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ABSTRACT 
Considering traffic safety concerns and challenging driving conditions on Interstate 80 in Wyoming, the 
United States Department of Transportation (USDOT) and Federal Highway Administration (FHWA) 
selected an I-80 400-mile freeway corridor as one of the three sites in the United States to develop, test, and 
deploy a suite of connected vehicle (CV) applications. The Wyoming Connected Vehicle Pilot Deployment 
Program (WYDOT CV Pilot) utilizes real-time communication technologies to provide warnings and 
advisories regarding various road conditions to heavy trucks and light vehicle drivers. One of the ultimate 
goals of this pilot is to alleviate the traffic safety concerns on the I-80 corridor in Wyoming. Hence, the 
safety performance assessment of the pilot is pivotal for the WYDOT and FHWA strategic goals. 

This report provides a new traffic safety perspective for the safety performance evaluation of the WYDOT 
CV Pilot through advanced statistical modeling, machine learning, data mining applications, safety data 
visualizations, high-fidelity driving simulator experiments, and traffic microsimulation modeling. To this 
aim, the procedure and the analytical inference for developing a baseline and analysis, modeling, and 
simulation (AMS) framework are presented based on using two distinct but complementary approaches: 
conduct a before/after analysis to explore crash/crash severity causations during CV pre-deployment as a 
baseline, and the AMS framework in with/without the CV technology to quantify drivers’ behavioral 
alteration under the effect of various CV applications. 

Results unveiled statistically significant real-time traffic-related factors contributing to crash and critical 
crashes during CV pre-deployment. In the with/without analysis and based on the calibrated and validated 
AMS framework, the impact of several CV applications was analyzed. These applications included spot 
weather impact warning (SWIW), distress notification (DN), situational awareness (SA), CV variable speed 
limit (CV-VSL), work zone warning (WZW), forward collision warning (FCW) and rerouting applications. 
According to the quantification of drivers’ behavioral alterations under various CV notifications utilizing 
trajectory-level analyses, results affirmed promising safety effects of CV applications. The surrogate 
measures of safety analysis in microsimulation modeling indicated an enhanced traffic safety performance 
under various CV market penetration rates (MPR).  
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1. INTRODUCTION 

The United States Department of Transportation (USDOT) and the Federal Highway 
Administration (FHWA) selected three sites in the United States for the first wave of connected 
vehicle (CV) pilots to showcase the value and spur the adoption of CV technology: New York 
City, Tampa, Florida, and Interstate 80 (I-80) in Wyoming (Figure 1.2). CV technology goes 
around level-0 and level-1 of driving automation [1], where drivers are in the safety loop, 
contributing to more than 90% of motor vehicle crashes [2]. Hence, the safety benefits of CV 
technology are mostly gained from altering driver behaviors based on the assistance from the real-
time CV warnings provided. Under the Vehicular Ad-hoc NETwork (VANET) and dedicated 
short-range communication (DSRC) or satellites, CV technology improves drivers’ awareness 
regarding unforeseeable roadway hazards through vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), and infrastructure-to-vehicle (I2V) real-time notifications. This ability 
enables drivers to react proactively and avoid potential traffic crashes in urban or rural areas such 
as I-80.  

 
Figure 1.1 Connected Vehicle Pilot Deployment Programs in the United States (Source: WYDOT) 

I-80 in Wyoming is a segment of an east/west rural corridor in the U.S. northwest, supporting the 
movement of over 32 million tons of freight per year (at 16 tons per truck). As a mountainous rural 
freeway, I-80 mostly operates at the level of service (LOS) A or B. Truck volume ranges from 
30% to 55% of the total traffic stream on an annual basis, with seasonal variations that can make 
up as much as 70% of the traffic volume. All elevation is above 6,000 feet, with the highest point 
reaching 8,640 feet (2,633 m) above sea level at Sherman Summit. The corridor is also 
characterized by severe weather conditions, i.e., strong winds, heavy snow and fog, severe blowing 
snow, and low visibility. Due to Wyoming’s adverse winter weather conditions, such as 
snowstorms, strong crosswinds, icy road surfaces, and low visibility from blizzards, and the 
presence of work zones, there have been remarkable traffic crash records along I-80 in Wyoming, 
resulting in fatalities, road closures, and tremendous economic loss [3]. 
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To mitigate these safety concerns, the USDOT FHWA selected I-80 in Wyoming (WYDOT CV 
Pilot) as the only rural site among the mentioned three CV pilots in the country. The Wyoming 
CV systems and applications developed are expected to enable CV drivers to have improved 
awareness of potential hazards when driving on I-80, help fleet managers better manage their 
freight operations, and support WYDOT Traffic Management Center staff to implement more 
effective traffic control strategies. In this regard, the CVs’ performance evaluation is vital to 
USDOT’s strategic goals. Accordingly, the WYDOT CV Pilot team developed a performance 
measurement and evaluation support plan [4], including 21 performance measures. The major 
performance categories represent the primary activities and outcomes of the Wyoming CV pilot 
system. These categories focus on improvements to efficiency, safety, and mobility. Quantitative 
and qualitative measures were proposed to evaluate the Wyoming CV project, focusing on 
understanding the extent and impact of the benefits described above.  

In this regard, the traditional safety evaluation methodologies presented in the Highway Safety 
Manual (HSM) [5] might not be appropriate approaches due to the following limitations. First, 
statistical analysis performed utilizing historical data is the core of the approaches presented in the 
HSM. Being in an early development phase of the WYDOT CV Pilot, assessing the obtained CVs’ 
safety benefits is challenging and still unclear due to the unavailability of enough data during post-
deployment, hindering the use of traditional HSM methodologies. Secondly, at the very beginning 
stage of the WYDOT CV Pilot, market penetration rate (MPR) of CVs is very low, which is among 
the key factors affecting the safety benefits obtained from CVs. Thus, to adopt the HSM 
methodologies in the evaluation process, a significant proportion of vehicles on the roadways 
should be equipped with CV technology. With these concerns, new innovative approaches are 
required to investigate the safety effectiveness of this newly introduced technology. 

This document presents alternative methodologies, including real-time risk assessment and an 
analysis, modeling, and simulation (AMS) framework, to assess newly emerging CV technology 
by integrating real-time information obtained from the WYDOT CV Pilot into high-fidelity driving 
simulator experiments and microsimulation analysis levels. To this aim, a variety of advanced 
statistical modeling, machine learning, data mining applications, and safety data visualizations are 
utilized under two distinct but complementary approaches as follows. The details are presented in 
the next section: 

• Before/after analyses to explore crash/crash severity causations as a baseline during CV 
pre-deployment under the concept of real-time risk assessment (RTRA) that will be used 
as a benchmark against the traffic safety performance of I-80 during post-deployment 
under any CV-MPR. 

• With/without analyses under a calibrated and validated AMS framework to quantify 
drivers’ behavioral alterations due to different CV applications and measure CVs’ effect 
on the entire traffic stream.  
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2. GENERAL METHODOLOGY 

This study presents a framework for evaluating the safety performance of the WYDOT CV Pilot. 
Figure 2.1 illustrates the analytical approach, structured based on a conflation of before/after and 
with/without analyses.  

 
Figure 2.1 The General Analytic Approach 

2.1 Before/After Analysis and CV Pre-Deployment Baseline 
Development  

In the before/after analysis, crash contributing factors and causations of critical crashes involving 
fatal or incapacitating injuries, throughout the 402-miles of I-80 in Wyoming during CV pre-
deployment, were explored under RTRA. RTRA investigates crash/crash severity causations 
during CV pre-deployment that will be used as a benchmark against defined crash causalities 
during CV post-deployment, unveiling the safety performance of CVs under any MPR. According 
to the literature, CV-MPR is one of the important macro-level factors affecting the safety and 
operational performance of the entire mixed traffic stream. Hence, under the concept of 
before/after analysis, it is essential to conduct a reliable baseline showing the traffic safety 
condition on I-80 before deploying CV technology. The mentioned requirement was satisfied 
based on the result of RTRA, focusing on real-time traffic-related crash contributing factors that 
might be affected by CVs during post-deployment. Under this approach, precursors of individual 
crashes were analyzed using advanced statistical modeling and machine learning techniques on a 
conflation of aggregated environmental data with disaggregated high-resolution real-time traffic 



 

4 
 

observations for the sake of exploring the crash/critical crash causations. In addition, the 
preprocessed dataset in the RTRA part was utilized to calibrate and validate the AMS framework 
in the with/without analysis. 

2.1.1 Pre-Deployment Dataset 

Four databases were conflated to be used in the RTRA during CV pre-deployment and for 
calibrating and validating the AMS framework. The primary databases comprised crash reports, 
aggregated roadway geometry characteristics, weather conditions, and real-time traffic 
observation through the 402 miles of I-80 in Wyoming provided by the WYDOT. These databases 
were used individually or were conflated with others depending on the purpose of the analysis.  

The crash dataset, from January 2017 to July 2017, was used to explore real-time traffic-related 
crash contributing factors by following matched-case control design (MCCD) to predict the crash 
likelihood based on analyzing crash precursors and comparing them with normal traffic patterns 
before non-crash instances. It was preferred to analyze the crash precursors for those crashes that 
were under the impact of traffic flow oscillations. Therefore, those crashes that were due to drugs 
or alcohol usage and unknown reasons were eliminated from the dataset. To analyze the crash 
precursors, the high-resolution real-time traffic observations provided by the WYDOT using 
Wavetronix speed sensors installed on the corridor were conflated with the mentioned crash 
dataset. In this respect, 10,735,339 real-time traffic observations were reduced to 70,930 
observations corresponding to 203 crashes and 284 non-crash cases utilizing observations from 51 
speed sensors on the 402-miles of I-80 in Wyoming. 

Critical crash causations, including fatal or incapacitating injuries, were analyzed using the crash 
dataset conflated with real-time traffic observations provided for RTRA. This analysis only 
focuses on crash cases because it aims to unveil the difference between critical crash precursors 
versus non-critical ones. Note that the crashes occurred on different mileposts, roadway conditions, 
and weather conditions. As opposed to MCCD, which could account for confounding factors 
across the crash and non-crash cases, it was required to consider the effect of environmental factors 
on crash precursors in analyzing critical crashes. Thus, the mentioned crash dataset and its 
associated real-time traffic observations were conflated with aggregated roadway geometry 
characteristics and the weather conditions dataset at the crash scenes.    

2.2 With/Without and AMS Framework Development  
In addition to the baseline development, the research team conducted a well-calibrated AMS 
framework based on a three-pronged approach: RTRA, high-fidelity driving simulator 
experiments, and traffic microsimulation modeling. The conducted AMS is specifically beneficial 
for the WYDOT CV Pilot to quantify drivers’ behavioral alterations due to CV notifications by 
modeling vehicles’ trajectories in comprehensive driving simulator experiments and utilizing 
kinematic-based surrogate measure of safety (SMoS). More importantly, the mentioned 
quantification is conflated with microsimulation modeling to reveal the impact of CV application 
on the entire traffic stream under varying CV-MPRs using conflict-based SMoS. Through this 
technique, different critical traffic safety events are regarded, and the safety performances of 
different CV applications are analyzed. 



 

5 
 

2.2.1 Surrogate Measure of Safety (SMoS)  

The SMoS approach, which has gained acceptance as a proactive approach in the literature, was 
considered for evaluating CVs’ safety performance [6]. SMoS can improve the understanding of 
failure mechanisms and chain of events resulting in traffic critical safety events. The most crucial 
advantage of SMoS is to perform a reliable safety performance assessment within a shorter time 
period than traditional performance measurement approaches. SMoS can be divided into two main 
categories: conflict-based SMoS (C-SMoS) and kinematic-based SMoS (K-SMoS). 

C-SMoS, also called temporal and/or spatial proximity-based conflict indicators, analyzes traffic 
safety performance, assuming that the closer vehicles are to each other, the nearer they are to a 
collision because conflicts will precede all collisions [6]. The quantitative assessment provided by 
C-SMoS is objective with an interpretable measure in terms of closeness to a collision. This 
approach requires traffic observations from real-life data or microsimulation modeling to show 
traffic conflicts using a variety of proximal temporal measures, such as time-to-collision (TTC), 
time exposed TTC (TET), time integrated TTC (TIT), modified time-to-collision (MTTC), and 
post-encroachment time (PET). The research team followed this approach to unveil the CVs’ 
safety effect on the entire mixed-traffic stream under varying CV-MPRs, particularly within traffic 
microsimulation modeling.  

K-SMoS, however, relies on detailed driving information, delving into individual driving behavior 
[7], [8]. K-SMoS has been rarely used in the safety domain because of the unavailability of vehicle 
trajectories, which have been become available in CV environments. In CV environments, the 
large-scaled individual driving data embedded in basic safety messages (BSMs) provide 
continuous real-time access to vehicle trajectories being affected by driver behaviors. There is a 
high correlation between aggressive and defensive driving styles with less traffic-safe conditions. 
Hence, given the vehicle trajectories, it is possible to assess the traffic stream’s safety performance 
by quantifying driver volatility using K-SMoS. Accordingly, well-characterized K-SMoS aided 
this research in spatiotemporally quantifying individual driving styles and assessing the safety 
performance of CV advisory/warning messages in a series of with/without analyses.  

2.3 Database for Calibration and Validation of the AMS Framework  
Conflated high-resolution real-time traffic observations with aggregated roadway geometry and 
weather information throughout the 402-mile I-80 corridor were used to calibrate and validate the 
AMS framework. The AMS framework mainly analyzes CV safety performance in mitigating the 
risk of different types of traffic crashes on the I-80 rural corridor, such as work-zone-related 
crashes, horizontal curve-related crashes, and secondary crashes. The baselines for each of these 
investigations (i.e., no CVs in the traffic stream) were calibrated and validated by statistical 
comparisons between the real-life speed distributions with speed distributions from 
microsimulation modeling and/or driving simulator studies. Therefore, to analyze CVs’ safety 
performance in work zone areas, it was required to combine real-life speed observations with work 
zone information on I-80. This conflation was performed by modeling speed distributions from 
the nearest speed sensors to work zone areas between Laramie and Cheyenne on the I-80 corridor.  
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3. BASELINE DEVELOPMENT AND IDENTIFICATION OF REAL-
TIME CRASH CONTRIBUTING FACTORS  

3.1 Introduction 
During the WYDOT CV Pilot on I-80, reducing the rate of traffic crashes was an important 
measure for the CVs’ safety performance assessment. The explored crash causations were 
expected to be affected under various CV applications during CV post-deployment. Hence, this 
part of the document presents a procedure for the baseline development to indicate crash 
contributing factors on I-80 during CV pre-deployment, specifically in terms of real-time traffic-
related contributing factors.  

To this aim, real-time crash prediction models (CPMs) are required to unveil the statistical linkage 
between traffic flow characteristics and the probability of crashes [9]. In the RTRA arena, it is 
known that traffic crashes can be predicted by investigating crash precursors during a period 
preceding crash occurrence [9]–[12]. Under RTRA, most previous analyses investigated RTRA in 
a particular section of a corridor or limited length of a segment [9]. However, the safety 
performance assessment of disruptive applications such as CVs on I-80 in Wyoming required 
looking into a long corridor. Accordingly, this analysis dealt with two main problems in 
conducting a unique CPM on the 402 miles of I-80. First, it was essential to deal with nonlinear 
predictors due to a remarkable variation in traffic patterns throughout the 402-mile corridor. 
Secondly, the study had to account for the small number of real-time traffic observations within a 
predefined time window of crash precursors on I-80 with comparatively less traffic volume. Under 
the MCCD concept, these matters were addressed through the use of advanced statistical modeling 
and proper feature engineering.    

Regarding the first problem, the data-driven non-parametric statistical approach allows data to 
learn from their distributions by minimizing assumptions of pre-specified transformations for 
nonlinear predictors. In this regard, under logistic regression, three types of statistical modeling, 
generalized linear model (GLM), generalized non-linear model (GNM), and generalized additive 
model (GAM),  were employed to deal with nonlinear predictors. Relating to the second matter, 
initial investigations showed many of the crash contributing factors proposed in the literature could 
not significantly increase the model’s discriminative ability to measure traffic fluctuations before 
crashes. Hence, the predictors were characterized to capture traffic oscillations, both laterally, by 
considering individual lanes and the whole traffic stream, and longitudinally, by comparing 
differences of traffic-related variables in space concerning crash locations. The dimensionality 
reduction of the multidimensional space of variables was performed using three feature selection 
(FS) techniques: mean decrease accuracy (MDA), mean decrease impurity (MDI), and corrected-
impurity importance (CII).  

