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ABSTRACT 

The emergence of a new mode, mobility as a service (MaaS), has, to date, been most often characterized 
as the ride-hailing mode provided by companies such as Uber and Lyft. This study focuses on MaaS as a 
transit access mode. This mode is also referred to as microtransit. For this research, we describe the 
technical modeling steps required to account for this new transit access mode. Using Wasatch Front 
Travel Demand Model as a case study, this project details the steps involved so this work can be carried 
forward. Further, using the microtransit pilot project launched in Salt Lake City, Utah, we applied big 
data techniques to model the spatio-temporal pattern of microtransit activities. This work is significant as 
the research period has undergone the impact of COVID-19, and it represents the first of its kind to offer 
insights into how COVID-19 altered travel behaviors. Specifically, eigendecomposition delineated the 
homogeneity and heterogeneity of travel patterns across temporal dimensions. We identified first-
mile/last-mile trips as a major source of variance in both pre- and post-COVID periods and that transit-
dependent users prove to be inelastic despite the threat of COVID-19. The k-clique percolation method 
detected possible community formations and tracked how these communities evolved during the 
pandemic. In addition, we systematically analyzed overlapping communities and the network structure 
around shared nodes by using a clustering coefficient. The workflow developed in this research broadly is 
generalizable and valuable for understanding the unique spatio-temporal patterns of microtransit. The 
framework can also help transit agencies with performance evaluation, regional transport strategies, and 
optimal vehicle dispatching. 
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EXECUTIVE SUMMARY 

 
This research investigated the recent research in modeling the Mobility as a Service (MaaS) as an access 
mode to transit and found several studies that had researched various aspects of MaaS, but mostly as a 
stand-alone mode (e.g., Uber/Lyft) as opposed to an access mode to transit. Simultaneous with this 
research is a pilot project initiated by the Utah Transit Authority (UTA) in partnership with Via to provide 
an on-demand ride to light rail and commuter rail stations within a prescribed area. This service, often 
referred to as microtransit, is technology-enabled shared transportation that operates in between fixed-
route transit and ride-hailing. The design of microtransit allows for integration into the current public 
transit system. Users often take advantage of microtransit to complete first mile/last mile connections to 
the larger transit system. Previous studies help deepen our understanding of microtransit and its 
dynamics. However, there is very little work concerning the spatio-temporal patterns of microtransit trips 
and the causal factors contributing to these patterns, especially under the impacts of COVID-19. This 
project leverages trip data from UTA’s microtransit pilot for developing a methodological framework that 
unravels the spatio-temporal patterns of microtransit activities in the region. The framework utilizes 
eigendecomposition to uncover the rhythms and structures of microtransit trips. Using seven months of 
microtransit data, we constructed the spatiotemporal patterns of microtransit activities in pre- and post-
COVID periods, respectively. Then, we systematically analyze how these patterns deviate from the 
average pattern in both periods and what possibly caused such variation. We use eigendecomposition to 
unravel the hidden temporal structures and k-clique percolation theory to explore the potential spatial 
communities formed in the service region. Also, for both periods, we intend to determine which locations 
are connected, how strong the connections are, what roles shared nodes (by different communities) play 
in different network structures, and how patterns evolve as COVID-19 progresses. 

In the meantime, Utah Department of Transportation (UDOT) and Wasatch Front Regional Council 
(WFRC) have initiated a project to refactor the mode split model of the Wasatch Front Travel Model. The 
findings created under this research can be used to support this effort to refactor the mode split model.
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1. INTRODUCTION 

1.1 Problem Statement 

The past few years have witnessed an explosive growth in new transportation modes. These new modes 
are leveraging digital technologies to offer efficient and convenient mobility services. The new mobility 
services include a wide variety of on-demand services, also referred to as “Mobility as a Service” (MaaS), 
ranging from short-term rentals of cars, bikes, and scooters to the peer-to-peer provisioning of 
transportation services. Although the share of these new mobility services is still small, a significant 
increase in their popularity can be expected due to reduced waiting times, competitive fares, and the 
promise of a one-seat ride. Transportation network companies (TNCs) such as Uber and Lyft are among 
the most successful of these mobility services. In 2018, 4 billion TNC rides were estimated in United 
States compared with 0.5 billion taxi rides. Uber operates in over 785 metropolitan areas worldwide and 
is estimated to have 110 million users across the world (Statista, 2020).  

The success and growing popularity of the TNCs are largely due to a favorable regulatory environment, 
advancement of digital technologies, and innovative business models. Most TNCs are designed around 
smartphone platforms that allow travelers to request a ride at the push of a button, map estimated waiting 
time, and automatically pay by credit card. The platform estimates the travel cost based on travel distance, 
travel time, travel period, driver supply, and customer demand. Smartphone apps, treating drivers as 
independent contractors and requiring them to buy and maintain their vehicles and personal insurance, 
help to cut costs when compared with conventional taxi service. As a result, TNC fees are generally 
competitive with fares offered by traditional taxi service. Recently, new shared-ride services offered by 
TNCs, such as UberPool and LyftLine, are making TNCs competitive with traditional public 
transportation modes. One study estimated similar ridership for TNCs and public transit at the end of 
2018 (Schaller, 2018). 

Considering additional benefits and convenience that these new on-demand mobility services offer, they 
have the promise to significantly alter the transportation landscape as we know it. To date, most long-
range transportation plans in Utah have not accounted for new mobility services and their impact on 
public transportation. This highlights the need for research to shed light on the impact of MaaS on transit 
ridership.  

Microtransit, as a designated mode of MaaS, has been gaining popularity over the years. It is technology-
enabled shared transportation that operates in between fixed-route transit and ride-hailing. It leverages 
rider aggregation and routing algorithms to group customers traveling within the service zone in similar 
directions in real time. Moreover, microtransit often expects customers to walk a short distance to 
common pick-up/drop-off locations. Thus, the service is transit-like but more nimble when compared 
with traditional public transit. As a technology-enabled on-demand service, microtransit shares many 
similarities with other services such as ride-hailing and paratransit. The platform collects requests from 
personal devices like smartphones then dynamically dispatches available vehicles to fulfill those requests. 
However, one substantial difference exists. The design of microtransit allows for integration into the 
current public transit system. Users often take advantage of microtransit to complete first mile/last mile 
connections to the larger transit system. 

