adding stop signs to 
actively controlled crossings will decrease crash occurrence, injury, and fatal crash probability. However, 
for PDO, a less severe crash likelihood, it is increased cumulatively by 47% in the 29-year study period. 
Note that this study finding reveals that adding stop signs to crossings with crossbucks-only will have 
negative effects on crash occurrence and all severity crashes, but adding a stop sign to an already actively 
controlled crossing will have additional positive effects on decreasing crash occurrence and more severe 
crashes. In addition, it has a negative effect of increasing the likelihood of less severe crashes such as 
PDO. 
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Figure 5.1  Crash Severity and Frequency Likelihoods for the First HRGC Control Pairs 

As seen in Figure 5.2(a), adding audible devices to crossings with a combination of gates, cantilevered 
flashing lights, and standard flashing lights will decrease crash occurrences and PDO crashes by 16% and 
100%, respectively, annually. Doing so will also result in a moderately decreased injury crash likelihood 
between years 4 and 25 and show no effect on injury crash probability for the rest of the study period. 
Figure 5.2(b) shows adding an audible device to crossings with gates will decrease PDO and fatal 
accidents to nearly zero. Moreover, such improvements will decrease crash occurrence by around 24% 
cumulatively during the 29-year study period. However, in this research, adding bells as an audio device 
at HRGCs equipped with gates and flashing lights will increase injury crash probability. Figure 5.2(c) 
reveals that adding standard flashing lights to crossings with gates, cantilevered flashing lights, and 
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audible devices, will reduce PDO crashes and crash occurrences but will increase injury and fatal crashes. 
Adding standard flashing lights as supplemental flashing light signals or side lights at HRGCs with 
cantilevered flashing lights will increase the visibility of the crossing, thus making more highway users 
aware they are approaching a crossing or that a train is approaching. Correspondingly, it is expected that 
crossings with standard flashing lights installed as additional warning lights are more likely to have more 
severe crashes. Figure 5.2(d) shows that adding standard flashing lights to crossings with the combination 
of gates and audible devices will reduce crash occurrence and injury likelihoods but will increase PDO 
and fatal crash probabilities. Although adding flashing lights to crossings with a combination of gates and 
audible devices increases the crossings’ fatal and PDO crash risk, the difference is small, both less than 
0.1%.    

 
Figure 5.2  Crash Severity and Frequency Likelihoods for the Second HRGC Control Pairs 
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6. HAZARD RANKING IN ND HRGCS 

 To rank all public grade crossings in North Dakota according to their crash frequency likelihood (equal 
weight is given to PDO, injury, and fatal crashes), long-term cumulative probability, 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 for 3,194 grade 
crossings, is estimated. Crossings are then ranked in relative terms, a higher 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 representing a higher 
hazardous crossing. For example, Table 6.1 lists the first 10 hazardous crossings based on their crash 
likelihood in part (a) and the 10 crossings with the lowest crash likelihood in part (b). Table 6.1 indicates 
that the likelihood of crash occurrence at crossings listed in part (a) over 29 years is almost 100%, while 
the same likelihood for crossings in part (b) is almost 0%.  
 
To understand the risk level of each crossing based on its crash frequency likelihood, crossings are 
classified into four risk groups: very low risk, low risk, moderate risk, and high risk. Crossings are 
classified as very low risk if their estimated 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 is less than 10%. Crossings with 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 between 10% and 
20% are classified as low risk, and crossings with 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 between 20% and 40% are classified as moderate 
risk. Finally, if crossings’ 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐 is higher than 40%, they are classified as high-risk crossings. This study 
dataset indicates that in North Dakota, 1) 65.3% of public grade crossings are at very low risk, 2) 23.5% 
of grade crossings are at low risk, 3) 10.2% of crossings are at moderate risk, and 4) only 1.01% of 
crossings are at high risk given the equal weights on PDO, injury, and fatal crashes. 
 
Table 6.1  Crossings with Highest (a) and Lowest (b) Crash Frequency Likelihood 

a) b) 

Crossing ID Crash Likelihood 
(𝑪𝑪𝑪𝑪𝑪𝑪𝒄𝒄) 

Rank Crossing ID Crash Likelihood 
(𝑪𝑪𝑪𝑪𝑪𝑪𝒄𝒄) 

Rank 

082143X 100.00% 1 102792E 0.00003% 3194 
062486A 100.00% 2 690558H 0.00005% 3193 
071099G 99.99% 3 080673F 0.00006% 3192 
071735C 99.97% 4 062575S 0.00007% 3191 
086876F 99.83% 5 081107Y 0.00007% 3190 
086787N 99.77% 6 103407C 0.00007% 3189 
071003P 99.76% 7 082305X 0.00007% 3188 
087695E 99.35% 8 691842D 0.00009% 3187 
093368H 99.32% 9 102477N 0.00009% 3186 
695902Y 98.91% 10 102865M 0.00010% 3185 

