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ABSTRACT 

This report presents several advancements in the empirical modeling of liquefaction-induced 
lateral spread. It starts with a newly collected dataset of 5,560 historical lateral spread 
displacement vectors, a sample size over 10 times larger than the existing databases and 
subsurface data comprising over 633 standard penetration test boreholes. This work presents a 
comprehensive comparison of state-of-the-art empirical models for lateral spreads through Monte 
Carlo simulations and sensitivity analyses and proposes new evaluation metrics to measure 
performance. It also quantifies the uncertainty of model weights of the Multiple Linear 
Regression (MLR) model using Bayesian Statistics. A new functional form is proposed for the 
MLR model using the least absolute shrinkage and selection operator method. Importantly, the 
conventional probabilistic framework for predicting lateral spread is expanded to account for the 
probability of lateral spread triggering given the triggering of liquefaction. This expansion allows 
us to model zero-displacement lateral spreads despite having liquefaction susceptibility. A 
convolutional neural network classifier is developed to model the probability of lateral spread 
triggering with an out-of-fold model accuracy of 90.5%. A new mathematical representation of 
soil types is presented and trained in the context of liquefaction and lateral spread and boosted 
model performance.   
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EXECUTIVE SUMMARY 

This research was conducted in conjunction with the Pacific Earthquake Engineering Research 
(PEER) Center and various state DOTs via a pool-fund study managed by the Utah Department 
of Transportation (UDOT). The paper addresses the need to improve empirical, semi-empirical, 
analytical and numerical methods to estimate the amount of permanent ground displacement 
associated with liquefaction-induced lateral spread resulting from major earthquakes. The project 
is being executed in two phases: (1) database development and collection and (2) predictive 
model development. 

This research is relevant to the MPC strategic goals in two areas: (1) safety and (2) sustainability. 
Potential earthquake damage to transportation systems will affect the operation and safety of such 
systems.  This research will lead to methods to make such systems more resilient to such damage. 
Also, it will contribute to developing methods to proactively identify, quantify, visualize, 
prioritize, and mitigate risk resulting from earthquake hazards.  

Liquefaction-induced lateral spread is a type of permanent ground deformation from the 
horizontal movement of surficial soil resulting from liquefaction that has occurred at depth.  It 
generally is the most pervasive and damaging type of liquefaction-induced ground failure 
occurring during major earthquakes. Lateral spread displacement has caused significant damage 
to transportation infrastructure and other facilities during major earthquakes. Examples of such 
damage can be found in the engineering literature from the following earthquakes: 1964 Alaska; 
1964 Niigata, Japan; 1983 Nihonkai-Chu, Japan; 1989 Loma Prieta, California; 1999 Kocaeli, 
Turkey; 1999 Chi-Chi, Taiwan; 2004 Northridge, California; 2005 Kobe, Japan; 2010 Chile; 
2011 Tohoku, Japan; 2011 Christchurch, New Zealand. During these and other earthquakes, 
lateral spread horizontal ground displacement ranging from a few tenths of a meter to several 
meters was common in liquefaction-prone areas. These displacements resulted in hundreds of 
millions of dollars in damage to transportation facilities, such as bridges, embankments, culverts, 
and pavements. 

The Next Generation Liquefaction (NGL) Project is advancing state-of-the-art liquefaction 
research and working toward providing end-users with a consensus approach to assess 
liquefaction potential within a probabilistic and risk-informed framework. Specifically, NGL 
aims to collect and organize liquefaction information in a standard and comprehensive database 
to provide all researchers with a substantially more extensive, consistent, and reliable source of 
liquefaction data than previously existed. Based on this database, we will create probabilistic 
models that provide hazard- and risk-consistent bases for assessing liquefaction susceptibility, the 
potential for liquefaction to be triggered in susceptible soils, and the likely consequences. NGL is 
committed to an open and objective evaluation and integration of data, models, and methods, as 
recommended in a National Academies report (2016). Following these principles will ensure that 
the resulting liquefaction susceptibility, triggering, and consequence models are reliable, robust, 
and vetted by the scientific community, providing a solid foundation for designing, constructing, 
and overseeing critical infrastructure projects. 

This study contributes a newly collected dataset of 5,560 historical lateral spread displacement 
vectors, a sample size over 10 times larger than the existing databases, and subsurface data 
comprising over 633 standard penetration test boreholes (Chapter 3). 

  



 

x 
 

In addition, we propose two modifications to the functional form of the revised Multiple Linear 
Regression (MLR) model of Youd et al. (2002): 1) replacing R∗ with R, replacing log(F15) with 
F15, and replacing log(T15) with T15 based on Least Absolute Shrinkage and Selection Operator 
(LASSO) regression technique, and 2) capping predicted horizontal displacements by using logit 
function instead of log function to transform target variable. These modifications result in 
predictions that are more consistent with our current understanding of the mechanics behind the 
lateral spread phenomenon and the trends observed in the lateral spread case histories database. 
The revised model was re-regressed to generate a new set of MLR equations, resulting in 12.3% 
and 9.1% higher coefficient of determination R2 values in free face and sloping ground modes, 
respectively. 

Most importantly, the authors developed a probabilistic framework for liquefaction-induced 
lateral spread screening criteria. We expanded the conventional probability chain for predicting 
lateral spread displacements exceeding a certain threshold to account for the probability of lateral 
spread triggering given liquefaction. The second outcome was to build a classifier using 
Convolutional Neural Networks (CNNs) to compute the newly added probability of lateral spread 
given liquefaction. Over 620 standard penetration testing (SPT) boreholes were collected from 11 
earthquakes to train this model. The proposed CNN-based screening criteria used pairs of SPTs 
spaced less than 150 meters in the analysis. The proposed model can be used as a binary classifier 
to predict the probability of lateral spread triggering given liquefaction and classify the boreholes 
pair type as either within, on the boundary (i.e., margin), or outside the potential lateral spread 
zone. The out-of-fold model accuracy for triggering and multiclass classifiers are 81.4% and 
90.5%, respectively. The uncertainty associated with the stratified k-fold cross-validation strategy 
was also studied. The reported accuracy for classification has a normal distribution with a mean 
of 81.4% and a standard deviation of 1.6%. Finally, as part of this study, a new mathematical 
representation of soil types was presented. These soil type latent vectors are trained in the context 
of liquefaction and lateral spread and resulted in a 2% improvement in the model’s accuracy. 
These latent vectors could be used in conjunction with or as a substitute for soil index in 
developing predictive models for liquefaction or its consequences
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1. INTRODUCTION 

The effects of soil liquefaction on the built environment can be catastrophic and cause many 
infrastructure failures, loss of life, and significant financial loss. For instance, the 1964 Niigata 
earthquake in Japan caused over $1 billion of damage, and most of it was related to soil 
liquefaction. Another catastrophic example of soil liquefaction is the Aberfan, Wales, slide that 
killed 144 —116 of whom were children inundated in a school. Soil liquefaction was also one of 
the factors in the abandonment of the Nerlerk artificial island in Canada after more than $100 
million had been spent on its construction (Jefferies and Been 2015). In addition, this 
phenomenon played a major role in the destruction in San Francisco’s Marina District during the 
1989 Loma Prieta earthquake and in Port of Kobe during the 1995 Great Hanshin earthquake. 
More recently, extensive liquefaction-induced damage to residential properties in Christchurch, 
New Zealand, was observed during the 2010 Canterbury earthquake and more extensively again 
Christchurch earthquakes that followed in early and mid-2011 and resulted in 185 deaths (Elliot 
et al. 2012, Poter et al. 2015). 

Soil liquefaction that usually occurs at depths may cause damage only if it induces ground 
deformations, ground displacements, or ground failure that distresses human-made structures 
(refer to Figure 1.1. for examples). The most pervasive type of liquefaction-induced ground 
failure is lateral spread. As shown in Figure 1.2, during lateral spread, blocks of mostly intact, 
surficial soil layer migrate on liquefied soil either down gentle slopes or toward a free face (Youd 
2018). Lateral spreads generally have translational movements, although some rotations and 
subsidence occur (Andrus & Youd 1987), and they can affect performance of structures (Gowda 
et al. 2022) even if not strong enough to completely destroy them. The magnitude of lateral 
spread typically ranges from a few centimeters to several meters (Bartlett & Youd 1995), and it 
may exhibit significant spatial variations within a specific site (Guan and Wang 2022).  

Because of its critical impact and significant destructive nature, soil liquefaction and its 
consequences, particularly liquefaction-induced lateral spread, have been among the most critical 
topics of geotechnical engineering research over the past three decades. Researchers investigated 
lateral spread phenomenon using different approaches, including: 

(1) Simplified analytical methods, such as Newmark’s sliding block analysis proposed by 
Yegian et al. (1991) and Baziar et al. (1992), or the analysis based on minimum potential 
energy proposed by Towhata et al. (1992) and Tokida et al. (1993). 

(2) Numerical methods, including finite element method, finite difference method (Finn 
1991, Finn et al. 1994, Soroush & Koohi 2004, Little & Rathje 2021, and Yang & 
Kavazanjian 2021), and cubic interpolated pseudoparticle (Hadush et al. 2001); Vargas et 
al. (2022) presented a validation of numerical predictions on clean sands. 

(3) Experimental testing, including laboratory (Seed et al. 1985, Kuwano & Ishihara 1988, 
Hadush et al. 2000, Dobry et al. 2010, and El-shamy et al. 2010) and centrifuge studies 
(Taboada-Urtuzuastegui & Dobry 1998, Sharp et al. 2003, and Kutter et al. 2004, Liu et 
al. 2018).  

(4) Empirical methods, including statistical methods and machine learning algorithms, which 
will be subsequently discussed in detail.  
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Figure 1.1  Examples of soil liquefaction consequences on human-made structures 

(Idriss & Boulanger 2008) 

 
Figure 1.2  Diagram of the general character of lateral spread (Youd 2018) 

Each of these approaches has advantages and disadvantages, and there has been continuous 
research in most of them. For example, regarding simplified analytical methods, Olsen and 
Johnson (2008) proposed a method for estimation of lateral spread displacements based on sliding 
block method analysis that ties the sliding resistance to the residual strength of the liquefied soil. 
However, Makdisi and Kramer (2019) investigated the capability of sliding block analyses for 
predicting lateral spread displacement and concluded that the sources of uncertainty and bias in 
the sliding block framework strongly impact their performance. These sources produce extremely 
low precision in both the predicted displacement and back-calculated residual shear strength. 
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Although analytical and numerical methods and experimental testing might help us better 
understand the mechanics behind lateral spread, they are less commonly used by engineers than 
empirical methods. Empirical methods are often used because of their simplicity and easy-to-
interpret results. Hence, the empirical models continue to have a significant impact on 
engineering practice. Further, empirical procedures are based on compiled data; thus, they are 
constrained by case history observations. As new data become available or corrections are needed 
to the empirical models, the latest data is added to the model to improve their predictability. This 
dissertation focuses on the collection and addition of new lateral spread cases. These data will be 
subsequently used to evaluate and enhance the performance of empirical approaches. 

 
1.1 Literature Survey 

 
Because this study focuses on the development of empirical models, this literature survey covers 
only empirical models used for predicting horizontal ground displacement due to liquefaction-
induced lateral spread. This evaluation includes statistical methods and machine learning 
algorithms. 

Before 1992, there existed only a few empirical models for lateral spread displacements, notably 
the ones proposed by Hamada et al. (1986) and Youd and Perkins (1978, 1987). The model 
proposed by Hamada et al. (1986) was based on the ground displacement vectors generated from 
pre-and post-earthquake aerial photographs of the 1964 Niigata and 1983 Nihonkai-Chubu 
earthquakes. Their proposed regression model had only two predictive variables: (1) the thickness 
of the liquefied layer and (2) the maximum of ground slope and slope of the bottom of the 
liquefied layer. Their model emphasized the liquefied layer but did not address the importance of 
earthquake factors. They proposed the following regression model: 

𝐷𝐷 = 0.75𝐻𝐻0.5𝜃𝜃0.33 (1.1) 

where D is horizontal ground displacement in meters, H is the thickness of the liquefied layer in 
meters, and θ is the larger value of the ground slope and the slope of the bottom of the liquefied 
layer in percent. 

One of the fundamental differences between the Hamada et al. (1986) model and its succeeding 
models is in that Hamada et al. (1986) divided subsurface cross-sections into segments that 
appeared to have moved as a discrete unit and then averaged their variables on those blocks while 
later models treated each displacement vector on the ground as one sample. Their model is 
primarily based on the thickness of the liquefiable layer and slope, and it does not include 
important earthquake factors, such as earthquake magnitude and earthquake source distance. 
Moreover, since their model is solely based on case histories from Japan with earthquake moment 
magnitudes around 7.5 and highly liquefiable sediments that are about 20 to 30 km away from the 
energy source, it results in reasonable predictions for only such conditions and should not 
generalize to other cases.  

Youd and Perkins (1987) proposed the Liquefaction Severity Index (LSI) as a scale to represent 
the maximum value of ground displacement. They postulated the LSI to be primarily a function 
of amplitude and duration of strong ground motion. Their study was limited to a specific geologic 
setting (saturated cohesionless Holocene fluvial or deltaic deposits with standard penetration 
resistances ranging from 2 to 10 blows per foot) and lateral spreads that occurred on gentle slopes 
or into rive channels having widths greater than 10 meters. They proposed the following 
regression model: 
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log LSI = -3.49 – 1.86log R + 0.98 Mw (1.2) 

where LSI is the maximum, permanent, horizontal displacement in inches, R is the horizontal 
distance from the energy source in kilometers, and Mw is the moment magnitude of the 
earthquake. 

Because the Youd and Perkins (1987) model was primarily based on case histories in California 
and Alaska, it applies only to seismic regions with high ground motion attenuation (Bartlett and 
Youd 1992). The LSI regression model of Youd and Perkins (1987) is based on earthquake 
factors only and is intended to provide a conservative upper bound prediction of lateral ground 
displacements at sites with moderate to high liquefaction susceptibility.  

Bartlett and Youd (1992) strived to develop a more comprehensive model based on the studies by 
Hamada et al. (1986), Youd and Perkins (1978, 1987), and Bartlett and Youd (1990) that includes 
(1) earthquake factors, such as earthquake magnitude and distance from the zone of seismic 
energy release, (2) topographical factors, such as ground slope or distance to and height of a free 
face, if present, (3) geological factors, such as the thickness of the low SPT N value layer, and (4) 
soil factors, such as mean grain size and fines content of the liquefied layer. They have developed 
two multiple linear regression (MLR) models for sloping ground and free face modes based on 
eight earthquakes and their corresponding case histories from the United States and Japan. 
Bartlett and Youd (1992, 1995) compiled a more comprehensive database for lateral spread case 
histories consisting of 448 horizontal displacement vectors. To select the features to be used in 
their MLR models, they have investigated different variables, a complete list is given in Table 
1.1.  

Among the earthquake (or seismic) variables, they chose moment magnitude (M) and horizontal 
distance from the seismic source (R) over Peak Ground Acceleration (PGA). These former 
variables were used instead of PGA and the duration of earthquake shaking (D) because strong 
ground motion records were not available for almost all data sources. Hence, the estimation of 
PGA and D from existing relations resulted in less reliable predictions when inserted into the 
MLR model. Nonetheless, Bartlett and Youd (1992) believed that PGA and D are more 
fundamental measures of the seismic energy than M and R. If high-quality measurements of those 
variables are available, Bartlett and Youd (1992) decided to develop two separate MLR models 
for free face and sloping ground modes because they observed different displacement patterns for 
these conditions. An example map created by Hamada et al. (1986) is shown in Figure 1.3, which 
illustrates the displacement vectors along the Shinano River near the Echigo Railway Bridge in 
Niigata, Japan. As can be seen, the displacement vectors near the river follow a distinctly 
different pattern from those occurring north of the railroad embankment. The areas near the river 
lacked lateral resistance to deformation because of the incised channel and were directed toward 
the free face. At the same time, other displacement vectors north of the railroad embankment 
were generally smaller and headed down the 0.2 percent ground slope to the northeast.  
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Table 1.1  Summary of independent variables evaluated by Bartlett and Youd (1992) 
Variables Description 
Earthquake variables 
M Earthquake moment magnitude, Mw 
R Nearest horizontal distance to seismic energy source or fault rapture, km 
A Peak ground acceleration, g 
D Duration of strong ground motion (>0.05 g), s 
Topographical variables 
S Ground slope, % 
L Distance to the free face from the point of displacement, m 
H Height of free face, m 
W Free face ratio, % (i.e. 100 H / L) 
Geological variables 
TS Thickness of liquefied zone(s) based on simplified procedure, m 
TL Thickness of liquefied zone(s) based on Liao’s 50% probability curve, m 
T10 Thickness of saturated cohesionless soils with (N1)60 ≤ 10, m 
T15 Thickness of saturated cohesionless soils with (N1)60 ≤ 15, m 
T20 Thickness of saturated cohesionless soils with (N1)60 ≤ 20, m 
IS Index of liquefaction potential based on simplified procedure 
IL Index of liquefaction potential based on Liao’s 50% probability curve 
Ztls Depth to top of liquefied zone based on simplified procedure, m 
Ztll Depth to top of liquefied zone based on Liao’s 50% probability curve, m 
Zbls Depth to bottom of liquefied zone based on simplified procedure, m 
Zbll Depth to bottom of liquefied zone based on Liao’s 50% probability curve, m 
ZS Depth to the lowest factor of safety based on simplified procedure, m 
ZL Depth to the lowest factor of safety based on Liao’s 50% probability curve, m 
ZN Depth to lowest SPT N value in saturated cohesionless soil, m 
ZN160 Depth to lowest SPT (N1)60 value in saturated cohesionless soil, m 
N Lowest SPT value in saturated cohesionless sediments 
N160 Lowest SPT (N1)60 value in saturated cohesionless sediments 
JS Lowest factor of safety based on simplified procedure below water table 
JL Lowest factor of safety based Liao’s 50% probability curve below water table 
N160S (N1)60 value corresponding to Js 

N160L (N1)60 value corresponding to JL 
KS Average factor of safety in TS 

KL Average factor of safety in TL 

OS Average (N1)60 in TS 
OL Average (N1)60 in TL 

Note: Simplified procedure from Seed and Idriss (1971); Liao’s probability curves from Liao (1986) 
considered. Among the other variables, Bartlett and Youd (1992) chose those yielding higher values of the 
coefficient of determination (R2) in a stepwise regression process. 
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Figure 1.3  Displacement vectors near Shinano River in Niigata, Japan (source: unpublished 

ground failure maps courtesy of M. Hamada) 
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The final form of the MLR models developed by Bartlett and Youd (1992) for free face and 
sloping ground modes are given in Equations 1.3 and 1.4, respectively: 

log (DH+0.01) = - 16.366 + 1.178 M – 0.927 Log R – 0.013 R + 0.657 Log W 
+ 0.348 Log T15 + 4.527 Log (100-F15) – 0.922 D5015 

(1.3) 

log (DH+0.01) = - 15.787 + 1.178 M – 0.927 Log R – 0.013 R + 0.429 Log S 
+ 0.348 Log T15 + 4.527 Log (100-F15) – 0.922 D5015 

(1.4) 

where DH is the horizontal ground displacement, and all other variables are defined in Table A.1. 
Bartlett and Youd (1992) reported an overall coefficient of determination and adjusted coefficient 
of determination of 82.6% and 82.3%, respectively. The coefficient of determination is the 
proportion of the variance in the dependent variable that is predictable from the independent 
variables (Neter 1996). The adjusted coefficient of determination adjusts R2 for the number of 
independent variables in a model relative to the number of data points because R2 automatically 
and spuriously increases when extra explanatory variables are added (Theil 1961). The adjusted 
R2 is always less than R2, and it increases only in cases when the increase in R2 is more than one 
would expect to see by chance.  

For non-western United States and Japanese sites and other soft soil conditions, Bartlett and Youd 
(1992) require corrections to their model. Moreover, because the bulk of their data came from 6 ≤ 
M ≤ 8 earthquakes, they recommended not using their model for moment magnitudes out of this 
range. Such an attempt is an extrapolation, and unreliable results might be produced. They 
developed a flow chart to apply their models (Equations 1.3 and 1.4), shown in Figure 1.4. 
Finally, they concluded that the addition of more case histories would strengthen the MLR 
database and improve its reliability for extremely large earthquakes.  

Bartlett and Youd (1995) added a few more case histories to the earlier version of their database 
and increased the number of displacement vectors to 467. Nonetheless, their independent 
variables remained the same as the ones in Equations 1.3 and 1.4, The final MLR models is 
defined as:  

log (DH) = - 16.366 + 1.178 M – 0.927 Log R – 0.013 R + 0.657 Log W 
     + 0.348 Log T15 + 4.527 Log (100-F15) – 0.922 D5015 

(1.5) 

log (DH) = - 15.787 + 1.178 M – 0.927 Log R – 0.013 R + 0.429 Log S 
       + 0.348 Log T15 + 4.527 Log (100-F15) – 0.922 D5015 

(1.6) 
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Figure 1.4  Flow chart for application of Bartlett and Youd (1992) model 

After the compilation of the Bartlett and Youd (1992 and 1995) database, many researchers 
developed empirical models by applying different statistical methods and machine-learning 
algorithms to the database. These methods and algorithms include multiple linear regressions, 
artificial neural networks, tree-based algorithms, such as random forests, fuzzy algorithm, genetic 
programming, multivariate adaptive regression splines, etc. Machine-learning algorithms differ 
from statistical methods. These methods do not require a predefined functional form, and the 
algorithm will automatically detect the nonlinear pattern between predictive variables and target 
variable. 
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Wang & Rahman (1999) developed the first backpropagation artificial neural network for 
liquefaction-induced lateral spreads on top of the Bartlett and Youd (1992, 1995) database shortly 
after this new field of “soft computing” emerged for solving decision-making, modeling, and 
control problems. A detailed description of artificial neural networks could be found in Rashid 
(2016) and Geron (2017). Wang and Rahman (1999) started with using all the 28 variables in the 
database and then tried to eliminate a number of variables based on the methodology described by 
Garson (1991) that yields relative importance of variables using their weights in the model. They 
found that the most important variables among all the 28 variables were M, R, S, W, T15 and F15. 
Nonetheless, the highest coefficient of determination was obtained when all the variables used by 
Bartlett and Youd (1992 and 1995) were used.   

Despite that their reported coefficient of determination (0.816 and 0.654 for the training and 
testing stages of the combined model, respectively), was higher than the MLR model of Bartlett 
and Youd (1992, 1995), they did not provide the neural network they used — neither the model 
itself nor the details, such as neuron weights, activation functions, learning rate, hyperparameters, 
etc. Hence, it is not possible to reproduce their solution. They also emphasized the need for the 
collection of more data.  

Rauch and Martin (2000) developed the Empirical Prediction of Liquefaction-induced Lateral 
Spreading (EPOLLS) model, a multiple linear regression based on 71 lateral spread case 
histories. They followed the approach of Hamada et al. (1986) in that they treated blocks of 
displacement vectors as one unit or case history. They defined an EPOLLS case study as a 
contiguous mass of soil that moved in one general direction and may enclose a multitude of 
measured displacements. An example of two of EPOLLS case studies they identified in Niigata is 
shown Figure 1.5. They also emphasized that their model and the preceding models were not 
intended to predict where a lateral spread might develop but only the potential deformations 
where a lateral spread is expected.  