3.2 Variable Description in Matched-Case Control Design (MCCD) 
Approach 

The MCCD was followed to explore real-time traffic-related crash contributing factors by 
predicting crashes based on analyzing crash precursors and comparing them with normal traffic 
patterns before non-crash instances within the same timeframe. This technique is a practical one 
that controls confounding factors such as roadway geometry, driver population, seasonal traffic 
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variation, and, to some extent, weather conditions. To this aim, real-time traffic observations were 
considered within a 15-minute time window before crashes and their corresponding non-crash 
cases from the same speed sensors to hold the same distance between the location of sensors and 
the locations of the crash and non-crash cases. Real-time traffic observations were conflated with 
the crash dataset. The non-crash data were reduced through the same day of a week and the same 
time window of the day that the corresponding crash precursors were investigated. Therefore, two 
datasets for crash and non-crash conditions were prepared and conflated with real-time traffic 
observations. The real-time traffic observations dataset comprises the time of the observations, 
traffic volume, vehicle speed, vehicle length, and lane assignment. If a vehicle’s length was less 
than 30 feet, it was considered a passenger car; otherwise, it was counted as a truck.  

Accordingly, the design matrix was structured by characterizing real-time traffic-related variables 
to capture traffic oscillations laterally and longitudinally. Most of the characterized predictors were 
processed variables. They were introduced according to the speed variance, mean speed, and 
regression slope of the speed profile within the 15-minute time windows before the crash and non-
crash cases. In total, 29 variables were used to cluster crash and non-crash cases, which are 
described in Table 3.1. 

Table 3.1 Description of Explanatory Variables to Explore Crash Contributing Factors 

 

3.3 Crash Prediction Models (CPMs) 
In total, nine CPMs were conducted based on a combination of three types of statistical modeling 
and three FS techniques. The best model was selected according to the best within-sample and out-
of-sample predictive performances across the nine CPMs. On this point, each model was 
conducted within two main steps. First, the important predictors were selected using MDA, MDI, 
and CII as FS techniques offered by random forest (RF). Secondly, for each set of the important 
predictors obtained from the first step, the GLM, GNM, and GAM were conducted.  
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3.3.1 Random Forest Feature Selection Using MDA, MDI, and CII 

FS has been widely used based on the RF technique that aims to remove less essential variables 
from the model, enhancing its accuracy [9]. An RF model was conducted over all predictors to 
select important features properly. There are different FS algorithms offered by RF, among which 
two methods are popular: MDA and MDI [9].  

MDA measures the variable importance according to the increase or decrease of error when the 
associated link between the predictor of interest and response variable is broken by randomly 
permuting the values of the predictor. Studies have proven that this measure is biased because of 
overestimating the importance of highly correlated variables [13]–[16]. For a high dimensional 
space of predictors, MDA is computationally intensive and is not as robust as MDI to highly 
perturbed space [17]. MDI measures variable importance by adding the weighted impurity for 
those nodes that use the variable of interest in RF models. The concept of MDI is biased in favor 
of highly impure features [17]. In other words, adding weighted impurity to define variable 
importance provides an unfair advantage for those variables with a large number of amounts (such 
as continuous or high-cardinal categorical variables) [13], [14], [18]. To overcome the mentioned 
imperfections in MDA and MDI, Nembrini et al. (2018) proposed unbiased impurity-based 
variable importance for classification and regression problems within the CII concept. Despite 
MDI and MDA, CII computes unbiased importance for features outperforming MDA and MDI in 
terms of statistical power [14], [17], [19].  

3.3.2 Logistic Regressions Using GLM, GNM, and GAM  

Different types of logistic regression could be conducted to deal with binary outcomes (i.e., crash 
and non-crash cases) using the logit link provided by generalized models, including GLM, GNM, 
and GAM. Linearity is an essential presumption in GLM. If the linearity for some variables is not 
met, those should be excluded from the model. Although it is arguable to transform nonlinear 
predictors to attain linearity, some issues would remain. First, transforming a variable means 
applying a unique pattern over the entire range of a variable, where the analyst imposes the data 
to follow a particular predetermined curve regardless of their nature. Secondly, the primary 
criterion for selecting the best type of transformation could be a daunting task. Lao, Y., et al. 
proposed utilizing GNM [20]. GNM handles nonlinear variables; however, the situation is similar 
to GLM, where the analyst defines transformations. The only difference is that, in GNM, the 
transformations are applied within the model; whereas, in GLM, nonlinear variables should be 
transformed in advance. Then the transformed variables could be used in the model. 

A simple basis of splitting data into different sub-samples, used by GAMs, can solve the problem 
of nonlinearity [21]–[23]. Indeed, GAM is a kind of authorized nonparametric GLM where the 
model is allowed to learn the nonlinearity between response and predictor(s). GAM utilizes a data-
driven approach, instead of model-driven, where variables are permitted to determine their trends 
instead of being imposed by predetermined transformations [24], [25]. The distinction between 
GNM and GAM is that, in GAM, variables are not supposed to be linear; instead, the applied 
smoothing functions are to be linear. GAM solves the nonlinearity problem by using smoothing 
functions like splines as continuous combinations of piecewise polynomials that are fitted locally 
for a specific sub-section of observations without being affected by other sub-sections. This 
mechanism assists the variable of interest in finding its pattern more accurately. The terms of 
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additive in GAM comes from adding smoothing functions that are driven using the data. GAM 
estimates parameters using a double loop of iteration. The inner one estimates the parameters of 
the smoothing functions, and the outer one is used for convergence of GAM parameters [25].  

For each of the three sets of selected variables from FS techniques, GLM, GNM, and GAM were 
conducted. In GLMs, according to the statistical assumptions, only linear variables were included. 
The transformed nonlinear variables and linear ones were used to develop GNMs. Finally, GAMs 
were conducted based on linear variables and additive smoothing functions of nonlinear variables. 
Equations 3.1 to 3.3 present the final crash prediction models based on GLMs, GNMs, and GAMs.  

Generalized Linear Model (GLM):       𝐸𝐸𝑌𝑌(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) =  𝑒𝑒
𝛽𝛽0+� 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

1+𝑒𝑒
𝛽𝛽0+� 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1

                      Equation 3.1  

Generalized Nonlinear Model (GNM): 𝐸𝐸𝑌𝑌(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) =  𝑒𝑒
𝛽𝛽0+� 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1
+� 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖

𝑇𝑇

𝑡𝑡=1

1+𝑒𝑒
𝛽𝛽0+� 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1
+� 𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖

𝑇𝑇

𝑡𝑡=1

      Equation 3.2 

Generalized Additive Model (GAM):   𝐸𝐸𝑌𝑌(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) =  𝑒𝑒
𝛽𝛽0+� 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

𝐽𝐽

𝑗𝑗=1
+� 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖𝑖𝑖

𝐾𝐾

𝑘𝑘=1
)

1+𝑒𝑒
𝛽𝛽0+� 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝐽𝐽

𝑗𝑗=1
+� 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖𝑖𝑖

𝐾𝐾

𝑘𝑘=1
)
    Equation 3.3 

Where 𝛽𝛽0, 𝛽𝛽𝑘𝑘, and 𝛽𝛽𝑗𝑗 are coefficients to be estimated, Ey is the expected value of 𝑦𝑦𝑖𝑖, 𝑥𝑥𝑖𝑖𝑖𝑖 are the 
linear predictors, 𝑥𝑥𝑖𝑖𝑖𝑖 are the transformed nonlinear predictors, 𝑥𝑥𝑖𝑖𝑖𝑖 are the nonlinear predictors, and 
𝑓𝑓𝑘𝑘 are splines to be estimated. It is worth noting that, in all models, 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖

𝐽𝐽
𝑗𝑗=1  is the common 

term, which indicates all the models have the same structure of GLM, and the only difference is 
how the models deal with nonlinear predictors.  

3.4 Significant Real-Time Traffic-Related Crash Contributing Factors 
Table 3.2 compares the performance of nine developed models. According to Table 3.2, it is clear 
that the combination of CII and GAM outperformed the other models by achieving minimum 
Akaike information criterion (AIC) and maximum area under the curve (AUC). Hence, the 
combined GAM and CII was used as the CPM to predict traffic crashes on I-80 during CV pre-
deployment and to explore causations of real-time traffic-related crash contributing factors.  
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Table 3.2 Performance Comparison of Nine Developed Crash Prediction Models 

  
Furthermore, the causal effects of crash contributing factors can be found in Table 3.3, where the 
result of the selected CPM during CV pre-deployment is presented. As mentioned before, GAM 
is a non-parametric statistical approach. Accordingly, smoothing functions in GAM led to the 
estimation of effective degree of freedom (EDF) for nonlinear predictors, as presented in Table 
3.3, which is difficult to interpret. This difficulty is the downside of non-parametric statistical 
methods though they can lead to more accurate predictions compared with parametric models. The 
research team addressed this deficiency by following the concept of post-hoc interpretation.  

Table 3.3 Causal Effect of Real-Time Traffic-Related Factors on the Crash 
Likelihood on I-80 in Wyoming during CV Pre-Deployment  

 

3.5 Post-Hoc Interpretation 
Depending on when the interpretability is obtained, two general approaches have been proposed 
in the literature to interpret a prediction model: intrinsic interpretability and post-hoc 
interpretability [26]–[28]. The former is based on self-explanatory models that incorporate 
interpretability directly to their structures. The latter, however, needs to develop another 
independent model, as a shallow model, to interpret the existing model [28], [29]. The post-hoc 
interpretability can be considered as a distillation process from the highest accurate prediction 
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model to the highest interpretable model by providing a global vision in a post-hoc manner [29]. 
The latter technique was applied because it was required to select the highest accurate model for 
crash prediction on I-80. This selection, however, imposed the choice of GAM as a non-parametric 
approach, which is not intrinsically interpretable. The following steps were followed: 

• Develop a CPM to detect statistically significant real-time traffic-related crash contributing 
factors. 

• Develop a crash interpretation model (CIM) as a shallow model for CPM to interpret and 
visualize the effect of crash contributing factors on crash risk. 

The first step was accomplished based on the combination of CII and GAM. For the second step, 
the power of visualization tools provided by RF was utilized to visualize the causal effect of the 
significant real-time traffic-related variables on crash probability. 

3.5.1 Random Forest Visualization Tools 

After identifying the significant real-time traffic-related predictors by the CPM, these predictors 
were fed into an RF as the CIM. Four widely used RF visualization tools—partial dependence plot 
(PDP), individual conditional expectation (ICE), centered-ICE (cICE), and accumulated local 
effect (ALE) [27], [30]–[34]—were employed to visualize and interpret the causal effect of these 
factors on crash probability. The details are as follows: 

3.5.1.1 Partial Dependence Plot (PDP) 

The relationship between the outcome and one or two explanatory variable(s) can be delineated by 
PDP [30]. PDP estimates the average marginal effect of one or two predictors on the predicted 
outcomes, which can be a probability in classification problems or a determined value in regression 
[30]–[32]. To this aim, PDP divides predictors into two sets. The first set involves the feature(s) 
of interest for which the PDP should be drawn (Xi), and the second set comprises the other features 
included in the developed model (Xo). Therefore, the combination of Xi and Xo comprises the 
multi-dimensional space of features based on which the CIM has been developed. 

PDP works as a function of one or two variables in Xi and marginalizes the output over the 
distribution of the features in Xo. In other words, to find the response variable at a specific given 
value of 𝑥𝑥𝑖𝑖, PDP generates synthetic observations where the values of the feature of interest are 
permuted by the 𝑥𝑥𝑖𝑖 across all actual observations. Afterward, the response variable at 𝑥𝑥𝑖𝑖 is 
calculated by averaging the obtained outcomes over all the synthetic observations. Equation 3.4 
parametrizes the overall approaches used in PDP. 

𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖) = 1
𝑛𝑛
∑ 𝑓𝑓�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑜𝑜

𝑗𝑗�𝑛𝑛
𝑗𝑗=1                                                                                               Equation 

3.4 

Where 𝑓𝑓𝑋𝑋𝑖𝑖 is the partial function for the predictor of interest that estimates the average marginal 
effect at a given value of 𝑥𝑥𝑖𝑖, n is the number of observation, 𝑥𝑥𝑜𝑜

𝑗𝑗  is the actual value of those 
predictors that are not under investigation for jth observation, and 𝑓𝑓�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑜𝑜

𝑗𝑗� is the model output 
for the jth observation at 𝑥𝑥𝑖𝑖.  
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3.5.1.2 Individual Conditional Expectation (ICE)  

PDP uses the averaged marginal effect of a predictor on response variable and plots one curve 
through the range of the predictor of interest. PDP, however, is unable to bring sufficient insight 
into the heterogeneity across observations that come from interactions between predictors. To 
address this issue, Goldstein et al. (2015) proposed the ICE concept to dig into heterogeneity across 
observations [33].  

As it is apparent from the definition, for a specific predictor of interest, ICE draws one curve per 
each of the individual synthetic instances while holding the value of the other predictors 
unchanged. The estimating function (𝑓𝑓𝑋𝑋𝑖𝑖) would depend on values of the predictor of interest, and 
by permuting this value through the range of the predictor, one curve per one instance is obtained. 
ICE repeats this procedure for all the observations. The outcome is a combination of curves 
through the domain of the predictor of interest that can provide sufficient insight into the 
interaction of predictors and heterogeneity across observations. The average of all the drawn 
curves plotted by ICE is exactly the PDP for the predictor of interest.  

3.5.1.3 Centered ICE (cICE) 

Since the curves in ICE plots start from different prediction points, it is difficult to assess whether 
ICE curves differ from one instance to another. ICE curves can be centralized at a certain 
prediction point that demonstrates only the difference in predicted outcomes to that certain point. 
The obtained plot is called a centered ICE (cICE) plot [31]. This certain point is usually chosen at 
the lower bound of the range of the predictor of interest. Equation 3.5 illustrates this procedure. 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑖𝑖) = 𝑓𝑓(𝑖𝑖) − 𝟏𝟏𝑓𝑓�𝑥𝑥𝑎𝑎 − 𝑥𝑥(𝑖𝑖)�                                                                                          Equation 3.5 

Where 𝟏𝟏 is a vector of 1’s and 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑖𝑖)  is the centralized estimating function for the ith observation 

(𝑥𝑥(𝑖𝑖)) centered at 𝑥𝑥𝑎𝑎 [33]. Note that since cICE are centralized, the outcome probability can take 
negative values. However, this does not affect visualizing the overall trend [31]. ICE and c-ICE 
can only present a one-dimensional relationship compared with PDPs, which can show the 
combined effect of two features on outcomes based on two-dimensional plots. 

3.5.1.4 Accumulated Local Effects (ALE) 

The procedure used in PDP and ICE assumes that the other predictors have the same marginal 
distributions for any level of the predictor of interest that can be a false assumption for highly 
correlated predictors [31], [34]. Apley and Zhu introduced accumulated local effects (ALE) to 
tackle this issue by averaging differences in conditional distribution predictions instead of 
marginal distribution predictions [34]. ALE divides the range of the predictor of interest (𝑋𝑋𝑗𝑗) into 
K equal intervals. This division blocks the effect of the correlated variable(s) and the generation 
of unrealistic synthetic observations. Calculating the average over differences in predictions will 
lead to the pure main effect of 𝑋𝑋𝑗𝑗 on outcomes [34]. Equation 3.6 shows the uncentered ALE for 
at 𝑋𝑋𝑗𝑗 = 𝑥𝑥. 

𝑓𝑓𝑗𝑗(𝑥𝑥) = ∑ 1
𝑛𝑛𝑗𝑗(𝑘𝑘)

∑ [𝑓𝑓(𝑧𝑧𝑘𝑘,𝑗𝑗 , 𝑥𝑥𝑖𝑖,𝐽𝐽) − 𝑓𝑓(𝑧𝑧𝑘𝑘−1,𝑗𝑗, 𝑥𝑥𝑖𝑖,𝐽𝐽) ] 𝑖𝑖:𝑥𝑥𝑖𝑖,𝐽𝐽∈𝑁𝑁𝑗𝑗(𝑘𝑘)
𝑘𝑘𝑗𝑗(𝑥𝑥)
𝑘𝑘=1                                    Equation 3.6 
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Where j indices the predictor of interest, 𝑘𝑘𝑗𝑗(𝑥𝑥) is the kth interval of Xj within which 𝑥𝑥 lies (𝑘𝑘𝑗𝑗(𝑥𝑥) ∈
{1, 2, . . . ,𝐾𝐾}), 𝑛𝑛𝑗𝑗(𝑘𝑘) is the number of observations in 𝑘𝑘𝑗𝑗(𝑥𝑥), 𝑁𝑁𝑗𝑗(𝑘𝑘) is a subset of observations that 
occur in 𝑘𝑘𝑗𝑗(𝑥𝑥), 𝑧𝑧𝑘𝑘,𝑗𝑗 and 𝑧𝑧𝑘𝑘−1,𝑗𝑗, respectively, are the upper and lower bound of 𝑋𝑋𝑗𝑗 in 𝑘𝑘𝑗𝑗(𝑥𝑥), 𝑥𝑥𝑖𝑖,𝐽𝐽 is 
the value of other predictors (j ≠ J) for ith observation in 𝑘𝑘𝑗𝑗(𝑥𝑥), and 𝑓𝑓(. ) is the fitted model. 