 
Despite of identifying crossings that have the most need for safety improvements, transportation decision 
makers need a systematic method to ensure that federal and state funds for highway-rail grade crossing 
improvement projects are allocated to the locations that are considered the most in need of improvement 
(Ogden, 2007). Consequently, in this study, inverse distance weighted (IDW) interpolation is utilized to 
map the crossings’ crash likelihood (𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐) resulting from CRM in North Dakota. The IDW interpolation 
structures a continuous crash likelihood surface covering the space for each crossing. The altitude of this 
surface varies according to the grade crossing’s crash likelihood in a similar location. IDW assigns 
unknown locations a value associated with the crossings’ crash likelihood in nearby areas. This 
assigned value is a geographically weighted average of crash likelihoods, estimated by 
considering the distance between interpolated locations and the known crossings nearby.  
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Figure 6.1 indicates the results of IDW interpolation according to the crossings’ crash likelihood in North 
Dakota. Figure 6.1 illustrates locations at four risk levels. Three areas of A, B, and C are defined as high-
risk areas, which contain crossings more likely to have a crash likelihood of more than 40%. Areas A, B, 
and C include 10, 4, and 10 high-risk crossings, respectively.  

 
Figure 6.1  IDW Interpolation Based on Cumulative Likelihood for 29 Years with Equal Weights 

  



19 

7. HRGC-ND WEB APP 

7.1 Introduction 

The HRGC interactive web app (HRGC-IWA) is a platform designed to predict crash occurrence and 
severity likelihood changes over time (year). The prediction model is based on the competing risk model 
(CRM), which is one of the survival analysis approaches, and was developed by the authors. Previous 
chapters illustrated some of the CRM model results, and the development of this app is intended to 
visualize those results and provide an easy-to-use simulation tool for ND agencies to understand and 
interpret those results. Consequently, to make application of the CRM model easier and increase its 
potential for technology transfer, HRGC-IWA was developed to deliver the results of this novel 
approach’s application in ND HRGCs. With this web app, users (transportation agencies) can modify 
crossing characteristics (e.g., traffic control devices and geometric factors) and the app will estimate and 
visualize the crash severity and likelihood of changes over time for those modifications. 

7.2 Web Development 

The R programming language is used to modify and apply the competing risk algorithm for crash analysis 
at highway-rail grade crossings. Consequently, Shiny, which is one of the R packages, is used to develop 
and construct the HRGC-IWA. Shiny makes it easy to build interactive web apps straight from R codes. 
For more information, please refer to the Shiny website (https://shiny.rstudio.com). The developed app 
can be accessed at: https://kmtgis.shinyapps.io/ak_plot/. 

7.3 App Framework and Illustration 

Figure 7.1 indicates the general app platform. It shows the platform has two main sections: “Prediction 
Panel,” and “Input Panel.” Through the Input Panel, the user can define or change the characteristics of a 
crossing, and the effect of those characters on crash frequency and severity prediction will be visualized 
in the Prediction Panel. In the following, all elements of each panel are explained according to the 
assigned numbers in Figure 7.1. 

https://shiny.rstudio.com/
https://kmtgis.shinyapps.io/ak_plot/
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Figure 7.1  HRGC-IWA General View 

1) Crash Severity Box: By clicking on this box, the user can define predictions associated with 
each crash severity level as visualized by the plot (#8) and bar chart (#9) in the prediction panel. 
By selecting any of these options shown in Figure 7.2(a), the title and notification of the plot and 
bar chart in the prediction panel, respectively, change. For example, in Figure 7.1, since “PDO” is 
selected as the crash severity level, the plot title is “Crash Severity: PDO” and the bar chart 
notification is “PDO Prob Diss = 3.68%”.  
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Figure 7.2  App Input Selection Options 

 
2) Control Device #1: By clicking on this box or typing in the box, users can select one of the 28 

control devices as the first selected control device that prediction can be based on and calculated. 
The prediction results associated with Device #1 are indicated by the orange line and column in 
the plot and bar chart, respectively, in the Prediction Panel. These sets of predictions can be 
served as reference options. 

3) Control Device #1: Similar to Control Device #1, users can select another control device to 
compare the effect of two different control devices on the prediction results. Consequently, there 
are two lines in the plot (blue line is related to Control Device #2), two columns in the bar chart 
(blue column is related to Control Device #2), and two pie charts (#10), each indicating the safety 
results associated with one of the control devices. These sets of predictions can be served as an 
alternative option.  

4) Number of road lanes: This is the number of roadway traffic lanes crossing the track. Users can 
select one of the traffic lane numbers from one to four to investigate the effect of this geometric 
factor on the prediction result in the Prediction Panel.  

5) Crossing to intersection distance (meter): Nearest intersecting roadway is determined by 
identifying roads parallel to the railroad that intersect with the road that is part of the HRGC. The 
Railroad-Highway Grade Crossing Handbook (Ogden, 2007) indicated that some collisions at 
HRGCs could result from the short storage distance for vehicles waiting to move through the 
crossing and the intersection. Users can change this geometric factor range from 1 meter to 2,500 
meters by using the slider (#5). 
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6) Crossing angle (degree): One of the main factors impacting the sight distance at a crossing is its 
highway-railway angle. Users can type or select the smallest angle between the roadway and the 
track by using the round slider (#6), or part (c) in Figure 7.2. The minimum and maximum angle 
are 1° and 90°, respectively. 