For microtransit, the global launch of pilot programs over the past five years (Haglund et al., 2019; 
Westervel et al., 2018) seeks to provide (and improve) first/last mile connections to fixed transit stops and 
stations, replace underperforming bus routes, provide coverage in areas without fixed-route service, and 
extend the hours of operation for existing bus services. Many studies analyze the overall performance of 
microtransit pilot programs (Haglund et al., 2019; Volinski, 2019) or microtransit vehicles (Ongel et al., 
2019). For example, Haglund et al. (2019) systematically evaluated the performance of the Kutsuplus 
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pilot in Helsinki, Finland. The evaluation framework used aggregated measures and spatio-temporal 
metrics, including the average annual number of passengers, annual price per journey, user age class, and 
distribution of hourly departure/arrival trips for analysis. Volinski (2019) provided a case-based review 
and synthesis of more than 20 transit agencies that had implemented or intended to launch a microtransit 
service. This review included evaluations of underlying motivations, planning, design, marketing 
strategies, technology, and performance metrics. Ongel et al. (2019) evaluated the impacts of novel 
vehicle technologies on vehicle acquisition costs. This evaluation included lifecycle and end-of-life cost 
estimates for electric microtransit vehicles and conventional buses operating in Singapore. 

Meanwhile, a new challenge has emerged for public transit. COVID-19, a novel coronavirus disease, 
became a global pandemic in 2020. Nearly 90% of the American adults reported that COVID-19 
impacted their personal lives, and 44% of them claimed their lives had changed dramatically (Pew 
Research Center, 2020). Due to its collective nature, public transit has been hit even harder (Liu et al., 
2020; Wilbur et al., 2020; Yi et al., 2021). In New York City, the average subway and commuter rail 
ridership declined by 80%, and bus ridership dropped by 50% (Gao et al., 2020a, 2020b) in the first week 
of July 2020 compared with 2019. In Washington, DC, subway and bus ridership declined by 90% and 
75%, respectively, by the end of March 2020 (WMATA, 2020) compared with their typical values. In 
Utah, three major public transit modes – bus, FrontRunner, and TRAX – have witnessed a massive 
decline in total ridership upon the pandemic outbreak (Dillman & Posvistak, 2020). The week after the 
state of emergency was declared, average ridership declined by 56% compared with the previous week 
(Dillman & Posvistak, 2020). Similarly, there was a substantial downturn in microtransit use throughout 
Utah after the COVID-19 outbreak. 

1.2 Objectives 

The first objective of study is to create a methodological pipeline to effectively model MaaS as one of the 
first-mile/last-mile options for accessing transit. Transit access options incorporated into the current 
Wasatch Front model are park-and-ride, kiss-and-ride, and non-motorized). Addressing this important 
aspect of MaaS will give a more complete answer to the question of how this mode will affect future 
travel demand. The second objective of this study is to take a closer look at microtransit service, and to 
develop a modeling approach to capture such service, so that it can be applied within the planning 
modeling frameworks used for estimating travel demand. 

This study is important for three reasons. First, because microtransit helps fill gaps between fixed-route 
systems and ride-hailing, it is essential to understand its underlying spatio-temporal patterns for a 
community. In short, does the service provide connectivity to the places that people want to go and when 
they want to get there? Second, the costs of delivering microtransit services can be substantial, and there 
are no guarantees that the service will attract riders. For example, the now-bankrupt Bridj service in 
Kansas City served only 1,480 riders during its year of operation, with the Kansas City Area 
Transportation Authority (KCATA) spending $1.5 million to subsidize the service. Considering that the 
first 10 rides were free for Bridj users, this translated into a subsidy of $1,000 per ride (Schmitt, 2018). 
Thus, there are real financial implications for communities offering microtransit services. Developing a 
framework that can provide the geospatial intelligence required for improving system performance is 
crucial for service sustainability. Third, while the influence of COVID-19 on microtransit is easily 
observable in Utah, there is no analysis of the overall effects. This research focuses on the underlying 
travel patterns associated with microtransit and their changes during the pandemic. Our findings could 
help transit agencies understand the decline in microtransit ridership and the relationships between the 
public health crisis and microtransit demand. 
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1.3 Outline of Report  

The rest of the report is structured as follows. Chapter 2 summarizes the literature review. The proposed 
methodology, including the approach to modeling MaaS and our methodological framework for 
uncovering the microtransit activity pattern, are explained in Chapter 3. Chapter 4 details the data used 
in this study and their pre-processing. Finally, we offer results in Chapter 5 and conclude with a summary 
of our findings and key contributions of the study.  
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2. LITERATURE REVIEWS 

Deployment of smartphone technologies in recent years has provided the technology platform for shared 
mobility services. MaaS as a viable mode is new and the research community has just begun to 
investigate the supply and demand characteristics of this mode. Several studies have investigated the 
impacts of user’s characteristics, geographic context, and built environment factors on the adoption rate of 
MaaS. For example, Clewlow and Mishra (2017) conducted a comprehensive travel and residential 
survey in seven major U.S. cities with a representative sample of their urban and suburban populations. 
They found that the adoption rate of TNC services is approximately double among college-educated 
individuals compared to those without any college degree. Survey results revealed that 29% of Americans 
living in urban areas had used ride-hailing services in comparison with 15% of those living in suburban 
areas.  

Kooti et al. (2017) reported while younger TNC riders tend to take frequent, shorter rides, older ones are 
more likely to take infrequent, longer rides.  

In another study, Alemi et al. (2018) studied the lifestyle of TNC users to identify the factors impacting 
the adoption rate of ride-hailing services. They revealed that highly educated independent millennials who 
live in core urban areas without owning personal vehicles and without children have the highest adoption 
rate. They also reported a positive correlation between adoption rate of these services and the urbanization 
level of the neighborhood. Dias et al. (2017) estimated a bivariate ordered probit model to investigate the 
use of MaaS based on a survey dataset derived from a 2014-2015 Puget Sound Regional Travel Study. 
They found that users of such services are likely to be young, well-educated, higher-income, employed, 
and residing in higher density neighborhoods. The presence of children is found to reduce ride-hailing and 
carsharing usage among low and middle-income households. Results also revealed that households 
owning vehicles are less likely to use carsharing services and households residing in a high-density 
location are more likely to use both ride-hailing and carsharing services compared with their counterparts 
residing in low density areas. Several other studies also reported that ride-hailing users are more likely to 
own fewer cars (Conway et al., 2018; Hampshire at al., 2017). 