3.5.2 Results and Implications for WYDOT CV Pilot  

All the aforementioned visualization tools were used to ensure that the interpretation of causations 
does not depend on the type of visualization, leading to a universal interpretation. Figure 3.1 
narrates the causal effects of significant variables on the crash likelihood throughout the 402 miles 
of I-80 in Wyoming. Accordingly, a reliable baseline has been conducted to explore the causal 
effect of real-time traffic-related factors on the crash likelihood before piloting CV technology on 
the I-80 corridor. The patterns of these causal effects on crash likelihood are expected to be 
changed and affected due to the impact of CVs’ speed adherence and harmonization during post-
deployment. This pattern recognition could be attained by following the same approach and 
conducting real-time CPM during CV post-deployment once CVs reach notable MPRs. The 
comparison of causation patterns between CV pre- and post-deployment would reveal how CV 
technology can affect crash likelihood on the I-80 corridor.  
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Figure 3.1 Causality Effect Visualization of Crash Contributing Factors on the Crash Probability 

during CV Pre-Deployment 
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4. ACCOUNTING FOR UNOBSERVABLE HETEROGENEITY IN 
IDENTIFICATION OF CRITICAL CRASH CAUSATIONS DURING 
CV PRE-DEPLOYMENT  

4.1 Introduction 
Reducing the rate of critical crashes is one of the ultimate goals of the WYDOT CV Pilot on the 
I-80 corridor. This goal necessitates the investigation of critical crash precursors to explore and 
identify influential factors affecting their risk compared with non-critical crashes throughout the 
lengthy 402 miles of I-80. This consideration imposes unobservable factors into crash severity 
prediction models [35], referred to as unobservable heterogeneity.  

Unobservable heterogeneity includes those crash contributing factors that are not observable. If 
these unobservable factors correlate with the dependent variable and observable predictors in the 
models, the results would be biased [36]–[39]. Unobserved heterogeneity is a result of nesting in 
the design matrix and causes dependency across observations [39], [40], while independence is the 
fundamental assumption of statistical modeling. Violating this assumption would result in 
unreliable parameter estimate. The random parameter approach, more specifically random 
intercept, under the concept of hierarchical modeling could account for this issue [41].  

A majority of previous studies used a single random parameter, including random intercept or 
random slop, within two-level hierarchical modeling to account for unobserved heterogeneity [9]. 
On this point, note that if individual crash observations in the design matrix are nested within more 
than one random factor, those additional random factors must be accounted for by hierarchical 
modeling [37]. Accordingly, this part of the documents shows that critical crash occurrence on I-
80 in Wyoming is simultaneously nested in different longitudinal grade categories and road surface 
conditions. Hence, it is essential to consider these two random factors at the same time in the crash 
severity prediction model. To this aim, the research team took the practical advantage of crossed 
classified random effect modeling (CCREM) [39] to develop a baseline in identifying critical crash 
causations during the CV pre-deployment. 

4.2 Nested Random Factors versus Crossed Random Factors  
In a data hierarchy, individual observations at level-1 might be clustered between different groups 
of factor(s) at higher levels [42]. The terminology of crossed-random intercept in CCREM is 
presented for the case of additional random factors that are crossing each other as opposed to being 
nested within each other [43]. According to Figure 4.1, V and U are two factors within which the 
individuals are clustered. From Figure 4.1A, nested factors can be encoded when any group of the 
first factor (V) at level 2 appears only in one particular group of the second factor (U) at level 3. 
Thus, V itself is nested within U. In this situation, the number of levels in hierarchical modeling 
should be increased (i.e., from two-level modeling to three-level modeling in this example) [43]–
[45]. 

On the other hand, Figure 4.1C presents crossed factors where any given group of V can arise in 
more than one group of U [43]. Equivalently, individual observations are not only clustered 
between different groups of U and V but also are grouped between different combinations of U 
and V. Using crossed factors at level 2 in two-level modeling under the concept of CCREM can 
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account for this type of grouping [43]–[49]. Figures 4.1B and 4.1D indicate the cross-classification 
of individual observations for nested factors and crossed factors, respectively. The white cells 
show there is no observation, and the number of hypothetical observations in black cells is more 
than the gray cells. Hence, in the case of nested factors, the cross-classification of observations 
would be almost diagonal [43], [49]. It was found that the individual crashes on the 402 miles of 
I-80 are nested within both longitudinal grade categories and road surface categories that are 
crossing each other at level 2 of data hierarchy, necessitating the application of CCREM. 

 
Figure 4.1 Nested Factors versus Crossed Factors 

4.3 Variable Description 
During the first five months of 2017 (CV pre-deployment), 207 crashes were included for the 
investigation, among which 28 cases were critical crashes. Four databases were conflated to 
structure the final dataset used in this study. The primary databases comprised crash reports, 
aggregated roadway geometry characteristics, weather conditions, and real-time traffic 
observation through the 402 miles of I-80. For each crash, the final dataset included a variety of 
predictors corresponding to aggregate non-traffic variables and disaggregate real-time traffic-
related variables. 

In total, 24 real-time traffic-related variables were characterized following two steps. First, six 
classes of real-time traffic-related predictors were considered to capture traffic characteristics 
during 15-minute time windows before crashes. These were 1) mean speed, 2) operating speed 
(i.e., 85th percentile of speed distribution), 3) standard deviations of speed, 4) traffic volume, 5) 
truck proportion, and 6) the coefficient of variation in speed. Second, each of these predictor 
classes was measured based on four types of measurements concerning crash locations. Type 1 
and Type 2, respectively, evaluate traffic-related predictors upstream and downstream of crash 
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locations. Type 3 measured the predictors at the crash locations by averaging its corresponding 
value between upstream and downstream. Type 4 was allocated to detect the spatial variation of 
the traffic pattern from upstream to downstream by subtracting Type 1 variables from Type 2. 
Before initiating the analysis, the important variables were defined using CII as the FS technique, 
leading to selecting 14 variables described in Table 4.1. 

Table 4.1 Description of Explanatory Variables to Explore Critical Crash Causation during CV Pre-
Deployment 

 

4.4 Hierarchical Modeling 
Hierarchical modeling can account for the hierarchical structure of the dataset as a result of 
unobserved heterogeneity when individual observations are nested in some random factors at a 
higher level of data structure [37]. Specifically relating to this analysis, observations at level 1 
(e.g., critical and non-critical crash occurrences) might be nested in one or more factors at level 2 
(e.g., road surface conditions and longitudinal grades), making correlation across observations 
within clusters of the random factors. This hypothesis was assessed by investigating the within-
cluster correlation of observations using the intraclass correlation coefficient (ICC). ICC 
decomposes the variation of the outcomes into within-cluster and between-cluster variations [50] 
by taking any positive values from 0 to 1 that quantifies the proportion of between-cluster variation 
to the total variation of outcomes [50]. Equation 4.1 presents ICC for logistic regression, where 
𝜎𝜎02 is the between-cluster variance (i.e., the random intercept variance) and the term (π2/3) refers 
to the level 1 variance component in standard logistic distribution [50]. 

𝐼𝐼𝐼𝐼𝐼𝐼 = σ02

σ02+π2/3
                                                                                                          Equation 4.1 
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4.4.1 Hierarchical Logistic Regression     

Four models were developed, and their performances were compared using three performance 
measures: the Watanabe-Akaike information criterion (WAIC), area under the curve (AUC), and 
Akaike weights based on WAIC. ICCs were investigated to examine whether or not the crash 
observations are nested within longitudinal grade categories and road surface conditions.  

Model 1. The first model serves as a baseline where the assumption of having statistically 
independent observations was assumed to be met in the crash dataset. All the independent variables 
were treated as crash contributing factors (i.e., fixed parameters), and a simple Bayesian logistic 
regression was conducted. Equation 4.2 parametrizes Model-1, where 𝑝𝑝𝑖𝑖 is the probability of 
critical crash occurrence for ith observation among n instances, 𝛽𝛽0 is the intercept, β is the vector 
of coefficients corresponding to predictors, and X is the vector of predictors.  

log � 𝑝𝑝𝑖𝑖
1−𝑝𝑝𝑖𝑖

� = 𝛽𝛽0 + 𝜷𝜷𝜷𝜷                        Equation 4.2 

Model 2. This model hypothesizes that the crash occurrences are nested within road surface 
conditions and treats this factor as a random intercept with four clusters at level-2 of the data 
structure. Model-2 was developed based on Equation 4.3. In Equation 4.3, 𝛽𝛽00 is the fixed intercept, 
𝑅𝑅0𝑗𝑗 is the deviation of the fixed intercept due to different road surface conditions where 
𝑅𝑅0𝑗𝑗 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑟𝑟2), 𝑝𝑝𝑖𝑖𝑖𝑖 is the probability of critical crash occurrence for ith observation in jth road 
surface condition, X is the vector of the rest of the predictors, and β is the vector of coefficients 
corresponding to these predictors.  

log � 𝑝𝑝𝑖𝑖𝑖𝑖
1−𝑝𝑝𝑖𝑖𝑖𝑖

� = (𝛽𝛽00 + 𝑅𝑅0𝑗𝑗) + 𝜷𝜷𝜷𝜷                      Equation 4.3 

Model 3. This model follows Equation 4.4, which has a procedure similar to Model 2; however, it 
hypothesizes that the critical crash occurrence is nested within four longitudinal grade clusters at 
level 2 of the data structure. In Equation 4.4, 𝛽𝛽00 is the fixed intercept, 𝐺𝐺0𝑗𝑗 is the deviation of the 
fixed intercept due to different longitudinal grade categories where 𝐺𝐺0𝑗𝑗 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�0,𝜎𝜎𝑔𝑔2�, 𝑝𝑝𝑖𝑖𝑖𝑖 is the 
probability of critical crash occurrence for ith observation in jth longitudinal grade category, X is 
the vector of the rest of the predictors, and β is the vector of coefficients corresponding to these 
predictors. 

log � 𝑝𝑝𝑖𝑖𝑖𝑖
1−𝑝𝑝𝑖𝑖𝑖𝑖

� = (𝛽𝛽00 + 𝐺𝐺0𝑗𝑗) + 𝜷𝜷𝜷𝜷                     Equation 4.4 

Model 4. Investigation of the crossed effect of longitudinal grade categories and road surface 
conditions within the concept of CCREM at level 2 of the data structure is performed by Model 4 
following Equation 4.5. In Equation 4.5, 𝛽𝛽0(00) is the fixed intercept, 𝐺𝐺0(0𝑘𝑘) and 𝑅𝑅0(𝑗𝑗0) are, 
respectively, the deviation of the fixed intercept due to different longitudinal grades and varying 
road surface conditions, where 𝐺𝐺0(0𝑘𝑘) ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�0,𝜎𝜎𝑔𝑔2� and 𝑅𝑅0(𝑗𝑗0) ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑟𝑟2). 𝑝𝑝𝑖𝑖(𝑗𝑗𝑗𝑗) is the 
probability of critical crash occurrence for ith observation in jth road surface condition occurred at 
kth longitudinal grade categories, X is the vector of the rest of the predictors, and β is the vector of 
coefficients corresponding to these predictors. Note that there are different alternative notations in 
the literature for CCREM.  
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log � 𝑝𝑝𝑖𝑖(𝑗𝑗𝑗𝑗)

1−𝑝𝑝𝑖𝑖(𝑗𝑗𝑗𝑗)
� = (𝛽𝛽0(00) + 𝑅𝑅0(𝑗𝑗0) + 𝐺𝐺0(0𝑘𝑘)) + 𝜷𝜷𝜷𝜷                     Equation 4.5 

4.5 Bayesian Inference 
All models were conducted under Bayesian inference utilizing no-U-turn sampler (NUTS) for 
sampling [51]. Using three Markov Chain Monte Carlo (MCMC) simulations for the four models, 
4,000 samples were generated within which the first 1,000 samples were considered as the warmup 
samples and eliminated from the posterior distribution. The continuous variables were scaled and 
centered, which can improve the efficiency of MCMC [51]. Among the 3,000 samples after 
warmup, there was no divergence in sampling and no warning regarding the maximum tree depth 
that shows the samples had an acceptable efficiency [51]. Furthermore, the same priors using non-
informative distributions were considered under the logit scale to perform a fair comparison among 
the four models. Equations 4.6 and 4.7 present the chosen priors for the fixed intercepts (i.e., 𝛽𝛽00 
and 𝛽𝛽0(00)) and coefficients (𝜷𝜷) in all developed models, respectively.  

𝛽𝛽00 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽000~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(−1.85,  2)           Equation 4.6 

𝛽𝛽~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,  2)             Equation 4.7 

For the hierarchical models (i.e., Model 2, 3, and 4), the extent of the deviations of cluster-specific 
intercepts from the fixed intercepts (𝑅𝑅0𝑗𝑗, 𝑅𝑅0(𝑗𝑗0), 𝐺𝐺0𝑗𝑗, and 𝐺𝐺0(0𝑘𝑘)) are supposed to obtain posterior 
distributions. Hence, 𝜎𝜎𝑟𝑟 and 𝜎𝜎𝑔𝑔 require prior distributions because 𝑅𝑅0𝑗𝑗~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑟𝑟2), 
𝑅𝑅0(𝑗𝑗0) ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑟𝑟2), 𝐺𝐺0𝑗𝑗  ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�0,𝜎𝜎𝑔𝑔2�, and 𝐺𝐺0(0𝑘𝑘) ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�0,𝜎𝜎𝑔𝑔2�. Both of 𝜎𝜎𝑟𝑟 and 𝜎𝜎𝑔𝑔 
play the same role as 𝜎𝜎0 in Equation 4.1 and demonstrate how much of the variability of the 
outcomes is due to its systematic variation at level 2 of the data structure. Since 𝜎𝜎𝑟𝑟 and 𝜎𝜎𝑔𝑔 are 
standard deviations, they can only take positive values and follow half-normal distributions. Hence 
their non-informative prior distributions are, respectively, presented by Equations 4.8 and 4.9. 
Similarly, the standard deviations were set to be 2, to have a large value under the logit scale. 

𝜎𝜎𝑟𝑟  ~ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(0,  2)            Equation 4.8 
 
𝜎𝜎𝑔𝑔 ~ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(0,  2)            Equation 4.9 

4.6 Results Interpretation and Implication 
Table 4.2 presents the results and compares the performances of the four models using WAIC, 
AUC, and Akaike weight. In Model 2, the standard deviation of the random road surface intercept 
was estimated to be 0.58, leading to the corresponding ICC=0.09 that indicates almost 9% of the 
variation of the outcomes lies between different clusters of this factor. Similarly, Model 3 
estimated the standard deviation of random longitudinal grade intercept to be 0.58 which resulted 
in ICC=0.09, implying that 9% of the variation of the outcomes is due to the different groups of 
road surface conditions. These ICCs confirmed that the critical crash occurrences are nested within 
these two factors at level 2 of the data structure. Note that in Model 4, the corresponding ICC 
cannot be reported since it is not specified for models with crossed random effects [43]. 

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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Table 4.2 Models’ Estimations for Identification of Critical Crash Causations during 
CV Pre-Deployment  

 

Model 4, however, outperformed all others and achieved the minimum WAIC, maximum AUC, 
and maximum Akaike weight by 176.1, 76.6%, and 0.77, in the same order. These results reveal 
the potential of considering the crossed effects of two random intercepts at level 2 of the data 
hierarchy by capturing more variation of the outcome. Model 4 obtained minimum standard error 
of WAIC, which means Model 4 not only has superior predictive performance, but it also could 
minimize the uncertainty in WAIC estimates.  

4.6.1 Analysis of Crossed-Random Intercepts  

Based on Equation 4.5, since both the road surface and the longitudinal grade have four clusters, 
16 crossed-random intercepts can be generated under CCREM. These crossed-random intercepts 
explain the average of the logit of critical crash probability under any combined effect of 
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longitudinal grades and road surface conditions. Relevant to Equation 4.5, Figure 4.2 gives 16 
rounded crossed-random intercepts under crossing longitudinal grade categories (𝐺𝐺0(0𝑘𝑘)) and road 
surface conditions (𝑅𝑅0(𝑗𝑗0)) [i.e., (𝛽𝛽0(00) + 𝑅𝑅0(𝑗𝑗0) + 𝐺𝐺0(0𝑘𝑘))]. 