Rauch and Martin (2000) proposed three levels for their multiple linear regression model that 
should be used, depending on the availability of the data: (1) Regional-EPOLLS that require only 
data on the seismic source and local intensity of shaking, (2) Site-EPOLLS component that 
requires additional, site-specific data on the surface topography and dimensions of the anticipated 
area of sliding (but predictions are possible without detailed data on the subsurface soil 
conditions), and (3) Geotechnical-EPOLLS component that requires all of the inputs used in the 
other two components with additional data obtained from subsurface explorations. The final 
equations of these three models are given respectively in Equations 1.7 to 1.9: 
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Figure 1.5  Two EPOLLS case studies in Niigata, Japan 

 

�𝐴𝐴𝐴𝐴𝑔𝑔𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 0.613𝑀𝑀𝑤𝑤 − 0.0139𝑅𝑅𝑓𝑓 − 2.42𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 − 0.0114𝑇𝑇𝑑𝑑 − 2.21 (1.7) 

�𝐴𝐴𝐴𝐴𝑔𝑔𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 0.613𝑀𝑀𝑤𝑤 − 0.0139𝑅𝑅𝑓𝑓 − 2.42𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 − 0.0114𝑇𝑇𝑑𝑑
+ 0.000523𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0423𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 + 0.0313𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 2.44 

(1.8) 

�𝐴𝐴𝐴𝐴𝑔𝑔𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 0.613𝑀𝑀𝑤𝑤 − 0.0139𝑅𝑅𝑓𝑓 − 2.42𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 − 0.0114𝑇𝑇𝑑𝑑
+ 0.000523𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0423𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 + 0.0313𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+ 0.0506𝑍𝑍𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 0.0861𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙 − 2.49 

(1.9) 

 
where Avg_Horz is the average horizontal ground displacement of the case study; Mw is the 
moment magnitude of the earthquake; Rf is the shortest horizontal distance from the site to 
surface projection of fault rupture or zone of seismic energy release; Amax is the peak horizontal 
acceleration at the ground surface of the site that would occur in absence of excess pore pressures 
or liquefaction generated by the earthquake; Td is the duration of strong ground motions at the 
site, defined as the time between first and last occurrence of surface acceleration ≥ 0.05 g; Lslide is 
the maximum horizontal length from head to toe of lateral spread in the prevailing direction of 
movement; Stop is the average slope across the surface of lateral spread, measured as change in 
elevation over distance from head to toe; Hface is the height of the free face, measured vertically 
from toe to crest of the free face; ZFSmin is average depth to the minimum factor of safety in 
potentially liquefiable soil, and Zliq is average depth to the top of liquefied soil.  

Youd et al. (2002) revised the empirical equations developed by Bartlett & Youd (1992, 1995) to 
correct and update the original analysis. Updates include: (1) corrections to errors due to 
erroneously overestimated displacement measurements for lateral spreads generated by the 1983 
Nihonkai-Chubu, Japan Earthquake. Those displacements were miscalculated by a factor of 1.9, 
(2) deletion of eight displacement vectors where boundary shear impeded free lateral 
displacement to be consistent with a free lateral movement condition, (3) addition of three newer 
earthquakes – 1983 Borah Peak, Idaho, 1989 Loma Prieta, California, and 1995 Hyogo-Ken Nabu 
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(Kobe), Japan - to extend the predictive equation to coarser-grained materials, and (4) changes in 
the functional form to enhance model performance on coarser-grained sediments and 
consequently increase the accuracy of the model. Moreover, their changes to the functional form 
prevent unrealistic over predictions of displacements when R becomes small. Their revised and 
re-regressed models for sloping ground and free-face modes are respectively, as follows: 

 
log�𝐷𝐷ℎ𝑠𝑠𝑠𝑠� =  −16.213 + 1.532𝑀𝑀− 1.406 log(𝑅𝑅∗) − 0.012𝑅𝑅 + 0.338𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

+ 0.540𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇15 + 3.413 log(100 − 𝐹𝐹15)
− 0.795 log(𝐷𝐷5015 + 0.1) (1.10.a) 

log�𝐷𝐷ℎ𝑓𝑓𝑓𝑓� =  −16.713 + 1.532𝑀𝑀− 1.406 log(𝑅𝑅∗)− 0.012𝑅𝑅 + 0.592𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
+ 0.540𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇15 + 3.413 log(100− 𝐹𝐹15)
− 0.795 log(𝐷𝐷5015 + 0.1) (1.10.b) 

where M is moment magnitude; R is the horizontal or mapped distance from the site in question 
to the nearest bound of the seismic energy source; R*=10(0.89M-5.64)+R; S is the slope in percent; W 
is the free face ratio in percent; T15 is the thickness of saturated cohesionless soil with (N1)60 < 15, 
in meters; F15 is average fines content in T15, in percent; and D5015 is average D50 in T15 in 
millimeters. 

Considering the fundamental assumption of linear regression models that errors are distributed 
normally, one can rewrite Eqs. 1.10.a and 1.10.b in a probabilistic form: 

 

𝑃𝑃�𝐷𝐷ℎ𝑠𝑠𝑠𝑠 > 𝑦𝑦� = 1 −𝛷𝛷�
log�𝐷𝐷ℎ𝑠𝑠𝑠𝑠� − 𝑦𝑦
𝜎𝜎log (𝐷𝐷ℎ𝑠𝑠𝑠𝑠)

� 
(1.11.a) 

  𝑃𝑃�𝐷𝐷ℎ𝑓𝑓𝑓𝑓 > 𝑦𝑦� = 1 −𝛷𝛷�log�𝐷𝐷ℎ𝑓𝑓𝑓𝑓�−𝑦𝑦
𝜎𝜎log (𝐷𝐷ℎ𝑓𝑓𝑓𝑓)

� 
(1.11.b) 

where Φ() is the cumulative density function of normal distribution and σ is the standard 
deviation of the error term in the Youd et al. (2002) model, which is equal to 0.197 as given by 
Franke and Kramer (2013). 

One of the limitations of the Youd et al. (2002) model is that because all the gravels included in 
their database had sufficient fines content, the use of their equations for coarse-grained sites is 
only valid for soil with impeded drainage. Since this limitation is rooted in the database, all 
subsequent models developed using this database would have the same limitation. Youd et al. 
(2002) also recommended not using their model for highly plastic fines because they are 
generally not liquefiable and therefore not susceptible to lateral spread. Another limitation 
mentioned by Youd et al. (2002) is the uncertainty of model for lateral displacement predictions 
larger than six meters. Similar to Bartlett and Youd (1992 & 1995), application of the revised 
MLR model has guidelines recommended by Youd et al. (2002) as follows: 

1. The liquefaction susceptibility of the site should be verified through subsurface 
exploration before appling the MLR model. Nonliqufiable sites and liquefiable layers 
having all SPT (N1)60 greater than 15 are too dense and dilative for lateral spread to 
occur.  
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2. Use of the MLR model for earthquakes with magnitudes not between 6 to 8 has greater 
uncertainty. Nonetheless, the MLR model can be applied to earthquakes with magnitudes 
less than 6 because lateral spread displacements are generally small. 

3. In case of free-face ratios (W) of less than 1%, the sloping ground mode controls 
predicted displacements and the equation of sloping ground mode should be used. When 
free-face ratio is greater than 5%, free-face conditions control the displacement behavior 
and the equation of free-face mode should be used. Where there is a question of which 
equation should be used, the maximum of the predictions from both modes should be 
used.  

4. The applicable ranges of grain sizes for use with the MLR model is shown in Figure 1.6, 
which was later revised in Youd (2018). 

5. The MLR models developed by Youd et al. (2002) are based on the stiff soil sites in the 
western United States and Japan with relatively high attenuation of strong ground motion 
with distance. For other seismic regions, such as the eastern United States or liquefiable 
sites underlain by soft soils that may amplify weak ground motions, an equivalent 
distance term (Req) is required. 

 
Figure 1.6  Applicable grain size ranges of F15 and D5015 

 
Bardet et al. (2002) dropped the two soil parameters in Bartlett and Youd (1992, 1995) and 
proposed a four-parameter MLR model to be used at a regional scale. They believed those two 
soil parameters are somewhat challenging to obtain from borehole data and to determine for large 
areas. Moreover, the uncertainty of those two variables is the largest in the Bartlett and Youd 
(1992) model. Also, Bardet et al. (2002) discarded larger displacements because it may be 
difficult to have engineering countermeasures against them. They divided data into two datasets 
(A) complete dataset consisted of 467 data points, and (B) data limited to displacement 
amplitudes smaller than 2 meters consisted of 283 data points. They then regressed two sets of 
MLR models on datasets A and B. 

Bardet et al. (2002) also presented a probabilistic framework for assessing confidence intervals 
for predicting ground deformation and the probability of exceeding certain ground deformation 
levels, such as the ones given in Eqs. 1.11.a and 1.11.b. Their models are useful for risk 



 

13 
 

assessment to spatially distributed lifeline networks. They further concluded that there is a need 
to improve and extend the Bartlett and Youd (1992, 1995) database on which their model was 
based.  

In 2004, Zhang et al. (2004) proposed a semiempirical approach to estimate liquefaction-induced 
lateral displacements using the standard penetration test (SPT) or cone penetration test (CPT) data 
to evaluate the potential maximum cyclic shear strains. They went one step further than pure 
empirical models and combined available SPT and CPT-based methods at the time with the 
laboratory test results for clean sands to estimate the potential maximum cyclic shear strains 
(γmax) from which the lateral displacement index (LDI) could be obtained: 

 

 𝐿𝐿𝐿𝐿𝐿𝐿 = � 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑
𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚

0
 (1.12) 

where Zmax is the maximum depth below all the potential liquefiable layers and should be less 
than 20 meters.  

The LDI, which only accounts for the soil profile, soil properties, and earthquake characteristics, 
will then be used with the geometric parameters from case histories characterizing ground 
geometric to predict the magnitude of lateral spreads, LD. The final predictive equations for the 
sloping ground and free face modes are given respectively in Eqs. 1.13.a and 1.13.b: 

  LD = (S + 0.2) LDI (1.13.a) 

LD = 6 (L/H)-0.8
 LDI (1.13.b) 

where S is the ground slope, L is the horizontal distance from the toe of a free face to the site, and 
H is the elevation difference between the level ground surface and the toe of a free face. 

Zhang et al. (2004) excluded several cases that they believed lateral spreads were impeded by 
shear forces along the margins of the failure zone or human-made structures. They also excluded 
case histories with the possibility of local slump failure or flow failure. Overall, they had 291 
displacement vectors from 13 earthquakes. Their approach produced similar R2 values when 
compared with the Youd et al. (2002) model.  

Five years after Wang and Rahman (1999) developed the first artificial neural network, Baziar 
and Ghorbani (2005) presented another neural network for the evaluation of lateral spread. They 
based their model on the revised database of Youd et al. (2002), while the neural network model 
by Wang and Rahman (1999) was based on the Bartlett and Youd (1992, 1995) database. Another 
primary difference was the number of neurons used in hidden layers. Baziar and Ghorbani (2005) 
used 11 hidden neurons, while Wang and Rahman (1999) used five. Finally, the most important 
difference was that Baziar and Ghorbani (2005) presented the details of their neural network, 
such as the weights and activation functions, so readers could reproduce their results.  

With the enormous expansion of genetic programming in the late 1990s and early 2000s, Javadi 
et al. (2006) applied this powerful technique to model liquefaction-induced lateral displacements. 
Their final predictive equations for the sloping ground and free-face modes are given respectively 
in Eqs. 1.14.a and 1.14.b: 
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𝐷𝐷ℎ = −0.8
𝐹𝐹15
𝑀𝑀

+ 0.0014𝐹𝐹152 + 0.16𝑇𝑇15 + 0.112𝑆𝑆 + 0.04
𝑆𝑆𝑇𝑇15
𝐷𝐷5015

− 0.026𝑅𝑅𝐷𝐷5015 + 1.14 
(1.14.a) 

𝐷𝐷ℎ = −163.1
1
𝑀𝑀2 + 57

1
𝑅𝑅𝐹𝐹15

− 0.0035
𝑇𝑇152

𝑊𝑊𝐷𝐷50152
+ 0.02

𝑇𝑇152

𝐹𝐹15𝐷𝐷50152

− 0.26
𝑇𝑇152

𝐹𝐹152
+ 0.006𝑇𝑇152 − 0.0013𝑊𝑊2 + 0.0002𝑀𝑀2𝑊𝑊𝑇𝑇15

+ 3.7 

(1.14.b) 

 
Javadi et al. (2006) further proposed another set of equations for moderate lateral displacements 
where measured displacements are less than 1.5 meters. They proposed to use Eqs. 1.14.a and 
1.14.b to predict lateral spreads and if the predicted displacements were in the moderate range 
(less than 1.5m) and to use Eqs. 1.15.a and 1.15.b for the sloping ground and free face modes, 
respectively: 

As per their conclusions, genetic programming successfully modeled lateral spreads and 
improved the accuracy of predictions. Unfortunately, Javadi et al. (2006) used the equation for 
the coefficient of determination given in Eq. 1.16 based on the false assumption that the 
predictions had a mean of zero. Therefore, the coefficient of determination reported therein is 
invalid and could not be used to compare their model with other models: 

𝑅𝑅2 =
∑ (𝑋𝑋𝑚𝑚)2 − ∑ �𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑝𝑝�

2
𝑁𝑁𝑁𝑁

∑ (𝑋𝑋𝑚𝑚)2𝑁𝑁
 (1.16) 

where Xm is the measured and Xp is the predicted displacement. The general formula for 
the coefficient of determination that does not assume zero mean is (Neter et al. 1996): 

𝑅𝑅2 = 1 −
∑ �𝑋𝑋𝑚𝑚 − 𝑋𝑋𝑝𝑝�

2
𝑁𝑁

∑ (𝑋𝑋𝑚𝑚 − 𝑋𝑋�)2𝑁𝑁
 (1.17) 

where 𝑋𝑋� is the mean of measured displacements. 

Figure 1.7 clearly shows the effect of their false assumption. The reported coefficient of 
determination is 95.5%, which is very high, but almost all of the predictions are similar to each 
other (within the range of 1.1 to 1.3 meters), while the measured displacements are in the range of 
0.5 to 1.5 meters. For the same data shown in Figure 1.7, the correct value of the coefficient of 
determination, calculated by the author using Eq. 1.17, is 64.9%.  
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Figure 1.7  Measured versus predicted displacements of Javadi et al. (2006) – moderate 

displacements model for gently sloping mode 

Neurofuzzy systems, which are another widespread statistical method in the 2000s, were not left 
unnoticed by the researchers working on empirical models of lateral spread. Garcia et al. (2008) 
proposed a model called NEFLAS (NEuroFuzzy) estimation of liquefaction-induced LAteral 
Spread) to capture the nonlinear relations between predictive variables and the target variable. 
Unlike the models using a predefined functional form, such as the MLR models, their model 
generates a functional form automatically within the model by recognizing the patterns in the data 
space. There are advantages and disadvantages in either using or not using a predefined 
functional form. In short, if the process is mechanics-based, then an appropriate functional form 
can be suggested based on the physics of the phenomenon. However, in phenomena affected by 
multi variables and complex interactions, a proper functional form may not be apparent or easily 
defined. Also, to eliminate or smooth the scattering caused by vague and contradictory data (i.e., 
noisy datasets), Garcia et al. (2008) preprocessed the data using a fuzzy clustering technique that 
transforms groups of points into single typicals. 

Oommen and Baise (2010) proposed a Support Vector machine for Regression (SVR) model for 
only the free-face mode built upon the 219 free-face data points of the database compiled by 
Youd et al. (2002). Moreover, they presented an excellent discussion on validation techniques for 
machine-learning algorithms. Their method does not use a predefined functional form. They 
concluded that the performance measures used by Wang & Rahman (1999), Baziar & Ghorbani 
(2005), and Javadi et al. (2006) were biased. They also concluded that SVR performs better than 
the MLR model.   

Oommen and Baise (2010) used the number of support vectors to indicate the uncertainty within 
the data space. Figure 1.8 shows the percentage of support vectors in the range of predictor 
variables where a low percentage of support vectors indicates that of all the instances in that 
region only a few are support vectors, meaning that there is less uncertainty and higher error in 
this region of the predictor variable is expected. Based on this chart, they concluded that the range 
of D5015 values between 0.2 and 0.26 are of particular interest for future data collection to 
improve lateral spread displacement models.  



 

 

 
    

 

   
  

 

      
     

   
   

   
 

 

 
 

     
   

  
 

Figure 1.8  Percentage of support vectors in the range of predictor variables 
(Oommen & Baise 2010) 

They further concluded that a single split of data might misrepresent the predictive power of the 
algorithms since they observed 25% variation in the coefficient of efficiency over the five splits 
of the free-face mode. 

Application of newer statistical methods on liquefaction-induced lateral spread has continued to 
be the focus of researchers in this domain. Rezania et al. (2011) developed an evolutionary 
polynomial regression (EPR) model for the assessment of liquefaction potential and lateral 
spreading. EPR is a technique that combines the genetic algorithm to find feasible structures and 
the least square method to find the appropriate constants for those structures. Their final 
predictive equations for the sloping ground and free face modes are given respectively in Eqs. 
1.18.a and 1.18.b: 
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(1.18.a)  
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Similar to Javadi et al. (2006), Rezania et al. (2011) also proposed a different set of equations for 
the lateral displacements with a magnitude less than 1.5 meters for the sloping ground and free 
face modes, respectively as: 
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(1.19.b) 

Unfortunately, the formula they used to calculate the coefficient of determination is similar to 
Javadi et al. (2006), Eq. 1.16, which is invalid. Figure 1.9 clearly shows the effect of the invalid 
assumption of Eq. 1.16 on the calculated R2. The reported value of R2 for the EPR model is 
89.8%, while the correct value of R2, calculated by the author using Eq. 1.17 is only 50.3%. 

 
Figure 1.9  Measured versus predicted displacements of Rezania et al. (2006) - moderate 

displacements model for free face mode 

Baziar and Azizkandi (2013) proposed an updated neural network model optimized using genetic 
programming. They also added 41 new case histories to the original database from Youd et al. 
(2002) and based their model on 525 data points. In their model, they used one hidden layer with 
12 neurons. They presented details of their neural network, such as the weights and activation 
functions, so the reader can reproduce their results. Unlike other researchers, they did not divide 
the dataset into two modes (i.e., free face and sloping ground) and presented only one equation 
for all cases: 
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(1.20) 

An updated MLR model was proposed by Gillins and Bartlett (2013), which was based on soil 
type and instead of the fines content and mean grain size. Their model is based on the same 
concept as the Bardet et al. (2002) model that these soil parameters are hard to obtain in mapping 
regional projects because laboratory soil data is lacking to estimate D5015 and F15. The key 
differences between their model and that of Bardet et al. (2002) is that (1) Gillins and Bartlett 
(2013) did not entirely discard those two soil parameters, but rather they assigned a soil index to 
each T15 layer in lieu of D5015 and F15, and (2) they gave a methodology whereby CPT data can 
be used in lieu of SPT N values. They introduced the proposed independent variables to the 
regression model and re-regressed the Youd et al., 2002 lateral spread database. Their model can 
be used in liquefaction-induced lateral spread hazard mappings similar to the work on Liu et al. 
(2016). 

The final form of their equation is: 

𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷ℎ = −8.208 − 0.344𝛼𝛼 + 1.318𝑀𝑀− 1.073𝑙𝑙𝑙𝑙𝑙𝑙𝑅𝑅∗ − 0.016𝑅𝑅
+ 0.445𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 0.337𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 0.592𝑙𝑙𝑙𝑙𝑙𝑙𝑇𝑇15 − 0.683𝑥𝑥1
− 1.200𝑥𝑥2 + 0.252𝑥𝑥3 − 0.40𝑥𝑥4 − 0.535𝑥𝑥5 

(1.21) 

where α is 1 for free face mode and 0 for sloping ground mode; and xi is the thickness of the 
sublayers in the soil profile that comprises T15 with soil index, i, divided by the total cumulative 
thickness of the T15 layer. 

Franke and Kramer (2013) developed a performance-based empirical model based on the lateral 
spread model of Youd et al. (2002) MLR model by utilizing the same principles used in 
probabilistic seismic hazard analysis (PSHA). The primary component of their framework is 
usually described by the mean annual rate of exceeding a given engineering demand parameter 
(EDP) level. Franke and Kramer (2013) expressed a model conditional upon the site parameter by 
assigning all the uncertainty in the Youd et al. (2002) model to the conditional displacement 
calculation as: 

 𝜆𝜆𝐷𝐷𝐻𝐻|𝑆𝑆(𝑑𝑑|𝑆𝑆) = �𝑃𝑃(𝐷𝐷𝐻𝐻 > 𝑑𝑑|𝑆𝑆, 𝐿𝐿𝑖𝑖)Δ𝜆𝜆𝐿𝐿𝑖𝑖

𝑁𝑁𝐿𝐿

𝑖𝑖=1

 (1.22) 

 
where NL i s the number of loading parameter increments required to span the range of possible L 
values; L represents quantities describing apparent loading; S represents quantities describing site 
condition; and ΔλLi is the increment of loading measure hazard. Because the loading parameter, 
which is a function of the commonly assumed, independent variables of distance and magnitude 
Eq. 1.22, can be rewritten as:  
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𝜆𝜆𝐷𝐷𝐻𝐻|𝑆𝑆(𝑑𝑑|𝑆𝑆) = �𝜈𝜈𝑖𝑖

𝑁𝑁𝑆𝑆

𝑖𝑖=1

��𝑃𝑃�𝐷𝐷𝐻𝐻 > 𝑑𝑑�𝑆𝑆,𝑀𝑀 = 𝑚𝑚𝑗𝑗,𝑅𝑅 = 𝑟𝑟𝑘𝑘�
𝑁𝑁𝑅𝑅

𝑘𝑘=1

𝑁𝑁𝑀𝑀

𝑗𝑗=1
× 𝑃𝑃�𝑀𝑀 = 𝑚𝑚𝑗𝑗,𝑅𝑅 = 𝑟𝑟𝑘𝑘� 

(1.23) 

where ν is the mean annual rate of exceeding a minimum magnitude of interest for a given 
seismic source; M is the earthquake magnitude; and R is the distance to the seismic energy 
source.  

Finally, a seismic hazard curve for conditional lateral spread displacements can be obtained from 
the Poisson probability distribution as: 

𝑃𝑃[(𝐷𝐷𝐻𝐻)𝑇𝑇 > 𝑑𝑑|𝑆𝑆] = 1 − 𝑒𝑒−𝜆𝜆𝐷𝐷𝐻𝐻|𝑆𝑆∙𝑇𝑇 (1.24) 

where T is the time period in years.  

Goh et al. (2014) utilized a nonparametric regression technique called multivariate adaptive 
regression splines (MARS) to model lateral spreads. They based their model on the database 
compiled by Youd et al. (2002). 

In 2015, Khoshnevisan et al. (2015) modified Zhang et al. (2004) model based on the maximum 
likelihood analysis on 47 cases histories of liquefaction-induced lateral spread they derived from 
the 2010–2011 Canterbury earthquake in New Zealand to turn Zhang et al. (2004) model into a 
CPT-based probabilistic framework. They further developed a mathematical formulation for the 
maximum cyclic shear strain (γmax) of Eq. 1.12. 

1.2 Research Outline 
 

Surveying the literature on liquefaction-induced lateral spread empirical models shows that 
despite this topic has gained considerable attention from researchers over the past three decades, 
some aspects need further work and development, including (1) the collection of more data and 
compilation of a more extensive, community-driven, PEER-reviewed, and vetted database, (2) the 
development of new predictive empirical models based on a more extensive, vetted database, new 
methodologies to handle uncertainties, uniform assessment of the performance of existing and 
new empirical models, and re-evaluation of the independent variable selection process, and (3) 
the development of a probabilistic framework to answer not only “what is the probability of 
displacements exceeding a certain threshold?” but also “what is the probability of having lateral 
spread in the first place given certain seismological, topographical, soil and site factors?” 
Therefore, the research objectives accomplished by the research are:  

1. Collecting additional data points to fill the current gaps in the existing databases and 
provide more robustness to models. 

2. Evaluating and comparing of existing statistical and machine learning models for lateral 
spread to assess the shortcomings and identify the potential aspects that could be 
improved. 

3. Evaluating and quantifying the uncertainty associated with handling missing values in the 
revised MLR model, including evaluation of different methods of inputting missing values 
and their contribution to the uncertainty; and the assessment and quantification of the 
uncertainty associated with the measurement errors of displacement vectors. 