In more recent studies, Yu and Peng (2019) indicated that population density along with road and 
sidewalk densities significantly impact the demand for TNC services. Xie et al. (2019) developed a nested 
framework to model the behavior of a local on-demand mobility service in the Boston-Cambridge region 
considering impacts of subscription services, service access, menu options and opt-out choices and their 
connections. The proposed framework is utilized to model the demand of the Tripod, an on-demand 
service that offers incentives for more energy efficient travel options through a real-time travel menu 
(Azevedo et al., 2018). They reported higher Tripod market penetration in lower income population 
segments. Moreover, Tripod’s usage is found to be more associated with trips that have lower time 
constraints. 

In summary early adopters of on-demand mobility services are found to be well-educated individuals 
living in urban areas. These services are considerably more popular among young adults who are heavy 
users of smartphone technology and related apps. Considering additional benefits that MaaS offers, it can 
draw a significant share away from conventional transportation modes (Haghighi et al., 2019). On the 
other hand, MaaS has the potential to increase transit ridership by filling first/last mile gaps in transit use. 
Several studies attempted to unveil whether MaaS competes with or complements transit use in urban 
areas. However, there is no consensus among researchers on the role that MaaS plays in serving public 
transportation. For example, while some studies reported that carsharing can complement the use of 
public transit (Firnkorn and Muller, 2011; Costain et al., 2012), another study showed that one-way 
carsharing can be a substitute for public transportation (Le vin et al., 2014).  
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Microtransit offers demand-responsive service to customers to initiate any trip start and end within a 
designated service area (FTA, 2021). This structure is similar to many mobility-based services, including 
bike-sharing and carsharing programs. Given the fact that mobile devices enable all these programs and 
one can retrieve a large amount of trip data from these services, there have been a myriad of studies to 
analyze spatio-temporal trip patterns (Alonso-González et al., 2018; Dong et al., 2018; Xu et al., 2019). 
For example, Xu et al. (2019) studied the spatio-temporal patterns of bike-sharing in Singapore. They 
associated the use patterns with built environment indicators such as floor area ratio (FAR) of residential 
buildings, FAR of commercial buildings, and land use mixture. In other work, Dong et al. (2018) studied 
both the service patterns and individual behavior patterns of internet-based ride-sharing services based on 
the record provided by DiDi, Inc. They applied a non-negative matrix factorization method and cluster 
analysis to study the spatial, temporal, and spatio-temporal elements of ride-sharing trips, as well as 
divisions of commuting styles and detour patterns. When it comes to microtransit analysis, Haglund et al. 
(2019) demonstrated the average journeys in specific periods during the day and the distribution of hourly 
departure/arrival trips based on the microtransit project Kutsuplus. While useful, this analysis was limited 
because it did not address the processes concerning underlying pattern formation. Similarly, Alonso-
González et al. (2018) studied the distribution of generalized journey time across service areas in both 
aggregated and disaggregated levels using empirical data from a pilot program named “Breng flex” in the 
Netherlands. Again, while previous studies mainly focused on assessing how demand-responsive 
transport can benefit the current transportation network, we are not aware of any studies that use actual 
network data and analytics to examine the spatio-temporal patterns of microtransit usage. This research 
fills the gap by quantifying the evolving patterns of microtransit activities and elucidating the underlying 
reasons for such patterns. 
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3. METHODOLOGY 

3.1 Approach to Modeling MaaS 

This section summarizes various modifications to the current version of the Wasatch Front travel demand 
model to accommodate MaaS as a mode for accessing transit. Proposed modifications to the mode choice 
model would create a new modal option – MaaS – for accessing transit on the origin end of a trip (e.g., 
home-to-transit station) or on the destination end of a trip (e.g., transit station-to-work). 

3.1.1 Mode Choice Modifications 

In our previous research effort (UT-17.602), a new modal option was introduced to the motorized branch 
mode choice model representing MaaS (Figure 3.1). To represent MaaS as an access mode to transit, or 
microtransit, a new modal option is introduced in the transit access sub-nest. Within the transit access 
sub-nest, a MaaS option is added to the options already programmed into the mode choice model: 
walk/bike, park-and-ride, and kiss-and-ride. A simplifying assumption is that the MaaS access mode 
would be for fixed guideway modes only (LRT [shown], commuter rail [shown], BRT [not shown]). 

 

 
Figure 3.1  Schematic of modal options in the Wasatch Front travel model 

The MaaS to Transit utility function would be very similar to the park-and-ride utility function, with 
additional time added to the trip for initial wait time (IWT). The MaaS to Transit utility function would 
also include a fare and possibly a new term reflecting the disutility of sharing a ride with strangers.  

3.1.2 Steps to Implement Mode Choice Modifications 

To implement the new access mode, “Maas to Transit,” several steps are necessary, each of which 
involves a custom script to be called by the main travel model control script. These steps are depicted in 
Table 3.1. 
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Table 3.1  Steps to implement MaaS to Transit in the Wasatch Front travel model 

 
 

• Step 1: Create a drive access link to each transit station where MaaS to Transit is a viable mode. 
A simplifying assumption is to limit drive access links to fixed guideway transit only and to 
enforce a distance constraint whereby TAZ centroids outside a specified radius are considered 
impractical for this mode. A second simplifying assumption is for the drive access links to be 
calculated as straight-line distances (centroid to centroid).  

• Step 2: Create a transit skim to include MaaS to Transit Access Link. This script determines the 
distance and cost for accessing transit stations using MaaS and assigns those costs to the overall 
transit trip.  

• Step 3: This script incorporates MaaS to Transit within the Transit Nest for Selected Trip Types. 
The current script is written for the Home-Based-Work and Home-Based-Other trip types, though 
other trip types might be considered for MaaS to Transit.  

• Step 4: Calculate Modal Utilities for Selected Trip Types. This script calculates the mode-specific 
utilities, which would include the utilities for transit trips using MaaS as an access mode. Typical 
inputs to modal utilities are travel time and travel fare. For MaaS to Transit, an Initial Wait Time 
would be added to the utility equation.  