 
Figure 4.2 Crossed-Random Intercepts for Different Combinations of Road Surface and Longitudinal 

Grade Categories 

Figure 4.2 depicts that on steepest downgrades (G < -2%) when the road surface is dry, the crossed-
random intercept can obtain the maximum possible value by -1.42, leading to the maximum 
probability of critical crashes compared with other situations. On the other hand, the combined 
effect of the wet road surface and less steep downgrades (i.e., -2% < G < 0%) has resulted in the 
minimum crossed-random intercept by -2.23, corresponding to the minimum critical crash risk in 
comparison with other possible conditions.  

4.7 Recommendations for WYDOT 

Figure 4.3 illustrates the effect of the 16 crossed-random intercepts on the probability of the critical 
crashes through accounting for  two traffic-related predictors (i.e., diffVol and aveSDSp). The 
variation of critical crash probabilities according to the different combined effects of the road 
surface and categorized longitudinal grade at any given value of these real-time predictors can be 
seen. For instance, from Figure 4.3A, when the scaled aveSDSp is -2, the critical crash probability 
is 34% on the wet road and less steep downgrade. This probability, however, at the same value of 
aveSDSp, can increase up to 54% on the dry and steepest downgrade. Figure 4.3B demonstrates a 
practical application of the crossed-random intercept in CCREM for active traffic management 
(ATM) on the I-80 corridor. Suppose 30% in critical crash probability is set to be the hypothetical 
threshold. This threshold, however, can be met at different values of real-time traffic-related 
predictors according to various combinations of environmental conditions and roadway geometry 
characteristics. For instance, Figure 4.3B elucidates that through the range of scaled diffVol, the 
mentioned threshold can be met when this variable is -1.4 on a dry and steepest downgrade, or 
even at -3.3 on a wet road surface and less steep downgrade. This conclusion draws a valuable 
insight for ATM in timely application interventions not only based on real-time traffic-related 
predictors, but also considering the environmental factors.  
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A- Marginal Effect of Average of Standard Deviation of Speed at Upstream and 

Downstream of the Crash Location (aveSDSp) under Varying Crossed Random 
Intercepts  

 
B- Marginal Effect of Spatial Difference in Traffic Volume from Upstream to Downstream of 

the Crash Location (diffVol) under Varying Crossed Random Intercepts 

Figure 4.3 Crossed Random Effect of Longitudinal Grade and Road Surface Intercepts on Critical Crash 
Risk through the Range of Significant Traffic-Related Variables 
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5. ANALYSIS, MODELING, AND SIMULATION (AMS) FRAMEWORK  

5.1 Introduction 
The safety benefits of the WYDOT CV Pilot would be gained mostly from the change in driving 
behavior due to the effect of real-time CV warnings provided under VANET. Therefore, there is 
an essential need to quantify and measure CV drivers’ behavioral alterations under the effect of 
CV notifications. Accordingly, comprehensive high-fidelity driving simulator experiments were 
conducted at the University of Wyoming Driving Simulator Lab (WyoSafeSim), which consists 
of truck and passenger car driving simulators. In the developed experiments and under the concept 
of with/without analysis, the effect of several CV applications on truck drivers’ behavior was 
tested. The main goal of this procedure was drawn to develop a well-calibrated and validated 
analysis, modeling, and simulation (AMS) framework to be used for the safety performance 
assessment of the WYDOT CV Pilot based on the quantification of the drivers’ behavioral 
alteration. Under the AMS framework, the research team assessed CV safety performance based 
on two techniques: first, the analysis of vehicles’ trajectory-level observations from the driving 
simulator to quantify drivers’ behavioral alteration due to CV notifications utilizing K-SMoS; 
second, the conflation of driving simulator experiments with microsimulation modeling to unveil 
the CVs’ safety effect on the entire traffic stream under varying MPRs using C-SMoS.  

5.2 Experimental Approach 
At the WyoSafeSim lab, driving simulator analyses with a focus on truck drivers were performed 
through two main parts: the CV training phase and comprehensive truck driving simulator 
experiments for with/without analysis. A summary of the procedure follows. 

5.2.1 CV Training Phase  

The proposed CV training program contains two major components: an e-learning module and a 
hands-on driving simulator training module. The research team determined the contents of the e-
learning module and simulation scenarios of the driving simulator training module based on the 
requirements of USDOT’s training tasks. Professional snowplow truck drivers from WYDOT 
were invited to participate and evaluate the updated training materials and procedure. The 
framework of the CV training program is presented in Figure 5.1. 

The training started with a program background introduction and completion of the consent form. 
In the next step, a pre-training questionnaire was conducted to collect the demographic profile, 
driving experience, crash history, and experience of each participant. In the e-learning module, 
participants were introduced to the basic components of the Wyoming CV system (e.g., human 
machine interface [HMI]), the concept and function of each CV warnings, and the proper response 
they should implement.  

5.2.1.1 Human Machine Interface (HMI) Design 

One of the key components of the CV system is the onboard HMI that delivers the received CV 
warnings to drivers, as illustrated in Figure 5.2. The participants learned from the e-learning 
module that the main function of the CV system is only to provide timely warnings to inform the 
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driver with real-time information about upcoming hazardous roadway and weather conditions, and 
that the CV system will not control his/her vehicle or affect his/her driving.  

 
Figure 5.1 Flow Chart of the Developed Wyoming CV Training Framework 

 
 

Figure 5.2 The Layout of Human–Machine Interface Display  
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The HMI was designed in a 10.1-inch android tablet and integrated into the truck driving simulator. 
The displayed TIMs’ location mimics the designed HMI provided in the WYDOT CV Pilot [52], 
which was based on the importance of the communicated message. Participants were also educated 
about the priority level of CV warnings and how to recognize the most urgent alert in case of 
multiple alerts appearing simultaneously on the HMI.  

5.2.2 Hands-on Driving Simulator Training Module  

5.2.2.1 Participants 

A total of 24 professional truck drivers with a commercial driver’s license (CDL) were recruited 
for the experiment. The recruited drivers were familiar with traffic operation performance on I-80 
in Wyoming under varying weather conditions and roadway characteristics employed by 
WYDOT. The minimum required sample size was calculated based on Equation 5.1 [53], where 
Z is the z-score for the defined confidence level, p is the population proportion, e is the margin of 
error, and N is the population size. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑍𝑍2×𝑝𝑝×(1−𝑝𝑝)

𝑒𝑒2

1+�𝑍𝑍
2×𝑝𝑝×(1−𝑝𝑝)
𝑒𝑒2×𝑁𝑁

�
                                  Equation 5.1 

An initial confidence interval of 90% with the corresponding z-score of 1.65 (Z) and a 10% margin 
of error (e) were determined to calculate the sample size. Prior knowledge of the population 
proportion (p) was used to calculate the optimum sample size. However, it is challenging to have 
reliable prior information about the population's acceptance of the CV in advance. Due to the 
known benefits of the CV applications in the literature, it was assumed that 90% of participants 
would affirm the CV’s benefits. This assumption was confirmed after conducting the DS 
experiment, where 95% of participants agreed on the significant safety benefits of the CV 
[54]. Accordingly, the minimum sample size was calculated to be 22 participants for a population 
of 200 truck drivers (N) that will have CV technology equipped in their trucks during the WYDOT 
CV Pilot post-deployment on I-80.  

5.2.2.2 Equipment 

The CV hands-on training module was performed using a high-fidelity driving simulator lab 
located at the University of Wyoming (WyoSafeSim Lab), which is a freight truck (2000 Sterling 
AT9500 18-wheeler semi-trailer) cockpit cab. The simulator has a 140-degree field of view (FOV) 
housed in a closed room, where temperature, sound, and light are fully controlled. The simulators 
have an open architecture software with complete source code of simulation creator tool, which 
offers the flexibility of designed roadways and developing driving scenarios. The simulators allow 
three degrees of freedom (roll, pitch, and heave) using four linear actuators as the D-Box motion 
platform. The simulators provide motion cues to immerse the driver into a real driving experience 
with changes in kinematics, such as velocity, acceleration, and deceleration, which vary according 
to the passenger car or truck’s dynamic performance. Vehicle kinematics from the driving 
simulator was recorded on a frequency of 60 Hz coupled with the video recordings for the center 
screen and the HMI using the SimObserver software.  
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5.2.2.3 Warm-Up Driving Practice  

The warm-up driving practice was conducted to let the participants get familiar with the functions 
of the driving simulator environment. The driving simulator training platform was designed as a 
two-way four-lane freeway segment with a 75-mph speed limit to represent the basic operating 
conditions of freeway I-80 in Wyoming. During the warm-up driving practice, each participant 
drove for five to 10 minutes; additional practice time was provided to participants who needed 
more time. 

5.2.3 Comprehensive Truck Driving Simulator Experiments for With/Without 
Analysis  

Three comprehensive simulation scenarios were developed to simulate different real-world traffic 
and weather conditions on an I-80-like freeway. Each truck driver drove each of the scenarios two 
times in CV and non-CV environments (i.e., with/without analysis presented in Figure 5.3), 
resulting in six main scenarios per driver, narrated in Figure 5.4. 

 
Figure 5.3 With/Without Analysis in the Truck Driving Simulator Experiments 
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Figure 5.4 Truck Driving Simulator Experiments at the WyoSafeSim  

The driving simulator scenario consists of a work zone in fog, a slippery road surface under adverse 
weather conditions, and road closure because of a crash in severe weather. Under the mentioned 
driving simulator scenarios, the effect of several CV applications on driver behavior under various 
traffic critical safety events were tested, including SWIW, DN, SA, CV variable speed limit (CV-
VSL), FCW, and WZW.  

5.2.4 Evaluation of Driving Simulator Experiments 

After experiencing the Wyoming CV application in the driving simulator study, a comprehensive 
post-drive questionnaire survey was employed to collect participants’ qualitative opinions 
regarding their preferences on different CV warning modalities and the effectiveness of CV 
technology under various real-world driving conditions. Results show that the majority of 
participants (96.2%) preferred to have the CV warnings displayed at the combination of visual and 
auditory modalities. For the auditory-warning modality, it was found that using a simple “beep” 
sound for advisory warnings and a series of louder “beep” sounds for critical warnings would best 
draw a driver’s attention. For the visual warning modality, results show that, by grouping CV 
warnings to different priority levels and presenting warnings that have a higher priority closer to 
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the driver (i.e., left side on the CV HMI), drivers tended to more easily perceive the imminent 
safety hazard when multiple warnings were displayed on the CV HMI [52], [54]–[56]. 

Furthermore, the research team investigated driver distraction levels due to the HMI based on 
vehicles’ kinematics analysis, questionnaire surveys, and eye-tracking analysis. The result 
affirmed the appropriateness of the designed HMI where the quantified drivers’ additional 
cognitive workload due to the HMI was found to be within the acceptable ranges proposed by the 
existing guidelines [57], [58].  

5.2.5 Microsimulation Modeling in the AMS framework 

To unveil the effect of the WYDOT CV Pilot on the entire traffic stream, the microsimulation 
modeling was integrated into the developed AMS. The primary reason for this consideration is 
being limited by the low number of CVs in a real-world setting. Specifically, under the WYDOT 
CV Pilot, there are only 400 heavy trucks equipped with the CV technology, which is a negligible 
proportion of the traffic volume on I-80 with average annual daily traffic (AADT) of 10,000 to 
20,000. Accordingly, driving simulator experiments were integrated into VISSIM® traffic 
microsimulation modeling to evaluate macro- and micro-level factors contributing to CVs’ safety 
effect on I-80’s entire traffic stream. In this regard, the important point is the calibration of CV 
longitudinal and lateral driving behavior (i.e., car-following parameters) in the microsimulation 
modeling. Most previous studies performed this calibration based on assumptions regarding driver 
behavior alterations in the CV environment. This research, however, followed a more realistic 
approach and presented innovative traffic safety research perspectives. 

Driver behavior under CV and non-CV environments were quantified by analyzing the results of 
driving simulator experiments. This quantification was applied in the microsimulation modeling 
for developing a well-calibrated model. The proposed AMS framework employs the VISSIM 
simulation with the Surrogate Safety Assessment Model (SSAM) for safety performance 
evaluation. Accordingly, C-SMoS were employed for the safety performance assessment of the 
WYDOT CV Pilot. 
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6. MITIGATING WORK ZONE-RELATED CRASHES IN CV 
ENVIRONMENTS 

6.1 Introduction 
With the rapidly aging roadway infrastructure, essential needs for their maintenance, and roadway 
geometry modification requirements [59], work zones (WZs) have become prevalent in the U.S. 
transportation network. Statistics show that in 2015 almost 96,626 WZ-related crashes occurred, 
indicating one WZ crash every 5.4 minutes [60]. Moreover, reduced visibility caused by foggy 
conditions on I-80 can intensify the risk of crashes in WZs as it imposes an unusual pattern in 
driving behaviors, where drivers must compensate for the reduced visibility and its associated risks 
[61]. On average, 21% of annual crashes and 16% of all fatal crashes are weather-related, where 
crashes in foggy conditions are prone to be more severe and can involve multiple vehicles 
compared with clear conditions. In WZ areas, drivers’ mental workload increases, impacting their 
performance and increasing their driving behavior errors [62]. Timely and dynamic increases in 
drivers’ situational awareness can mitigate this lack of performance [63]. 

On this point, CV technology has been proven to effectively enhance drivers’ situational awareness 
[63]. Various CV advisory/warnings notifications, such as the work zone warning (WZW) and 
spot weather impact warning (SWIW) application, aid CV drivers to perform better driving 
behavior relating to the chosen headway, late and early merging, speed selection, and lane 
changing maneuvers in WZs [63]. This part of the document presents the investigation of the safety 
performance of varying CV-MPRs on I-80 WZs under fog based on a conflation of driving 
simulator and microsimulation modeling using various C-SMoS. 

6.2 Driving Simulator Experimental Design  
According to Figure 6.1, the driving simulator experiment involved testing two distinct pilot 
applications: the SWIW and the WZW. The SWIW application consisted of two notifications 
communicated before the WZ advance warning area. The first weather notification informed 
drivers of an upcoming fog. The subsequent weather notification suggested a 55-mph advisory 
speed for the upcoming foggy condition. Following the notifications, the fog was gradually 
introduced, and the visibility was reduced to 250 feet. Farther downstream, participants received 
four distinct WZ advance warning area notifications sequentially under the foggy weather 
conditions. 

Under with/without analysis, drivers had to rely on the roadside static and dynamic signs for 
guidance in the baseline scenario. In the CV scenario, the first WZ notification informed drivers 
of an upcoming work zone in one mile. The second notification updated the distance placard on 
the WZ warning sign to 0.5 miles and alerted drivers of an upcoming reduction in the speed limit 
to 45 mph. The third notification updated the distance on the WZ warning sign placard to 1,000 
feet. A right lane closure (i.e., lane merge) warning and a 45 mph speed limit sign were displayed 
in the last notification. The 45 mph speed limit warning in the CV scenario was communicated 
shortly in advance of the corresponding static road speed limit sign to allow drivers to discern both 
the static sign and the HMI warning in a non-conflicting manner. Distinctively, the lane merge 
warning in the CV scenario was displayed well in advance of the static road sign to give drivers 
an increased timespan to merge toward the open lane. The early lane merge warning, a prominent 
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feature of WYDOT Pilot’s WZW application, was devised with the hope of reducing late and 
forced merging behaviors at work zones, particularly for large trucks. 

 
Figure 6.1 The Driving Simulator Work Zone Area Scenario under Foggy Weather Conditions 

6.3 Microsimulation Modeling 
The research team integrated the result of the driving simulator with microsimulation modeling 
under VISSIM®. In this regard, various C-SMoS and speed-related variables were investigated to 
show the safety performance of CV technology in I-80 WZ areas. The traffic information, 
including traffic volume, traffic composition, and speed distribution, were obtained from 
WYDOT’s speed sensors installed on the I-80 corridor to calibrate and validate the 
microsimulation modeling.  
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6.3.1 Baseline Calibration and Validation 

For the non-CV scenario (i.e., the baseline), the Wiedemann-99 car-following and lane-changing 
parameters were adapted according to the literature for a WZ area. In WZs, three parameters are 
substantial to be adjusted: the standstill distance (CC0), desired time headway (CC1), and the 
maximum additional following distance beyond the calculated safety distance (CC2) [64]. The 
most suitable values for these parameters were obtained using the genetic algorithm as an 
optimization method in MATLAB [65]. Therefore, the minimum of absolute relative error (ARE) 
was employed as the objective function, which can be achieved when the difference between real-
life traffic volume and the traffic volume obtained from the generated parameters becomes less 
than 1% [65]. In this regard, Equation 6.1 presents the details, where 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is the real-life traffic 
volume observation and 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆 is the traffic volume resulting from the microsimulation modeling.  