 

 

    
     

  
  

  
   

 
   

   
      

 

   

   
 

    
 

       
  

 
      

   
   

       
     

    
   

     

    
  

   
      

  
    

 

 
 

4. Improving the state-of-the-art empirical models for liquefaction-induced lateral spread by: 
a. Making necessary modifications to the revised MLR model to achieve lower 

prediction error and more conformity to the experimental results. 
b. Using Bayesian linear regression, which provides posterior distribution of regression 

parameters and more explicit quantification of model uncertainty. 
c. Changing the evaluation function to focus on the percentual error rather than the 

absolute errors. 
d. Developing an entirely new artificial neural network (ANN) model with a different 

architecture and higher regularization compared to the existing ANN models and the 
cost and evaluation functions of task 5.c, given that the size of the database is growing 
and simple linear regression models might not have enough capacity to fit the data. 

5. Formulizing a probabilistic framework by introducing a new probability chain to include 
the probability of producing lateral spread given liquefaction in addition to the probability 
of having displacements exceeding a certain threshold amount. 

1.3 Research Program and Organization of the Report 

Almost all of the models developed for liquefaction-induced lateral spread are based on either the 
Bartlett and Youd (1992, 1995) database, which has 467 samples, or a later revision by Youd et 
al. (2002), which has 484 data points. However, some additional data points (less than 50) were 
added to the original database by later researchers. Despite these efforts, the accuracy of 
empirical models is bounded by the quality and quantity of the available data points. Almost all 
researchers (Bartlett & Youd 1992, Bartlett & Youd 1995, Bardet et al. 2002, Youd et al. 2002, 
Javadi et al. 2006, Goh and Zhang 2014) have attested that there are gaps in the database and the 
collection of more data is necessary. Consequently, empirical models need to be further refined as 
new data becomes available. Therefore, the collection of a more extensive database was one of 
the primary objectives of this research. 

The data space of the existing database compiled by (Bartlett & Youd 1992 and 1995) and later 
revised by Youd et al. (2002) for free-face and sloping-ground modes are shown in Figures 1.10 
and 1.11, respectively. Those plots also illustrate some of the select points used in Chapter 3 of 
this report. The potential gaps in the data space are easily observed in these figures. The presence 
of such gaps results in insufficient statistical support for predictions having predictive variables in 
those regions. One of the primary contributions of this work is the collection and presentation of 
an increased number of case histories and the compilation of new data samples from a more 
diverse set of earthquakes. Chapter 2 includes the data collection and development of a relational 
database. 
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Figure 1.10  Data space of free face mode of existing lateral spread case histories database 
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Figure 1.11  Data space of sloping ground mode of existing lateral spread case histories database 

The abundance of similar empirical models confuses engineers/researchers regarding selecting 
the “best” model for engineering evaluations. Perhaps one comprehensive performance metric 
could be introduced to compare the empirical models to help resolve this issue. However, this 
metric does not currently exist. Instead, different evaluation metrics have been introduced, which 
are not comparable to each other in many cases. Chapter 3 contains a review and evaluation of 
most empirical lateral spread models' performance and assesses the advantages and disadvantages 
of each one. This evaluation will shed some light on the performance of existing empirical 
models. 

  



 

23 
 

Moreover, identifying the shortcomings of models can be used in future model developments. 
Zhang et al. (2012) published a paper comparing empirical models for predicting lateral spread. 
However, they only included in Youd et al. (2002) and Zhang & Zhao (2005) models. Chapter 3 
presents a more extensive comparison and evaluation. The chapter also contains Bayesian 
uncertainty quantification of the MLR model, which is the most commonly used empirical model 
in practice.  

Bartlett and Youd (1992, 1995) selected predictive variables of their MLR model based on 
feature importance in a multiple linear regression model, which does not necessarily result in the 
most critical features to be used in other algorithms, such as artificial neural networks or decision, 
tree-based ensembles, including random forest and gradient boosting decision methods. This 
limitation arises because —dissimilar to newer machine learning algorithms —linear models do 
not automatically consider interactions between variables and nonlinear patterns. Such 
interactions are only assessed in a rudimentary way via the use of cross-products in the model. 
Hence, the use of other features in more advanced artificial intelligence techniques has the 
potential to capture such interactions. 

After compilation of a more comprehensive data set, as Youd (2018) discussed, the empirical 
models must be reformulated or re-regressed, or both. The addition of more data points may be 
used to re-regress existing models and give further insights to define/modify the functional forms 
or develop entirely new models. In addition to this, adding a new set of features (i.e., independent 
variables) might enable us to take advantage of a more advanced predictive algorithm and obtain 
more accurate models. The development of a new predictive model based on a more 
comprehensive database and a new set of features is presented in Chapter 4 of this report. 

Finally, most developers of the empirical models did not describe guidelines regarding the 
application as was done by Wang and Rahman (1999), Bartlett and Youd (1992, 1995), Rauch 
and Martin (2000), and Youd et al. (2002). Also, practitioners or academics often neglect such 
guidance, as in the case of the master’s thesis by Deterling (2015), discussed in Youd (2018). The 
reason (usually) is to facilitate computation and disregard that most of the models do not predict 
whether the site and subsurface conditions are favorable for generating lateral spread. In other 
words, many practitioners and researchers assume the probability of developing lateral spread 
given liquefaction is expected is 1.0. This assumption is not the case, as indicated in the case 
history dataset and further discussed and evaluated in this report. Unfortunately, this misuse of 
the MLR procedure or other empirical models can overestimate horizontal ground displacements, 
leading to unnecessary, costly mitigation strategies (Youd 2018). An intuitive way to prevent the 
issues discussed above is to formulate the flowcharts or “rules” into equations or logic trees so 
users can quickly implement them into engineering practice. 

Also, a better, repeatable, formal mathematical approach to answering the question “under what 
conditions is lateral spread expected?” must be developed and implemented. Chapter 5 presents a 
new probabilistic framework for this by introducing a novel convolutional neural network to 
model the associated conditional probability. This approach includes trained latent vectors as 
mathematical representations for soil types. This approach can be generalized and used in any 
predictive model for liquefaction and lateral spread analysis.  
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2. DATA COLLECTION AND DATABASE DEVELOPMENT 

An empirical model can provide reliable results when it is based on an adequate amount of data. 
An artificial intelligence algorithm learns from patterns within the data; hence the dataset must be 
of sufficient quantity and quality to reveal these patterns. Therefore, data quality and quantity 
play a significant role in developing statistical and machine-learning models. 

Most empirical models of liquefaction-induced lateral spread are based on the 484 data samples 
of Youd et al. (2002) except for a few studies that added tens of more data points to the database. 
Almost all researchers who developed an empirical model for this phenomenon (Bartlett & Youd 
1992, Bartlett & Youd 1995, Bardet et al. 2002, Youd et al. 2002, Javadi et al. 2006, Goh and 
Zhang 2014) attested that there are gaps in the database and collecting more data is necessary. 
Consequently, the models need further revisions and improvements as new data become 
available. To this end, as part of this report, we have collected over 10 times the largest existing 
lateral spread dataset, including 5,560 displacement vectors, 633 SPT boreholes, 11,586 
subsurface data points, and 2,043 topology points from 12 earthquakes around the world. These 
case histories are mostly well-documented historical case histories that occurred between 1900 
and 2000. This data collection was part of the Next Generation Liquefaction (NGL) project 
sponsored by the Pacific Earthquake Research Center 
https://apps.peer.berkeley.edu/lifelines/projects/ngl/. Funding was obtained from several state 
Departments of Transportation and the Mountain Plains Consortium. The compilation of lateral 
spread case histories was done jointly with researchers from Brigham Young University (BYU). 
BYU was responsible for case histories after 2000 that are not included in this report; 
displacement vectors in those case histories are obtained using newer techniques, such as optical 
image correlations (Little et al. 2021) for the 2011 Christchurch, New Zealand earthquake. The 
NGL is an Open Source Global Database and Model Development project for the Next-
Generation of Liquefaction Assessment Procedures. 

2.1 Next Generation Liquefaction 
 

The Next Generation Liquefaction (NGL) Project is advancing state-of-the-art liquefaction 
research and working toward providing end-users with a consensus approach to assess 
liquefaction potential within a probabilistic and risk-informed framework. Specifically, NGL 
aims to collect and organize liquefaction information in a standard and comprehensive database 
to provide all researchers with a substantially more extensive, consistent, and reliable source of 
liquefaction data than previously existed. Based on this database, we will create probabilistic 
models that provide hazard- and risk-consistent bases for assessing liquefaction susceptibility, the 
potential for liquefaction to be triggered in susceptible soils, and likely consequences. NGL is 
committed to an open and objective evaluation and integration of data, models, and methods, as 
recommended in a National Academies report (2016). Following these principles will ensure that 
the resulting liquefaction susceptibility, triggering, and consequence models are reliable, robust, 
and vetted by the scientific community, providing a solid foundation for designing, constructing, 
and overseeing critical infrastructure projects. 

Data published to the NGL project is publicly available for download at  
https://nextgenerationliquefaction.org/ through an interactive Graphical User Interface (GUI). 

 

https://apps.peer.berkeley.edu/lifelines/projects/ngl/
https://nextgenerationliquefaction.org/
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Figure 2.1 Graphical User Interface of the NGL project 

Figure 2.1 shows the GUI of the NGL project, where one can interactively query and download 
the data. 

2.2 Data Collection 
 

The process of data collection consisted of researching and reviewing literature for any data 
related to liquefaction and lateral spread of case histories of interest. After identifying the 
documents, data had to be digitized and reformatted to fit the database schema. Data came in 
different languages, primarily English and Japanese and can be categorized into three main 
classes: 

1. Displacement vectors; WGS 1984 coordinate the vector's starting point and its magnitude 
and azimuth. 

2. Standard Penetration Test boreholes; WGS 1984 coordinate of the borehole; ground 
water level; testing method information, such as hammer energy ratio if available; and 
subsurface data, including blow counts, fines content, soil type, etc. 
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3. Topology; WGS 1984 coordinate of topology point andthe altitude.  

2.3 Case Histories  
 

2.3.1 1906 San Francisco  

The 1906 San Francisco earthquake occurred on April 18, 1906, at 5:12 a.m. PST. This 
earthquake was perhaps the most important seismic event in U.S. history and among the most 
significant in the worldwide catalog of destructive earthquakes. From an engineering and 
planning perspective, this ML 8.3 earthquake is of considerable interest. One of the distinctive 
features of this earthquake was its impact on lifeline systems. Data summarized in Table 2.1 was 
collected from O’Rourke et al. (1992), which is an expansion of the previous studies (Youd and 
Hoose, 1978; Hovland and Darragh, 1981; Roth and Kavazanjian, 1984; O’Rourke and Lane, 
1989). 

2.3.2 1964 Niigata, Japan 

The 1964 Niigata earthquake occurred on June 16, 1964, at 04:01 UTC with a magnitude of 7.6. 
This catastrophic earthquake resulted in severe damage, including 3,534 houses destroyed and a 
further 11,000 people injured (Kawasumi 1968). Data summarized in Table 2.2, is collected from 
Hamada et al. (1986). 

2.3.3 1964 Alaska, US 

The March 27, 1964, Alaska earthquake was one of the most powerful earthquakes of the 20th 
century. The U.S. Coast Guard reported the mainshock and Geodetic Survey to be 8.3 to 8.4 on 
the ML scale and 9.2 on the Mw scale (Hansen 1966; Kanamori, 1978). Despite this large event, 
most of the stricken region was sparsely populated, lessening the loss of life and property. 
However, the Alaska earthquake caused widespread crustal warping, and propagated long-lasting, 
intense ground shaking, which triggered numerous ground failures and landslides in south-central 
Alaska. Data summarized in Table 2.3 is collected from Bartlett and Youd (1992) and Ross et al. 
(1973). 

Table 2.1  Summary of data collected from the 1906 San Francisco earthquake 

Site 
Displacement 

vectors Boreholes 
Subsurface data 

rows 
Topology 

points 
Mission 

creek zone 9 8 92 flatfile 

South of 
market area 7 7 80 not available 

Foot of 
market area 3 Quality data not available not available 

Total 19 15 172  
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Table 2.2 Summary of data collected from the 1964 Niigata earthquake 

Site 
Displacement 

vectors Boreholes 
Subsurface data 

rows 
Topology 

points 
F10 179 24 359 429 
G10 654 68 1574 256 
H9 155 4 92 235 
J9 442 45 192 297 
K8 285 4 62 302 

Total 1715 145 2279 1519 

Table 2.3  Summary of data collected from the 1964 Alaska earthquake 
Displacement vectors Boreholes Subsurface data rows Topology points 

14 20 411 flatfiles 
 
2.3.4 1971 San Fernando, California 

The 1971 San Fernando earthquake occurred on February 9, 1971, at 6:01 a.m. PST and was an 
event of considerable engineering and seismological significance. It registered as a ML 6.4 event 
and affected an area of 220,000 km2, including southern California, western Arizona, and 
southwestern Nevada (Coffman et al. 1982). From a geotechnical perspective, liquefaction-
induced ground movements and slope failures cause substantial structural damage and left the 
lower San Fernando Dam precariously close to a catastrophic failure (Cortright, 1975). Data 
summarized in Table 2.4 is collected from Bennett (1989), O'Rourke et al. (1992), and Youd 
(1973). 

2.3.5 1979 Imperial Valley, California 

The Imperial Valley earthquake occurred on October 15, 1979, at 23:16 GMT. The Imperial 
Valley is a sparsely populated, primarily agricultural area located in Southern California near the 
Mexican border. The U.S. Geological Survey (USGS) array consisting of 13 stations recorded an 
ML 6.6 earthquake. It was the largest earthquake occurring in California after the 1971 San 
Fernando event. The Imperial Valley earthquake mostly damaged irrigation and drainage 
systems. Data summarized in Table 2.5 is collected from Youd and Bennett (1983) and Bennett et 
al. (1984). 

 

 
  

2.3.6 1983 Noshiro, Japan 

The 1983 Noshiro earthquake (also known as the Sea of Japan earthquake or Nihonkai-Chubu 
earthquake) occurred on May 26, 1983, at 02:59 UTC. It was an MW 7.8 event that occurred in 
the Sea of Japan, about 100km west of the coast of Noshiro in Akita Prefecture, Japan. This 
devastating earthquake resulted in 104 fatalities. Data summarized in Table 2.6 is collected from 
Hamada et al. (1986). 
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Table 2.4  Summary of data collected from the 1971 San Fernando earthquake 

Site Displacement 
vectors Boreholes Subsurface data 

rows 
Topology 

points 
Jensen water 

plant 69 33 494 flatfile 

Juvenile hall 79 6 121 flatfile 
Total 148 39 615  

 

 

 

 

 

Table 2.5  Summary of data collected from the 1979 Imperial Valley earthquake 

Site Displacement 
vectors Boreholes Subsurface data 

rows 
Topology 

points 
Heber road 29 7 135 flatfile 

River park site not available 4 62 not available 
Total 29 11 197  

Table 2.6  Summary of data collected from the 1983 Noshiro earthquake 

Site Displacement 
vectors Boreholes Subsurface data 

rows 
Topology 

points 
South 266 128 462 176 
North 147 59 848 348 
Total 413 187 1310 524 

2.3.7 1983 Borah Peak, Idaho 

The 1983 Borah Peak earthquake occurred on October 28, 1983, at 8:06 MT in the western 
United States in the Lost River Range at Borah Peak in Central Idaho. The main shock was an 
MW 6.9 event with a maximum Mercalli intensity of IX (Violent). Data summarized in Table 2.7 
is collected from Youd et al. (1985), Andrus (1991), and Andrus and Youd (1987). 

Table 2.7  Summary of data collected from the 1983 Borah Peak earthquake 

Site Displacement 
vectors Boreholes Subsurface data 

rows 
Topology 
points 

Whiskey 
springs 3 3 54 flatfile 

Pence Ranch 3 6 69 flatfile 
Total 6 9 54   
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2.3.8 1987 Superstition Hills, California 

The 1987 Superstition Hills earthquake occurred on November 24, 1987, at 01:54 UTC. This MW 
6.2 earthquake caused damage to places in California and Mexico. Data summarized in Table 2.8 
is collected from Holzier et al. (1989). 

 

 

 

 

 

 
  

Table 2.8  Summary of data collected from the 1987 Superstition Hills earthquake 
Displacement vectors Boreholes Subsurface data rows Topology points 

7 2 53 flatfiles 

2.3.9 1989 Loma Prieta, California 

The 1989 Loma Prieta earthquake was one of the most catastrophic earthquakes in the United 
States. The event resulted in the death of 63 people, injuries to 3,757 people, and more than 
12,000 left homeless (O’Rourke and Hamada 1992). This MW 6.9 earthquake occurred on 
October 17, 1989, at 5:04 p.m. PST. Data summarized in Table 2.9 is collected from Robertson et 
al. (1999). 

Table 2.9  Summary of data collected from the 1989 Loma Prieta earthquake 
Displacement vectors Boreholes Subsurface data rows Topology points 

3 15 236 flatfiles 

2.3.10 1990 Luzon, Philippines  

The 1990 Luzon earthquake occurred on July 16, 1990, at 4:26 p.m. PDT with an estimated MW 
7.8 event and a maximum Mercalli intensity of IX (Violent). The earthquake epicenter was near 
the town of Rizal, Nueva Ecija, northeast of Cabanatuan City. Loss of life was estimated at 1,621. 
Data summarized in Table 2.10 is collected from Tokimatsu et al. (1994) and Ishihara et al. 
(1993). 

Table 2.10  Summary of data collected from the 1990 Luzon earthquake 
Displacement vectors Boreholes Subsurface data rows Topology points 

11 13 233 not available 
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2.3.11 1999 Chi-Chi, Taiwan 

The Chi-Chi, Taiwan earthquake (also known as the Jiji earthquake) occurred on September 21, 
1999, at 17:47 UTC with a moment magnitude scale of 7.7. As a result of this event, over 2,415 
people perished and 11,305 were injured. Data summarized in Table 2.11 is collected from Chu et 
al. (2004). 

 
Table 2.11  Summary of data collected from the 1999 Chi Chi earthquake 

Site Displacement 
vectors Boreholes Subsurface 

data rows 
Topology 

points 

Site C 20 15  

flatfiles 
Site C1 4 2  

Site B 4 6  

Site M 4 2  

Site N 4 3  

Total 34 23 2806  
 

2.3.12 1995 Kobe, Japan 

The MW 6.9 1995 Kobe earthquake (also known as Hyogoken-Nanbu earthquake) occurred on 
January 17, 1995. The event that struck Kobe, Japan, and the surrounding area was the most 
severe earthquake to affect the region in the 20th century. The earthquake resulted in more than 
6,000 deaths and 30,000 injuries (Chung 1996). Data summarized in Table 2.12 is collected from 
Chu et al. (2004). 

 
Table 2.12  Summary of data collected from the 1995 Kobe earthquake 

Displacement vectors Boreholes Subsurface data rows Topology points 

3168 156 3273 not available 
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3. EMPIRICAL MODELS PERFORMANCE AND BAYESIAN 
UNCERTAINTY QUANTIFICATION OF THE MLR MODEL 

3.1 Introduction 
 

Soil liquefaction generally occurs in young, saturated, loosely deposited, uncemented, or poorly 
cemented sandy soils (Youd and Hoose, 1978, Youd and Perkins, 1978, Youd and Perkins, 1987, 
Bartlett and Youd, 1992, Gillins, 2012). Soil liquefaction could cause loss of bearing strength, 
sand boils, flow failure, floatation, settlement, ground oscillation, and lateral spreads, which is its 
most pervasive consequence. Lateral spread, as defined by Youd (2018), is lateral displacement 
of a soil layer atop a liquified layer of soil either toward a free face or a gentle slope. 
Displacements range from a few tenths of a meter to several meters (Bartlett and Youd 1992) and 
are due to a combination of gravitational and earthquake-generated inertial forces. 

Because of the potential for severe and costly damage of lateral spreads to the infrastructure, 
many researchers have tried to quantify its effects using simplified analytical methods (Yegian et 
al. 1991, and Olson & Johnson 2008), empirical predictive models, numerical models (Finn et al. 
1994), and laboratory devices (Sharp et al. 2003, and Kutter et al. 2004). Each of these 
approaches has advantages and disadvantages and domain of application. The focus of this report, 
however, is mainly on the empirical predictive models. 

One of the first attempts in this field was made by Hamada et al. (1986); they proposed a 
regression model based on the slope and thickness of the liquefied layer. Youd and Perkins 
(1987) introduced the Liquefaction Severity Index (LSI) as the estimated maximum amount of 
lateral spread displacement normalized to the site conditions. Subsequently, Bartlett and Youd 
(1992, 1995) collected many data points from various lateral spread case histories of Japan and 
the United Statesand developed an empirical model to estimate lateral spread displacement. Youd 
et al. (2002) further updated the Multiple Linear Regression (MLR) model and included 
additional data points from more recent case histories. Bardet et al. (2002) suggested removing 
the geotechnical variables from the Bartlett and Youd empirical model and proposed a new set of 
MLR equations. Since then, several researchers have investigated different variations of the MLR 
model. For example, Gillins and Bartlett (2012) replaced the soil variables with soil type and 
showed how CPT data could be incorporated into the model. Goh and Zhang (2014) used 
multivariate adaptive regression (MARS) procedure to propose a predictive model. 

Besides the above-mentioned regression models, several other methods, including machine 
learning algorithms, have been applied to this database. Wang and Rahman (1999) evaluated 
lateral spread displacements using an artificial neural network (ANN) and the database from 
Bartlett and Youd (1992). Later, Baziar and Ghorbani (2005) developed a neural network-based 
on the revised database of Youd et al. (2002). Javadi et al. (2006) utilized the genetic 
programming approach. Garcia et al. (2008) proposed a neuro-fuzzy system that profits from 
fuzzy and neural paradigms. Ommen and Baise (2010) used a machine-learning technique known 
as Support Vector Regression (SVR). Rezania et al. (2011) developed a model based on 
evolutionary polynomial regression (EPR). Finally, Baziar and Azizkandi (2013) proposed a 
newer neural network model.  
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The abundance of empirical predictive models could raise the question of which model should be 
used to make predictions? The empirical models are often compared to each other in terms of 
simple statistics, such as coefficient of determination (R-squared), Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Mean Squared Error (MSE). While these statistics 
could be one way to assess how the model predicts observed outcomes, they fail to describe the 
performance of the entire model. 

This study aims to conduct a comprehensive comparison, beyond simple summary statistics, on 
the empirical predictive models of liquefaction-induced lateral spreads and assess their 
performances. For this purpose, two sets of empirical predictive models are chosen from the 
literature: (1) the regression models including Youd et al. (2002), Bardet et al. (2002), and Goh et 
al. (2014), and (2) the machine learning-based models without a predefined functional form 
including Javadi et al. (2006), Rezania et al. (2011), and Baziar & Azizkani (2013). These models 
are compared in terms of their reported statistics (e.g., R2, RSME, and MSE and their variations 
and ability to extrapolate or predict points with poor statistical support. Practitioners often 
extrapolate the models in their evaluations; however, more robust models should allow some 
extrapolation. Also, the additional uncertainty from the extrapolation should be quantified. 