• Step 5: This script would calculate the revised mode choice to include MaaS to Transit if this sub-
mode was determined to be the most competitive in the transit next.  

• Step 6: This is the final Mode Choice output script, which would need to include MaaS to Transit 
trips.  

• Step 7: The Cube model control script would need to be updated to run the six new scripts. 

All steps would need to address MaaS to Transit on both the origin and destination end of each trip. 

3.2 Spatiotemporal Microtransit Activity Pattern Analysis  

3.2.1 Eigendecomposition 

To uncover the spatiotemporal trip pattern for the microtransit program, we developed a methodological 
framework to delineate the variation and the homogeneity/heterogeneity in trips across spatial and 
temporal dimensions. Specifically, we employ eigendecomposition to achieve this. Eigendecomposition is 
well suited for this as it is good at uncovering hidden structures of spatiotemporal patterns. Compared to 
other variation extraction methods, such as factor analysis and analysis of variance, eigendecomposition 
is advantageous because it does not assume any distribution, error term, or underlying statistical model. 
Eigendecomposition generates a series of directional vectors (i.e., principal components [PCs]) based 
only on the data, each of which best explains variation while remaining orthogonal to other components. 
One orders the PCs by the amount of variance that they explain. For example, the first PC explains the 
most variance, the second PC explains the second most variance, and so on. Eigendecomposition is often 
used in statistical modeling to reduce dimensionality by projecting the data into a few PCs. One can also 
use eigendecomposition to explore the inherent variation within datasets. Our study uses 

Step 1 Create Drive Links for MaaS Access to Transit 
Step 2 Create Transit Skim to Include MaaS Drive Access Link 
Step 3 Include MaaS to Transit Nest for Selected Trip Types
Step 4 Calculate Mode Utilities for Selected Trip Types
Step 5 Revise Mode Choice Script Block to Include MaaS to Transit
Step 6 Update Mode Choice Working Matrices Script Block - Final Output
Step 7 Update Model Run Control Script
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eigendecomposition to unravel the deviation from (or resemblance of) the average pattern of microtransit 
usage within the service area in both pre- and post-COVID periods.  

We assume that microtransit arrival and departure patterns differ from each other. Therefore, all trips are 
further categorized into four groups: (a) pre-COVID departure; (b) pre-COVID arrival; (c) post-COVID 
departure; and (d) post-COVID arrival. During the study period, over 800 pick-up and drop-off locations 
resulted from 31,168 unevenly distributed trips within the service area after merging nearby locations. For 
example, among the 892 trip pick-up locations, the most popular pick-up location generated 2,633 trips, 
while over 50% of pick-up locations generated less than 12 trips each. To ensure unbiased analysis, we 
use traffic analysis zones (TAZ) to aggregate the pick-up and drop-off locations and uncover the trip 
patterns’ geographic dimensions. Among the 163 TAZs within the service area, those that produced over 
87 trips (median) and attracted over 85 trips (median) are labeled as active TAZs and used in this study. 
These 77 TAZs accounted for more than 91.7% of the total microtransit trips; 16,522 trips occurred pre-
COVID, and 12,062 trips occurred post-COVID.    

Using pre-COVID departure trips as an example, we illustrate the basic structure of our 
eigendecomposition. We formulate departure trips as follows:   

 

𝑵𝑵 =  �
𝒏𝒏𝟏𝟏,𝟔𝟔 ⋯ 𝒏𝒏𝟏𝟏,𝟐𝟐𝟐𝟐
⋮ ⋱ ⋮

𝒏𝒏𝟕𝟕𝟕𝟕,𝟔𝟔 ⋯ 𝒏𝒏𝟕𝟕𝟕𝟕,𝟐𝟐𝟐𝟐

�  (𝟏𝟏) 

In matrix 𝑵𝑵, 𝒏𝒏𝒊𝒊,𝒋𝒋 represents the total number of departure trips originated from TAZ 𝒊𝒊 (𝟏𝟏 ≤ 𝒊𝒊 ≤ 𝟕𝟕𝟕𝟕) and 
in hour 𝒋𝒋 (𝟔𝟔 ≤ 𝒋𝒋 ≤ 𝟐𝟐𝟐𝟐). We ensure that the 16 variables (6:00 – 22:00) contribute equally to the variance 
maximizing exercise during eigenvalue decomposition by normalizing matrix 𝑵𝑵 by dividing each row by 
its summation 𝑵𝑵′. Correspondingly, 𝒏𝒏𝒊𝒊,𝒋𝒋′ represents the hourly percentage of departure trips during the 
pre-COVID period. Note that:  

� 𝒏𝒏𝒊𝒊,𝒋𝒋′ = 𝟏𝟏    ∀ 𝒊𝒊 ∈ [𝟏𝟏,𝟕𝟕𝟕𝟕] 
𝒋𝒋=𝟐𝟐𝟐𝟐

𝒋𝒋=𝟔𝟔

(𝟐𝟐) 

We then average hourly departure trips across all TAZs to obtain the average temporal pattern of 
departure trips within the service area. Let 𝒅𝒅𝒋𝒋 denote the average departure trip percentage in TAZ 𝒋𝒋. 

𝒅𝒅𝒋𝒋 = � 𝒏𝒏𝒊𝒊,𝒋𝒋  ′  
𝒊𝒊=𝟕𝟕𝟕𝟕

𝒊𝒊=𝟏𝟏

/  𝟕𝟕𝟕𝟕  𝒋𝒋 ∈ [𝟔𝟔,𝟐𝟐𝟐𝟐] (𝟑𝟑) 

D = {𝒅𝒅𝟔𝟔,𝒅𝒅𝟕𝟕,𝒅𝒅𝟖𝟖, … ,𝒅𝒅𝟐𝟐𝟐𝟐} represents the average temporal pattern of microtransit activities across the 77 
active TAZs. We measure the deviation of microtransit trips from this average pattern with matrix 𝑴𝑴, 
which we construct subtracting 𝒅𝒅𝒋𝒋 from column 𝒋𝒋 of matrix 𝑵𝑵: 