ARE = │ (𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆−𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂)
𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂

│                         Equation 6.1 

The model was validated using the Geoffrey E. Havers (GEH) statistic test [66], which shows the 
errors between simulated and real-time traffic volume based on Equation 6.2. According to the 
GEH test result, the test statistics were within an acceptable range (i.e., GEH<5 [66]). 

𝐺𝐺𝐺𝐺𝐺𝐺 =  �2(𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛) − 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛))2

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜(𝑛𝑛) + 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛)            Equation 6.2  

According to Figure 6.2, the model was validated by comparing speed profiles for non-connected 
vehicles from driving simulator data with simulated data. Five sets of different random sampled 
trajectories of 23 vehicles in the simulation were selected to minimize bias. In each case, the speeds 
were compared to the driving simulator data using two-sample t-tests at every 0.1 miles. All 
comparisons were insignificant (p-value > 0.05) for all five sets, indicating no significant 
difference between the mean of the speeds of the driving simulator data and microsimulation data.  
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Figure 6.2 Comparison of Simulated Speed Profiles and Driving Simulator Data 

6.3.2 CV Scenario Development 

Six different scenarios corresponding to 0% (non-CVs), 10%, 20%, 30%, 50%, and 60% MPRs of 
CVs were considered to assess the safety performance of CVs. The research team utilized the 
results, of the driving simulator experiment to internally calibrate CV driver behaviors under the 
impact of the received WZW and SWIW notifications in VISSIM by changing Wiedemann-99 
parameters. The observed changes of CV driver behaviors in the driving simulator were regarded 
from different points of view and were applied on Wiedemann-99 parameters as follows:   

• The cooperative lane change parameter associated with CVs should be “Yes” as CVs 
perform more cooperative lane-changing maneuvers. 

• CC0, CC1, and CC2 parameters should be modified for CVs because they keep smaller 
distances at non-zero speed. Besides, CVs’ CC8 and CC9 parameters should be altered due 
to much smoother CV acceleration.  

• The speed distribution for a CV is more harmonized than non-CVs, with a reduction of 
10% and 20% in the mean and standard deviation of speed.   

• In comparison with non-CVs, CVs perform early merging in the WZ transition area. 

6.4 Conflict-Based Surrogate Measure of Safety (C-SMoS) 
The driver speed behavior in various areas of the WZ was evaluated using the trajectory data from 
the microsimulation modeling utilizing the SSAM. Conflict assessment for WZ safety was 
conducted using several C-SMoS, which have been extensively used in the literature as an 
emissary crash in microsimulation models [6]. SSAM provides a range of criteria for defining a 
collision. In this analysis, different types of C-SMoS were used to measure WZ crash risk as 
follows: 
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6.4.1 Time-To-Collision (TTC) 

Equation 6.3 formulates time-to-collision (TTC) that is defined as “the time required for two 
vehicles to collide if they continue at their present speeds on the same path” [6].  

 𝑇𝑇𝑇𝑇𝑇𝑇 = �
𝐷𝐷1−2
𝑉𝑉2−𝑉𝑉1

,              𝑖𝑖𝑖𝑖 𝑉𝑉2 > 𝑉𝑉1
∞,                    𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                     Equation 6.3 

Where 𝐷𝐷1−2 represents the gap distance between the leading and the following vehicle, 𝑉𝑉1 and 𝑉𝑉2 
are the speeds of the leading and following vehicles, respectively. The TTC threshold value was 
set to be 1.5 seconds in this study [6]. 

6.4.2 Modified Deceleration Rate to Avoid a Crash (MDRAC) 

Modified deceleration rate to avoid a crash (MDRAC) takes the drivers’ perception reaction time 
(PRT) into account, which is essential in the reduced visibility zone. MDRAC measures the effect 
of CV warnings in the WZ, where the following vehicle must adapt its speed to that of the leading 
vehicle. Equation 6.4  expresses MDRAC [6]. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝑉𝑉2−𝑉𝑉1

2(𝑇𝑇𝑇𝑇𝑇𝑇−𝑅𝑅)
,              𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇 > 𝑅𝑅

∞,                         𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                     Equation 6.4 

Where 𝑅𝑅 is the PRT, which is defaulted as 2.5 seconds, and the rest of the variables are the same 
as Equation 6.3. MDRAC values greater than the threshold of 3.4m/s2 [67] are considered as a 
potentially risky driving situation and reflect the severity of conflicts based on TTC. MDRAC 
values greater than 3.4m/s2 were considered for the safety performance assessment of CVs. 

6.4.3 Time Exposed Time-to-collision (TET) and Time-Integrated Time-to-collision 
(TIT) 

To better illustrate the risk, the time exposed time-to-collision (TET) and time integrated time-to-
collision (TIT) derived from TTC were utilized. TIT and TET measure the severity and exposure 
to risky situations, respectively [6], which is achieved by setting up various data collection points 
at various segments of the WZ in the simulation network. The indexes TET and TIT are defined 
mathematically as:  

𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) = ∑ 𝛿𝛿𝑡𝑡  ×  𝛥𝛥𝛥𝛥,𝑁𝑁
𝑛𝑛=1    𝛿𝛿𝑡𝑡 = �

1,   0 < 𝑇𝑇𝑇𝑇𝑇𝑇 (𝑡𝑡)  ≤ 𝑇𝑇𝑇𝑇𝑇𝑇∗

0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                  
       Equation 6.5 

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) 𝑇𝑇
𝑡𝑡 =1             Equation 6.6 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) = ∑  � 1
𝑇𝑇𝑇𝑇𝑇𝑇 (𝑡𝑡) 

− 1
𝑇𝑇𝑇𝑇𝑇𝑇∗

� .𝛥𝛥𝛥𝛥,    0 < 𝑇𝑇𝑇𝑇𝑇𝑇 (𝑡𝑡) ≤ 𝑇𝑇𝑇𝑇𝑇𝑇∗𝑁𝑁
𝑛𝑛=1                  Equation 6.7 

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) 𝑇𝑇
𝑡𝑡 =1             Equation 6.8 
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Where t is the time ID, n is the vehicle ID, N is the total number of vehicles, δ is the switching 
variable, 𝛥𝛥𝛥𝛥 is the time step, which was 0.1 seconds in simulation, T is the simulation period, and 
TTC* is the threshold of TTC, which was set to be 1.5 seconds.  

6.4.4 Data Analytics 

From Table 6.1, the mean MDRAC greater than 3.4 m/s2 and the mean of critical TTCs less than 
1.5 seconds indicate a critical situation. The values in the table represent the critical car following 
situations, where the higher the deviation of SMoS from the thresholds, the greater the crash risk. 
The number of critical TTCs decreases as MPR increases. Notably, the number of conflicts 
decreased by 80% from the base scenario, when 30% of vehicles in the traffic volume are 
connected. This conclusion is important for the WYDOT CV Pilot because trucks comprise 30% 
of total traffic on I-80 during the summer. Hence, achieving significant safety benefits by 30% 
MPR on the entire traffic volume shows how CVs on I-80 can improve WZ safety if all trucks are 
connected. 

Furthermore, one of the important aspects of this study is to evaluate how the influence of CVs on 
driver behavior can affect WZ safety after encountering foggy conditions by considering the 
various sub-segments of the WZ area. Table 6.1 presents the evaluation of crash risk under varying 
CV-MPRs according to a summary of TIT and TET for different WZ areas, including the advance 
warning, transition, activity, and termination areas. The results indicate that 60% of MPR had the 
lowest crash risk across all areas. Looking at the 30% CV MPR, there is a notable reduction in 
TET and TIT across all WZ areas compared with the other preceding MPRs (0%, 10%, 20%).  

Figure 6.3 shows the relationship between three SMoSs, including the number of critical TTCs, 
the mean of critical TTC, and the mean of critical MDRAC, and different CV MPRs. It is inferable 
that the risk of crashes decreases as market penetration increases. According to Figure 6.3C, above 
60% MPR, SSAM did not record any conflicts, which stems from dealing with I-80 as a low-traffic 
volume corridor.  
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Table 6.1 Safety Assessment of the Entire Work Zone Section 

 

 
Figure 6.3 Relationship between Conflict-Based Surrogate Measure of Safety (C-SMoS) 

and Connected Vehicle Market Penetration Rate (CV-MPR) 

6.5 Spatiotemporal Analysis of Speed Harmonization 
In addition to the considered C-SMoS, speed harmonization in four WZ areas has been investigated 
under varying CV-MPRs. During the simulation run, the speeds of individual vehicles in the traffic 
stream were observed using several data collection points located at 0.1-mile intervals in all 
individual WZ areas. The effect of work zone warning (WZW) under different CV-MPRs on speed 
harmonization has been evaluated based on the spatiotemporal aggregation of mean speed and 
standard deviation of speed.  

According to Table 6.2, the one-way ANOVA revealed that the mean of mean speed and standard 
deviation of speeds from different MPR scenarios in all four sub-segments of the WZ during foggy 
conditions are statistically different from each other under 95% confidence level. Turning to the 
post hoc analysis, the result of the two-tailed t-test depicted that, for most cases, both standard 
deviations of speed and mean speed obtained their associated minimum means under 60% MPR 
of CVs across all sub-segments. However, in some cases, the minimum mean of groups 
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corresponding to mean speed and standard deviation of speed can be achieved even at less MPR 
than 60%. In this regard, because almost 85% of all pairwise comparisons (34 out of 40 
comparisons) showed that the minimum mean speed and standard deviation of speed could be 
obtained under 60% MPR, this MPR is suggested as the optimum MPR to reach the maximum 
safety in a WZ area under foggy conditions on I-80. 

Table 6.2 Statistical Analysis of Observed Mean Speed and Standard Deviation 
of Speed across Varying MPRs for Different Work Zone Areas 

 

6.6 Accounting for Human-Related Unobservable Heterogeneity in 
the Safety Performance of WZW application  

From a microscopic perspective, at level-0 and level-1 of driving automation (i.e., no automation) 
[1], which is the main focus of the WYDOT CV Pilot Program, human drivers are in charge of the 
execution of steering and acceleration/deceleration as well as monitoring of the driving 
environment [1]. Hence, human drivers are still in the safety loop, which might add human-related 
unobservable heterogeneity to the safety performance assessment of CVs [7], [63], [68]–[70]. 
Drivers adapt their driving behavior according to the received CV notifications that might be 
affected by CV drivers’ characteristics and other vehicles in the traffic stream. Compared with 
aggressive CV drivers, conservative CV drivers might require more time and distance to execute 
the advisory messages effectively and safely. Hence, it seems that changing the provided delivery 
distance of WZW would affect CVs’ safety performance. This part of the document explains the 
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importance of delivery distance on the safety performance assessment of the WZW CV application 
on I-80 in Wyoming using the same simulation framework presented in the previous sections. 

6.6.1 Modification of Microsimulation Modeling 

According to Figure 6.4, the geometry of the two-to-one lane dropped WZ layout was modified 
for different settings of WZW delivery distances. As suggested by the MUTCD, the minimum 
distance to provide WZW was 1500 feet before the transition area [71]. Three additional delivery 
distances with 1500-ft increments (i.e., 3000, 4500, and 6000 feet upstream of the transition area) 
were regarded to analyze the WZW safety performance.  

 
Figure 6.4 Conceptualization of Microsimulation Scenarios 

Similar to the previous analysis, CVs were modeled to move into the open lane when they receive 
a WZW notification, which varies depending on the different delivery distances. Different delivery 
distances were simulated using various links connected to the transition area via connectors, as 
presented. Each link has a specific length corresponding to each level of the delivery distance. The 
CVs’ lane-changing behaviors were adjusted by altering the “lane change distance” in the 
connectors’ menu and updating lane-changing parameters in VISSIM.  

The combination of four different WZW delivery distances, five levels of CV-MPR, and three 
types of traffic flow characteristics resulted in 60 microsimulation modeling scenarios. For each 
scenario, the safety performance of WZW was evaluated in the four WZ areas individually using 
TTC with a critical value of 2.5 seconds. Accordingly, each scenario resulted in a specific number 
of critical TTCs. Therefore, because the outcome variable was observed for each of the four WZ 
areas, the conversion of simulation into statistical observation led to four design matrices, 
including 60 observations per area. Table 6.3 presents the statistical description of variables.  

6.6.2 Visual Inference 

Figure 6.5 visualizes the effect of varying WZW delivery distances, CV-MPR, and different traffic 
volume levels on the number of critical TTCs observed in 60 developed scenarios across all WZ 
areas in a heat map. It can be concluded that, at any given CV-MPR, the safety performance of 
CVs in the WZ can be enhanced if the WZW delivery distance increases. These visual 
investigations have been validated by the result of negative binomial regressions.    

  



 

38 
 

Table 6.3 Statistical Description of the Used Variables 

 

 
Figure 6.5  Number of Critical TTCs in 60 Scenarios for Varying Traffic Volumes and across 

Four Work Zone Areas 
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6.6.3 Hierarchical Negative Binomial Regressions  

The effect of WZW delivery distance, CV-MPR, and varying traffic volumes on the number of 
critical TTCs was assessed based on four negative binomial (NB) regressions conducted on four 
WZ areas. The concept of hierarchical modeling under Bayesian inference was followed, and the 
WZW delivery distance was considered a random factor to reveal the possible dependency among 
the individual number of critical TTCs within different clusters of this factor at level-2 of design 
matrices due to unobserved heterogeneity relating to drivers’ behaviors [72]. Equations 6.9 to 6.11 
present the details: 

𝑦𝑦𝑖𝑖𝑖𝑖~𝑁𝑁𝑁𝑁�𝜆𝜆𝑖𝑖𝑖𝑖 ,𝛼𝛼�            Equation 6.9 

𝐸𝐸�𝑦𝑦𝑖𝑖𝑖𝑖� = 𝜆𝜆𝑖𝑖𝑖𝑖                      Equation 6.10 

ln (𝜆𝜆𝑖𝑖𝑖𝑖) = (𝛽𝛽00 + 𝑤𝑤0𝑗𝑗) + 𝜷𝜷𝜷𝜷 + 𝑒𝑒𝑖𝑖𝑖𝑖                   Equation 6.11 

Where 𝑦𝑦𝑖𝑖𝑖𝑖 denote the number of observed critical TTCs for 𝑖𝑖𝑡𝑡ℎ observation in 𝑗𝑗𝑡𝑡ℎ cluster of the 
provided WZW delivery distance, 𝜆𝜆𝑖𝑖𝑖𝑖 and 𝛼𝛼 > 0 are, respectively, the location (i.e., expectation) 
and dispersion parameter (also called shape parameter), 𝛽𝛽00 is the fixed intercept, X is the vector 
of fixed independent variables (i.e., CV-MPR and traffic volume), 𝜷𝜷 is the vector of regression 
coefficients, and 𝑒𝑒𝑖𝑖𝑖𝑖 is the individual-level error term. In equation 6, the total of (𝛽𝛽00 + 𝑤𝑤0𝑗𝑗) is the 
random intercept varying across different WZW delivery distances, where for 𝑗𝑗 ≠ 𝑗𝑗′, 
𝑐𝑐𝑐𝑐𝑐𝑐�𝑤𝑤0𝑗𝑗,𝑤𝑤0𝑗𝑗′� = 0 [42], [73]. 𝑤𝑤0𝑗𝑗 is the random effect of different WZW delivery distances on 
𝛽𝛽00 that follows N(0, 𝜎𝜎02) and 𝜎𝜎0 is the standard deviation of cluster specified random intercepts 
to be estimated under Bayesian inference. 

6.6.3.1 Results of Statistical Inference 

Table 6.4 presents the results of four hierarchical NB regressions corresponding to four WZ areas. 
Relating to the effect of traffic volume on WZW safety, except for one case, all other estimated 
coefficients are positive. Although these coefficients are not always statistically significant, their 
positive signs indicate that an increase in traffic volume can increase the number of critical TTCs 
because the low traffic volume was considered the reference class for this categorical variable. 
Model-1, conducted on the advance warning area, shows that when traffic volume is high, critical 
TTCs would be less than the low traffic volume conditions, which is in line with the literature. 
Previous studies apprised that, on rural freeways, an increase in traffic volume would decrease the 
standard deviation of speed [74]. In this situation, speed in the advance warning area would be 
more homogenous than the low traffic conditions area, leading to a fewer number of conflicts. 

  



 

40 
 

Table 6.4 Results of Hierarchical Negative Binomial Regressions Conducted on the 
Four Work Zone Areas 

 

Furthermore, it can be seen that the activity area is the most sensitive WZ area to any change in 
CV-MPR, where a significant reduction in the number of critical TTCs can be obtained even at 
20% CV-MPR. When CV-MPR increases to 40%, an indication of safety enhancement can be 
gained because the estimated coefficients corresponding to CV-MPR obtained negative values 
compared with the reference category (i.e., CV-MPR=0%). However, except for the activity area, 
these pieces of evidence are not strong enough to result in statistically significant safety 
enhancements in three other areas. Thus, to attain a statistically significant decrease in the number 
of critical TTCs in all WZ areas, 80% CV-MPR is needed.  