3.2 Database Overview 
 

Most empirical models are based on the revised database of Youd et al. (2002) or the addition of 
more data points to this database. Thus, knowledge of the formulation of this database is required. 
Unfortunately, various researchers have made different — sometimes incorrect — inferences 
from the database contents. The independent variables used in the database of Youd et al. (2002) 
are briefly described in Table 3.1. We emphasize that the T15 variable is not the thickness of the 
liquefiable layerbut represents the cumulative thickness of saturated granular layers with 
corrected blow counts less than 15. Bartlett and Youd (1992) chose this variable over the 
thickness of the liquefiable layer because of its high correlation with the observed horizontal 
ground displacements in their compiled database. Also, this factor can be independently 
calculated without the need for liquefaction analyses. The thickness of the deformable layer, T15, 
is a fundamental geometrical property if not a fundamental soil property. Theoretically, ground 
displacement is equal to the average shear strain multiplied by the thickness of the deformable 
layer; T15 is an estimate of that thickness. T15 has high statistical significance and hence, is an 
independent variable in the MLR model. Bartlett and Youd (1992) tested several possible 
independent variables as measures of the blow-count distribution, including the lowest (N1)60 in 
T15, average (N1)60 in T15, lowest calculated factor of safety against liquefaction in T15, and so on. 
None of those potential indices of the blow-count distribution is statistically significant, and thus, 
they were not included in the 1992, 1995, and 2002 MLR models. The reason for that 
insignificance is not because the blow-count distribution is unimportant, but instead, because 
there appears to be only a small variation of the blow-count distribution within naturally 
occurring liquefiable layers compiled in the MLR database. It appears that nature has not 
deposited liquefiable layers with uniform blow counts of, say, 3 or 14 (Youd, 2018). For the sake 
of simplicity, some of the subscripts in variable names are eliminated hereafter.  
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Table 3.1  Description of parameters used in Youd et al. (2002)  
Unit Description 

M 
 

Moment magnitude of earthquake 
R km Shortest horizontal distance measured from the surface projection of the seismic energy 

source or fault rupture to the site of interest 
T15 m Cumulative thickness of saturated granular layers with corrected blow counts, (N1)60, 

less than 15 
F15 % Average fines content (fraction of sediment sample passing a No. 200 sieve) for 

granular materials included within T15 
D50 mm Average mean grain size for granular materials within T15 
W % Free-face ratio defined as the height (H) of the free face divided by the distance (L) 

from the base of the free face to the point in question 
S % Ground slope 
Dh m Horizontal (lateral) ground displacement 

 
Table 3.2  Summarized descriptive statistics of free-face datapoints of Youd et al. (2002)  

M R (km) T15 (m) F15 (%) D50 (mm) W (%) Dh (m) 
mean 7.22 18.39 8.57 17.12 0.36 10.66 2.52 
std 0.526 15.292 4.769 13.233 0.402 8.995 2.29 
min 6.40 0.50 0.20 1.00 0.04 1.64 0.01 
25% 6.75 7.25 3.60 7.00 0.12 4.24 0.93 
50% 7.50 21.00 9.60 13.00 0.28 7.41 1.80 
75% 7.50 21.00 12.40 24.00 0.35 15.06 3.29 
max 9.20 100.00 16.70 70.00 1.98 56.80 10.16 

 
Table 3.3  Summarized descriptive statistics of sloping-ground data points of Youd et al. (2002)  

M R (km) T15 (m) F15 (%) D50 (mm) S (%) Dh (m) 
mean 7.52 23.79 6.56 9.36 0.43 0.95 1.83 
std 0.311 11.721 3.726 10.763 0.978 1.520 0.983 
min 6.40 0.20 0.01 0.00 0.06 0.05 0.01 
25% 7.50 21.00 2.60 3.00 0.28 0.36 1.20 
50% 7.50 21.00 8.20 8.00 0.35 0.55 1.61 
75% 7.70 27.00 9.52 10.25 0.35 0.91 2.46 
max 9.20 100.00 19.70 68.00 12.00 11.00 5.36 

 
Tables 3.2 and 3.3 represent the summarized descriptive statistics, including mean, standard 
deviation, and quartiles for free-face and sloping-ground data points. However, the data space 
must be understood more deeply by users. The application domain of empirical models is usually 
reported as a set of variables ranges, such as the minimum and maximum values reported in 
Tables 3.2 and 3.3. When considering only three variables, this would result in a cubic data space 
while the actual data space might not be cubic, i.e., data points could be clustered at scattered 
volumes within the cube. As a result, despite some points are within the application domain of a 
model, there might not be enough statistical support around it. In such instances, the model being 
used is extrapolating, which is common in models constructed upon the revised version of the 
Youd et al. (2002) database when applied to new data points. For example, Figures 3.1 and 3.2 
show the data space using matrix plots of variables for the free-face and sloping-ground modes to 
make this point clearer, respectively. In these figures, the data points of the database compiled by 
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Youd et al. (2002) are shown semi-transparently to visualize clustering (density of statistical 
support) of data within the data space. It is noteworthy in the case of free-face data points — the 
points with F > 20% and D > 0.5mm have almost no statistical support in the data space even 
though they are within the minimum and maximum ranges of the data space. Thus, caution is 
warranted when using empirical models to predict behavior with these inputted values.  

 

 
Figure 3.1  Data space of free-face mode 
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Figure 3.2  Data space of sloping-ground mode 
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3.3 Models 
 

Six empirical models developed for liquefaction-induced lateral spreads are considered  
• Regression models: 

• Multiple Linear Regression (MLR) (Youd et al. 2002) 
• Multiple Linear Regression (MLR) (Bardet et al. 2002) 
• Multivariate Adaptive Regression Splines (MARS) (Goh et al. 2014)  

• Machine learning-based models 
• Genetic Programming (Javadi et al. 2006) 
• Evolutionary-based approach (Rezania et al. 2011) 
• Artificial Neural Network & Genetic Algorithm (Baziar & Azizkandi 2013) 

It was found that the artificial neural network and the genetic algorithm used by Baziar & 
Azizkandi (2013) was incorrectly trained on the ground slope of 1.0 % in all free-face data points 
and the free-face ratio of 1.0 in all sloping ground data points, so the final equation is not valid. 
On the other hand, the authors could not replicate the results of the MARS model and thus, did 
not consider it further. Moreover, some of the other machine-earning-based models, such as 
Wang and Rahman (1999) and Garcia et al. (2008), were not considered because they had not 
presented their models in terms of predictive equations set for the end-user. Equations proposed 
by the other four models are briefed in Table 3.4.  

Table 3.4  Empirical equations 

Model Mode Equation 

Youd et al. (2002) 
Free face log(Dh) = -16.713 + 1.532 M - 1.406 log(R*) - 0.012 R + 0.592 

log(W) + 0.540 log(T) + 3.413 log(100-F) - 0.795 log(D + 0.1) 

Sloping 
ground 

log(Dh) = -16.213 + 1.532 M - 1.406 log(R*) - 0.012 R + 0.338 
log(S) + 0.540 log(T) + 3.413 log(100-F) - 0.795 log(D + 0.1) 

Bardet et al. 
(2002) 

Free face log(Dh) = -6.815 - 0.465 + 1.017 M - 0.278 log(R) - 0.026 R + 0.497 
log(W) + 0.558 log(T) 

Sloping 
ground 

log(Dh) = -6.815 + 1.017 M - 0.278 log(R) - 0.026 R + 0.454 log(S) 
+ 0.558 log(T) 

Javadi et al. (2006) 
Free face Dh = -163.1/M2 + 57/(R F) - 0.0035 T2/(W D2) + 0.02  T2/(F D2) - 

0.26 (T/F)2 + 0.006 T2 - 0.0013 W2 + 0.0002 M2 W T + 3.7 

Sloping 
ground 

Dh = -0.8 F/M + 0.0014 F2 + 0.16 T + 0.112 S + 0.04 S T/D - 0.026 
R D + 1.14 

Javadi et al. (2006) 
- moderate 

Free face Dh = -234.1/(M2 R W) - 156/M2 - 0.008 F/(R2 T) + 0.01 W T/R - 
2.9/F - 0.036 M T2 D2/(R2 W) + 9.4 M(R F) - 4 (10-6) M R2/D + 3.84 

Sloping 
ground 

Dh = -0.027 T2 F/M2 + 0.05 R T/(M2 D) + 0.44/(M R2 S T) - 0.03 R -
0.02 M/(S T) - 5 (10-5) M R/D2 + 0.075 M2 - 2.4 

Rezania et al. 
(2011) 

Free face Dh = -2.1414 R0.5 W0.5/(M2 D0.5) - 0.061863 T F/(M0.5 W0.5) - 
11.1201 M2/(R W0.5 F) + 0.0017573 M2 W0.5 T/(F0.5 D) + 1.9671 

Sloping 
ground 

Dh = -1.6941 T0.5 F0.5/(M2 D0.5) - 0.78905 R0.5 S0.5 T F0.5/M2 -2.2542 
(10-12) M0.5 T2 D2/(R0.5 S0.5 F2) + 0.036036 M S0.5 T/D0.5 + 0.85441 
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All the variables in Table 3.4 are described in Table 3.1 except R*, which is defined by Youd et 
al. (2002) as  

R∗ = R + 100.89M−5.64   (3.1) 

Among the models considered here, the regression models of Youd et al. (2002) and Bardet et al. 
(2002) had predefined functional forms, while the other two models let the models recognize the 
functional forms automatically. Since Youd et al. (2002) and Bardet et al. (2002) models are 
similar in many aspects, they are hereafter referred to as the regression models, while Javadi et al. 
(2006) and Rezania et al. (2011) models are referred to as machine-learning models. 

3.4 Models Comparison 

The empirical models of liquefaction-induced lateral spreads are compared to each other from 
several aspects, including (1) basic summary statistics, (2) general inferences, (3) Monte Carlo 
experiments, (4) variations of models, and (5) extrapolation. Each of these comparisons is 
described in detail subsequently. 

3.4.1 Statistical Measurements 

The empirical models are often compared to each other in terms of simple summary statistics, 
such as coefficient of determination (R-squared), Root Mean Square Error (RMSE), and Mean 
Squared Error (MSE). The coefficient of determination is the proportion of the variance in the 
dependent variable that is predictable from the independent variable(s), defined as 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 (3.2) 

where n = total number of observations; yi = observed values; fi = predicted values; and 𝑦𝑦� = mean 
of the observed values. 

Another popular statistic that is frequently used to quantify the difference between the values 
predicted by a model and the ones observed is Root Mean Square Error (RMSE), defined as 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (3.3) 

The values of R2 and RMSE reported by developers of each model is reported in Table 3.5. Note 
that the R2 values marked with an asterisk are calculated based on the invalid assumption of 𝑦𝑦�=0. 
As an example, Figure 9.b of Rezania et al. (2011) has a reported R2 value of 95.6% for the EPR 
model, while the model prediction for most cases is about 1.2 m. The correct value of R2, 
calculated by the authors, is 64.8%. 

Another point is that the root mean square error, which is the standard deviation of the residuals 
(prediction error), could be a reasonable statistic to compare models when all data points are 
treated equally. However, this is not a good statistic in the case of horizontal ground 
displacement. For example, having a 0.8-m residual in a 1m displacement vector is equivalent to 
80% error in prediction, while the same amount of residual in a 10-m displacement vector is 
equal to only 8% error. Thus, RMSE and similarly, the Mean Absolute Error (MAE), are not 
good statistics to compare these models.  
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Table 3.5  Reported values of statistical measurements 

Model Mode Reported R2 (%) Reported RMSE (m) 
Training Testing Training Testing 

Bartlett & Youd (1992) Compound 74.90 NR 
Youd et al. (2002) Compound 83.60 NR 
Bardet et al. (2002) Compound 64.26A NR 

Javadi et al. (2006) Free face 95.0* 89.6* 0.22 0.27 
Sloping ground 96.7* 95.5* 0.17 0.24 

Rezania et al. (2011) Free face 95.3* 89.8* 0.21 0.27 
Sloping ground 96.7* 95.6* 0.18 0.23 

Baziar and Azizkandi (2013) Compound 88.60* 0.8 

Goh et al. (2014) Free face 93.68 85.59 0.1449 0.1530 
Sloping ground 90.47 89.39 0.1285 0.1429 

* values of R2 are calculated based on the invalid assumption that values have a mean zero. 
A Average of data sets A and B. 
NR: not reported by authors 

This point leads to another concept called Heteroscedasticity (i.e., non-uniform variance), which 
refers to the circumstance in which the variability of a variable is unequal across the range of 
values of a second variable that predicts it. In other words, the residuals are a function of the 
predictors. In statistical models, one tries to avoid heteroscedasticity and have a normal 
distribution for residual errors, but as mentioned earlier, heteroscedasticity is not necessarily 
harmful in this domain.  

3.4.2 Anscombe’s Quartet 

As discussed by the statistician Anscombe (1973), "Numerical calculations are exact, but graphs 
are rough." He introduced four sets of data with an entirely different observable trend but had the 
same correlation R value of 0.816 between predictors (xi) and predictions (yi). He also showed 
that the same line could be regressed for all four datasets with a coefficient of determination of 
0.67. Figure 3.3 shows the results. All four sets are identical when examined using simple 
summary statistics but vary considerably when data points are graphed. 

While the coefficient of determination could be used as a metric to describe the performance 
evaluation of empirical models, it fails to explain potential curvature and clustering of data when 
used as the sole metric. A quick look at Table 3.5 suggests (misleadingly) that because the newer 
models developed more recently have higher R2 and lower RMSE values, they are more accurate. 

Also, considering the significant amount of noise in the MLR dataset, a high value of R2  might be 
caused by a phenomenon known as “overfitting.” In empirical predictive models, there is always 
a risk to fit random noise in the data by memorizing various peculiarities of the training data 
rather than finding a general predictive rule (Dietterich, 1995). 
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Figure 3.3  Anscombe’s quartet 

 
This overfitting could be continued until an R2 of 1.0 is obtained on the training set. For example, 
Zhang et al. (2016) showed that 100% accuracy on the training set is obtainable in artificial 
neural networks even after randomizing the labels entirely. However, the accuracy of the test set 
drops significantly. As a general rule of thumb, a generalization gap or lower values of R2 on the 
test set compared to that of the training set (as seen in the free face mode of Goh et al. (2014) in 
Table 5) indicates overfitting. Overfitted models result in divergence and unrealistic variability.  

The regression models considered in this report do not have two separate training and test sets; 
hence, the metrics of model performance reported by the developers of the machine learning 
models are invalid. Therefore, these models could not be compared to each other in terms of the 
statistical metrics. Even if the performance metrics of the machine-learning models were valid, 
simply comparing models based on these statistics is not sufficient, as discussed by Anscombe 
(1973). To better compare these models, they will be assessed further by using other aspects, as 
described in the subsequent sections.  

 
3.4.3 Functional Forms 

One of the factors considered in this study is the general inferences that might be made on the 
final functional form of the liquefaction-induced lateral spread predictive equations.  
 
Among the models considered herein, Youd et al. (2002) and Bardet et al. (2002) have predefined 
functional forms, while Javadi et al. (2006) and Rezania et al. (2011) let the models recognize 
their functional forms automatically. The latter is particularly useful in cases where the mechanics 
behind the phenomenon is primarily unknown. However, the mechanics behind liquefaction-
induced lateral spreads has been the focus of many researchers for decades and is generally 
understood. On the other hand, automatic pattern recognition is also highly sensitive to the noise 
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in the dataset. Youd et al. (2002) developed their database mainly from historic case histories 
where some measurements had lower accuracy. Thus, there is some uncertainty (i.e., noise) in the 
dataset. For these reasons, having a functional form is vital in developing such models to avoid 
potential overfitting issues.  
For Youd et al. (2002) and Bardet et al. (2002), the final predictive equation has a multiplicative 
form by transforming their formulation into the equivalent exponential equations. For example, in 
the free-face mode of Youd et al. (2002), the formulation will be 

Dh = (10-16.713)(101.532M)(R*)-1.406(10-0.012R)(W0.592)(T0.54)(100-F)3.413(D+0.1)0.795 (3.4) 

The multiplicative form of this equation means that each and every variable in the equation could 
make a significant difference. For example,  lim

𝑇𝑇→0
𝐷𝐷ℎ = 0  i.e. as the thickness of the liquefiable 

layer goes to zero, the predicted value of horizontal displacement also goes to zero. On the other 
hand, additive equations do not have this property, and each term of the equation could change 
the predictions by a limited magnitude. For example, in the sloping ground case of Javadi et al. 
(2006) and the free-face case of Rezania et al. (2014), given in Table 4, lim

𝑇𝑇→0
𝐷𝐷ℎ ≠ 0 i.e. the 

equation could result in non-zero displacement predictions even without having a liquefiable 
layer whatsoever. Another issue associated with having an additive equation could be observed 
again in the sloping-ground case of Javadi et al. (2006) given in Table 3.4, whereas F → 0 (clean 
sand) Dh will no longer be a function of moment magnitude of earthquake. In other words, in case 
of clean sands, the predictions are independent of the moment magnitude of earthquake. 

Some terms of the predictive equations developed by Javadi et al. (2006) and Rezania et al. 
(2011) have independent variables in the denominator. These terms could result in a divergence 
in extreme cases. For example, both models have fines content (F) in some terms in the 
denominators, thus as F goes to zero, the predicted horizontal displacements go to infinity. This 
functional form could be problematic because prior research has shown that soil liquefaction is 
more likely to occur in clean sands with very low fines content (Idriss & Boulanger 2008). Thus, 
there is a high probability that this model will overpredict lateral spread displacement for clean 
sands.  

Another point is that Rezania et al. (2011) and Javadi et al. (2006) proposed a separate set of 
equations for moderate lateral displacements (Dh < 1.5 m) to increase the prediction accuracy for 
moderate displacements. However, they did not describe how to determine whether or not the 
displacements will be less than 1.5 m; hence, it is unclear which equations should be applied to 
make the prediction. 

The last general remark is the simplicity-accuracy tradeoff. Despite the R2 reported by Javadi et 
al. (2006), Rezania et al. (2011), and Baziar and Azizkandi (2013) are misleading. Often, 
machine-learning algorithms yield results with higher R2 than regression models for unnoisy 
datasets. However, higher R2 values carry the cost of additional model complexity. Statisticians 
often strive to achieve parsimonious models, whereby the most influential variables are only used 
(i.e., those independent variables having high correlation with the dependent variable). 

In contrast, more complex models with many variables are harder for researchers and engineers to 
implement and utilize and hard, if not impossible, to interpret. Regardless of their sophistication, 
the machine learning-based data models could be rendered powerless unless they can be 
interpreted by human experts (Vellido et al. 2012). In contrast, regression models are 
straightforward to interpret. For example, based on the Youd et al. (2002) model, the lateral 
spread magnitude is expected to be, on average, 100.54 ≈ 3.47 times higher for each additional 
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increase in the cumulative thickness of saturated granular layers with (N1)60, values less than 15, 
controlling for other variables. Such inferences are hard to make, especially for deep neural 
networks with many hidden layers and/or random forests with deep decision trees.  

3.4.4 Monte Carlo-based Sensitivity Analysis 

Although some models could be divergent in extreme values of their predictors as described in 
previous sections, empirical models are usually meant to be used within the limits of the data 
space on which they are developed. In this section, a series of Monte Carlo experiments are 
conducted within those limits (minimum and maximum of the data space described in Tables 3.2 
and 3.3). These experiments summarized in Table 3.6 give helpful insights into the expected 
outcome of these models. Every model was used to predict a million randomly generated data 
points. The values of variables are assumed to be equally likely within the data space. 

As can be seen, different combinations of variables resulted in negative displacements in the 
machine-learning models, particularly in their sloping-ground modes where over 70% of all 
predictions were negative. The largest maximum and largest difference between mean and 
median predictions were observed in the Bardet et al. (2002) model, which could be interpreted as 
the most conservative model among the models evaluated in this study. 

Table 3.6  Monte Carlo simulation results 
Mode Measure Model 

Youd et al. 
(2002) 

Bardet et al. 
(2002) 

Javadi et al. 
(2006) 

Rezania et al. 
(2011) 

free face Median (m) 0.27 1.08 2.77 .19 
Mean (m) 3.06 25.4 4.12 0.40 
Minimum (m) 00.0 00.0 -177.7 -419.5 
Maximum (m) 477.6 4132.1 2119.5 245.0 
Standard deviation 
(m) 

10.3 106.0 14.8 5.19 

Negative predictions  0 0 100,357 445,230 
Predictions between 
10m and 20m 

10,407 63,020 39,789 14,193 

Predictions greater 
than 20m 

9,259 161,807 13,447 7,443 

sloping 
ground 

Median (m) 0.07 1.37 -3.60 -3.80 
Mean (m) 0.86 34.0 -4.91 -6.85 
Minimum (m) 00.0 00.0 -31.8 -88.7 
Maximum (m) 299.2 6105.2 133.6 63.2 
Standard deviation 
(m) 

3.68 147.4 8.39 9.75 

Negative predictions  0 0 727,277 785,709 
Predictions between 
10m and 20m 

9,747 67,332 12,459 4,882 

Predictions greater 
than 20m 

4,978 183,226 6,618 1,543 
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Besides the representative measures given in Table 3.6, matrix scatter plots of the predicted data 
points are generated. The results of the Monte Carlo experiments on free-face mode of Bardet et 
al. (2002) are shown in Figure 3.4. Similar plots of all other models are given in Appendix A. 
Note that in these figures, only 10,000 randomly selected data points — out of the one million 
predicted points — are shown for the sake of better visualization. These plots separate invalid 
predictions (negative values or values greater than 20 m in magnitude) from valid predictions. 
They can be used to show the areas of the dataspace where one could expect divergent results. 
They also show the general co-variability of predictions, particularly in models with no negative 
predictions. 

To clarify this last point, in applying the free-face mode of Bardet et al. (2002), the highest values 
of horizontal displacements occur at a combination of high values of earthquake moment 
magnitude and areas found close to the energy source (Figure 3.4). Moreover, a somewhat fewer 
number of invalid prediction points are estimated at lower values of T15. While these observations 
are consistent with our understanding of lateral spread behavior, and somewhat intuitive, the 
results show some models are not following these expected trends. For example, in the free-face 
mode of Javadi et al. (2006), predictions greater than 20m in the M-R subplot do not follow a 
general trend. They are distributed randomly over the M-R subplot (refer to Figures C.1 through 
C.7, Appendix C). This model also tends to predict negative values at lower values of T15, which 
is nonsensical. 

3.4.5 Partial Dependence  

The Monte-Carlo analysis discussed in the previous section shows the simultaneous effect of 
variables on the predictions. In this section, a parametric study is discussed, which is conducted 
on each of the variables separately, controlling for other variables; three data points are used each 
time: (a) the mean case, where the average values of data space are used for all variables, (b) a 
less severe case, where lateral spreads are expected to be larger than the mean case, and (c) a 
more severe case, where lateral spreads are expected to be smaller than the mean  case, according 
to our current understanding of lateral  spreads. 

Note that in this simulation, any combination of variables is possible. The more extreme cases 
could have been considered as  “worst- and best-case” scenarios. However, these representative 
points, which are listed in Table 3.7 and shown in Figures C.1 through C.7 in Appendix C, are 
chosen to fall onto the areas within the data space in which there are many observed data points. 
The authors strived to choose these points so they also fall between the 25th and 75th percentiles of 
the variable limits. Thus, they have good statistical support, and the models are not being 
extrapolated at these points, so reasonable predictions are expected. The geotechnical variables in 
the worst-case scenario are similar to the soil condition with high to very high liquefaction 
susceptibility, described in Honegger et al. (2014): D5015 = 0.3mm, F15 = 5%, T15475-yr = 13m.  
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Figure 3.4  Results of Monte Carlo analysis on free-face case of Bardet et al. (2002) 
 

Table 3.7   Data points used in parametric study 
Mode Case M R (km) T (m) F (%) D (mm) W (%) S (%) 

Free face 
Mean 7.22 18.39 8.57 17.12 0.36 10.66 - 
More severe 7.50 7.25 12.39 7.00 0.45 15.06 - 
Less severe 6.75 21.0 3.59 24.0 0.12 4.23 - 

Sloping ground 
Mean 7.52 23.79 6.56 9.36 0.43 - 0.95 
More severe 8.00 7.25 13.0 3.0 0.45 - 3.00 
Less severe 6.75 30.0 2.60 10.25 0.06 - 0.36 
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The outcome of the parametric study is represented graphically in Figures 3.5 through 3.8 for all 
four models. These graphs give more useful insights for Javadi et al. (2006) and Rezania et al. 
(2011) models since their functional forms are generated automatically by the model and are not 
as interpretable as the other two models due to their cross-correlation between variables; 
although, the patterns found automatically by the machine-learning models are expected to be 
similar to those used in the predefined functional form of the regression models.  