𝑴𝑴 =  �
𝒏𝒏𝟏𝟏,𝟔𝟔
′ − 𝒅𝒅𝟔𝟔 ⋯ 𝒏𝒏𝟏𝟏,𝟐𝟐𝟐𝟐

′ − 𝒅𝒅𝟐𝟐𝟐𝟐
⋮ ⋱ ⋮

𝒏𝒏𝟕𝟕𝟕𝟕,𝟔𝟔
′ − 𝒅𝒅𝟔𝟔 ⋯ 𝒏𝒏𝟕𝟕𝟕𝟕,𝟐𝟐𝟐𝟐

′ − 𝒅𝒅𝟐𝟐𝟐𝟐
�  (𝟒𝟒) 
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We perform eigendecomposition by first calculating the covariance matrix, S, where: 
 

𝑺𝑺 = 𝟏𝟏
𝒏𝒏−𝟏𝟏

 𝑴𝑴𝑻𝑻𝑴𝑴 (𝟓𝟓) 

As a result, we can derive eigenvectors 𝒗𝒗𝟔𝟔,𝒗𝒗𝟕𝟕,𝒗𝒗𝟖𝟖, … ,𝒗𝒗𝟐𝟐𝟐𝟐 with the corresponding eigenvalues 
𝝀𝝀𝟔𝟔,𝝀𝝀𝟕𝟕,𝝀𝝀𝟖𝟖, … ,𝝀𝝀𝟐𝟐𝟐𝟐where 𝒗𝒗𝒊𝒊𝒔𝒔 are all column vectors. Also, the principal components that explain a large 
portion of the total variance (summation of eigenvalues) can help interpret the overall patterns of 
microtransit activities. Thus, by applying eigendecomposition, we can uncover the spatio-temporal 
patterns of microtransit activities at different locations and examine how they deviate or resemble the 
average pattern in pre-COVID and post-COVID periods. 

3.2.2 K-clique Percolation 

k-clique percolation is a variant of the traditional percolation theory. Percolation theory aims to discover 
how networks behave when removing nodes or links. It is a method to gradually break down large 
networks into smaller connected clusters or sub-networks. This method works because the removal of key 
nodes or links in any network creates disconnections. Generally, percolation theory starts with a weighted 
or unweighted graph and ends at a graph containing only isolated nodes. The nature of percolation theory 
makes it suitable for identifying strongly connected subgraphs in the network, also known as community 
detection (Fortunato, 2010). Most community detection algorithms, including percolation, classify one 
node into one cluster or community only. However, k-clique percolation identifies overlapping 
communities by assigning specific nodes to multiple communities. This methodological attribute is 
essential for understanding microtransit because many first-mile/last-mile trips will make the transit 
station a pivot node that belongs to multiple communities. This local transport context is the primary 
reason we use k-clique percolation in this research. Moreover, the concept of k-clique is a good analogy to 
individuals’ microtransit travel patterns. People frequently travel between a limited number of locations 
within a service region.  

Figure 3.2 illustrates a 7-node unweighted and undirected network to highlight how k-clique percolation 
works. There are three key definitions:  

Definition 1. k-clique is a fully connected or complete subgraph of k nodes. 
Definition 2. Adjacent k-cliques are k-cliques that share exactly k-1 nodes. 
Definition 3. A k-clique community is the union of all possible adjacent k-cliques. 

 
Figure 3.2  An unweighted and undirected graph with 7 nodes 
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Figure 3.3  Result of 3-clique percolation 

The first step of k-clique percolation is to identify k-cliques. Here we choose k = 3 for illustration. There 
are three 3-cliques in the example network: a – b – c, b – c – d, and c – f – g. The next step is to identify 
possible adjacent k-cliques which make up communities. Figure 3.3 highlights the results with each node 
corresponding to its assigned community (by number). For example, node c belongs to both community 1 
and 2, while node e does not belong to any community. For the weighted graph, there exists one 
additional intermediate step. In traditional percolation theory, a probability threshold determines whether 
two nodes are connected or not. Similarly, for the k-clique percolation method, we define an intensity 
threshold to determine whether a k-clique can be part of adjacent k-cliques. Specifically, intensity is a 
measure of the strength of connectivity of a clique. We define intensity as the geometric mean of the link 
weights of a certain k-clique: 

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 =  � � 𝑾𝑾𝒎𝒎,𝒏𝒏
𝟏𝟏≤𝒎𝒎≤𝒏𝒏≤𝒌𝒌

�

𝟐𝟐
𝒌𝒌(𝒌𝒌−𝟏𝟏)

 (𝟔𝟔) 

We denote the intensity threshold by I, and we do not consider cliques whose intensity is below the 
threshold value for adjacent cliques. In Figure 3.4, we detail a weighted and undirected graph. The 
number on the link represents the link weight. Among the three 3-cliques identified in Figure 5, two of 
them have an intensity value of 0.187 (a-b-c and c-g-f), and one of them has an intensity of 0.1 (c-b-d) 
according to Equation (6). When one sets 𝑰𝑰 as 0.01, all three cliques survive the threshold. According to 
definition 2, clique a-b-c and c-b-d are considered adjacent. Thus, there are two communities detected in 
the network. One contains node a, b, c, and d, and the other contains nodes c, f, and g, where node c 
belongs to both communities and node e is an isolated node (Definition 3). When 𝑰𝑰 = 𝟎𝟎.𝟏𝟏𝟏𝟏, cliques a – b 
– c and c – f – g survive, but we eliminate clique c-b-d. Likewise, cliques a-b-c and c-g-f now make two 
separate communities while nodes e and d are isolated nodes. When 𝑰𝑰 = 𝟎𝟎.𝟐𝟐, no clique survives. This 
type of network structure measurement is how k-clique percolation works for given values of 𝑰𝑰 and 𝒌𝒌. 
However, an outstanding challenge remains – namely, determining optimal values for 𝒌𝒌 and 𝑰𝑰. 
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Figure 3.4  Weighted graph with 7 nodes 

The criterion of choosing k and I is to find the most highly structured communities possible. Although 
different 𝒌𝒌 and 𝑰𝑰 values can generate various optimal subgraphs, there is still a need to set a global rule 
such that the overall structure and pattern can be analyzed. Derenyi et al. (2005) highlight one way to do 
this. Specifically, as one continues to remove links in a graph, a gigantic component containing a large 
portion of the existing nodes will eventually emerge. Thus, a rule of thumb for determining 𝑰𝑰 for each 𝒌𝒌 
(typically 3 to 6) is to choose an 𝑰𝑰 that is smaller than the value that allows the emergence of the gigantic 
component (Derenyi et al., 2005; Pallas et al., 2015). This value of I is considered the critical point for 
this network at a specific 𝒌𝒌. One can argue that the size of communities at the critical point follows a 
power-law. One can estimate this critical point of I by calculating the ratio between the size (number of 
nodes) of the largest community and the second-largest community. In Pallas et al. (2005), the ratio is set 
to 2 so that there is neither a gigantic community that slanders the details of the network nor are there too 
many small communities making the network poorly structured.  