6.6.3.2 Optimal Roadside Unit Placement for WZW Application in WYDOT CV Pilot 

According to Table 6.4, the estimated ICCs are greater than zero for all developed NB regressions. 
Hence, individual observations (i.e., the number of critical TTCs) at level-1 are nested within 
varying WZW delivery distances at level-2 of the data hierarchy across all WZ areas. As narrated 
by Figure 6.5, WZW delivery distance could affect the CV-WZW safety performance. However, 
no fixed coefficient was estimated for this random factor because, in hierarchical modeling, a 
random factor can randomly affect the response variable at level-2 of the design matrix [40]. In 
fact, the effect of WZW delivery distance has been embedded into the random intercepts based on 
Equation 6.11 (i.e., 𝛽𝛽00 + 𝑤𝑤0𝑗𝑗).  

Table 6.5 presents all the estimated random intercepts for four models under varying clusters of 
WZW delivery distances. According to Equation 6.11, a reduction in the random intercept would 
reduce the natural logarithm of the estimated number of critical TTCs, enhancing the CV-WZW 
safety performance. For all WZ areas, when WZW delivery distance increases, the random 
intercepts would decrease, enhancing the CV-WZW safety performance regardless of CV-MPRs 
and traffic volume. The mentioned conclusion is reasonable because when WZW delivery distance 
increases, CV drivers would be given more time and distance to safely execute the received CV 
notification, augmenting the WZW application efficiency. Another remarkable point can be 
unveiled from Table 6.5 by comparing the estimated random intercepts corresponding to WZW 
delivery distances of 4500 feet and 6000 feet that behave very similarly. This similarity means that 
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an increase in the WZW delivery distance of more than 4500 feet does not have an extra advantage 
on CVs’ safety performance. Therefore, the optimal delivery distance required for the best safety 
performance of the CV-WZW application is determined to be 4500 feet. 

Table 6.5 Random Intercepts under Varying WZW Delivery Distances in Four WZ Areas 
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7. MITIGATING THE RISK OF HORIZONTAL CURVE-RELATED 
CRASHES IN CV ENVIRONMENTS 

7.1 Introduction  
Of rural highway fatalities, 25% occur on horizontal curves, where the crash frequency is three 
times greater than tangent segment counterparts [75]. Large truck crashes comprise 57% of fatal 
crashes in rural areas [76]. With a 150% increase in heavy truck traffic volume over the last three 
decades, serious traffic safety concerns on I-80 in Wyoming are expected [77], [78]. In this regard, 
one important safety advantage of the WYDOT CV Pilot is providing drivers with advisory 
messages and real-time information regarding unforeseeable roadway conditions, such as road 
surface conditions, weather conditions, and roadway geometry. The increased driver situational 
awareness due to the received CV notifications would potentially reduce the contribution of driver 
errors to crash occurrences on horizontal curves. Accordingly, this part of the document explains 
the effectiveness of the WYDOT CV Pilot mitigating the risk of horizontal curve-related crashes 
utilizing trajectory-level analysis from the high-fidelity driving simulator with the main focus on 
two critical conditions: horizontal curves with slippery road surface conditions and horizontal 
curves under foggy weather conditions. 

7.2 Horizontal Curves with Slippery Road Surface Conditions 
A slippery road surface condition is important because, although drivers can adjust their driving 
behaviors in adverse weather conditions, they might not be aware of the appropriate speed 
selection according to road surface conditions [79]–[83]. Therefore, the combination of slippery 
road surface conditions with challenging roadway geometry, such as horizontal curves, might 
result in drivers’ inability to select the speed appropriately, leading to a remarkable rate of run-off-
road, sideswipe, head-on, and rollover crashes. To assess the safety performance of CV TIMs in 
mitigating the mentioned traffic critical safety events, the research team conducted a with/without 
analysis at the WyoSafeSim lab to assess the effect of three CV applications, SWIW, CV-VSL, 
and SA, on truck driver behavior.  

7.2.1 Driving Simulator Experimental Design 

According to Figure 7.1, the driving scenario was designed based on a divided two-way four-lane 
freeway segment with a 75 mph speed limit. The scenario included two horizontal curves (HCs) 
with the same geometric characteristic (radius ≃ 550 meters, length ≃ 800 meters, central angle ≃ 
90o, superelevation = 8%, longitudinal grade = 0.01%, and the presence of vertical curve: NO). 
The two HCs were preceded by independent tangent segments enabling drivers to reach their 
desired speed [81] before entering the second HC.  

The entire scenario was designed under snowy weather conditions. On Curve-A, which is referred 
to as the HC with regular pavement conditions, it was assumed that the pavement had a minor wet 
surface, where the friction was not remarkably decreased. Curve-B is located after 600-meter from 
the beginning of the scenario, which is referred to as the HC with slippery pavement conditions. 
On Curve-B, the pavement friction was considerably reduced to simulate the patchy ice/black 
conditions. The combination of reduced pavement side friction, curvature, and superelevation in 
Curve-B does not provide sufficient stability for those vehicles whose speeds are more than 55 
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mph. Consequently, Curve-A serves as the baseline, and Curve-B serves as the main focus of the 
study. 

In the CV scenario, the CV notifications included an initial regulatory speed of 75 mph. A variable 
speed limit (VSL) sign of 65 mph was displayed on the HMI just before Curve-A. A slippery road 
surface and adverse weather condition notifications were initiated with an advisory speed of 55 
mph, which was disseminated before Curve-B. All the CV notifications were accompanied by a 
simple “beep” sound that would best draw a driver’s attention [52]. For the non-CV scenarios, 
however, CV notifications were muted, and the HMI was kept off. Four study cases were 
conducted to investigate driver behavior based on vehicle trajectories considering two HCs in the 
CV and non-CV scenarios. 
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Figure 7.1 Driving Simulator Testbed for Analysis of Run-off-Road Crashes on Slippery 

Horizontal Curves 

7.2.2 Statistical Inference 

The research team obtained vehicle trajectories from the DS experiment for 24 drivers and across 
four studies cases. Driver behaviors were quantified by characterizing several K-SMoS on the 
trajectory observations, with the main emphasis on drivers’ deviation from the pathway (DFP). In 
addition to investigating vehicles’ DFP, the assessment was conducted on other K-SMoS that had 
the highest correlation with DFP on Curve-A, where the K-SMoS were measured without being 
affected by the slippery road surface conditions. Accordingly, three other K-SMoS, lateral speed, 
instantaneous acceleration, and steering angle, were selected for further investigation.   

The change in truck drivers’ behavior due to CV advisory/warning messages was discerned by 
analyzing and comparing K-SMoS distribution characteristics on slippery and regular HCs in CV 
and non-CV environments. In this regard, the non-parametric statistical approach was followed as 
none of the K-SMoS distributions followed the assumption of normality and homogeneity of 
variance. The K-SMoS distributions of CVs and non-CVs were compared considering their central 
tendency and dispersion.   

7.2.2.1 Wilcoxon Signed-Rank Test in Central Tendency Analysis of K-SMoS  

Measures of central tendency indicate how the locations of a variable can vary systematically under 
the effect of a specific treatment. Considering this, the Wilcoxon Signed-Rank Test (WSRT) was 
employed to compare the central tendency of aggregated K-SMoS across four study cases based 
on their associated medians. WSRT is a nonparametric alternative to the parametric student t-test 
without requiring normality assumption that evaluates whether the central tendency (i.e., 
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population median) of samples being compared are different or not [84]. WSRT is a popular test 
for a repeated measure design (i.e., with/without analysis) where the same variable is being 
assessed under the effect of specific treatment [85]. Here, the treatment is the effect of CV 
advisory/warning messages on driver behaviors to be measured using aggregated K-SMoS. The 
aggregation of K-SMoS per meter of each HC led to providing paired samples with the same sizes, 
as is a WSRT requirement with the null hypothesis (H0) of the samples being compared to come 
from the same population [86], [87]. 

Suppose each of the two samples being compared has 𝑁𝑁 number of observations. For 𝑖𝑖 =
1, 2, … ,𝑁𝑁, 𝑥𝑥2,𝑖𝑖 and 𝑥𝑥1,𝑖𝑖 are the 𝑖𝑖𝑡𝑡ℎ observation in the second and first sample, comprising 𝑁𝑁 paired 
observations (i.e., [𝑥𝑥2,𝑖𝑖 , 𝑥𝑥1,𝑖𝑖]). First, the absolute value of difference for each pair is calculated (i.e., 
|𝑑𝑑𝑖𝑖| = |𝑥𝑥2,𝑖𝑖 − 𝑥𝑥1,𝑖𝑖|) and the pairs should be reordered from the smallest to largest |𝑑𝑑𝑖𝑖|. Secondly, 
those pairs with 𝑑𝑑𝑖𝑖 = 0 should be removed from the ordered pairs. Thus, the remaining number of 
pairs would be 𝑁𝑁𝑟𝑟 , where 𝑁𝑁𝑟𝑟 ≤ 𝑁𝑁. The remaining ordered pairs should be ranked from one to 𝑁𝑁𝑟𝑟 
and the ranks are denoted by  𝑅𝑅𝑖𝑖. The WSRT statistic (𝑊𝑊) would be calculated based on equation 
2 to 5, where and 𝐼𝐼(𝜌𝜌) is the indicator function and 𝑑𝑑𝑖𝑖 = (𝑥𝑥2,𝑖𝑖 − 𝑥𝑥1,𝑖𝑖) [86]. 

𝐼𝐼(𝜌𝜌) = �1, 𝑖𝑖𝑖𝑖 𝜌𝜌 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
0, 𝑖𝑖𝑖𝑖 𝜌𝜌 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                Equation 7.1 

𝑊𝑊+ = ∑ 𝑅𝑅𝑖𝑖𝐼𝐼(𝑑𝑑𝑖𝑖 > 0)𝑁𝑁𝑟𝑟
𝑖𝑖=1                        Equation 7.2 

𝑊𝑊− = ∑ 𝑅𝑅𝑖𝑖𝐼𝐼(𝑑𝑑𝑖𝑖 < 0)𝑁𝑁𝑟𝑟
𝑖𝑖=1                        Equation 7.3 

𝑊𝑊 = min (𝑊𝑊+,𝑊𝑊−)                                   Equation 7.4 

It can be shown that under 𝐻𝐻0, when 𝑁𝑁𝑟𝑟 increases, the sampling distribution of 𝑊𝑊 would converge 
to a normal distribution whose mean (𝜇𝜇) and standard deviation (𝜎𝜎) are 𝑁𝑁𝑟𝑟(𝑁𝑁𝑟𝑟+1)

4
 and 

�𝑁𝑁𝑟𝑟(𝑁𝑁𝑟𝑟+1)(2𝑁𝑁𝑟𝑟+1)
24

, respectively [86]. Hence, the significance of WSRT could be performed by 

comparing standardized 𝑊𝑊 (i.e., 𝑊𝑊−𝜇𝜇
𝜎𝜎

= 𝑍𝑍) to critical Z-value (𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) under a simple two-tailed 
Z-test whose p-value depends on the considered significance level and 𝑁𝑁𝑟𝑟 [86]. For |𝑍𝑍| > 𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
(i.e., p-value less than the considered significance level), the 𝐻𝐻0 is rejected, indicating there is not 
enough evidence to show the samples being compared come from the same population. 

Figure 7.2 narrates truck driver behavior negotiating slippery and regular HCs under the CV and 
non-CV environments based on vehicle trajectories and using K-SMoS. Table 7.1 presents 
nonparametric comparisons of central tendency and dispersion of four K-SMoS under CV and 
non-CV environments negotiating HCs with regular and slippery pavement conditions. 
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A- Deviation from the Pathway on Regular 
Horizontal Curve 

 
 

C- Instantaneous Acceleration on Regular 
Horizontal Curve 

 
 

E- Steering Angle on Regular Horizontal Curve 

 
 

G- Lateral Speed on Regular Horizontal Curve 

 
 

B- Deviation from the Pathway on Slippery 
Horizontal Curve 

 
 

D- Instantaneous Acceleration on Slippery 
Horizontal Curve 

 
F- Steering Angle on Regular Slippery Curve 

 
H- Lateral Speed on Regular Slippery Curve 

 
Figure 7.2 Aggregated CVs and Non-CVs K-SMoS on Horizontal Curves  

According to Table 7.1, on Curve-A with regular pavement friction, there is no significant 
difference between the central tendency of four K-SMoS associated with CVs and non-CVs based 
on the WSRT results. Considering the estimated p-values, it is inferable that on curve-A, CVs and 
non-CVs trajectories are very similar. These similarities have been visualized in Figures 7.2A, 
7.2C, 7.2E, and 7.2G. Considering vehicle trajectories on Curve-B with slippery pavement 
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conditions, presented in Figure 7.2, the safety benefits of CV advisory/warning messages are 
evident. According to Figure 7.2B, most non-CVs could tolerate the slippery pavement condition 
until the middle of the HC. However, after the middle of the curve, 18 non-CVs (i.e., 75% of all 
participants) could not maintain the appropriate lane position and had ROR crashes. According to 
Table 7.1, all K-SMoS distributions’ central tendencies associated with CVs are statistically 
different from non-CVs, coincided by shifting the medians of K-SMoS associated with CVs, 
compared with non-CVs, toward zero, which varies from 23% up to 99% across four K-SMoS.  

Table 7.1 Central Tendency Analysis of Kinematic-Based SMoS 

 
7.2.2.2 Median Absolute Deviation in K-SMoS Dispersion Analysis  

Dispersion determines the margin of error or uncertainty in making inferences regarding central 
tendency. Less uncertainty makes the question of causality easier to uncover [88]. Among several 
statistical dispersion measures, the median absolute deviation (MAD) is considered because of the 
following reasons: First, the K-SMoS were not normally distributed. Second, the central tendency 
considerations were performed based on the medians of K-SMoS distributions rather than the 
mean. MAD is immune to the sample size and outliers compared with other dispersion measures 
[89]. Equation 7.5 parameterizes MAD calculation to scale dispersion of a set of observation 𝑥𝑥𝑖𝑖 
for a random variable 𝑋𝑋 [90], [91].  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1.4826 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(|𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖)|)        Equation 7.5   

The results of MAD, presented in Table 7.2, illustrate the effectiveness of CV advisory/warning 
messages on both regular and slippery HCs. In both cases, the reduction in variability of K-SMoS 
in the CV environment compared to non-CV conditions reveals that more certainty of driver 
behavior is expected to be seen under the CV environment. However, this certainty and reduction 
of variability are much more obvious on slippery HCs. On slippery HCs, the CV advisory/warning 
could reduce the dispersion of four K-SMoS from 54% up to 95%, which is more remarkable for 
lateral speed. 
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Table 7.2 Dispersion Analysis of Kinematic-Based SMoS 

 
Because the effect of CV advisory/warning messages on driver behavior is more substantial on a 
slippery HC, the individual vehicle trajectories negotiating this curve were scrutinized. To this 
aim, the density distributions of disaggregated vehicle trajectories on the slippery HC have been 
visualized in Figure 7.3 based on the four K-SMoS. Generally, Figures 7.3A to 7.3H reveal that 
informing drivers regarding the slippery pavement condition and advising the appropriate speed 
limit can minimize the SMoS variability. Figures 7.3A and 7.3B show that the CV 
advisory/warning messages could centralize the deviation from the pathway (DFP) toward zero 
and minimize its variation on the slippery HC. The maximum DFP for the CVs was 2 meters, 
which is remarkably less than 5.2 meters for non-CVs. In addition to minimizing the risk of ROR 
crashes, this reduction can decrease the rate of sideswipe crashes due to skidding on rural I-80 in 
Wyoming.  

The reduction in variability of steering angle for CVs compared with non-CVs (i.e., 77% according 
to table 30) is clear from Figures 7.3E and 7.3F. This reduction is one of the main causes of higher 
stability of CVs versus non-CVs, alleviating ROR crash risk on the HC due to increased driver 
situational awareness before entering the slippery HC. Mazzae et al. (1999) showed that excessive 
steering angles are associated with crash-prone conditions. The literature has pointed out that more 
variation and oversteering maneuvers are associated with more aggressive driving behavior, 
increasing ROR crash risks [93], [94].  