The variation of predicted horizontal ground displacement with the change in earthquake moment 
magnitude is exponential in the regression models, while in the machine-learning models, it is 
more or less linear, if not slightly logarithmic. Unlike others, predictions of the sloping-ground 
mode of Javadi et al. (2006) does not vary much with the change in the moment magnitude.  

The changes in predictions for the distance from the seismic source do not show a similar trend 
for the free-face and sloping-ground modes in the machine-learning models. An inverse 
logarithmic form is observed in regression models and the free-face mode of Javadi et al. (2006) 
model. In contrast, the free-face model of Rezania et al. (2011) is positive logarithmic and 
predicts higher magnitudes of displacements for longer distances. Moreover, in the machine-
learning sloping ground models, the predictions for the best-case scenario exceed that of the mean 
case at distances greater than about 80 km. 

The positive logarithmic form of predictions with respect to the free-face ratio in machine-
learning models is verifying the predefined functional form in the regression models. Yet for free-
face ratios greater than 15, the Rezania et al. (2011) model is predicting the largest displacements 
for the best-case and the smallest displacements for the worst-case.  

Changes in predictions with respect to the ground slope are positive logarithmic in all models 
except Javadi et al. (2006) model, where the relation is linear. The sloping-ground model of 
Javadi et al. (2006) illustrates how cross-correlation of variables might affect the predictions in 
unreasonable ways. Referring back to Table 3.4, the sloping-ground mode of Javadi et al. (2006) 
model is 

Dh = -0.8 F/M + 0.0014 F2 + 0.16 T + 0.112 S + 0.04 S T/D - 0.026 R D + 1.14 
 

(3.5) 

which in our best-case scenario will change into   

 Dh = 0.441472 + 1.84533 S 
(3.6) 

and in our worst-case scenario will be 

Dh = 2.847775 + 1.26755 S (3.7) 

Equations (6) and (7) show why predictions of our best-case scenario are initially smaller than the 
worst-case scenario due to the smaller constant term and then exceeds it because of its larger 
coefficient of “S.”  
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Unlike the regression models, which have a positive logarithmic form for the predictions with 
respect to the thickness of the liquefiable layer, the free-face model of Javadi et al. (2006) has an 
exponential form while the sloping-ground model, and both free-face and sloping-ground models 
of Rezania et al. (2011) have linear forms. Again, the potential for cross-correlation of variables, 
especially for the freeface model of Rezania et al. (2011), is problematic.  

The changes in predictions with respect to the fines content are where the most discrepancy is 
observed between the models. The machine-learning models diverge as the fine content 
approaches zero. Moreover, in the sloping-ground model, the automatically recognized negative 
logarithmic form from Rezania et al. (2011) model conforms to the predefined functional form of 
the Youd et al. (2002) model. Javadi et al. (2006) model recognized a quadratic form whereby 
increasing the fines content, the predictions decrease down to a certain level and then increase 
afterward. On the other hand, in the free-face mode of the machine-learning models, except for 
the best case of Javadi et al. (2006) model, the ground displacements are predicted to increase 
initially with increasing fines content and then decrease linearly afterward. The best case of 
Javadi et al. (2006) is consistent with the negative logarithmic form in Youd et al. (2002). The 
Bardet et al. (2002) model does not use the fines content.  

Despite the model divergence in the average mean grain sizes around zero in the machine-
learning models, changes in predictions with respect to the average mean grain size in the 
machine-learning models, which is negative logarithmic, are is consistent with the functional 
form used in the regression model of Youd et al. (2002). The Bardet et al. (2002) model does not 
use the average mean grain size. 
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Figure 3.5  Partial Dependence Plot of Bardet et al. (2002) model 
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Figure 3.6  Partial Dependence Plot of Youd et al. (2002) model 
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Figure 3.7  Partial Dependence Plot of Javadi et al. (2006) model 



 

49 
 

 

Figure 3.8  Partial Dependence Plot of Rezania et al. (2011) model 
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3.4.6 Extrapolatability 

Unlike section 4.4, as part of the performance assessment, data points selected in this section are 
chosen such that they fall onto the areas within the data space for which there are not many 
observed data points. In other words, they lack sufficient statistical support, and the models are an 
extrapolation at those points. These select points are shown in Figures 3.1 and 3.2 for each of the 
free-face and sloping-ground modes, respectively. A summary of their exact values, and 
predictions made by the models under consideration, is given in Table 3.8 where the first four 
rows correspond to the sloping-ground mode and the other four rows correspond to the free-face 
mode.  

Since these select points are chosen arbitrarily, a comparison between the predictions and the real 
displacements is not possible. However, the results of Youd et al. (2002) model seem more 
reasonable compared to other models because on one hand, Bardet et al. (2002) model has 
diverged at two points and predicted unrealistic values. On the other hand, the machine-learning 
models had negative predicted values. Other than these points, other values predicted by all four 
models seem to be in a reasonable range.  

Another conclusion that could be drawn from these results is that the results coming from these 
four models are significantly inconsistent with each other so the average standard deviation of the 
predictions listed in Table 3.8 is 14.73m. Therefore, caution must be exercised in choosing which 
model to use for predicting lateral spreads, particularly when extrapolating. 

Table 3.8  Select points for extrapolation 

Variables Predictions (m) 

M R 
(km) 

T 
(m) 

F 
(%) 

D 
(mm) 

S 
(%) 

W 
(%) 

Youd et 
al. 
(2002) 

Bardet et 
al. (2002) 

Javadi et 
al. 
(2006) 

Rezania et 
al. (2011) 

8.4 7.3 15.0 10.0 2.3 4.2 - 13.78 173.52 3.86 3.87 

7.3 6.0 7.5 17.0 4.0 6.0 - 1.32 11.98 1.38 0.34 

8.0 40.0 10.0 20.0 5.0 8.0 - 0.56 6.36 -2.36 -5.53 

7.0 20.0 5.0 40.0 0.05 2.0 - 0.34 0.89 7.81 3.42 

8.1 9.3 5.5 23.0 0.4 - 25.0 14.07 36.02 2.78 1.60 

8.5 60.0 15.5 12.0 1.25 - 35.0 4.40 5.52 9.02 2.59 

7.0 45.0 7.5 45.0 1.05 - 40.0 0.03 0.32 1.61 -0.55 

8.0 36.0 5.0 37.0 0.7 - 5.5 0.38 1.76 1.65 -0.24 
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3.4.7 Bayesian uncertainty quantification of MLR model parameters 

As discussed earlier, the most commonly used empirical model for liquefaction-induced lateral 
spread is the MLR model of Youd et al. (2002). It is a multiple linear regression model whose 
parameters are obtained by a frequentist view of linear regression. The model assumes that the 
response variable (displacement) is a linear combination of weights multiplied by a set of 
predictor variables. The functional form also includes an error term to account for random 
sampling noise or the effect of variables not included in the model. Linear regression is a simple 
model, which makes it easy to interpret based on the weights (i.e., the regression coefficients). 
For example, if the weight of a predictive variable is 1.2, then for every unit increase in that 
variable, the response will increase by 1.2. In frequentist linear regression, the process of training 
model from training data is to find weights that best explain the data i.e., weights that minimize 
the residual sum of squares. We obtain from frequentist linear regression a single estimate for the 
model parameters based only on the training data, which is interpreted as the most likely estimate 
given the data. However, in case of liquefaction-induced lateral spread where data is not 
abundant, we might like to express our estimate as a distribution of possible values to quantify the 
uncertainty of the model input variables. Bayesian Linear regression does that. 

 
3.4.8 Bayesian Linear Regression 

In the Bayesian viewpoint, we formulate linear regression using probability distributions rather 
than point estimates. The response, y, is not estimated as a single value, but rather is assumed to 
be drawn from a probability distribution. The model for Bayesian Linear Regression with the 
response sampled from a normal distribution is 

 𝑦𝑦~𝑁𝑁�β𝑇𝑇𝑋𝑋,𝜎𝜎2𝐼𝐼� (3.8) 

where βT = transposed vector of model parameters; X = vector of input data; I = the identity 
matrix; and σ=standard deviation of the model parameters. 

The output, y, is generated from a normal (i.e., Gaussian) distribution characterized by a mean 
and variance. The mean for linear regression is the transpose of the weight matrix multiplied by 
the predictor matrix. The variance is the square of the standard deviation multiplied by the 
identity matrix because this is a multi-dimensional formulation of the model. 

Bayesian Linear Regression aims not to find the single “best” value of the model parameters but 
rather to determine the posterior distribution for the model parameters. Not only is the response 
generated from an input probability distribution, but also, the model parameters are assumed to 
come from a distribution. The posterior probability of the model parameters is conditional upon 
the training inputs and outputs  

𝑃𝑃(𝛽𝛽|𝑦𝑦, 𝑥𝑥) =
𝑃𝑃(𝑦𝑦|𝛽𝛽,𝑋𝑋)𝑃𝑃(𝛽𝛽|𝑋𝑋)

𝑃𝑃(𝑦𝑦|𝑋𝑋)  (3.9) 

 
Here, the left side of equation is the posterior probability distribution of the model parameters 
given the inputs and outputs. Using Bayes Theorem, this is equal to the likelihood of the data, P(y 
| β, X), multiplied by the prior probability of the parameters, P(β | X) and divided by a 
normalization constant P(y | X).  
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In contrast to ordinary least square method, we have a posterior distribution for the model 
parameters proportional to the likelihood of the data multiplied by the prior probability of the 
parameters. There are two main benefits to using Bayesian Linear regression: 
1. If we have domain knowledge or a guess for the model parameters, we can include them in 

our model via priors. This is unlike the frequentist approach, which assumes everything there 
is to know about the parameters comes from the data. For the case where we do not have any 
estimate ahead of time, we can use non-informative priors for the parameters, such as the 
normal distribution. 

2. The result of performing Bayesian Linear Regression is a distribution of possible model 
parameters based on the data and the prior. This allows us to quantify our uncertainty about 
the model. 

If we have fewer data points, the posterior distribution will be broader. As the amount of data 
points increases, the likelihood washes out the prior, and in the case of an infinite dataset, the 
outputs for the parameters converge to the value obtained from ordinary least square method. 

 

 

 

3.4.9 Implementation 

In practice, evaluating the posterior distribution for the model parameters is intractable for 
continuous variables, so we use sampling methods to draw samples from the posterior to 
approximate the posterior distribution. The technique of drawing random samples from a 
distribution as an approximation of that distribution is a common application of Monte Carlo 
methods. There are a number of algorithms for Monte Carlo sampling, the most common being 
variants of Markov Chain Monte Carlo. 

The implementation of Bayesian Linear Regression follows the procedure: 
1. Specify priors for the model parameters — in our case, normal distribution. 
2. Create a model mapping the training inputs to the training outputs.  
3. Use a Markov Chain Monte Carlo (MCMC) algorithm to draw samples from the 

posterior distribution for the model parameters.  

In this study, the Bayesian Linear regression method is implemented in PyMC3. The main 
advantage of the PyMC3 Python package is that its user-facing features are written in pure 
Python. PyMC3 leverages Theano (Team et al. 2016) to transparently transcode models to C and 
compile them to machine code, thereby boosting performance. Theano is a library that allows 
expressions to be defined using generalized vector data structures called tensors, which are tightly 
integrated with the popular Numpy,nd array data structure. 

3.4.10 Sampling Algorithm 

Hamiltonian Monte Carlo (HMC) (Duane, 1987) is a Markov chain Monte Carlo (MCMC) 
algorithm that avoids the random walk behavior and sensitivity to correlated parameters, which 
plague many MCMC methods by taking a series of steps informed by first-order gradient 
information. These features allow it to converge to high-dimensional target distributions much 
more quickly than simpler methods (e.g., random walk Metropolis or Gibbs sampling). However, 
the performance of HMC’s is highly sensitive to two user-specified parameters: the step size and 
the desired number of steps L. In particular, if L is too small, then the algorithm exhibits 
undesirable random walk behavior. While if L is too large, the algorithm wastes computation 
time. For these reasons, we used a more advanced MCMC sampling technique called No-U-Turn 
(NUTS; Hoffman, 2014), which is a self-tuning variant of the Hamiltonian Monte Carlo.  
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3.4.11 Results and Discussion 

Figure 3.9 shows approximation of the posterior distributions of model parameters (i.e. 
coefficients of the multiple linear regression model). These result from the 5,000 steps of Markov 
Chain Monte Carlo (MCMC), meaning the algorithm drew 5,000 steps from the posterior 
distribution. Let's compare the mean values of the posterior distributions to those point estimates 
obtained from the ordinary least square method reported in Youd et al. (2002) (Table 3.9.). We 
see the results are similar. Since the numbers in Figure 3.9 are rounded to the nearest integer 
value, a summary of posterior distributions is given in Table 3.10. While we can use a single-
point estimate, we also have a range of possible model parameters. As the number of data points 
increases, this range will shrink and converge to one single value representing greater confidence 
in the model parameters. This range of values is called the credible interval in Bayesian statistics. 
It is an interval in a posterior probability distribution domain or a predictive distribution (Edward 
et al. 1963). Credible intervals are analogous to confidence intervals in frequentist statistics (Lee 
1989); however, they have a slightly different interpretation. Unlike frequentist linear regression, 
we do not get a single value from Bayesian linear regression — we get a distribution. 
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Figure 3.9  Posterior distribution of coefficients of the MLR model 

 
 

  



 

55 
 

Table 3.9  Point estimate of coefficients of the MLR model  
b0 boff M logR* R logW logS logT15 log(100-

F15) 

D5015 

-
16.213 

-0.5 1.532 -1.406 -0.012 0.592 0.338 0.540 3.413 -0.795 

 
As can be seen in Figure 3.9 and Table 3.10, the standard deviation of the model parameters 
varies from 0.45 (highest) for intercept to 0.001 (lowest) for R. The higher the standard deviation, 
the lower the confidence level and vice versa. It should also be noted that standard deviation is in 
units of the coefficient. For instance, for the intercept coefficient with a mean of -16.19, and 
standard deviation of 0.45, and given that the posterior distribution has normal distribution, we 
can expect the intercept coefficient to be roughly 68% of times in the range of (-16.19-0.45, -
16.19+0.45), 95% of times in the range of (-16.19-0.9, -16.19+0.9) and 99.7% of times in the 
range of (-16.19-1.35, -16.19+1.35). These calculations hold for other coefficients, too. The 
empirical rule for normal distribution states that 99.7% of data observed following a normal 
distribution lies within three standard deviations of the mean. Similarly, 68% of the data falls 
within one standard deviation and 95% within two standard deviations from the mean. 
 
Table 3.10  Summary of MCMC traces 

 mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat 

Intercept -16.188368 0.451536 0.005157 -17.065917 -15.289376 8994.522519 0.999976 

b0 -0.496576 0.041378 0.000402 -0.578811 -0.416822 14841.50956 1.000253 

M 1.529197 0.04915 0.000478 1.434469 1.627661 11365.51692 0.999982 

logRs -1.402801 0.070809 0.000738 -1.542889 -1.266819 9546.5402 1.000007 

R -0.012459 0.001195 0.00001 -0.014895 -0.01019 15732.37567 0.999927 

logW 0.590545 0.040808 0.000388 0.50977 0.669086 15063.76892 1.000136 

logS 0.334146 0.039645 0.000296 0.255991 0.411886 18478.04196 1.000022 

logT 0.543828 0.027959 0.000206 0.490367 0.599447 20144.1537 0.999934 

logF 3.407928 0.167858 0.001634 3.070137 3.729686 11758.33235 0.999936 

logD -0.793842 0.05048 0.000389 -0.889674 -0.692627 16848.3446 0.99999 

sd 0.197484 0.006449 0.000046 0.184662 0.209974 20301.70348 1.000013 
 

Valid inferences from sequences of MCMC samples assume that the samples are derived from the 
true posterior distribution of interest. Theory guarantees this condition as the number of iterations 
approaches infinity. Therefore, it  is important to determine the minimum number of samples 
required to ensure a reasonable approximation to the target posterior density. From the trace plots 
shown in Figure 3.10, we see that the chains have converged. We can verify the convergence of 
the chains formally using the Gelman Rubin test. The Gelman–Rubin diagnostic evaluates 
MCMC convergence by analyzing the difference between multiple Markov chains. The 
convergence is assessed by comparing the estimated between-chains and within-chain variances 
for each model parameter. Significant differences between these variances indicate non-
convergence. See Gelman and Rubin (1992) and Brooks and Gelman (1997) for the detailed 
description of the method. Values close to 1.0 mean convergence. The results of this test on the  
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chains of our model are given in Table 3.11. As can be seen, all values are close to 1. We can also 
test for correlation between samples in the chains.  

 

 

 

Table 3.11  Gelman Rubin test results of MCMC chains 
Coefficient Intercept 0  ogRs  ogW ogS ogT ogF ogD 

Gelman 
Rubin test 0.999 .00 .999 .000 .999 .000 .000 .999 .999 .999 

3.5 Conclusion 

In this study, the existing empirical models of horizontal ground displacements due to 
liquefaction-induced lateral spreads are compared to each other from several aspects. The 
following conclusions are drawn from this study: 

1. The coefficients of determination (R2) reported by Javadi et al. (2006) and Rezania et al. 
(2011) are invalid and could not be used to compare their models to others. Regardless, 
while the coefficient of determination could be used as a factor for performance 
evaluation of empirical models, it fails to describe the entire model and a more 
comprehensive comparison, such as the one conducted in this paper is required for future 
models. 

2. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are not good 
measures for comparing predictive models of liquefaction-induced lateral spreads and 
should not be used. 

3. Even though machine-learning models have proven to be promising in recent years, in the 
domain of liquefaction-induced lateral spread, the existing regression models of Youd et 
al. (2002) and Bardet et al. (2002) performed better than the existing machine learning 
models of Javadi et al. (2006) and Rezania et al. (2011). They are less divergent and more 
consistent with our current understanding of the mechanics behind liquefaction and 
lateral spreads. 

4. The mechanistic-based functional forms of the regression models make them not only 
less divergent but also more interpretable than the existing machine-learning models; The 
use of more regularized algorithms is suggested, at least until a less noisy database of 
liquefaction-induced lateral spread is compiled to reduce the divergence of the machine-
learning models developed in future. 

5. The unreasonable variations observed in the machine-learning models of Javadi et al. 
(2006) and Rezania et al. (2011) are due to the cross-correlation between variables in 
their predictive equations.  

6. The results of the existing empirical models are significantly inconsistent with each other 
in terms of their variations and predicted displacements, particularly when extrapolating. 

7. The multiplicative form of the final predictive equations in the regression models of 
Youd et al. (2002) and Bardet et al. (2002) is proven to be more rational than those with 
the additive form in the machine-learning models of Javadi et al. (2006) and Rezania et 
al. (2011). Thus, additive forms of the final predictive equations are less rationale and 
perhaps, should be avoided in the future development of such models. 

8. The log transformation used in the regression models of Youd et al. (2002) and Bardet et 
al. (2002) prevents negative predictions and is suggested to be used for future model 
developments. The sloping-ground mode of machine-learning models proposed by Javadi 
et al. (2006) and Rezania et al. (2011) predicted about 73% and 79% negative values, 
respectively.  
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9. Among the models assessed in this study, Bardet et al. (2002) resulted in the most 
conservative predictions. 

10. The uncertainty of the MLR model parameters is essential and should be quantified. 
 

 
Figure 3.10  Traceplot of MCMC chains 
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4. LASSO-BASED MODIFICATIONS TO FUNCTIONAL FORM 
OF THE MLR MODEL 

4.1 Introduction 
 

The modeling and estimation of the severity of lateral spread as the most pervasive damage of 
liquefaction to infrastructures have gained renewed attention during the past few decades. For this 
purpose, there are various approaches researchers have taken, including 1) simplified analytical 
methods, such as Newmark’s sliding block analysis (Olson and Johnson, 2008) and Minimum 
potential energy method (Towhata et al., 1992), 2) numerical methods (e.g., Finn et al., 1994), 3) 
empirical relations based on case histories, such as regression models (Youd et al., 2002; Bardet 
et al., 2002) and machine learning-based models (Rezania et al., 2011; Baziar and Saeedi 
Azizkandi, 2013), and 4) laboratory studies (e.g., Kuwano and Ishihara, 1988). 

Each of these approaches has advantages and disadvantages. For example, while empirical 
models have gained extensive use in practice due to their simplicity, their accuracy is subject to 
the quality of the database on which they were derived, regardless of the modeling technique. A 
comprehensive comparison of empirical models for liquefaction-induced lateral spread is 
presented in Chapter 3. We found that considering the high volume of noise in the existing lateral 
spread case history database(s), having a predefined functional form plays an important role and 
is vital unless a less noisy database becomes available in the future. The choice of the functional 
form directly affects the performance of the model, particularly when extrapolating. The 
functional forms of the independent variables could come from either the mechanics governing 
the lateral spread phenomenon (i.e., physics-based models) or the trends observed in the database 
(empirical or machine-learning models), or a combination of both. 

One of the most commonly used empirical relations is the Multiple Linear Regression (MLR) 
model initially proposed by Bartlett and Youd (1995, 1992), which was later modified by Youd et 
al. (2002) by adding data from three additional earthquakes and changing some terms of the 
functional form. It is clear that empirical equations must be revised as our understanding of 
liquefaction and lateral spread grows and as newer case histories become available (Youd 2018). 
The discrepancy between variations of different empirical models discussed in Chapter 3 
indicates the need for re-evaluating the functional form used in the revised MLR model by Youd 
et al. (2002). This chapter proposes modifications to the functional form of the revised MLR 
model based on Least Absolute Shrinkage and Selection Operator (LASSO) regression technique, 
which is consistent with our understanding of the mechanics behind lateral spread the trends 
observed in the case histories database. 

4.2 Least Absolute Shrinkage and Selection Operator 
 

Least absolute shrinkage and selection operator (LASSO) is a regression analysis method in 
statistics and machine learning that performs both feature selection and regularization. LASSO 
regression was first introduced in geophysics by Santosa and Symes (1986). A few years later, 
this technique was independently rediscovered and popularized by Tibshirani (1996). Consider 
the usual linear regression of data (Xi , yi), i = 1, 2, 3...N, where Xi = (xi1, xi2, ..., xip)T and yi are the 
regressors and response for the ith observation. The ordinary least squares (OLS) estimates α and 
β = (β1, β2, ..., βp)T are obtained by minimizing the residual squared error, i.e. 



 

 

 

 
   

    
     
     

  
      

   
 

               

  

  

      
         

    
  

  
 

   
 

       
    

                           

  

                                
 
                                

 

        
    

       
       

        

  

 

   
  

  

 
 

                
   

 

            

   

 
       

  

       

     

       
   

  

   

   

2𝑁𝑁 

�α�, β�� = 𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑎𝑎𝑛𝑛{��𝑦𝑦𝑠𝑠 − α −�β𝑗𝑗𝑥𝑥𝑠𝑠𝑗𝑗� } (4.1)  
𝑠𝑠=1 𝑗𝑗 

There are mainly two reasons why the result of the OLS estimates are not satisfactory. First, the 
OLS estimates usually have a large variance despite their low bias. One way to improve 
prediction accuracy would be to set to 0 some coefficients to reduce the variance of the predicted 
values at the cost of introducing a little bias. The second reason is interpretation. With a large 
number of predictors, we often would like to determine a smaller subset that exhibits the strongest 
effects. The LASSO regression shrinks some coefficients and set others to zero and finds α and β 
by minimizing Eq. 4.1 subjected to a constraint on sum of absolute values of βs (Tibshirani, 
1996), i.e. 