Moreover, to further study the connectivity of local cohesiveness, we apply the concept of a clustering 
coefficient (Barrat et al., 2004). As a measurement of inner-connectivity in the network, one can apply the 
clustering coefficient in two ways: 1) the clustering coefficient of a single node and 2) the average 
clustering coefficient of all nodes in the network. For weighted networks, one can use the clustering 
coefficient to evaluate the importance of clustered structures based on the aggregated link weights of the 
local triplets. In this instance, a triplet refers to three nodes connected by either two (e.g., open triplet, 
examples: a-b and b-c in Figure 3.4) or three (e.g., closed triplet, example: a-b, b-c and a-c in Figure 3.3) 
undirected links. Closed triplets are known as a 3-clique. In a network where one denotes a complete node 
set as 𝑵𝑵, the formula for calculating clustering coefficient for node 𝒊𝒊 is:  

𝑪𝑪𝒊𝒊  =
𝟏𝟏

𝒔𝒔𝒊𝒊(𝒏𝒏𝒊𝒊 − 𝟏𝟏)�
�𝒘𝒘𝒊𝒊𝒊𝒊 + 𝒘𝒘𝒊𝒊𝒊𝒊 �

𝟐𝟐
𝒂𝒂𝒊𝒊𝒊𝒊𝒂𝒂𝒋𝒋𝒋𝒋𝒂𝒂𝒊𝒊𝒊𝒊

𝒋𝒋,𝒌𝒌
      𝒋𝒋,𝒌𝒌 ∈ 𝑵𝑵 (𝟕𝟕) 

Where, 𝒂𝒂𝒊𝒊𝒊𝒊,𝒂𝒂𝒋𝒋𝒋𝒋 and 𝒂𝒂𝒊𝒊𝒊𝒊 are binary indicators implying connection (𝒂𝒂𝒊𝒊𝒊𝒊,𝒂𝒂𝒋𝒋𝒋𝒋,𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟏𝟏) or disconnection 
(𝒂𝒂𝒊𝒊𝒊𝒊,𝒂𝒂𝒋𝒋𝒋𝒋,𝒂𝒂𝒊𝒊𝒊𝒊 = 𝟎𝟎). 𝒘𝒘𝒊𝒊𝒊𝒊 is the weight between node 𝒊𝒊 and 𝒋𝒋. 𝒏𝒏𝒊𝒊 is the degree of node 𝒊𝒊 defined as 𝒏𝒏𝒊𝒊 = 
∑ 𝒂𝒂𝒊𝒊𝒊𝒊𝒋𝒋 . 𝒔𝒔𝒊𝒊 corresponds to node strength, which measures the network property of node 𝒊𝒊 in terms of the 
weights obtained by extending the definition of node degree 𝒏𝒏𝒊𝒊. We define this as:  
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𝒔𝒔𝒊𝒊 = �𝒂𝒂𝒊𝒊𝒊𝒊𝒘𝒘𝒊𝒊𝒊𝒊 
𝒋𝒋

(𝟖𝟖) 

𝑪𝑪𝒊𝒊 accounts for all triplets formed around 𝒊𝒊 in terms of average link weight. We normalize this by 𝟏𝟏
𝒔𝒔𝒊𝒊(𝒏𝒏𝒊𝒊−𝟏𝟏) 

so that 𝟎𝟎 ≤ 𝑪𝑪𝒊𝒊 ≤ 𝟏𝟏. Larger values for 𝑪𝑪𝒊𝒊, indicate more cohesiveness for nodes around 𝒊𝒊. This structure 
means that the nodes around 𝒊𝒊 are more tightly connected. We define the average clustering coefficient 
𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂 is defined as: 

 
𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂 = ∑ 𝑪𝑪𝒊𝒊𝒊𝒊

|𝑵𝑵|     𝒊𝒊 ∈ 𝑵𝑵 (𝟗𝟗) 

One can use 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂 to estimate the level of network overlap. Higher values of 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂 suggest more overlap.  

In the context of microtransit activities, our goal is to identify communities in pre-COVID and post-
COVID periods to examine the pattern within each period and how the pattern evolves. Again, we treat 
each pick-up or drop-off location as nodes in the network. Since the customers using microtransit 
programs tend to travel between a limited number of locales multiple times, the outflow and inflow of 
most nodes are almost equal to each other. Hence, we construct the network as an undirected and 
weighted graph. We measure link weights as the ratio between the trip count on each link and the 
maximal trip count across all links. We apply k-clique percolation to the built network to uncover the 
underlying communities and how communities evolve. The preliminary analysis for both pre-COVID and 
post-COVID periods suggests a value of 𝒌𝒌 = 3 will provide a good baseline for measurement. When 𝒌𝒌 ≥
𝟒𝟒, the number of k-cliques is very limited, and more than 75% of the nodes became isolated even when 
𝑰𝑰 = 0. Also, less than 4% of the nodes will survive when reaching the critical point. In other words, 𝒌𝒌 ≥ 𝟒𝟒 
eliminates a vast portion of the network before structure detection. After we fix 𝒌𝒌 to 3, we explore a range 
of values for I to reveal different levels of information. When I = 0, one can treat the system as an 
unweighted network since any 3-cliques can survive the threshold. In this case, we fully preserve the 
topological structure. However, as we increase the values of I, cliques with less weight will continue to 
dissipate. Only the cliques with larger weights (more trips) will remain in the network.  
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4. DATA 

4.1 Data Source 

UTA partnered with Via transportation to launch a microtransit pilot program beginning November 2019 
in South Salt Lake. Salt Lake County funded the project. This on-demand, shared-ride pilot is designed to 
expand access to the transit service throughout the service zone, improve mobility for all users, and 
provide a quality customer experience. UTA conducted this pilot to see whether microtransit provides a 
valuable and cost-effective service and whether a future deployment of microtransit service is possible. 
The project experienced early success, meeting most goals and objectives before the COVID-19 
pandemic, including ridership, cost, customer rating, and vehicle hours traveled.  