As mentioned earlier and based on Table 7.2, the lateral speed was the most affected K-SMoS in 
the CV scenario. This K-SMoS showed a 99% shifting in the central tendency toward zero and a 
95% reduction in variability under the CV environment compared with non-CVs. These changes 
are extremely important in terms of enhancing drivers’ lane-keeping behavior negotiating slippery 
HCs [95], which, in turn, might minimize the likelihood of run-off-road, sideswipe, and head-on 
crashes. Figures 7.3G and 7.3H depict that the maximum lateral speeds for CVs, either to the left 
or right sides, are half of the non-CVs. This reduction in lateral speed is more critical for high 
traffic volume corridors where the average of time headways is usually less than low volume 
corridors. In such a situation, and considering the limited human perception reaction time, faster 
lateral movement (i.e., higher lateral speed) of vehicles can be associated with higher crash 
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probability. Therefore, CV advisory/warning messages preceding slippery horizontal curves can 
alleviate this crash-prone condition, more specifically on high traffic volume highways. 

 
A- Deviation from the Pathway for 

Connected Vehicles 

 
C- Instantaneous Acceleration for 

Connected Vehicles 

 
E- Steering Angle for Connected Vehicles 

 

 
G- Lateral Speed for Connected Vehicles 

 
B- Deviation from the Pathway for Non-

Connected Vehicles 

 
D- Instantaneous Acceleration for Non-

Connected Vehicles 

 
F- Steering Angle for Non-Connected 

Vehicles 

 
H- Lateral Speed for Non-Connected 

Vehicles 

Figure 7.3 Density Distributions of CV and Non-CV Trajectories on the Slippery Horizontal Curve 
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7.3 Horizontal Curves under Foggy Weather Conditions 
In addition to the safety performance of CVs on HCs with a slippery road surface, the research 
team analyzed the safety impact of CV technology on HCs located in a dense fog with reduced 
visibility. Previous studies have explained the negative impact of reduced visibility and complex 
roadway geometry on traffic safety separately. More crucially, it is known that foggy conditions 
will increase the crash likelihood at road alignment transition locations [96], particularly at HCs 
[95], [97]. Accordingly, to show truck drivers’ behavioral alterations due to CV notifications in 
the aforementioned critical situation, a with/without approach to vehicle trajectories from the 
driving simulator (DS) experiment was analyzed.  

7.3.1 Driving Simulator Experimental Design  

Figure 7.4 narrates the DS testbed, consisting of 5500 meters of a divided two-way four-lane 
freeway with a 75 mph initial speed limit, replicating the primary traffic operation performance on 
I-80. The scenario includes two horizontal curves, Curve-A and Curve-B, with the same geometric 
characteristic (longitudinal grade = 0.5%, radius ≃ 550 meters, length ≃ 800 meters, central angle 
≃ 90o, superelevation = 8%, and the presence of vertical curve: NO). The entire scenario was 
designed based on a dry pavement condition with a regular friction coefficient. The weather 
condition was clear throughout the first 3700 meters of the testbed. However, just before Curve-
B, it switched to dense foggy weather conditions with a visibility of 110 meters (360 feet), which 
remained 500 meters after the end of Curve-B. This visibility distance was considered because, 
according to the Virginia Department of Transportation, visibility of lower than 360 feet notably 
reduces traffic safety performance [98]. It should be noted that in the non-CV scenario, where HMI 
was off, no information regarding the upcoming weather condition and the associated advisory 
speed was given to drivers. However, in the CV scenario, two notifications regarding the 
forthcoming foggy weather condition and the advisory speed of 45 mph were given to the drivers 
via HMI, accompanied by a “beep” sound to best draw drivers’ attention [52]. 
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Figure 7.4 Driving Simulator Testbed for Analysis of Run-off-Road and Rear-End Crashes on Horizontal 
Curves under Foggy Conditions 

7.3.2 Data Analysis 

The effect of the CV notifications on driver behavior was unveiled by analyzing vehicle trajectories 
in CV and non-CV environments. According to Figure 7.5, the trajectory-level observations were 
divided into three sections (Section-1, 2, and 3) for further investigations. In Section-1, no TIMs 
were given to CV drivers. Thus, it is expected to see very similar behavior between CVs and non-
CVs, if not the same. Throughout Section-2, CV drivers received two notifications, which will be 
analyzed to reveal immediate CV driver reactions and compliance to the received TIMs. Section-
3, however, is the study’s main focus, where CV safety performance under combined foggy 
weather with horizontal curves was assessed by characterizing K-SMoS.  

The alteration of driver behavior due to CV notifications was analyzed longitudinally to account 
for the high risk of rear-end crashes in foggy weather conditions [9], and laterally due to the 
presence of horizontal curve, as an influential factor to increasing the risk of run-off-road, 
sideswipe, and rollover crashes [7], [59], [81]. Therefore, longitudinal speed, lateral speed, and 
steering, directly measured in the DS, were considered for further investigation. For the sake of 
dispersion analysis and assessing uncertainty in driver behavior, spatial standard deviations (SSD) 
of these K-SMoS were computed across vehicle trajectories and throughout the simulated roadway 
for CVs and non-CVs. The coefficient of variation (CoV) in longitudinal speed was also regarded 
because this variable is one of the most important real-time speed-related factors contributing to 
crash probability [9]. 

The safety performance of CV notifications was evaluated by comparing K-SMoS distributions in 
CV and non-CV environments (with/without analysis) using data visualization and statistical 
analysis. Similar to the previous analysis on an HC with a slippery road surface, the statistical 
analysis emphasizes two characteristics of K-SMoS distributions: central tendency and dispersion.  
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7.3.2.1 Visual Inspection of Trajectory-Level Observations 

Figures 7.5 and 7.6 present the trajectory-level investigations for all K-SMoS across the 23 
participants in CV and non-CV scenarios in three sections. Based on Figure 7.5, a systematic 
reduction in K-SMoS relating to CVs’ longitudinal driving behaviors can be seen, gradually 
increasing from Section-1 to Section-3. In Section-3, almost the entire values of CoV and SSD in 
CVs’ longitudinal speed are less than the non-CVs, implying the safety enhancement due to 
drivers’ increased situational awareness [9]. Figure 7.5A shows that CV drivers smoothly reduced 
their longitudinal speed once they received advisory speed, implying speed compliance in the CV 
environment. This smooth reduction is not comparable with non-CVs’ abrupt speed reduction at 
the beginning of foggy conditions that would increase traffic backward shock waves and rear-end 
crash probability in non-CV environments. 

Switching to the effect of CV notifications on truck drivers’ lateral driving behaviors, Figure 7.6 
narrates the similarity of truck drivers’ lateral behavior in Section-1 and even in Section-2. 
However, Section-3 does not indicate systematic changes or a remarkable difference for lateral 
speed and steering between CV and non-CV trajectories. Nonetheless, delving into the SSD of 
lateral speed and steering would reveal a systematic reduction in the spatial variation of K-SMoS 
for CVs compared with non-CVs in Section-3, specifically on Curve-B (see Figure 7.6B and 7.6D). 
These reductions in SSDs illustrate more certainty in CVs’ lateral behavior than non-CVs, 
implying the effectiveness of CV notifications on altering drivers’ lateral behavior. 
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A- The Effect of CV Notifications on the Longitudinal Speed 

 
B- The Effect of CV Notifications on the Spatial Standard Deviation (SSD) of Longitudinal Speed 

 
C- The Effect of CV Notifications on the Coefficient of Variation (CoV) in Longitudinal Speed 

Figure 7.5 Alteration of Longitudinal K-SMoS Distributions due to CV Notifications 

7.3.2.2 Statistical Inference 

According to Table 32, Shapiro-Wilk normality tests led to statistically significant results for all 
K-SMoS associated with CVs and non-CVs across three sections, confirming the appropriateness 
of the nonparametric approach for the central tendency analysis. Considering the central tendency 
analysis of K-SMoS utilizing WSRT, it can be seen that none of the WSRT at Section-1 were 
statistically significant. This inference affirms the previous visual inspection, indicating similarity 
in CV and non-CV behavior, which was expected because no notifications were given to CVs in 
this section. In Section-2, the WSRTs indicate statistically significant differences in the central 
tendency for longitudinal speed and its SSD and the coefficient of variation, all associated with 
longitudinal driving behavior and not drivers’ lateral behavior. This inference implies truck 
drivers’ immediate compliance to CV notifications, which is very apparent in their longitudinal 
and speed adaptation behavior, consistent with the literature [99]. These differences in central 
tendencies coincided with reductions of these K-SMoS for CVs compared with non-CVs, 
promoting speed harmonization and traffic safety levels [9], [39], [100].  
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A- The Effect of Connected Vehicle Notifications on the Lateral Speed 

 
B- The Effect of Connected Vehicle Notifications on the Spatial Standard Deviation (SSD) 

of Lateral Speed 

 
C- The Effect of Connected Vehicle Notifications on Steering 

Figure 7.6  Alteration of Lateral K-SMoS Distributions due to CV Notifications 

In Section-3, with a horizontal curve located in foggy weather, the situation is totally different. 
Without exception, all the WSRT indicated statistically significant differences in longitudinal and 
lateral behavior of CV compared with non-CV drivers. In terms of the longitudinal speed 
adaptation, the central tendencies of the SSD of speed and coefficient of variation in speed have 
been reduced by almost 55% and 48% in the CV scenario, respectively. According to the literature, 
these two variables are among the most influential real-time crash contributing factors, directly 
increasing the risk of crashes [9], [39]. The SSD of speed is associated with spatial dispersion of 
longitudinal driving behavior. The mentioned reductions indicating more certainty in driver 
behavior negotiating HCs in foggy conditions are expected to be observed more from CVs than 
non-CVs. Therefore, the results affirm the safety advantage and the effectiveness of CV 
technology by altering and minimizing uncertainty in drivers’ longitudinal behavior, alleviating 
the causal effect of these factors contributing to crash occurrences and promoting speed 
harmonization in Section-3. 
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Table 7.3 Shapiro-Wilk Test of Normality and Central Tendency Analysis of K-SMoS 
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Specifically, for Curve-B located in Section-3 under foggy conditions, steering and lateral speed 
have been selected as K-SMoS to unveil changes in drivers’ lateral behavior due to the effect of 
CV notifications. Although no statistically significant differences were found regarding the central 
tendency of these two factors in Section-1 and Section-2 between CVs and non-CVs, the findings 
in Section-3 indicate another inference. In Section-3, the central tendencies of steering and lateral 
speed have been reduced by almost 42% and 65%, respectively, in favor of CVs. Note that the 
reduction percentages for these two K-SMoS were computed based on the absolute values of 
medians to make these reductions directional-free. According to the friction ellipse theory [59], 
[101], a reduction in lateral speed would minimize lateral skidding, mitigating the risk of rollover 
and sideswipe crashes due to CV notifications on Curve-B. It is known that steering can be 
effectively used to examine driver performance in controlling vehicles’ lateral positions in adverse 
traffic conditions [7]. A larger absolute value of steering angle is highly correlated with high-risk 
drivers and a small safety margin [101]. Hence, reducing the central tendency of steering angle in 
the CV scenario would remarkably enhance traffic safety performance. 

In addition to analysis of central tendency, it is essential to assess the spatial variability of steering 
and lateral and longitudinal speed across CVs and non-CVs throughout the simulated roadway. 
The reason for this necessity is that a specific treatment might result in a very similar central 
tendency for two samples being compared but with totally different levels of variability, where the 
higher variability in a sample depicts a higher uncertainty regarding the effect of treatment (e.g., 
CV notifications) [88]. Therefore, to assess the uncertainty level in CV and non-CV behavior, the 
dispersion analysis was also applied by delving into the SSD of the mentioned K-SMoS. 

It was possible to simply consider the standard deviation of these K-SMoS. However, this 
approach would result in one value per section per K-SMoS for CVs and non-CVs, impeding 
trajectory-level dispersion comparison in K-SMoS between CV and non-CV drivers throughout 
three sections. In fact, it was necessary to reveal how CV notifications might affect variability and 
certainty in CV drivers’ behavior compared with non-CVs at every single location of the roadway. 
Accordingly, it was decided to investigate the SSD of K-SMoS across all drivers in CV and non-
CV scenarios as a separate variable.  

Considering the lateral speed and steering in Section-3, the central tendencies of SSD for these K-
SMoS have been reduced by 67% and 42%, respectively, in the CV scenario. This inference 
indicates more certainty and a higher homogeneity in lateral driving behavior that could be 
observed by providing drivers with real-time advisory/warning notifications in the CV 
environment, minimizing the risk of horizontal curve-related crashes, and augmenting the overall 
traffic safety performance. 
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8. CRASH DETECTION IN CV ENVIRONMENTS  

8.1 Introduction 
In the crash detection domain, the purpose is to accurately and rapidly detect crash time and 
location [102], leading to reducing delay and inconvenience imposed by crashes, swiftly 
dispatching emergency services [103]–[107], mitigating the risk of secondary crashes [108], and 
even transmitting distress notifications in a CV environment [109]. Regardless of the variety of 
methodology used in the literature, many previous analyses only rely on traditional traffic 
observations for traffic crash detection in the absence of detailed individual driving data. 
Therefore, this part of the document presents the application of CV technology in detecting traffic 
crashes, specifically for I-80 in Wyoming, based on the generated large-scale integrated trajectory-
level observations embedded in BSMs from driving simulator experiments.  

The core of BSMs includes CVs’ dynamic and kinematic information relating to location, speed, 
acceleration/deceleration, steering, etc. [110]. Accordingly, there is continuous and real-time 
access to CV trajectories. Conversion of these trajectories into a well-characterized K-SMoS might 
quantify CV driver styles and volatilities under different traffic and environmental conditions [7]. 
On the other side, it has been shown that extreme driver volatility is highly correlated with critical 
safety events [111], implying the suitability of extreme value theory for analyzing extreme driver 
behaviors. Accordingly, the research team conducted driving simulator scenarios to form 
conditions similar to run-off-road (ROR) and rear-end (RE) crashes. The crash detection matter 
for each crash type was formulated as a binary classification of two continuous K-SMoS 
generalized extreme value (GEV) distributions under safe and unsafe traffic conditions, wherein 
the optimal thresholds have been set to detect crashes.  

8.2 Driving Simulator Scenario Development 
Two experiments were developed based on a four-lane freeway segment with a 75 mph speed limit 
to replicate the actual traffic operation performance of I-80. At the end of each scenario, one 
specific crash condition, ROR and RE crashes, was simulated. The rest of each scenario was 
considered non-crash conditions. Thus, four cases of study based on two crash conditions and two 
corresponding non-crash conditions were conducted. For each case, vehicle trajectories were 
obtained to analyze and compare driving behaviors under crash conditions and normal traffic 
conditions. 

8.2.1 Run-off-Road (ROR) Crash Scenario 

According to Figure 8.1A, this scenario consists of two horizontal curves (HCs) with the same 
geometric characteristic (radius = 509.3 m, length= 800 m, central angle= 90o, superelevation= 
6%, longitudinal grade= 0%, presence of vertical curve: No). The scenario starts with a normal 
weather condition until it passes the first curve (Curve-A). After Curve-A, dynamic adverse 
weather is simulated within the tangent segment between the first and the second curve (Curve-
B). Unlike Curve-A, with sufficient pavement friction to stabilize vehicles negotiating the curve, 
Curve-B’s pavement friction was remarkably reduced due to light snow conditions with a very low 
temperature, simulating ROR crash conditions.  
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A- Run-off-Road Crash Scenario 

 
B- Rear-End Crash Scenario 

Figure 8.1 Driving Simulator Scenarios for the Crash Detection 

8.2.2 Rear-End (RE) Crash Scenario 

According to Figure 8.1B, in this scenario, the roadway geometry consisting of three HCs with the 
same geometric as the first scenario was designed. The pavement surface was designed to simulate 
a very slight snowy surface, whose friction coefficient was close to dry road surface conditions 
throughout the entire scenario. The scenario started with very light snow weather and clear 
visibility until the second HC. After passing the second curve, a sudden severe weather condition 
and low visibility due to heavy snow conditions were simulated. At the end of the scenario, a traffic 
queue resulting from a presumptive primary crash was simulated. Due to the reduced visibility on 
Curve-C, drivers could recognize the traffic queue ahead very late, forcing them to react within a 
limited time to collision, simulating a rear-end crash. 

8.3 Data Analysis 
Vehicle trajectories under four study cases, including ROR crash, RE crash, and their 
corresponding non-crash cases, were converted into two K-SMoS: absolute value of derivative of 
instantaneous acceleration (ADInstAccel) and absolute value of derivative of steering 
(ADSteering). Accordingly, eight GEV distributions under Bayesian inference were fitted for two 
K-SMoS under four study cases.  