𝑁𝑁 
2 

�α�, β�� = 𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑎𝑎𝑛𝑛{� �𝑦𝑦𝑠𝑠 − α − � β𝑗𝑗 𝑥𝑥𝑠𝑠𝑗𝑗 � } 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑙𝑙 ��β𝑗𝑗 � ≤ 𝑠𝑠 (4.2) 
𝑠𝑠=1 𝑗𝑗 𝑗𝑗 

where t ≥ 0 is a tuning parameter. Eq. 4.2 can be further decomposed into 
2𝑁𝑁 

1 
�α�, β�� = 𝑎𝑎𝑟𝑟𝑔𝑔𝑚𝑚𝑎𝑎𝑛𝑛{� 

2 
�𝑦𝑦𝑠𝑠 − α − � β𝑗𝑗 𝑥𝑥𝑠𝑠𝑗𝑗 � + λ ��β𝑗𝑗 �}

𝑠𝑠=1 𝑗𝑗 𝑗𝑗 

(4.3) 

where the parameter λ is predetermined and controls the amount of regularization. The higher the 
value of λ, the more elements of the estimated β vector are set to zero, and the more the nonzero 
entries are shrunken toward zero. Smaller λ implies less regularization and more nonzero β with 
larger (absolute) coefficients (Reid et al., 2016). 

4.3 LASSO-Based Modifications to the Revised MLR Model 

The revised MLR model by Youd et al. (2002) consists of two equations. One for the free-face 
mode 

𝑙𝑙𝑙𝑙𝑔𝑔�𝐷𝐷ℎ𝑓𝑓𝑓𝑓� = −16.713 + 1.532𝑀𝑀 − 1.406 log 𝑅𝑅∗ − 0.012 𝑅𝑅 0.592 𝑙𝑙𝑙𝑙𝑔𝑔𝑙𝑙 
+ 0.540 𝑙𝑙𝑙𝑙𝑔𝑔𝑇𝑇15 + 3.413𝑙𝑙𝑙𝑙𝑔𝑔100 − 𝐹𝐹15 − 0.795𝑙𝑙𝑙𝑙𝑔𝑔(𝐷𝐷5015 + 0.1) (4.4)  

and one for the sloping ground mode 
𝑙𝑙𝑙𝑙𝑔𝑔�𝐷𝐷ℎ𝑠𝑠𝑠𝑠� = −16.213 + 1.532𝑀𝑀 − 1.406𝑙𝑙𝑙𝑙𝑔𝑔𝑅𝑅∗ − 0.012𝑅𝑅 + 0.338𝑙𝑙𝑙𝑙𝑔𝑔𝑆𝑆 + 

0.540𝑙𝑙𝑙𝑙𝑔𝑔(𝑇𝑇15) + 3.413 log(100 − 𝐹𝐹15) − 0.795 log(𝐷𝐷5015 + 0.1) (4.5) 

where Dh is the magnitude of ground displacement in meters; M is moment magnitude; R is the 
horizontal or mapped distance from the site in question to the nearest bound of the seismic energy 
source; R∗ = 100.89M−5.64 + R; S is the slope in percent; W is the free face ratio in percent; T15 is the 
thickness of saturated cohesionless soil with (N1)60 < 15, in meters; F15 is average fines content in 
T15, in percent; and D5015 is average D50 in T15 in millimeters. All of the logarithms are to base 
10. 
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As can be seen in Eqs. 4.4 and 4.5, the set of predictive equations is made of a combination of 
seismic (M, R), geotechnical (T15, F15, and D5015), and topographic variables (W and S) and their 
logarithms. The variable selection and decision of taking the logarithm of variables or using them 
directly in the functional form of the revised MLR model are mainly based on the observations of 
lateral spreads obtained from the research of Youd and Perkins (1978) and Hamada et al. (1986). 
Some choices, such as using T15 instead of the thickness of the liquefiable layer, were made 
based on the high statistical correlation between these predictive variables and the dependent 
variable. 

In this study, we took advantage of the automatic variable selection of LASSO regression by 
regressing on 12 variables, including M, R, T15, D5015, F15, and W (free face mode) or S (sloping 
ground mode), plus their logarithms to base ten including log(M), log(R), log(T15), log(D5015 + 
0.1), log(100 − F15) and log(W) or log(S). Choice of the parameter λ in Eq. 4.3 controls the 
complexity of the model by determining the number of variables, which consequently affects the 
accuracy. Figure 4.1 shows the effect of λ on the free face model. As can be seen, as λ grows, the 
coefficient of more variables are set to zero, and the coefficient of determination, R2, reduces. 
Based on these results, a λ = 0.00199 was chosen to get the highest coefficient of determination 
with the least number of variables. 

 
Figure 4.1  Effect of λ on the free face model 

After this automatic variable selection, M, R, log(R), T15, F15, log(D5015 + 0.1), and log(W) or 
log(S) variables had non-zero coefficients i.e., they are the ones that LASSO regression has 
selected. Therefore, it is recommended that the functional form of the revised MLR be changed to 
𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷ℎ) = 𝑓𝑓(𝑀𝑀,𝑅𝑅,𝑊𝑊, 𝑆𝑆,𝑇𝑇15,𝐷𝐷5015,𝐹𝐹15) 
 

 = α + β1𝑀𝑀 + β2𝑅𝑅 + β3𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅) + β4𝑇𝑇15 + β5𝐹𝐹15 
                      +β6𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷5015 + 0.1) + β7𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) 

                     

(4.6) 

where t is the topographic variable and equal to W in free face mode and S in sloping ground 
mode. 
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4.4 Capping Concept 
 

One common problem of most predictive empirical equations for lateral spread found by 
Hosseinali and Bartlett (2019) is the unrealistically large displacements at extreme values of 
variables, such as very close distances to the energy source (when R approaches zero). Youd et al. 
(2002) tried to mitigate this problem of the original MLR model from Bardet et al. (2002) and 
Bartlett and Youd (1995) by replacing the term log(R) with log(R∗). Their efforts, however, only 
mitigates the problem associated with small values of R to some extent. As shown in Chapter 3, 
even their model, which has the lowest maximum predictions among all other empirical models 
of lateral spreads, could predict as large as 50 m of displacement in extreme cases. Chapter 3 
concluded that the same issue with low values of R could also be found in high values of T15, W, 
S, and M and low values of D5015 and F15. 

The diverging behavior of the predictive equations is due to the log transformation of horizontal 
displacements, DH. Eqs. 4.4 and 4.5 could be re-written as Eq. 4.7 where the left-hand side would 
diverge as the right-hand side of the equation gets large. 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷𝐻𝐻) = 𝑓𝑓(𝑀𝑀,𝑅𝑅,𝑊𝑊, 𝑆𝑆,𝑇𝑇15,𝐷𝐷5015,𝐹𝐹15) (4.7) 

To resolve this issue, we propose the use of a logit function instead of the log function and 
regress on the following functional form  

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐷𝐷ℎ

γ − 𝐷𝐷ℎ
� = 𝑓𝑓(𝑀𝑀,𝑅𝑅,𝑊𝑊,𝑆𝑆,𝑇𝑇15,𝐷𝐷5015,𝐹𝐹15) (4.8) 

where γ is an arbitrary parameter, which defines the cap of regression model and should be set to 
10, since magnitudes of lateral displacements larger than 10 meters are seldom seen in the case 
history database and might be considered flow failure may have a different mechanism (i.e., 
formulation of thin films of water with extremely low shear resistance). Note that the maximum 
horizontal displacement recorded in the database compiled by Youd et al. (2002) is 10.15 m from 
the 1964 Niigata, Japan Earthquake for free-face failure into the Shinano River (Bartlett and 
Youd, 1992). In their database, there are only four data points with displacements greater than 
9m. The difference between the use of logit function (Eq. 4.8) and log function (Eq. 4.7) is shown 
graphically in Figure 4.2, which clearly demonstrates how using logit function could help 
mitigate the divergence problem at extreme values of predictive variables leading to large values 
of f(M, R, W, S, T15, D5015, F15). 

Based on the concept of capping described in this section, Eq. 4.6 could be re-written as Eq. 4.9, 
which is the final proposed functional form. The term log(D5015) is changed to log(D5015 + 0.1) 
because in case of D5015 = 0, log(0) is undefined. 
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Figure 4.2  Variations of expected ground displacement with predictive variables 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐷𝐷ℎ

10 − 𝐷𝐷ℎ
� = 𝑓𝑓(𝑀𝑀,𝑅𝑅,𝑊𝑊, 𝑆𝑆,𝑇𝑇15,𝐷𝐷5015,𝐹𝐹15) 

                              = α + β1𝑀𝑀 + β2𝑅𝑅 + β3𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅) + β4𝑇𝑇15 + β5𝐹𝐹15 

                                  +β6𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷5015 + 0.1) + β7𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) 

(4.9) 

4.5 Results and Discussion 
 

The MLR model was re-regressed on the database compiled by Youd et al. (2002) using the final 
functional form given in Eq. 4.9 and the resulting set of predictive equations are given in Eqs. 
4.10 and 4.11 for free-face and sloping-ground modes, respectively. 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐷𝐷ℎ

10 − 𝐷𝐷ℎ
� = −9.729 + 1.242𝑀𝑀 − 0.0122𝑅𝑅 − 1.069𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅) 

+0.0644𝑇𝑇15 − 0.0387𝐹𝐹15 
                            −1.633𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷5015 + 0.1) + 0.985𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) 

(4.10) 

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝐷𝐷ℎ

10 − 𝐷𝐷ℎ
� = −6.262 + 0.882𝑀𝑀 − 0.0104𝑅𝑅 − 1.021𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅) 

+0.07049𝑇𝑇15 + 0.0336𝐹𝐹15 
                         −1.044𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷5015 + 0.1) + 0.327𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆) 

(4.11) 

 
Predicted displacements versus measured values of the MLR models of this study are plotted in 
Figure 4.3. Compared to the MLR model proposed by Youd et al. (2002), the results show an 
increase in regression coefficient of determination, R2, of 12.3% (from 0.701 to 0.796) and 9.1% 
(from 0.536 to 0.585) for free-face and sloping ground modes, respectively. R2 is calculated using 
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                  𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2𝑖𝑖

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑖𝑖
 (4.12) 

where yi are measured values; fi are predicted values; and 𝑦𝑦� is the mean of measured values. 

The discussed modifications to the MLR model increased its predictability and is very consistent 
with our understanding behind the field behavior of lateral spread and modifications that other 
researchers have proposed. For example, the change of functional form from D5015 to log(D5015 
+ 0.1), which is one of the revisions made by Youd et al. 

 
Figure 4.3  Measured versus predicted displacement using the proposed MLR model 

 (2002) to the original MLR model proposed by Bartlett and Youd (1992) and Bartlett and Youd 
(1995) to reduce models’ sensitivity to mean-grain size, was detected in our automatic LASSO-
based variable selection. 

 caveat of automatic variable selection is the potential for overfitting. Although the built-in 
regularization of the LASSO regression technique to some extent prevents overfitting, it is 
extremely important to investigate models' behavior from aspects other than simple summary 
statistics, such as R2 (e.g., variations of target variable with respect to predictive variables) and 
check models compatibility with results obtained from independent researchers. 

Figure 4.4 shows partial dependence plots (PDP) of the proposed model for the following three 
cases: 

• The mean case, where the average values of data space are used for all variables (solid 
black lines).  

• The best case, where large lateral spreads are highly likely to occur (dashed green lines). 
•  The worst case, where large lateral spreads are highly unlikely (dotted red lines). 
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The values of variables chosen for the best- and worst-case scenarios are listed in Table 4.1. A 
more comprehensive discussion on how these values are obtained can be found in Chapter 3. 

 

 

 
 

Table 4.1  Values used in mean-, best- and worst-case scenarios 
Mode Case M R (km) T (m) F (%) D (mm) W (%) S (%) 
Free face Mean 7.22 18.39 8.57 17.12 0.36 10.66 - 

Worst 7.50 7.25 12.39 7.00 0.45 15.06 - 
Best 6.75 21.00 3.59 24.00 0.12 4.23 - 

Sloping 
ground 

Mean 7.52 23.79 6.56 9.36 0.43 - 0.95 
Worst 8.00 7.25 13.00 3.00 0.45 - 3.00 
Best 6.75 30.00 2.60 10.25 0.06 - 0.36 

4.6 Conclusion 

A new set of multiple linear regressions for liquefaction-induced lateral spread is proposed in this 
study with some modifications to the functional form of Youd et al. (2002). This new functional 
form takes advantage of the logit transformation of the target variable, rather than the log 
function, to cap the target variable and therefore, prevents unrealistically large predictions. On the 
other hand, by using Least Absolute Shrinkage and Selection Operator regression technique, it 
was found that replacing R∗ with R, replacing log(F15) with F15, and replacing log(T15) with T15 
result in an MLR model that has 12.3% and 9.1% higher coefficient of determination between 
predictions and measured displacements in the free face and sloping ground modes, respectively. 
Compared to the MLR model proposed by Youd et al. (2002), the variations of our proposed 
model are also more compatible with experimental centrifuge tests, numerical and empirical 
models from other researchers. Moreover, the regularization of the LASSO technique ensured 
there was not over fitting. 
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Figure 4.4   Partial dependence plots of proposed LASSO-based model  
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5. CONVOLUTIONAL NEURAL NETWORK-BASED 
SCREENING CRITERIA FOR LATERAL SPREAD 

5.1 Introduction 

One of the most common surface manifestations of liquefaction is lateral spread displacement. 
This type of failure occurs when blocks of relatively intact soil move downslope atop a liquefied 
soil layer. Bartlett and Youd (1992a) classified lateral spread failures as either free face (i.e., 
where the ground moves toward an incised river channel or other types of abrupt topographical 
depression) or a ground slope (ground movement down gentle sloping topography). Pervasive 
soil liquefaction is a requirement to generate lateral spread. However, the opposite is not 
necessarily true; having liquefaction does not necessarily translate into having lateral spread but 
rather, it means there is a chance for lateral spread. This often-neglected fact is a noticeable gap 
in the existing empirical equations for predicting liquefaction-induced lateral spread. 

Liao (1988), Cetin et al. (2002), and later researchers have proposed empirical models that can be 
used to estimate the probability of triggering liquefaction. In addition, empirical equations for 
predicting the amount of lateral spread displacement have been developed primarily using 
Multiple Linear Regression (MLR) and other techniques (Bartlett and Youd, 1992a, Bartlett and 
Youd, 1995, Youd et al. 2002).  

However, the triggering of liquefaction does not necessarily generate lateral spread displacement. 
Nonetheless, some engineering practitioners have mistakenly assumed that triggering liquefaction 
will also result in the development of lateral spread and have inappropriately applied the MLR 
lateral spread displacement predictive equations. This misapplication is equivalent to implying 
that the probability of generating lateral spread displacement given liquefaction is unity, which is 
false. Thus, we believe there is a notable gap in the existing hazard formulations regarding this 
issue.  

In addition, many practitioners have extrapolated the lateral spread displacement models using 
sparse data or input data beyond the conditions or data bounds represented in the case history 
dataset (i.e., extrapolation of the model). Youd (2018) lists some typical misuses of the Youd et 
al. (2002) MLR model. 

• Inferring critical layer continuity when it may not exist. 
• Extrapolating model to relatively thin layers, i.e., layers less than one meter. 
• Using the MLR equations in predominately non-plastic silts, etc. 

As a possible solution to this problem, we propose a probabilistic “screening” or probabilistic 
lateral spread “susceptibility” model. This model will fill a missing gap in the conditional 
probably chain, as discussed later.  

5.2 Theoretical Background 

Many factors contribute to lateral spread susceptibility, including but not limited to  
• Soil properties, such as fines contents, plasticity index, soil index, layer thickness, 

soil density, depth and lateral extent of the critical layer, and relative geologic 
susceptibility (i.e., geologic age and depositional environment). 

• Seismic factors. including intensity and duration of shaking, seismic source distance, 
and earthquake moment magnitude. 
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• Topographical and geometrical factors including ground slope, proximity to a free-
face, etc. 

• Other possible seismic, site, soil, and topographic variables. 
 

The factors listed above are candidates for developing a lateral spread susceptibility model; 
therefore, it is vital to understand how they influence lateral spread susceptibility. 

Influence of Fines Content – The fines content is that percentage of the soil distribution with 
grain size finer than 0.075 mm. Field case histories indicate that fine-grained sediments, such as 
those beneath Adapazari, Turkey, although susceptible to liquefaction, did not generate lateral 
spread. Also, non-sensitive, clay-like soils appear to be immune to lateral spread. Also, the case 
history dataset suggests that lateral displacement decreases markedly with increasing fines 
content (Bartlett and Youd 1995, Youd et al., 2002, Youd 2018). This finding needs additional 
data support, definition, and research.  

Influence of Plasticity Index (PI) – The plasticity index (ASTM D4943) is the liquid limit of the 
soil minus the plastic limit of the soil, as defined by Atterberg. Monotonic and cyclic undrained 
loading test data for silts and clays show that they transition, over a fairly narrow range of 
plasticity indices, from soils that behave more fundamentally like sands (sand-like behavior) to 
soils that behave more fundamentally like clays (clay-like behavior). Boulanger and Idriss (2006) 
propose that for practical purposes, clay-like behavior is expected for fine-grained soils with a 
plastic index equal to or greater than 7. Bray and Sancio (2006), using water in situ water content 
(wc), concluded that loose soils with PI < 12 and wc / LL> 0.85 were susceptible to liquefaction. 
However, loose soils with 12 < PI < 18, and wc / LL > 0.8 were systematically more resistant to 
liquefaction. Soils with PI > 18 tested at low effective confining stresses were not susceptible to 
liquefaction. 

Influence of Soil Index (SI) – Gillins and Bartlett (2013) found that the soil classification 
obtained from borehole logs could supplant the use of fines content and mean grain size in the 
Youd et al. 2002 MLR model. They develop a soil-type factor based on soil classification called 
the soil index, SI. The SI was used instead of fines content and mean grain size because these 
laboratory measurements are often missing in many borehole logs. They show how SI might 
replace F15 and D5015 for regional hazard-mapping studies. The SI is also used in the logit 
analyses herein. 

Influence of Layer Thickness (T) – Bartlett and Youd (1992a, 1995) showed that the cumulative 
thickness of the loose, saturated, sandy deposits influences lateral spread and the resulting amount 
of horizontal displacement. They defined layer thickness factors (i.e., independent variables) in 
their MLR analysis that accounted for thickness. These factors are T10, T15, and T20, where T is 
the cumulative thickness of saturated, granular deposits with N1,60 values less than 10, 15, and 20, 
respectively. Bartlett and Youd (1992a, 1995) were careful not to infer that these independent 
variables represented the thickness of the “liquefied zone.” Instead, they were introduced in their 
evaluation simply as soil factors correlated with lateral spread displacement, hence valuable 
without the need to perform liquefaction analysis procedures. The thinnest T15 layer in the Bartlett 
and Youd (1995) dataset associated with lateral spread occurrence was about 1.0 m. The thinnest 
layer observed in CPT data is about 0.6 m (Youd, 2018). Hence, it appears that layers with a 
thickness less than this are either not continuous across the site or do not have a sufficient 
thickness to generate sufficient water migration to induce lateral spread displacement (Bartlett 
and Youd, 1992a). 
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Influence of Soil Density (D) – From their MLR database, Bartlett and Youd (1992a) and Youd 
et al. (2002) concluded that sediments susceptible to lateral spread generally have SPT N160 
values less than 10 and almost always have SPT N1,60 less than 15. Nonetheless, the influence of 
soil density (i.e., SPT N values) on the probability of lateral spread occurrence will be explored 
using logistic analyses. 

Influence of Depth (Z) – Bartlett and Youd (1992a) found that the depth to the critical zone, 
defined as the lowest N1,60 value in saturated, granular deposits, was almost always in the upper 
15m of the soil profile. Therefore, the influence of depth could also be significant. 

Influence of Seismic Source Distance (R) – For similar magnitude earthquakes, liquefaction 
effects are known to attenuate with decreasing seismic energy associated with further distances 
from the seismic source (Youd and Perkins, 1978, 1987; Ambraseys, 1988; Bartlett and Youd, 
1992a, 1995; Youd et al., 2002).  

Influence of Earthquake Magnitude (Mw) – At susceptible sites and all other factors being 
equal, the occurrence of lateral spread and the magnitude of the associated displacement increases 
with earthquake magnitude (Bartlett and Youd, 1992a; 1995). 

5.3 Probabilistic Framework 
 

The conventional probability chain for lateral spread magnitude (DH) exceeding a certain 
threshold (y) can be expressed as  

                          𝑃𝑃(𝐷𝐷𝐻𝐻 > 𝑦𝑦) = 𝑃𝑃(𝐿𝐿)𝑃𝑃(𝐷𝐷𝐻𝐻 > 𝑦𝑦|𝐿𝐿) (5.1) 

where P(L) = probability of liquefaction; and P(DH > y | L) = probability of lateral spread 
magnitude exceeding threshold y given liquefaction. These probabilities could be obtained using 
the existing probabilistic empirical equations for liquefaction and lateral spread in the literature, 
such as Cetin et al. (2004) and Youd et al. (2002) if and only if the application requirements are 
met. This consideration is important for the second term on the right-hand side of Eq. (5.1). The 
regression equation proposed by Bartlett and Youd (1995), which was later revised by Youd et al. 
(2002), is a deterministic linear regression model and has the following form 

                                      𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐻𝐻 = �𝑏𝑏𝑖𝑖𝑉𝑉𝑖𝑖
𝑖𝑖

+ ε (5.2) 

where bi is the coefficients, Vi are the input/predictive variables, and ε is the mean zero error term 
representing variations in log DH not explained by the predictors. Eq. (5.2) can be turned into a 
probabilistic model given the fundamental assumption of linear regressions given in Eq. (5.3) that 
the error term (ε) is distributed normally around a mean of zero and have a constant standard 
deviation (σ) i.e., the variance does not change across different levels of predictors. 

                                   ε ~ 𝑁𝑁(0,σ2) (5.3) 

In Eq. (5.2), the error term is a random variable (R.V.). Adding a constant term to a random 
variable with normal distribution does not change the form of distribution; it only shifts the mean 
by the amount added and keeps the variance constant. Hence, log DH also has a normal 
distribution with a non-zero mean and standard deviation of σ. By using the abovementioned 
assumption of linear regressions, we can rewrite Eq. (5.2) to take a probabilistic form 
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                              𝑝𝑝(𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐻𝐻
> 𝑦𝑦)

= 1 − φ�
𝑦𝑦 − ∑ 𝑏𝑏𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖

σ
� 

(5.4) 

where φ is the cumulative density function of standard normal distribution. One of the model 
prerequisites presented by Youd et al. (2002) is the likelihood of liquefaction. Hence, Eq. (5.4) is 
conditioned on having liquefaction, which is needed in the second term on the right-hand side of 
Eq. (5.1). However, as Youd et al. (2002) and Youd (2018) presented, having liquefaction is not 
the only condition that must be met before applying the MLR model.  

As a possible solution to this issue, we extended the probability chain in Eq. (5.1) by adding a 
term to predict lateral spread susceptibility 

                                  𝑃𝑃(𝐷𝐷𝐻𝐻 > 𝑦𝑦) = 𝑃𝑃(𝐿𝐿)𝑃𝑃(𝐿𝐿𝐿𝐿|𝐿𝐿)𝑃𝑃(𝐷𝐷𝐻𝐻 > 𝑦𝑦|𝐿𝐿𝐿𝐿) (5.5) 

where P(LS|L) is the probability of lateral spread given liquefaction, and P(DH>y|LS) is the 
probability of lateral spread magnitude exceeding threshold y given lateral spread. The 
probability of lateral spread exceeding a threshold from Eq. (5.4) can be directly used in Eq. (5.5) 
because the added term considers lateral spread susceptibility.   