7) Accident year: Users can use this slider to define a year, the results of which should be 
visualized by that time in bar and pie charts. Figure 7.2(d) indicates that by adjusting the slider on 
the 16th year, year 16 is highlighted in in the plot (#8), the x axis of bar chart (#9) indicates year-
16, and the explanation of fractions on the pie chart (put cursor on the pie chart fractions to view) 
release information for the 16th year.      

8) Cumulative probability plot: The plot (#8) indicates the cumulative probability of crash 
occurrence over 29 years (by year 30). Depending on the adjustment in section number #1, the 
plot is baled to indicate crash occurrence or crash severity likelihood over 29 years. For example, 
the plot in Figure 7.1 indicates that a crossing with defined characteristics in Input Panel will be 
more likely to have a PDO crash if it has both crossbucks and stop signs compared with the 
scenario of having only crossbucks over 29 years (by year 30). 

9) Bar chart: Bar chart extracts the information from the plot associated with a specific year 
defined by the Accident Year slider. For example, the bar chart in Figure 7.2(d) indicates that a 
crossing with only crossbucks has a 1.61% likelihood of having a PDO crash, while a crossing 
with both crossbucks and stop sign might have a 3.64% likelihood of having a crash occurrence 
with PDO severity level by year 16. The bar chart caption indicates the difference in height 
between two columns. For instance, in Figure 7.2(d), the caption releases the PDO crash 
likelihood might increase by 2.03% by year 16 if adding a stop sign to a crossing currently 
equipped with crossbucks only. 

10) Pie charts: Pie charts indicate the fraction of each crash severity level based on the control device 
and by the specific year. For example, the PDO fraction for a crossing by a specific year can be 
estimated as PDO Fraction = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑃𝑃𝑃𝑃𝑃𝑃)

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑃𝑃𝑃𝑃𝑃𝑃)+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
× 100  

 
Consequently, in Figure 7.2(d), the PDO fraction of crossing with crossbucks-only by year 16 is 
estimated as 1.61

1.61+1.38+0.51
× 100 = 46.1% 

 
Note: the estimated fraction for each severity level does not indicate the likelihood of a crash in 
that severity level. It indicates the fraction of crash occurrence likelihood associated with the 
specific severity level by specific year. For example, the upper pie chart in Figure 7.2(d) indicates 
that PDO crash likelihood accounts for 46.1% of total crash occurrence likelihood (0.61% +
1.38% + 0.51% =  2.5%) for crossing with crossbucks-only by year 16. This fraction decreased 
to 34.4% after adding stop signs (another pie chart), but the PDO crash likelihood increased from 
1.61% to 3.64% by the 16th year. The likelihood information can be seen by putting a cursor on 
each pie chart fraction. 
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8. CONCLUSION AND FUTURE WORK 

At-grade crossing safety performance is of utmost importance, and safety improvement agencies need 
tools to help them understand safety performance, understand countermeasures’ effectiveness, and rank 
the crossings based on their hazard levels to allocate resources to improve their safety performance. This 
research tried to demonstrate a data-driven-based algorithm to provide such tools for the state of North 
Dakota. A summary of findings based on the ND data analysis is listed below: 

1) Hazard index should include both crash severity and crash occurrence likelihoods.  

2) Prediction model should be able to predict both crash severity and crash occurrence 
simultaneously to account for unmeasurable variances with the same set of predictors. 

3) Some contributors can be found significant to certain crash levels but not significant to others. 

4) One contributor can positively impact certain crash levels but negatively impact others. 

5) The dependency between competing risks exists so the prediction model should consider such 
dependency. The independent censoring assumption could result in underestimated contributors’ 
effects. 

6) Marginal countermeasure effectiveness should be dependent on the preexisting conditions. In 
other words, adding the same device to crossings with different existing control devices will 
present different effectiveness levels. 

7) Adding a traffic control device to a crossing does not always result in improved safety 
performance. 

8) Adding a traffic control device to a crossing may result in a positive improvement effect on 
certain crash levels but a negative improvement effect on others. 

Of note are the research limitations and the potential future research directions. Those summaries are 
listed below: 

1) To truly account for countermeasures’ effectiveness, before-and-after analysis is needed to 
control other contributors’ effects. Our study is a data-based empirical analysis, so some of the 
counterintuitive findings may be the results of other contributors’ mixed effects. 

2) The interaction effects of contributors are not considered and quantified in this study; however, 
they are under-researched and need to be investigated. 

3) Safety effectiveness cannot be used solely to help the improvement investment decision. The life-
cycle cost analysis including cost of construction, operational and maintenance costs, and other 
social and economic costs should also be included. 
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