The microtransit program serves about 65 square miles in the cities of Bluffdale, Draper, Herriman, 
Riverton, and South Jordan in Utah. Figure 4.1 shows the service area, including seven TRAX and 
FrontRunner stations, which are the main components of UTA’s rail system. The program provides a 
corner-to-corner service in the region from 6:00 to 22:00 on weekdays only. It allows riders to be picked 
up and dropped off within a walkable distance (on average 0.1 miles) from their chosen origins and 
destinations.  

 
Figure 4.1  Service area of UTA on Demand with Via (Source: UTA on Demand, 2021) 

The trip data used in this research contain features related to each trip request, including rider ID, pick-
up/drop-off coordinates, pick-up/drop-off time, trip duration, trip distance, number of passengers, ride 
cost, payment type, request source, customer ratings, and wheelchair accessibility. We present the 
detailed description of the full feature set in Table 4.1. The study period spans January 1, 2020, to July 31, 
2020, encompassing 31,199 trips from 1,569 unique users. Among these 31,199 trips, there are 2,472 
unique pick-up points and 2,317 unique drop-off points. Apart from the seven TRAX and FrontRunner 
stations in Figure 4.1, common pick-up/drop-off locations include apartment complexes, single-family 
houses, supermarkets, churches, educational institutions, private companies, and personal businesses (e.g., 
pet stores and liquor stores), among others.  
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4.2 COVID-19 in Utah 

The first confirmed COVID-19 case in Utah was reported on March 6, 2020. The patient was aboard the 
Grand Princess cruise ship and later diagnosed (Utah Department of Health, 2020). This event, however, 
does not fully represent the community spread of COVID-19 in Utah. Figure 4.2 presents the daily 
average confirmed COVID-19 cases in each month and daily average microtransit trips in different 
periods between January 1 and July 31, 2020. Figure 4.2a demonstrates how COVID-19 progressed 
within the service area and the entire state of Utah, respectively. The service area as mentioned above 
consists of the cities of Bluffdale, Draper, Herriman, Riverton, and South Jordan. Figure 4.2b shows the 
daily average microtransit trip counts within the study periods (January, February, March 1 – March 13, 
March 14 – March 31,  and April through July). We split March into two periods to highlight the 
comparison before and after the state of emergency declaration. 

As seen in Figure 4.2a, at the state level, the daily average confirmed COVID-19 cases have increased 
dramatically since March 2020, with the largest increase during June 2020. However, within the service 
area, during March through May, the confirmed cases remained at a comparatively low level. 
Nevertheless, the cases increased sharply in June and July, suggesting a wide community spread of 
COVID-19.  

If we compared the trend of microtransit trips in Figure 4.2b, there is some consistency. Before March 13 
(state of emergency declaration date), daily average microtransit trips increased steadily as the user base 
of the pilot program was growing. However, between March 14 and March 31, the daily average trip 
count dropped dramatically from 325.4 trips per day to 94.4 trips per day. The trip count reached its 
lowest level in April and May, at 73.4 trips per day and 80.3 trips per day, respectively. The trend in 
March through May suggests the significant impacts of COVID-19 on microtransit activities. Users were 

Table 4.1  Feature descriptions of raw data 
Features Levels of 

Measurement  
Units Range 

Rider ID Nominal   
Pick-up lat Interval Decimal degree [40.464, 40.568] 
Pick-up long Interval Decimal degree [-112.071, -111.83] 
Drop-off lat Interval Decimal degree [40.463,40.568] 
Drop-off long Interval Decimal degree [-112.071, -111.83] 
Pick-up time Interval  [01/01/2020 08:24:00,  

07/31/2020 21:00:00] 
Drop-off time Interval  [01/01/2020 08:48:00,  

07/31/2020 21:06:00] 
Trip duration Ratio Minute [0, 437.817] 
Trip distance Ratio Mile [0.077, 11.104] 
Num. of passengers Ratio  [1, 5] 
Ride cost Ratio Cent [0, 1250] 
Payment type Nominal  UTA ticket, Apple Pay, Credit card, Free, 

Google Pay, Ride credit, Waived 
Request source Nominal  App, Call center 
Customer rating Ordinal  1, 2, 3, 4, 5 
Wheelchair accessibility Nominal  0: wheelchair-accessible vehicle 

1: non-wheelchair-accessible vehicle 
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less inclined to use microtransit or stopped using it completely. Trip counts started to increase slightly in 
June and July, marking the recovery of microtransit activity or overall public transit usage. In the 
meantime, as we observed in Figure 4.2a, a notable increase in COVID-19 cases happened during the 
same period in the service area. 

 

 

Figure 4.2  Trends of COVID-19 cases and microtransit trips 

4.3 Preliminary Processing 

Given the nature of corner-to-corner service, the actual origin of a trip is most likely within a walkable 
distance from the pick-up point (available in the trip data). The same applies to the drop-off locations. 
That said, the trip data show a wide dispersion of pick-up and drop-off points, where multiple points 
might lead to identical origins and destinations. Thus, this research applies hierarchical agglomerative 
clustering (HAC) to separately aggregate nearby pick-up and drop-off points to facilitate subsequent 
analysis (Murtagh & Contreras, 2012). Agglomerative hierarchical clustering is a standard clustering 
method based on the distance of clusters. It is a bottom-up approach that assigns each unit to its cluster at 
the beginning. Then clusters are iteratively merged with their closest neighbors.  