 

 

 

 

5.4 Methodology 

5.4.1 Introduction 

Convolutional Neural Networks (CNN) are well-known, deep learning architectures inspired by 
the living creatures' natural visual perception mechanism. The modern framework of CNN was 
first introduced by LeCun et al. (1989) then later improved by LeCun et al. (1998) to classify 
handwritten digits via a model called LeNet-5. Since then, due to the excellent performance of 
CNNs, numerous models have been developed to solve tasks from various domains, including 
computer vision, natural language processing, etc. In recent years, deep-learning models and 
CNNs have had a broad range of applications in Civil Engineering, such as Cha et al. (2017), 
Nazaraki et al. (2018), Woldesellasse and Tesfamariam (2022). An excellent summary of recent 
advances in CNNs can be found in (Gu et al. 2015). Durante and Rathje (2021) present an 
exploration of the use cases of Machine Learning to predict lateral spreading.  

5.4.2 Convolution layer 

A convolution layer contains input and filter arrays. The filter array — sometimes referred to as 
kernel — is smaller than the input array in shape and consists of trainable weights and a bias 
initially generated at random; this array is defined by a width and height. A convolutional layer 
convolves the input and passes its results to the next layer. This process is similar to the response 
of a neuron in the visual cortex to a specific stimulus. A convolution (⊗) is the dot-product 
(element-wise multiplication) between the input and filter arrays. The resulting array is summed, 
and a bias term is added, resulting in a single value. The filter is smaller than the input to allow 
the same filter (set of weights) to be multiplied by the input array multiple times at different 
points on the input. Because the filter is multiplied multiple times the result is a two-dimensional 
array of output values called a feature map. An example of a convolution layer with an input 
array of shape 3 by 2, filter size of 2 by 2, a stride of 1 is shown in Figure 5.1. 
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5.4.3 Pooling Layer 

A key aspect of CNNs is a pooling layer, which helps reduce the spatial size of an input array. 
This reduction process is often called down sampling, which is specifically important when the 
training data is rare because the more trainable parameters a model has, the more training samples 
are needed. There are two commonly used pooling options. Max pooling takes the max values 
from an input subarray, whereas mean pooling takes the mean values. Similar to convolutional 
layers, a pooling layer is also defined by width, height, and stride. 

 

 
 

 

5.4.4 Embedding Layer 

Categorical data refers to input features that represent discrete items from a finite set of choices. 
For example, soil indices introduced by Gillins and Bartlett (2013) has six possible types and is a 
categorical feature. Suppose the raw soil indices are fed to an algorithm as a numerical feature. In 
that case, it is implicitly introduced to the algorithm that the distance between soil index 1 and 
soil index 2 is equal to the distance between soil index 5 and soil index 6, which is not necessarily 
true for categorical data.  It is desirable to represent each category as a vector of numbers to 
represent categorical features in machine learning. Thus doing, semantically similar items have 
similar distances in the vector space. The idea was first introduced by Mikolov et al. (2013) to 
estimate word representations in vector space.  

Figure 5.1  An example of the convolution layer 
 

 

5.4.5 One-hot-encoding 

An alternative approach to using embedding layers for categorical features is called one-hot-
encoding technique. This technique removes the integer encoded variable, and a new binary 
variable is added for each unique integer value. For example, in the case of the soil index, where 
only six outcomes are possible, one-hot-encoding would result in six separate binary indicators 
and convert each category into a vector of zeros and ones of length 6. A soil index 1 will be 
converted to v1 = [1, 0, 0, 0, 0, 0] while soil index 5 will be converted to v5 = [0, 0, 0, 0, 1, 0]. 
This transformation, as opposed to integer encoding, eliminates any implicit relationship between 
categories. 

5.4.6 Activation Layer 

Activation layers are the most typical way to introduce nonlinearity in artificial neural networks. 
Nonlinear activation functions allow neural networks to compute nontrivial problems using only a 
small number of nodes. Three most commonly used nonlinear activation functions are sigmoid, 
hyperbolic tangent, and rectified linear units (ReLu) introduced by Nair and Hinton (2010). Given 
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the gradients in ReLu’s are all zeros and ones, the computational cost of using these activation 
functions is much less than the other two alternatives mentioned earlier. 

 

 

5.4.7 Dropout Layer 

One of the primary issues associated with machine learning — specifically training datasets with 
a few examples — is overfitting. This phenomenon occurs when the performance on the training 
set is satisfactory, but the model fails to generalize well on unseen validation and test data. There 
are several ways to avoid overfitting, including reducing model complexity, using regularizations, 
stopping training early, etc. Dropout, introduced by Srivastava et al. (2014), is a regularization 
method approximating training many neural networks with different architectures in parallel. 
During training, some number of layer outputs are randomly ignored or “dropped out.” 

5.4.8 Softmax Layer 

A softmax layer, which is usually the last activation function of CNN architectures, is a 
generalization of the logistic function to multiple dimensions. The softmax function takes as input 
a vector of n real numbers. It normalizes it into a probability distribution consisting of n 
probabilities proportional to the exponentials of the input numbers. That is, before applying 
softmax, some vector components could be negative or greater than one; and might not sum to 1; 
but after applying softmax, each component will be in the interval (0, 1), and the components will 
add up to 1 so they can be interpreted as probabilities. Furthermore, the larger input components 
will correspond to higher probabilities. 
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 (5.6) 

where y = target classes; x = inputs to the activation function; and W = trainable weights. 

5.4.9 Loss Function and Optimizer 

The training process of artificial neural networks consists of optimizing (usually minimizing) a 
loss function that explains deviations of predictions from true labels. For accurate predictions, 
one needs to optimize and update randomly initialized weights and biases of a network in each 
epoch. There are several known methods, but Stochastic Gradient Descent (SGD) using 
backpropagation is considered the most efficient and most straightforward way to minimize the 
deviations (LeCun et al., 2012). The standard gradient descent algorithm performs updating 
weights and biases on the entire training data set, but the SGD algorithm performs it on single or 
several training samples. using the following equation 

                𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜(1 − 𝑙𝑙𝑙𝑙∇𝑊𝑊𝐿𝐿) (5.7) 

where W = weights and biases; lr = learning rate; ∇𝑊𝑊= gradient of loss function with respect to 
weights and biases defined in Eq. (5.8.a); and L = softmax loss function defined in Eq. (5.8.b). 
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(5.8.b

) 

 
where 1{} = logical function that always returns either zero or one; and λ = regularization 
coefficient to penalize large weights, which is another expediency to prevent overfitting (Bengio, 
2012; Bottou, 2012). 

5.5 Development of Screening Criteria 
 

 

5.5.1 Problem Formulation 

Figure 5.2 shows the lateral spread in Heber Road during the 1979 Imperial Valley, California 
earthquake. This case history is used as an example to illustrate the problem formulation more 
clearly. This figure also includes the location of SPT boreholes. The fundamental building block 
of the proposed screening criteria is a pair of boreholes, which have three types:  

• Pairs inside lateral spread, i.e., both boreholes are within the area where lateral spread 
has occurred. For example, the SPT 4 - SPT 6 pair. 

• Pairs outside lateral spread, i.e., both boreholes are outside the area where lateral spread 
has occurred. For example, the SPT 1 – SPT 12 pair. 

• Pairs on the fringe of lateral spread, i.e., one borehole is inside the lateral spread while 
the one borehole is outside the area where lateral spread has occurred. For example, the 
SPT 11 – SPT 4 pair.  

Figure 5.2  SPT boreholes and lateral spread in Heber road at 1979 Imperial Valley case history 

For each borehole pair, interpolated soil density indicators (N1,60), soil saturation indicators, and 
soil index at subsurface sampling intervals to a depth of 30 meters below the ground surface are 
used as input features (S). The distance between boreholes in a pair (d) is also used as another 
input feature andsubsurface information. Hence, the second term on the right side of Eq. (5.5) can 
be written as  
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                         𝑃𝑃(𝐿𝐿𝐿𝐿|𝐿𝐿) = 𝑓𝑓(𝑆𝑆,𝑑𝑑) (5.9) 

The function f() is defined by a convolutional neural network described in detail in subsequent 
sections. This function outputs probabilities for three cases (1) inside the lateral spread zone, (2) 
on the boundary of the lateral spread, and (3) outside the lateral spread zone. To implement these 
probabilities in Eq. (5.5), one can combine probabilities of inside and on the boundary of lateral 
spread and use that as the probability of having a lateral spread. This combination is equal to the 
probability of being within the lateral spread zone. Also, the probability of having two boreholes 
outside the lateral spread zone is the same as the probability of not having a lateral spread, which 
is one minus the probability of being within the lateral spread zone. These calculations can be 
done because all three outcomes are considered to have disjoint probabilities.  

Note that because the probability obtained from Eq. (5.9) is to be used in combination with other 
probabilities in the conditional probability chain given in Eq. (5.5), other factors playing a role in 
lateral spread susceptibility, previously discussed in the Theoretical Background Section, are not 
included in Eq. (5.9). This omission is done to avoid the possible confounding of their effect on 
the prediction of lateral spread. Note that many of these factors are included in the other terms in 
Eq. (5.5). Also, the model developed below focuses on soil and site factors and does not include 
geologic factors, such as sediment age, depositional environment, etc. These factors are known to 
affect liquefaction and lateral spread susceptibility (Youd and Perkins, 1978), but it is difficult to 
quantify their influence in the probabilistic model. Therefore, this research will focus on a 
geotechnical layer and readily glean soil properties from the current case history dataset. 

5.5.2 Model Architecture 

The neural network architecture of the proposed screening criteria consists of an embedding layer 
to embed a categorical soil index input feature into a vector space, convolutional layers to find 
existing patterns between boreholes in a pair, and a dense feed-forward network at the end. Figure 
5.3 shows the best-performing neural network architecture for the screening criteria. Several 
alternatives to this architecture were also considered, which will be discussed later. Note that the 
dropout layers and batch normalization layers are not included in the visualization. This model 
has 4,473 trainable weights and biases. A complete summary is given in Figure 5.4. 

 

 

 
Figure 5.3  The neural network architecture of our best performing model 
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Figure 5.4  Model description and parameters 

5.5.3 Data 

Data Collection 

Data from 11 earthquakes was collected from multiple sources, mostly from historical case 
histories with no digital version. The data came in different languages, primarily English and 
Japanese. For this study, 620 SPT boreholes were collected from which 439 pairs were formed 
for the analyses. Any low-quality boreholes, including shallow boreholes, were dropped before 
selecting the paired boreholes. Boreholes more than 150 meters apart were also not paired. Table 
5.1 summarizes the evaluated dataset. 

The digitization process is shown in Figure 5.5, which consisted of scanning aerial photographs 
and overlaying them on top of Google MapsTM. Subsequently, the location of boreholes and 
displacement vectors were recorded. This spatial information was needed to compute the distance 
between boreholes, which is one of the input features and to decide on a borehole status in terms 
of whether it falls outside, inside, or on the boundary of a lateral spread. 

Another critical aspect of the borehole data is the subsurface information (i.e., depth of sampling 
interval and groundwater, NSPT, soil fines content, if available, and the soil type. This information 
was collected down to 30 meters below the ground surface. Figure 5.6 shows a typical borehole 
(BH 3-5) from the Niigata, Japan earthquake found on plat F-10 (unpublished but from Hamada). 
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Data wrangling 

Data wrangling is the process of cleaning and unifying messy and complex data sets for easy 
access and analysis. This process is crucial in developing the proposed screening criteria because 
the consistency between input data points from the different sources must be ensured. 

 
Table 5.1  Summary of paired types per earthquake 

Earthquake Boreholes 
count 

Pair type Pairs 
count 

Reference(s) 

1964 Alaska, US 
20 

boundary 3 Bartlett and Youd 
1992b; Ross et al. 
1973 

outside 3 
within 5 

1964 Niigata, Japan 
145 

boundary 38 
Hamada et al. 1986 outside 33 

within 169 
1971 San Fernando, 
California 39 

boundary 12 Bennett 1989; 
O'Rourke et al. 1992; 
Youd 1973 

outside 4 
within 44 

1979 Imperial valley, 
California 11 

boundary 12 Youd and Bennett 
1983; Bennett et al. 
1984 

outside 2 
within 6 

1983 Borah peak, Idaho 

9 

boundary 11 
Youd et al. 1985; 
Andrus 1991; Andrus 
and Youd 1987 

outside 3 
within 4 

1983 Noshiro, Japan 
187 

outside 17 
Hamada et al. 1986 within 8 

1987 Superstition hills, 
California 2 within 1 Holzier et al. 1989 

1989 Loma Prieta, 
California 15 

boundary 15 
Robertson et al. 1999 outside 3 

within 7 
1990 Luzon, Philippines  

13 
outside 1 Tokimatsu et al. 

1994; Ishihara et al. 
1993 within 1 

1995 Kobe, Japan 156 within 32 
Chu et al. 2004 1999 ChiChi, Taiwan 

23 
boundary 3 
within 2 
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(a) 

(b) 

(c) 

 

 

 
Figure 5.5  Process of borehole location digitization (a) Google maps view of a site in Kobe, 

Japan, (b) boreholes overlaid and digitized, and (c) displacements (yellow pins) 
digitized with boreholes (green pins) 
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(a) (b) 

Figure 5.6  Sample of flat files (a) subsurface data in Japanese, and (b) Japanese to English 
instructions of soil description 

 
The primary input data are pairs of boreholes. In other words, each pair of adjacent boreholes 
form one sample in our dataset. However, every borehole has the potential to be included in more 
than one pair. Before pairing boreholes, each borehole was classified as either inside or outside 
lateral spread. For example, in Figure 5.2, SPT boreholes 1, 11, 12, and 15 are outside the lateral 
spread zone, while all other SPT boreholes are inside the lateral spread. This step is required for 
labeling our data which will be used as the target in our model training process. 

There are four main components to the input predictive data: 
1. Soil relative density indicator (N1,60) at different depths for each borehole in a pair., 
2. Soil saturation indicator at each depth for each borehole in a pair. 
3. Soil Index as defined in Gillins and Bartlett (2013) at different depths for each borehole 

in a pair. 
4. Distance between pair of boreholes. 

The effects of the operator, equipment, and test procedures on the Standard Penetration Test 
(SPT) blow counts were accounted for by using correction factors and the practices described by 
Salgado (2006). The NSPT values were first corrected for the hammer type, rod length, sampler 
type, and borehole diameter. Then they are adjusted for effective overburden pressure of 100 kPa 
(N1)60. Finally, the SPT counts were interpolated and resampled at regular depth intervals within 
the borehole.  
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The corrected SPT blow count is the standard blow count denoted as N60, defined as 

𝑁𝑁60 = 𝐶𝐶ℎ𝐶𝐶𝑟𝑟𝐶𝐶𝑠𝑠𝐶𝐶𝑑𝑑𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆  (5.10) 

where Ch = hammer correction; Cr = rod length correction; Cs = sampler correction; and Cd = 
borehole diameter correction.  

The hammer correction factor (Ch) is expressed as the ratio of energy ratio for the hammer used 
in the test (ERhammer) to the standard 60% energy ratio for the safety hammer 

 𝐶𝐶ℎ =
𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

60%
 (5.11) 

In cases where the energy ratio for the SPT hammer Eq. (5.11) was recorded in the original case 
history documents, this was used. However, in most cases, such information was not measured or 
recorded. Thus, approximate values of the energy ratio and Ch (Table 5.2) were used. 

Table 5.2  Approximate values of energy ratio and correction factor Ch for common 
hammer types 

Hammer Approximate energy ratio (%) Ch 

Safety 60 1 

Donut 45 0.75 

Automatic trip 80 1.33 

Pin weight 72 1.2 

 
The sampler correction factor (Cs) accounts for the occasional use of a liner sampler without the 
liner. According to Salgado (2006), the blow counts when the standard sampler is used are 10%–
30% higher when the ASTM sampler is used without the liner. Hence, Cs was set to 1 for the 
standard ASTM sampler with a liner sample, while Cs was set to 1.2 samplings without a liner. 
The rod length correction factor (Cr) that was used is given in Table 5.3. The borehole diameter 
correction factor (Cd) equals 1 for borehole diameters with the standard range of 66 to 115 mm 
(2.5 to 4.5 in) or greater than 1 for larger borehole diameters. According to Salgado (2006), Cd is 
1.05 and 1.15 for borehole diameters of 150 and 200 mm, respectively. Interpolation was used for 
other values within this range. Because the NSPT blow counts depend on the vertical stress, it 
varies approximately with the square root of the effective stress (Eq. 5.12). Hence, to obtained 
NSPT values normalized for the vertical effective stress we can write  

                                𝑁𝑁1 = 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆�
𝑝𝑝𝐴𝐴
σ𝑣𝑣′

 (5.12) 

where pA = reference stress of 100 kPA; and σ𝑣𝑣′ = effective vertical stress. 
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Table 5.3  Rod length correction factor Cr 
Cr Rod length 

0.75 Less than 4 meters 

0.85 Between 4 and 6 meters 

0.95 Between 6 and 10 meters 

1 Greater than or equal to 10 meters 
 

 

Once the NSPT values are corrected for different factors and adjusted for overburden pressure, 
they were resampled at different intervals based on linear interpolation between the two closest 
blow counts recorded in each borehole. Figure 5.7 shows the effect of the selected sampling 
interval on the interpolated values. In most cases, a resampling interval of 0.5 meters has 
complete consistency with the original blow counts, while for larger values, resampling may 
cause loss of information. Having a 0.5 meters interval also helps to capture the effect of thin 
layers in the model. 

    
Figure 5.7  Blow counts resampling at various intervals 

 
Gillins and Bartlett (2013) introduced Soil Index to replace soil properties, such as fines content 
and median grain size with a classification based on soil description. This index was introduced to 
resolve the issue caused by missing laboratory soil properties, which is common in many 
geotechnical soil logs. The soil index values presented by Gillins and Bartlett (2013) are given in 
Table 5.4. This table is used as a lookup table to encode all soil descriptions in our database. A 
list of encoded soils and their corresponding soil index is given in Table 5.5. This encoding 
allows us to use this categorical soil description factor in our models as a numerical input. 
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Table 5.4  Soil Index and their corresponding soil descriptions 

Typical soil descriptions 
General USCS 

symbol 
Soil 

Index, SI 
Silty gravel with sand, silty gravel, fine gravel GM 1 
Very coarse sand, sand, and gravel, gravelly sand GM-SP 2 
Coarse sand, sand with some gravel SP 2 
Sand, medium to fine sand, sand with some silt SP-SM 3 
Fine sand, sand with silt SM 4 
Very fine sand, silty sand, dirty sand, silty/clayey sand SM-ML 4 
Sandy silt, silt with sand ML 5 
Silty clay, lean clay CL 6 

 
Table 5.5  Soil Index of all soil descriptions in database 

Soil Index (SI) Soil descriptions 
1 gravel mix. fine sand 
2 coarse sand, coarse-medium sand, coarse to medium sand, organic, coarse 

sand, medium ~ coarse sand 
3 medium sand, medium-fine sand, medium sand, sand, medium to coarse sand, 

fine to medium sand, medium to fine sand, medium sand, medium grain sand, 
fine-medium sand, fine ~ medium sand 

4 alter silt and sand, fine sand, silty medium sand, very fine sand, clayey, fine 
sand, silty, fine sand, silty very fine sand, fine sand mixed with silty sand, 
fine sand, fine to very fine sand, very fine to fine sand, fine grain sand, fine 
sand, silty, fine sand, organic, fine sand, fine - very fine sand 

5 silt, silty sand, sandy silt, clayey silt, coarse silt, silty sand mixed with silt, 
silty sand to sandy silt, silty coarse sand mixed with silt, sandy silt, medium 
sandy silt, silt 

6 not defined, fill, silty clay, sandy clay, humus, surface soil, clay, sandy loam, 
reclaimed land, silty clay to sand, silty sandy clay, peat, organic soil/surface 
soil, topsoil, fill soil, cohesive soil, or hummus/peat, organic silt, all missing 
values 

 

 

 

After collecting and converting subsurface information in our database, the largest category was 
soil index 6 (silty clay, lean clay) (Figure 5.8). To ensure there was no significant bias in the 
distance between boreholes, a histogram of distance is plotted in Figure 5.9. The summary 
statistics for this factor are given in Table 5.6. 

Table 5.6  Summary statistics of the distance between 
boreholes in a pair per pair type 

Pair 
type 

Distance (m) 
mean median min max 

boundary 90.0 97.7 3.0 149.4 
outside 77.1 77.3 3.2 149.0 
within 81.5 79.1 1.3 149.3 
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Figure 5.8  Distribution of soil indices in the dataset 
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Figure 5.9  Distribution of distance between boreholes in pairs 

5.5.4 Hyperparameters 

Hyperparameters are parameters that are not directly learned within estimators. The choice of 
these hyperparameters can affect the model efficacy and should be optimized. For example, the 
type and number of layers, nodes, learning rate, number of filters, and kernel width in the 
convolutional layer are hyperparameters. The effect of different layers or network topology is 
subsequently described in the alternative network architectures section.  

The most fundamental block of our CNN model is the convolution layer responsible for capturing 
interactions between boreholes in a pair. The two most important hyperparameters tuned in this 
study are (1) the number of filters and (2) the width of the convolution kernel.  

A grid search algorithm was used to find the optimal number of filters and kernel width. This 
optimization is shown in Figure 5.10 as a heatmap; brighter colors correspond to higher accuracy 
and vice versa. The top four performing hyperparameters are given in Table 5.7. The best 
performing set of hyperparameter resulted from 16 filters and a kernel width 19. 

Figure 5.10  Hyperparameter tuning results 
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Table 5.7  Top 4 model accuracies in hyperparameter search 
Convolutional 
layer kernel 

width 

Number of 
convolutional 
layer filters 

Model 
accuracy 

Number of 
parameters 

19 16 81.8 5099 
20 16 81.3 5211 
10 32 81.1 8155 
18 8 81.1 2507 
 

 

 

Another consideration is the number of trainable parameters in our network, which represents the 
number of weights and biases in all layers. In general, the higher the number of parameters used 
increases the model complexity and also increases the undesirable consequence of overfitting. 
Figure 5.11 shows the influence of both hyperparameters on the number of parameters. As 
expected, an increase in either the number of filters or kernel width increases as the number of 
parameters is increased. However, the rate of increase is less for the kernel width when compared 
to that of the number of filters.  

Figure 5.11  Effect of hyperparameters on number of parameters in the model 

A minimal version of the hyperparameter optimization process was done for the alternative model 
architectures before choosing the final architecture. This process was done to ensure that 
hyperparameter tuning is not the controlling factor in selecting the “best” model architecture.  

5.5.5 Training and Validation 

In machine learning, the dataset is typically split into a training and a validation set. The training 
dataset is used to train the model, while the validation dataset is held in reserve to evaluate the 
model's performance. Comparing the model’s performance between the training and validation 
sets indicates the model’s ability to generalize. If the training performance is high and model 
performance on the unseen data is relatively poor, this is called overfitting (Figure 5.12). In this 
case, the model has memorized everything in the training set but cannot generalize well to unseen 
data. If the performance on both training and validation data is low, it is called “underfitting.” In 
this case, the model has not learned the patterns in the training dataset and cannot generalize to 
the unseen validation data. The goal is to balance the model’s performance between the training 
and validation sets, so the error rate of both groups goes down during the training process.  
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Figure 5.12  Training and validation losses illustrating overfitting 

The idea of splitting data into two subsets and using one for training and the other for validation 
would prevent us from using validation data for training. Given our dataset size is relatively 
small, all information contained therein should be used for training. Therefore, initially, a five-
fold, stratified cross-validation was selected to find the best hyperparameters of the model.  

Lastly, the model was trained on the entire dataset with the optimized hyperparameters found in 
cross-validation. In k-fold cross-validation (see Figure 5.13), the data is split into k folds. 
Subsequently, each time k-1 folds are used for training and the remaining one-fold for validation. 
This process will be repeated k times, and each time a different fold will be used for the 
validation while the other folds are used for training. In this validation scheme, every sample in 
the dataset is used once for validation. In this way, k-fold cross validation ensures our validation 
set is not biased. The term “stratified” means that different target classes will be proportional in 
all folds. 