8.3.1 Block Maxima Approach in Extreme Value Theory (EVT) 

Extreme value theory (EVT) establishes the probabilistic and statistical tools to quantify those 
events that are more extreme than what often has been seen. This statistical area is advantageous 
for crash detection based on extreme changes in driver behaviors quantified by K-SMoS. The 
extreme values of K-SMoS were modeled using the block maxima (BM) approach (Figure 8.2) 
and estimating their corresponding GEV distributions [112]–[115] under crash and non-crash 
conditions. 
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A- Block Maxima of Absolute Value of Derivative of 

Instantaneous Acceleration in the RE Scenario 

 
C- Block Maxima of Absolute Value of Derivative 

of Steering in the RE Scenario 

 
B- Block Maxima of Absolute Value of Derivative 

of Instantaneous Acceleration in the ROR Scenario 

 
D- Block Maxima of Absolute Value of Derivative 

of Steering in the ROR Scenario 

Figure 8.2 Block Maxima Approach in Extreme Value Analysis  

Based on the BM approach, the maxima of K-SMoS were identified across all vehicle trajectories 
with a resolution of 60 observations per second (60 Hz) in every five-meter spatial block under 
crash and non-crash cases, as shown in Figure 8.2. Using the captured maxima, probability density 
functions (PDF) of GEV distributions for two K-SMoS in four cases of the study were fitted 
according to Equation 8.1 [116]. 

𝐻𝐻(𝜉𝜉, 𝜇𝜇,𝜎𝜎; 𝑥𝑥) = �
𝑒𝑒𝑒𝑒𝑒𝑒 �− �1 + 𝜉𝜉 �𝑥𝑥−𝜇𝜇

𝜎𝜎
��
−1 𝜉𝜉� �      𝑖𝑖𝑖𝑖 𝜉𝜉 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎  𝑥𝑥: 1 + 𝜉𝜉 �𝑥𝑥−𝜇𝜇

𝜎𝜎
� > 0

𝑒𝑒𝑒𝑒𝑒𝑒 � �−exp (−�𝑥𝑥−𝜇𝜇
𝜎𝜎
�)��                                    𝑖𝑖𝑖𝑖  𝜉𝜉 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 ∈ ℝ 

       Equation 8.1 

In Equation 8.1,  𝜇𝜇 is the location parameter akin to the mean and measures the central tendency 
of maxima/minima with a larger value localizing the distribution of the maxima at higher values. 
The scale parameter 𝜎𝜎 > 0 is an extent of dispersion and variance of maximal whose higher values 
indicate a more dispersed distribution of the maxima. Shape parameter 𝜉𝜉, also called the tail index, 
is a measure of skewness and tail behavior with higher values corresponding to heavier tails.  

8.3.2 Bayesian Inference 

The estimation of GEV parameters was conducted under Bayesian inference using Markov chain 
Monte Carlo (MCMC) simulation techniques based on non-informative priors. Bayesian inference 
was followed because it is concerned with the posterior probability distribution lying within 
regions of that space [117], helping in uncertainty analysis in crash detection. The visual 
assessment of K-SMoS GEV parameters’ joint posterior density distributions could qualitatively 
reveal these parameters’ uncertainties [118]. Figure 8.3 illustrates distributions of GEV parameters 
in three-dimensional perspectives for two K-SMoS to demonstrate how these distributions are 
similar/different to/from each other by considering uncertainty. 
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A- Joint Posterior Probability of GEV 

Distributions for ADInstAccel (View-1) 

 
B- Joint Posterior Probability of GEV 

Distributions for ADInstAccel (View-2) 

 
C- Joint Posterior Probability of GEV 

Distributions for ADInstAccel (View-3) 

 
D- Joint Posterior Probability of GEV 
Distributions for ADSteering (View-1) 

 
E- Joint Posterior Probability of GEV 
Distributions for ADSteering (View-2) 

 
F- Joint Posterior Probability of GEV 

Distributions for ADSteering (View-3) 

Figure 8.3 Joint Posterior Probability Distributions of Eight K-SMoS GEV Parameters for Crash and 
Non-crash Cases in a Three-Dimensional Space 

In Figure 8.3, every single point represents one unique GEV distribution, and each of the point 
clouds corresponds to one study case. Having 5000 samples generated by MCMC after warming 
up, each point cloud consists of 5000 GEV distribution representations. The presented samples in 
Figure 8.3 are generated by random sampling of MCMC from the joint posterior distributions 
[119] of three parameters (i.e., location, shape, and scale) for each GEV, corresponding to K-
SMoS, fitted under crash and non-crash cases. For each K-SMoS, it is clear that the corresponding 
point clouds under non-crash cases are remarkably denser than the crash counterparts, indicating 
higher certainty in the GEV parameter estimations. This visual inference indicates that extreme 
driving styles under normal traffic conditions are much more similar than under critical conditions.  
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In addition to Figure 8.3, Table 8.1 presents eight fitted GEV distribution parameter estimations 
under four study cases using two K-SMoS. Again, the narrower credible intervals (CIs) associated 
with GEV parameter estimations in non-crash cases show more certainty in extreme driving styles 
in normal traffic than crash conditions. Based on Table 8.1, the location parameters of K-SMoS 
GEV distributions under crash conditions are notably higher than their corresponding values under 
non-crash conditions. The fitted GEVs for extreme K-SMoS have systematically shifted away 
from zero in crash conditions. Depending on the driving simulator scenario and the type of K-
SMoS, this shifting is between two to four times the reference levels (i.e., estimated location 
parameter in non-crash cases). Hence, the central tendency of extreme driver behaviors captured 
by K-SMoS would take remarkably higher values in crash compared with non-crash conditions.  

Table 8.1  GEV Parameter Estimations for Two K-SMoS under Four Study Cases  

 

8.4 Crash Detection  
8.4.1 Binary Classification  

The purpose is to discriminate crash versus its corresponding non-crash conditions using fitted 
GEV PDFs associated with K-SMoS. In this regard, it is virtually impossible to see a perfect 
separation between PDFs of a K-SMoS under crash and non-crash conditions. Hence, PDFs 
associated with a K-SMoS might have an overlap. Having said that, for any possible hypothetical 
selected threshold to discriminate between the two PDFs, there might be true positive, true 
negative, false negative, and false positive diagnoses of the crash and non-crash conditions. Hence, 
to assess the discriminative power of each K-SMoS to cluster ROR and RE crashes from non-crash 
cases, the receiver operating characteristic (ROC) was conducted, and the area under the curve 
(AUC) was calculated. Since the binary classifications are to be conducted between two 
continuous PDFs of each K-SMoS under crash and non-crash conditions, sensitivity, and 
specificity were calculated according to Equations 8.2 and 8.3 for a predefined threshold 𝑇𝑇 [120], 
where 𝑓𝑓(𝑥𝑥) is the PDF of a K-SMoS in the non-crash case and 𝑔𝑔(𝑥𝑥) is its corresponding PDF 
under crash conditions throughout the range of K-SMoS (𝑥𝑥). Sensitivity is defined as the 
probability of a true positive, whereas specificity is defined as the probability of a true negative.  
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: ∫ 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑+∞
𝑇𝑇 = 1 − 𝑔𝑔(𝑇𝑇)         Equation 8.2 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∶  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑇𝑇)𝑇𝑇
−∞           Equation 8.3 

Therefore, for any predefined 𝑇𝑇, unique sensitivity and specificity were obtained. To establish 
ROC and calculate AUC associated with each of the K-SMoS under each scenario, sensitivity and 
specificity were calculated by altering 𝑇𝑇 with a 0.1-unit increment from the minimum to the 
maximum value taken by each of the K-SMoS. Figure 8.4 presents the discriminating ability of 
each K-SMoS for clustering vehicle trajectories from crash versus non-crash conditions based on 
ROC and associated AUCs. For each of the crash scenarios, ADSteering would result in better 
accuracy compared with ADInstAccel. For rear-end and ROR crash scenarios, ADSteering 
resulted in 81% and 79% accuracies, respectively, which are notably more than the 70% and 71% 
accuracies obtained by ADInstAccel for the mentioned scenarios.  

 
Figure 8.4 Comparison of Discriminating Ability of Two K-SMoS in Clustering Two Crash Types from 

Their Non-Crash Corresponding Cases  

8.4.2 Optimal Threshold Setting for K-SMoS in Crash Detection 

The optimal thresholds throughout the range of the K-SMoS were identified based on two distinct 
and widely used methods [121]. According to Equation 8.4, the first method takes advantage of 
maximizing the sum of sensitivity and specificity. However, the second method defines it for such 
a threshold leading to equal sensitivity and specificity in binary classification, presented by 
Equation 8.5 [121]. 

𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜 1 (𝑇𝑇1): 𝑇𝑇1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇 (𝑓𝑓(𝑇𝑇) + 1 − 𝑔𝑔(𝑇𝑇))       Equation 8.4 

𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜 2 (𝑇𝑇2): 𝑇𝑇2 = (∃𝑇𝑇 ∈ ℝ) | ( 𝑓𝑓(𝑇𝑇) = 1 − 𝑔𝑔(𝑇𝑇))       Equation 8.5 

Accordingly, for each of the K-SMoS, four optimal thresholds were defined based on two different 
driving simulator scenarios and two threshold setting methods. Four defined thresholds were 
averaged to report the final optimal threshold per K-SMoS. These threshold optimizations were 
performed by specificity and sensitivity analysis in the binary classification under varying cut-off 
points throughout a range of each K-SMoS. Figure 8.5 presents the location of the defined optimal 
thresholds on the fitted GEV distributions for each of the K-SMoS under two crash scenarios. 
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Figure 8.5 K-SMoS GEV Distributions under Crash and Non-Crash Conditions 

The final thresholds for ADSteering and ADInstAccel to detect crash conditions in the CV 
environment were achieved by averaging the four optimal thresholds associated with each of the 
K-SMoS. Table 8.2 presents the details. The final ADSteering and ADInstAccel thresholds were 
defined to be 1.24 (rad/s) and 1.31 (m/s3), respectively. The higher reliability of ADSteering in 
detecting crash conditions has been quantified by comparing its final threshold performance to 
ADInstAccel final threshold in clustering two crash types from their corresponding non-crash 
cases. According to Table 8.2, it is clear that ADSteering has notably outperformed ADInstAccel 
based on all three metrics (i.e., accuracy, sensitivity, and specificity). ADSteering could cluster 
each of the two crash conditions with an accuracy of almost 85%, which coincided with achieving 
a high rate of sensitivity and specificity. 
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Table 8.2 Optimal Threshold Definition for Crash Detection Based on Two K-SMoS 
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9. CONCLUSIONS AND RECOMMENDATIONS  

This research provided new traffic safety research perspectives to assess the safety performance 
of the Wyoming Connected Vehicle (CV) Pilot Deployment Program on Interstate-80 (WYDOT 
CV Pilot). Through the use of advanced statistical modeling and machine learning techniques, the 
research explained the procedure and the analytical inference for developing baseline and analysis, 
modeling, and simulation (AMS) framework under two distinct but complementary approaches: 
before/after analysis to explore real-time traffic-related crash/crash severity causations during CV 
pre-deployment as a baseline; and with/without analyses to quantify drivers’ behavioral alterations 
under the effect of various CV applications. 

The purpose of the first approach was to explore real-time traffic-related crash contributing factors 
and critical crash causations under the concept of the matched-case control design (MCCD) before 
deploying CV technology on 402 miles of I-80 in Wyoming. Comparing the causal effect of 
significant real-time traffic-related variables between CV pre-and post-deployment would reveal 
how CV technology affects I-80 safety performance under varying CV market penetration rates 
(MPRs). Accordingly, real-time crash prediction models (CPMs) were conducted, and traffic flow 
oscillations during crash precursors were analyzed throughout I-80’s lengthy corridor with 
relatively low traffic volume compared with other interstates. The research team combined 
nonparametric data-driven statistical techniques with the machine learning method to identify the 
most significant real-time traffic-related factors contributing to the crash likelihood. Upon this 
identification, the concept of post-hoc interpretation was employed to visualize and interpret the 
causal effect of crash contributing factors using a variety of visualization tools.  

Furthermore, the research team performed comprehensive analyses to identify critical crash 
causations under hierarchical Bayesian inference, which can account for unobservable factors (i.e., 
unobserved heterogeneity) affecting the likelihood of critical crashes on I-80 in Wyoming. The 
results provided WYDOT with the recognition of how real-time traffic-related and environmental 
factors significantly affect the probability of critical crashes. This recognition served as a baseline 
for the WYDOT CV Pilot, revealing the effect of CVs on mitigating the risk of these crashes on I-
80 in Wyoming during post-deployment.  

Switching to the with/without approach, the research team developed a reliable AMS framework, 
calibrated and validated based on real-time traffic observations preprocessed from the before/after 
analysis. Using the high-fidelity driving simulator lab at the University of Wyoming (WyoSafeSim 
Lab), drivers’ behavioral alterations due to various CV notifications under the WYDOT CV Pilot 
were quantified. This quantification was analyzed separately on vehicle trajectories and was 
conflated with traffic microsimulation modeling to show the effect of the CV technology on the 
entire mixed traffic stream under varying CV MPRs. In the experiments, various CV applications 
were tested in a controlled environment, including spot weather impact warning (SWIW), distress 
notification (DN), situational awareness (SA), CV variable speed limit (CV-VSL), work zone 
warning (WZW), forward collision warning (FCW), and rerouting applications.  

Due to the main focus of the WYDOT CV Pilot on improving safety performance for freight 
movement and commercial trucks, the analysis was mainly conducted on the truck driving 
simulator in the WyoSafeSim Lab with a total of six separate studies. In general, the research team 
inferred the positive impact of CV notifications on increasing drivers’ situational awareness and 
conservativeness level, enhancing future traffic safety performance of I-80 in Wyoming. 
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The analysis of conflict-based surrogate measure of safety (C-SMoS) for WZW, SWIW, and CV-
VSL in work zone areas under foggy weather conditions showed a remarkable safety enhancement 
in the work zone areas as the CV-MPR increases. The spatiotemporal investigation of speed 
harmonization depicted that the standard deviation of speed and mean speed in all work zone areas 
would decrease when the MPR of CVs increases. The research team introduced the WZW delivery 
distance as another macro-level contributing factor to the safety performance of CVs. It was 
inferred that the safety performance of CVs under different traffic volumes and in all WZ areas is 
not only affected by varying CV-MPRs but also by different WZW delivery distance influences.  
Findings from the traffic microsimulation modeling showed the number of traffic conflicts at the 
work zone would decrease if either CV MPR or the delivery distance increases. The findings 
indicated that the same safety level at higher MPRs could be achieved even at lower MPRs only if 
the WZW delivery distance increases. This inference is practically beneficial for the WYDOT CV 
Pilot because CV MPR would increase gradually, and its higher rate is not achievable soon. 
Accordingly, from the system design perspective, it has been shown that if CVs receive WZW 
4500 feet before the transition area in work zones, their safety performance would be maximized, 
regardless of CV-MPR and traffic volume. Hence, the results recommend installing road-side units 
(RSUs) at the mentioned location in work zones. This finding is specifically essential for I-80, as 
a monotonous rural corridor, where providing full communication coverage for CVs might not be 
a cost-effective approach. Hence, WYDOT would achieve the maximum CV safety performance 
by utilizing mobile RSUs mounted on trailers at 4500 feet upstream of the transition area.  

Furthermore, using trajectory-level observations from driving simulator experiments, the effect of 
SWIW, SA, and CV-VSL on truck drivers under limited visibility with complex roadway geometry 
was scrutinized. The research team investigated these application effects on longitudinal and 
lateral driver behaviors by comparing distributions of kinematic-based SMoS (K-SMoS). Results 
revealed an immediate and high driver compliance level in CV environments compared with non-
CVs, which was more notable in drivers’ longitudinal behavior and speed adaptation. Notable 
reductions in K-SMoS central tendencies in the CV compared with the non-CV scenario were 
observed that would potentially minimize the risk of rear-end crashes in foggy weather conditions 
and horizontal curve-related crashes under reduced visibility. Afterward, in a with/without 
analysis, the research switched to the safety assessment of the aforementioned CV applications on 
another black-spot point on I-80 where horizontal curves coincide with slippery pavement 
conditions. Data visualization and statistical inference indicated the safety outperformance of CVs 
compared with non-CVs, where the risk of run-off-road (ROR) and rear-end (RE) collisions was 
notably reduced, specifically due to CV-VSL and SWIW.  

More importantly, the research team unlocked one of the most important potentials of basic safety 
messages (BSMs) for the WYDOT CV Pilot in a simulated environment for traffic crash detection, 
leading to swift dispatching of emergency services and minimizing the risk of secondary crashes. 
It was shown that analysis of K-SMoS characterized on BSMs could quantify extreme driver 
volatility and detect traffic crashes with a reasonable accuracy according to pre-identified 
thresholds for K-SMoS. These thresholds would have practical implications in automatically 
detecting crash-prone conditions in the CV environment. Real-time access to the large-scale 
trajectory-level datasets embedded in BSMs in a spatiotemporal dimension would enable WYDOT 
to monitor the entire I-80 corridor to detect critical safety events and automatically dispatch DNs, 
minimizing the risk of secondary crashes. 
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