Figure 5.13  K-fold cross-validation 

Also, an “epoch” is a term used in machine learning, indicating the number of passes of the entire 
training dataset completed by the machine-learning algorithm. Our training process was 
continued for 100 epochs nearby until the validation loss no longer improved (Figure 5.14).  
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Figure 5.14  Training and validation loss over epochs of training 

5.5.6 Alternative Network Architectures 

Several variations of the primary network architecture were considered as alternatives before 
choosing the best-performing model. Table  summarizes the top four architectures evaluated in 
this study in addition to the main model. Alternative model architectures are shown in Figures 
5.15 through 5.18. All models were trained on the same folds with near-optimal hyperparameters. 
Their accuracy is shown in Table  is an average of three runs for each model.  

Table 5.8  Summary of alternative model architectures 
Alternative 

model Summary Accuracy % Parameters 

1 
Soil Index one hot encoded; 
separate convolutions on soil index 
and NSPT 

75.9 4,911 

2 
Similar to alternative 1 except 
embeddings instead of one-hot-
encoding 

78.7 7,299 

3 Similar to alternative 2 without 
embeddings 76.7 6,630 

4 
Soil Index as is; one convolution 
over inputs after concatenation of 
different variables 

74.9 3,804 

 
Alternative Model Architecture No. 1 

This model shown in Figure 5.15 is dissimilar to the main model from two aspects (1) the 
categorical feature Soil Index is being encoded using a one-hot-encoding technique as opposed to 
embedding in the primary model, and (2) convolutional layers are applied separately to soil index 
encodings and subsurface information before concatenation with each other and distance to be fed 
into the feed-forward section of the model.  



 

86 
 

 

 

 

 

Figure 5.15  Alternative model architecture no. 1 

Alternative Model Architecture No. 2 

Among the alternatives assessed in this study, alternative no. 2, shown in Figure 5.16, is most 
similar to the main model. The only difference is that this alternative has separate convolutions on 
the Soil Index and subsurface information. In contrast, the main model has only one convolution 
layer after concatenating soil index and subsurface input data. Given this alternative had an 
accuracy 78.7% while that of alternative no. 1 was 75.9% shows the performance gain of using 
embedding layers instead of the one-hot encoding technique. A similar architecture to the main 
model that uses one-hot-encoding instead of embeddings was also considered. However, it was 
not among the top four most performing alternatives; hence it is not listed here.  

Figure 5.16  Alternative model architecture no. 2 
 

 

Alternative Model Architecture No. 3 

The alternative model shown in Figure 5.17 does not encode the categorical feature Soil Index 
before passing it into the convolutional layer. Because the soil index defined by Gillins & Bartlett 
(2014) has an ordering to it, with fine-grain soils being the largest index and coarse grain soils 
with the smallest, the soil index is an ordinal categorical feature itself, which could be used 
without encoding. The purpose of this model architecture is to evaluate performance if the Soil 
Index is not encoded. 

Alternative Model Architecture No. 4 

This alternative model shown in Figure 5.18 is similar to alternative 3 in that it does not use an 
encoding technique for the Soil Index. In regard to the convolutional layer, it is similar to the 
best-performing model.  
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Figure 5.17  Alternative model architecture no. 3 

Figure 5.18  Alternative model architecture no. 4 

5.6 Results and Discussion 

5.6.1 Possible Model Outcomes: 2 or 3 

The CNN model developed in this study is a multiclass classification model with three possible 
outcomes (i.e., within, on the boundary, and outside the lateral spread zone). To use this model in 
the probabilistic framework, one can combine the probabilities of being inside and on the 
boundary of lateral spread. This probability also represents the probability of lateral spread. One 
minus this probability is the probability of being outside the lateral spread zone or not having a 
lateral spread. This is because all three outcomes considered in this model have disjoint 
probabilities and hence, based on the addition rule of probability and that the joint probability of 
inside and on boundary of lateral spread zone is zero, to obtain probability of lateral spread those 
two probabilities could be simply added together. An analogy to this is outcomes of rolling a dice. 
There are six possible disjoint outcomes to that event. However, this event could be differently 
stated as observing an even number versus an odd number. 

 
5.6.2 Performance 

The performance of our proposed multiclass CNN model is given as an extended confusion 
matrix in Table 5.9. This matrix shows true predictions as on-diagonal elements and false 
predictions as off-diagonal elements. A brief explanation of the evaluation metrics used in this 
section is given in Appendix A. Classification based on the probabilities outputted from our 
proposed CNN model is based on the argmax function, i.e., the class with the highest probability 
is assigned to the pair as the final prediction. The overall accuracy of our proposed model from 
the confusion matrix is 81.1%, which is based on a trained model chosen to eliminate the effect of 
uncertainty associated with the folding strategy, which is discussed subsequently. As can be seen, 
the model accuracy is not uniform for all classes; the model has the highest accuracy in predicting 
the inside lateral spread zone class and the lowest accuracy in predicting the outside lateral spread 
zone class. This effect might be attributed to the class imbalance in the training data, as there are 
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almost four times more inside pairs in the training dataset when compared with outside pairs. 
Hence, this performance unbalance is somewhat expected because the model learns the majority 
class better than other classes found in the dataset. Also, this class imbalance should be 
considered in applying our proposed model. According to Table 5.9, the boundary class was 
misclassified 17 times as inside class, while only eight times as outside class. This comparison 
means our model might have an internal bias toward favoring inside class over outside class 
predictions. This bias may result in unintended over predictions of the inside class. 

 

 

 

 

Table 5.9  Confusion matrix of out of fold predictions, multiclass classification 
  Prediction  

  Outside Boundary Inside Accuracy % 

Ground 
truth 

Outside  44 12 10 66.7 

Boundary 8 66 17 72.5 

Inside  7 20 207 88.5 

As discussed earlier, the boundary and outside classes could be combined to convert the 
multiclass classification problem into a binary classification problem (i.e., lateral spread 
triggering versus not triggering). The performance of our proposed model, in this case, is given in 
Table 5.10. The overall accuracy of the binary classification problem goes up to 90.5% compared 
with the overall accuracy of 81.1% for the multiclass classification. The decrease in 
misclassification for the inside and boundary classes is trivial (i.e., the 17 boundary pairs 
previously misclassified as inside pairs are correctly predicted by the binary classification). 
Similarly, the 20 inside pairs previously misclassified as part of the boundary class are correctly 
predicted for the binary classification case. 

Table 5.10  Confusion matrix of out of fold predictions, triggering 

 
Prediction  

Positive Negative Accuracy % 

Ground 
truth 

Positive 310 15 95.4 

Negative 22 44 66.7 

Precision and recall scores are valuable measures of predictive success when the classes are 
imbalanced. The precision score represents the proportion of positive identifications (i.e., the 
prediction was correct). The precision score of the binary classification referred to as a “lateral 
spread” triggering prediction, is 93.4% (Table 5.10.) The recall score, which represents what 
proportion of actual positives was identified correctly, is 95.4%. Either of those scores could be 
more important, depending on the relative importance of false positives versus false negatives. 
Also, a more comprehensive evaluation metric that could be used is the geometric mean of the 
precision and recall scores, called the F Score. The F score of the proposed model is 94.4%.  
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It is important to note that using an argmax function based on probabilities is equivalent to setting 
the output probabilities at a 0.5 threshold for the binary classification case. Thus, the values 
reported in Table 5.10 are based on using argmax function, which is threshold dependent. 
However, for future application of our model, a different threshold (i.e., other than 0.5 could) be 
used if the precision score is preferred over the recall score or vice versa.  

5.6.3 Uncertainty 

Although the accuracy of the one five-fold stratified cross-validation of our best performing 
model is about 82%, given our dataset is relatively small, the reported model performance could 
be affected by how data was split into different folds. Therefore, the model-training process was 
repeated 100 times. Each time, samples were distributed differently in folds, and accuracy was 
measured to quantify the uncertainty associated with our cross-validation strategy. It was found 
that the accuracies, shown in Figure 5.19, have an approximately bell-shaped normal distribution 
with a mean of 81.4% and a standard deviation of 1.6.  

 

 

 

 
  

5.6.4 Mathematical Representation of Soil Types 

An interesting observation from exploring alternative network architectures is that the same 
model not using any encoding technique performed better than the one using one hot encoding. 
This better performance might be explained by the fact that the soil index defined by Gillins and 
Bartlett (2014) is based on grain size, and therefore, this ordering is meaningful. One hot 
encoding, in a sense, removes the ordering between classes and introduces this assumption to the 
model that each class has the same Euclidean distance of 1 to all other classes. For example, soil 
index 1 has a Euclidean distance of one to soil index 2 and a distance of five to soil index 6, if not 
encoded, while in the case of one hot encoding, both these distances are equal to one. Therefore, 
the higher accuracy in case of no encoding than one hot encoding means the ordering introduced 
by Gillins and Bartlett (2014) contains useful information to the model that could help 
performance.  

Figure 5.19  Uncertainty associated with cross-validation 
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While one hot encoding was not an effective technique, embeddings proved to be better than no 
encodings by giving a 2% accuracy boost. Word embedding such as GloVe (Pennington et al. 
2014) is one of the most popular representations of document vocabulary. It can capture the 
context of a word in a document, semantic and syntactic similarity, relation with other words, etc. 
The embedding weights are trainable parameters of a model and are learned during training. By 
training the model, soil indices are placed into a three-dimensional Euclidean space where the 
distance between classes is optimized based on the data to represent the relationship between 
classes. For example, the distance between soil index 6 (clay) and soil index 5 (silt) might not be 
equal to that between soil index 1 (gravel) and soil index 2 (sand). Figure 5.20 shows the 
Euclidean distance between soil index 1 (GM) and all soil indices comparing the soil index 
introduced by Gillins and Bartlett (2014) and embeddings found in this study. As can be seen in 
the case of soil index, the distance between gravelly soil with other soil indices increases linearly 
with grain size. On the other hand, in the embeddings found in this study, the distance between 
gravelly soil and clay soil is smaller than the distance between gravelly soil and sandy soils. This 
finding surprisingly matches the fundamentals of liquefaction and lateral spread in the sense that 
gravelly and clay soils are both less likely to experience liquefaction than sandy soils.  

  
Figure 5.20  Euclidean distance between GM and other soil types in (a) Soil Index defined by 

Gillins and Bartlett (2014) and (b) our proposed model 
 

 

 

 
  

The mathematical representation of soil type could help the predictive power by allowing it to 
learn nonlinear relationships. For instance, assuming liquefaction susceptibility as a linear 
function of only soil type  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) =  𝛼𝛼𝛼𝛼 + 𝛽𝛽 (5.13) 

where 𝛼𝛼 and 𝛽𝛽 = function coefficients; and S = soil type. Suppose the soil index introduced 

by Gillins and Bartlett (2014) is used for all positive 𝛼𝛼’s, while sandy soils have higher 
susceptibility than gravelly soils. In that case, clay soils also have higher susceptibility than sandy 
soils. The opposite is true for all negative 𝛼𝛼’s. On the other hand, using the latent vectors 
presented in Table 5.11, a linear function similar to Eq. (5.13) could be formed so that sandy soils 
have higher susceptibility than clay and gravelly soils. The latent vectors found in this study are 
trained in the context of liquefaction and lateral spread triggering and could be used in 
conjunction with or as an alternative to Gillins and Bartlett (2014) soil index in liquefaction and 
lateral spread analysis predictive models.  
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Table 5.11  Learned latent vectors of soil types 
Typical soil descriptions General 

USCS 
symbol 

Latent vector 

Silty gravel with sand, silty 
gravel, fine gravel 

GM (0.04199022, 0.0477515, 0.01456286) 

Very coarse sand, sand and 
gravel, gravelly sand 

GM-SP (0.28888193, 0.14305559, 0.04663583) 

Coarse sand, sand with some 
gravel 

SP (0.28888193, 0.14305559, 0.04663583) 

Sand, medium to fine sand, sand 
with some silt 

SP-SM (-0.34709752, 0.39776, 0.22838174) 

Fine sand, sand with silt SM (-0.29968923, -0.5980874, 0.23763911) 
Very fine sand, silty sand, dirty 
sand, silty/clayey sand 

SM-ML (-0.29968923, -0.5980874, 0.23763911) 

Sandy silt, silt with sand ML (0.17052442, -0.1486131, -0.3012689) 
Silty clay, lean clay CL (0.3287804, -0.004597, -0.02813338) 

 

 

 

 
  

5.6.5 Effect of Distance between Boreholes in a Pair 

The dataset was split into 15 buckets based on boreholes distance, and each bucket had a range of 
approximately 10 meters to investigate the effect of boreholes distance in pairs. The accuracy of 
the predictions and the number of samples in each bucket were measured for both the multiclass 
classifier and the triggering model. The results are shown in Figure 5.21.  

  
(a) (b) 

Figure 5.21  Effect of boreholes distance in a pair 

As can be seen, none of the buckets has significantly lower or higher accuracy. Neither is a 
monotonically increasing or decreasing pattern in accuracy with respect to borehole distance. 
Thus, we concluded that the proposed CNN model does not have an internal bias against closer or 
more distant boreholes.  
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5.7 Conclusion 
 

This study expanded the conventional probabilistic framework for predicting the magnitude of 
liquefaction-induced lateral spread by adding a new conditional probability term to account for 
the probability of lateral spread given liquefaction. A multiclass convolutional neural network 
classifier was then designed and developed to model the added term to the probabilistic 
framework by classifying a borehole pair as (1) within, (2) on the boundary, or (3) outside of the 
lateral spread zone. We proposed that this scheme could be used as a binary triggering classifier 
to predict the probability of lateral spread triggering given liquefaction. The accuracy of our 
proposed multiclass classifier and triggering models are, respectively, 81.4% and 90.0%.  

As part of this study, a new mathematical representation of soil types was presented. These latent 
vectors are trained in the context of liquefaction and lateral spread and resulted in a 2% boost in 
accuracy compared to the soil index developed earlier by Gillins and Bartlett (2014). Although 
this is a modest improvement, the approach may be helpful in future modeling endeavors. For 
example, these soil type latent vectors could be used in conjunction with or as a substitute for soil 
index in developing predictive models for liquefaction or its consequences, including lateral 
spread and settlement.  

The proposed CNN model tends to slightly overpredict the probability of triggering lateral spread. 
This tendency should be kept in mind when applying the model. Finally, the uncertainty of the 
CNN model associated with the size of the dataset and folding strategy were investigated. The 
model’s accuracy is expected to have a bell-shaped distribution with a mean of 81.4 percent and a 
standard deviation 1.6 percent.
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APPENDIX A. EVALUATION METRICS 

Confusion Matrix 

Confusion matrix or error matrix is a specific table layout in the field of machine learning that 
allows visualization of the performance of a supervised algorithm specifically for the problem of 
classification. Each row of the matrix represents the instances in an actual class while each 
column represents the instances in a predicted class or vice versa. Table A.1 shows an example of 
confusion matrix for a classification problem with two classes. It has four main components to it 

• True positive (TP): actual class is positive and model correctly predicts it as positive, 
• False negative (FN): actual class is positive but model falsely predicts it as negative; also 

known as Type II error, 
• False positive (FP): actual class is negative but model falsely predicts it as positive; also 

known as Type I error, and 
• True negative (TN): actual class is positive and model correctly predicts it as positive. 

Table A.1. An example confusion matrix 
Predicted class 

Positive Negative 

Actual class 
Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

Accuracy
Accuracy of a model is the fraction of true predictions divided by count of all samples

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁 
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑎𝑎𝑠𝑠𝑦𝑦 = 

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁 
(A.1) 

Precision 
Precision is the fraction of relevant  instances among  the retrieved instance  

𝑃𝑃𝑟𝑟𝑒𝑒𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑙𝑙𝑛𝑛 = 
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 
(A.2) 

Recall 
Recall, also known as sensitivity, is the fraction of retrieved relevant instances among all 

relevant instances 
𝑅𝑅𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙 = 

𝑇𝑇𝑃𝑃 

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 
(A.3)  

F1 score 
F-measure or F1 score is a measure that combines precision and recall i.e. F1 score is the 

harmonic mean of precision and recall 

𝐹𝐹 = 2 × 
𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑙𝑙𝑛𝑛 × 𝑟𝑟𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙 
𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑙𝑙𝑛𝑛 + 𝑟𝑟𝑒𝑒𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙 

(A.4)  
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APPENDIX B. LIQUPY: OPEN-SOURCE PYTHON LIBRARY FOR 
SOIL LIQUEFACTION AND LATERAL SPREAD 
ANALYSIS 

 

 

 

Introduction 

The prediction of soil liquefaction and its consequences (i.e. ground deformation) is among the 
most complex problems in geotechnical engineering. Many researchers have conducted research 
to evaluate various aspects of this phenomena. Several analytical, empirical, numerical, and semi-
empirical methods have been developed for liquefaction triggering and prediction of horizontal 
ground displacements, settlement, etc.  

Python was selected as the programming language because it is one of the most popular 
programming languages among the scientific community. It has been a very appealing choice for 
exploratory data analysis and algorithmic development because of its high-level interactive nature 
and its matured ecosystem of scientific libraries (Dubois, 2007; Milmann and Avaizis, 2011). 

LiquPy uses this rich environment to provide state-of-the-art implementations of many well-
known soil liquefaction and lateral spread methods, while maintaining an easy-to-use interface 
tightly integrated with the Python programming language. This answers the growing need for soil 
liquefaction and lateral spread analysis by non-specialists. 

LiquPy is distributed under the New BSD License, details of which are available at 
https://github.com/LiquPy/LiquPy/blob/master/license.txt 

Project Vision 

We envisioned to develop consistent quality code with comprehensive documentation to which 
the community could contribute on an ongoing basis and release it under BSD licensing.  

• Code quality - Emphasis is put on providing solid implementations rather than as many 
features as possible. We strive to use consistent naming for the methods, variables, and 
arguments used throughout a strict adherence to the Python coding guidelines and numpy 
style documentation.  

• BSD licensing - Most of the Python ecosystem is licensed with non-copyleft licenses. 
While such policy is beneficial for adoption of these tools by commercial projects, it does 
impose some restrictions. 

• Community-driven development - We base our development on collaborative tools 
such as git, github and public mailing lists. External contributions are welcome and 
encouraged.  

• Documentation - LiquPy provides documentation for all objects, methods, functions, 
and variables as well as examples of real-world applications if applicable. 
 

 
Underlying Technologies 

Despite that it is strived to develop LiquPy as independent as possible, it is based on top of some 
of existing extensively developed and widely used libraries of Python namely Numpy, Pandas, 
Scikit-learn and Matplotlib. 

• Numpy - The base data structure used for data and model parameters. Input data is 

https://github.com/LiquPy/LiquPy/blob/master/license.txt
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presented as numpy arrays, thus, integrating seamlessly with other scientific Python 
libraries. Numpy’s view-based memory model limits copies, even when binding with 
compiled code (Van der Walt et al., 2011). It also provides basic arithmetic operations. 

• Pandas - Tabular data such as subsurface data or other data sets are presented as Pandas 
DataFrame to make use of its high-performance, easy-to-use and interpret data structures 
and data analysis tools for Python programming language.  

• Scikit-learn - With the advent of machine learning and new statistical predictive models, 
many of empirical models exploited them to predict horizontal ground motions due to 
lateral spreads. Though these methods seem promising in accuracy, they are not easy to 
implement or reproduce. The neural network presented in Wang and Rahman (1999) is an 
excellent example of such a problem. They evaluated applicability of artificial neural 
networks on prediction of horizontal ground displacement but their result is not 
reproducible. The same issue is associated with Garcia et al. (2008). Moreover, more 
complex models such as deep neural networks or random forests could not be elaborated 
in papers in a way that make the reproducable. Scikit-learn which is a Python library for 
machine learning could help save trained predictive models and use them to make new 
predictions. 

• Matplotlib – Graphical representations of LiquPy uses Matplotlib, a Python plotting 
library which is used to produce publication quality figures in a variety of formats. 
 

 

 
  

Benefits 

The LiquPy have several benefits for the community including its transparency and 
reproducibility, enforcing limitations, ease of use, and verification and validation.  

• Transparency and reproducibility - Being an open-source library, LiquPy enables 
researchers to go over the methods themselves and verify/reproduce the results of 
different approaches with ease. Most of the complex machine learning models cannot be 
described in papers properly. This could be the reason why all the artificial neural 
networks developed for horizontal ground displacements of lateral spreads have only one 
layer with a few nodes. The LiquPy library allows researchers to save their most complex 
trained models into LiquPy for others to make predictions and reproduce the exact 
results. 

• Enforcing methods’ limitations - In many applications, the end users (researchers 
and/or engineers) simply apply the methods without paying attention to the limitations of 
each method. Using LiquPy library, one can make sure that the limitations of each 
method is enforced and users will at least get a warning otherwise. Not paying attention 
to the limitations of each method could result in systematic 
underprediction/overprediction and consequently in disaster / high cost of ground 
modifications. One of such instances is the extrapolation of empirical methods. 

• Ease of use - LiquPy provides researchers/engineers with prefabricated functions of the 
soil liquefaction and lateral spreads analysis methods which would save them the 
programming efforts and the time required to repeat the researches done earlier by others. 

• Validation and verification - Since LiquPy is open-source and transparent to everyone it 
could be verified by everyone and will be updated over time based on the feedbacks from 
researchers who use it and those whose methods are implemented into LiquPy. Another 
benefit it contains is that erratum to papers could be easily included in the library while 
otherwise they may be missed by researchers. 
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Existing Features and Future Development Plan 

Currently, the following simplified liquefaction triggering and lateral spread analyses are 
available in LiquPy: 

Simplified liqufaction triggering analysis: 
• Cyclic resistance ratio based on Boulanger and Idriss (2004) & Boulanger and 

Idriss (2008) 
• Adjustments for fines content from (1) Boulanger and Idriss (2004), and (2) 

Cetin et al. (2004) 
• Shear stress reduction factors available from (1) Golesorkhi 1989, (2) Idriss 

1999, and (3) Liao & Whitman 1986 
• Magnitude scaling factor from Idriss (1999) 
• Overburden correction factor from Boulanger and Idriss (2004) 
• Triggering correlation of liquefaction in clean sands from Idriss and Boulanger 

(2004) 
• Probabilistic approaches from Cetin et al. (2004) 

Lateral spread analysis: 
• Multi Linear Regression (MLR) (Youd, Hansen, & Bartlett 2002) 
• Multi Linear Regression (MLR) (Bardet et al. 2002) 
• Genetic programming (Javadi et al. 2006) 
• Evolutionary-based approach (Rezania et al. 2011) 
• Artificial Neural Network & Genetic Algorithm (Baziar & Azizkani 2013) 
• Multivariate Adaptive Regression Splines (MARS) (Goh et al. 2014)  
• Lateral Displacement Index (LDI) and settlement (Zhang et al. 2004) 

 

 

 
 

 

However, the authors are consistently adding more features. Researchers and engineers could also 
easily merge their codes into the library for the community to use.  

Conclusion 

LiquPy exposes a wide variety of soil liquefaction and lateral spread methods using a consistent, 
task-oriented interface and enables easy comparison of methods for a given data point or set. 
Since it is implemented in the high-level Python programming language, it can be easily 
integrated into other applications such as development of liquefaction potential hazard mapping. 
Besides, this library is transparent, easy-to-use and enforces methods’ limitations. 
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APPENDIX C. MONTE-CARLO BASED SENSITIVITY ANALYSIS 
OF EMPIRICAL MODELS 

Figure C.1  Results of Monte Carlo analysis on sloping-ground case of Bardet et al. (2002) 
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Figure C.2  Results of Monte Carlo analysis on Free-face case of Youd et al. (2002) 
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Figure C.3  Results of Monte Carlo analysis on sloping-ground case of Youd et al. (2002) 
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Figure C.4  Results of Monte Carlo analysis on Free-face case of Javadi et al. (2006) 
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Figure C.5  Results of Monte Carlo analysis on sloping-ground case of Javadi et al. (2006) 
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Figure C.6  Results of Monte Carlo analysis on Free-face case of Rezania et al. (2011) 
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Figure C.7  Results of Monte Carlo analysis on sloping-ground case of Rezania et al. (2011) 
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