When applying HAC, one must determine the pruning parameter – height – representing the number of 
iterations (merging clusters). Larger values for height (iterations) yield fewer clusters. For this analysis, 
we select a value of 300 so that the average distance within clusters is close to 0.1 miles. This value is the 
average walking distance assumed by Uber pool service (Pachal, 2018). Figures 4.3 and 4.4 highlight the 
distributions of pick-up and drop-off locations, respectively.  
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(a)                                                                              (b) 

Figure 4.3  Distribution of trip pick-up locations (a) before and (b) after merging 

 
(a)                                                                              (b) 

Figure 4.4  Distribution of trip drop-off locations (a) before and (b) after merging 

After merging pick-up and drop-off locations, we further divide the dataset into two periods, with a cut-
off date of March 13, 2020, corresponding to the declaration of the COVID-19 outbreak as a national 
emergency in the United States. This date and data partition helps distinguish the potentially 
heterogeneous spatio-temporal patterns as a result of the pandemic. Upon screening of missing values, the 
pre-COVID period consists of 17,980 trips, and the post-COVID period consists of 13,188 trips. 
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5. RESULTS AND DISCUSSIOIN  

5.1 Eigendecomposition 

There are 16,522 pre-COVID trips and 12,062 post-COVID trips in the 77 active TAZs used for analysis. 
These counts translate to an average of 229.5 and 86.2 trips per day, respectively. Such daily usage of 
microtransit demonstrates a sharp decrease in activities since the outbreak of COVID-19. Figure 5.1 
presents the overall temporal patterns (sum of each hour) for departure and arrival trips in pre- and post-
COVID regimes, respectively. Both regimes show a two-peak distribution, one in the morning (7:00 – 
9:00) and one in the evening (16:00 – 18:00). Moreover, the departure vs. arrival trip patterns are very 
similar (with a small time lag) because the service region is limited, and the average trip duration is 
around 10 minutes. Apart from the overall decline in microtransit activities, it is interesting to note the 
pronounced drop in the morning peak (7:00 – 8:00) after the COVID-19 outbreak.  

 
Figure 5.1  Distribution of edges by the number of trajectories 

Table 5.1 shows the total variance and the respective portions of variance explained by the first four PCs. 
Here, we apply three empirical rules to decide upon a suitable number of PCs (Jolliffe, 2002; Xu et al., 
2019):  

1. The chosen PCs cumulatively explain more than 70% of the total variation. 
2. The eigenvalues of the chosen PCs are larger than 0.7 times the average eigenvalue. 
3. The chosen PCs are to the left of the elbow points of scree plot, which shows the 

eigenvalues for each PC. 

Given these guidelines, we use the first four PCs for further analysis.  
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Table 5.1  Summary of eigendecomposition 
 Total Variance  PC1 PC2 PC3 PC4 
Pre / Departure 0.088 37.4% 17.7% 11.8% 10.1% 
Pre / Arrival 0.073 36.4% 12.9% 11.1% 9.5% 
Post / Departure 0.098 23.9% 16.1% 15.5% 10.4% 
Post / Arrival 0.096 27.5% 15.8% 12.5% 9.1% 

 
Table 5.1 shows that the first four PCs explain more than 60% of the total variation for all four trip 
categories. While the results are largely homogeneous, each of the four categories displays its own 
temporal structure. For example, the variance of pre-COVID trips is smaller than post-COVID trips, 
generally speaking. This result suggests that microtransit usage is more consistent in the pre-COVID 
period, but it is more diverse (from place to place) in the post-COVID period.  

Also, in the pre-COVID period, the variance of departure trips is significantly larger than that of arrival 
trips (by 21%). However, in the post-COVID period, their variance is quite similar. This result suggests a 
higher diversity in temporal patterns for departure trips when compared with arrival trips, pre-COVID. 
Nevertheless, this temporal signature disappeared in the post-COVID period. One possible explanation 
for this is that drop-off locations are often more connected (for trip purposes) than pick-up locations. This 
finding suggests that TAZs with similar social functions tend to generate similar microtransit usage 
patterns. As a result, the total variance is lower.  

In this research, first-mile/last-mile trips are important. This type of trip accounts for more than 58% of 
total trips in the pre-COVID period, resulting in a more uniform arrival pattern. However, after the 
COVID-19 outbreak, the percentage of first-mile/last-mile trips continues to decrease. For example, in 
July, 2020, the relative number of trips dropped to 29%. Meanwhile, trip purposes have become much 
more diverse, making the variance of arrival trips close to departure trips. 

 
Figure 5.2  Eigendecomposition of pre-COVID arrival and departure trips 

The first several PCs can help summarize the spatio-temporal patterns of microtransit activities. Figure 
5.2 displays the first four PCs for pre-COVID trips. In Figure 5.2, the x-axis represents the 16 input 
variables that correspond to each hour when the service is in operation, and the y-axis demonstrates the 
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loadings of the first four PCs associated with all the input variables. In other words, the y-axis is the 
coefficient of the linear combination between PCs and input variables. For example, PC1 of pre-COVID 
arrival trips explains 37.4% of the total variation and shows a clear two-peak pattern at 7:00 – 10:00 and 
17:00 – 19:00 (Figure 5.2a). This result suggests that microtransit activity during these two time periods 
varies considerably, especially when compared with the uniformity found in other periods. Figure 5.2e 
also suggests that PC1 for departure trips explains 36.4% of the total variation and has a similar two-peak 
pattern, yet the graph shifts slightly to the left. The two-peak periods are 6:00 – 9:00 and 16:00 – 18:00. 
Such a pattern is consistent with the morning and evening peaks of transit usage, indicating that both 
arrival and departure trips have the most diversified spatio-temporal patterns during these two peak 
periods.  

Of note are the results from Figure 5.2a. In this instance, the coefficients of PC1 have opposite signs in 
the morning and evening peaks. This result suggests that if a TAZ attracts more microtransit trips during 
7:00 – 9:00, then arrivals trips are likely lower in that TAZ during 17:00 – 19:00. In fact, of the top five 
TAZs that attract most trips in the morning peak, four of them attract a limited number of trips in the 
evening peak. The pattern holds true for departure trips as well. If more people departed certain TAZs 
from 16:00 – 18:00, fewer customers would tend to depart from those TAZs from 6:00 – 9:00.  

While the coefficients of PC1 support these results, PC2, PC3, and PC4 combine to explain 39.6% of the 
variation for arrival trips and 33.5% variation for departure trips. This explanatory power means that there 
are other significant temporal patterns that PC1 cannot explain (by itself) and that many TAZs do not 
follow the patterns shown by PC1. For example, PC2 explains 17.7% of the total variation for arrival 
trips, suggesting a notable shift in the morning and evening peaks (Figure 5.2b). Further, Figure 5.2b 
suggests that in some TAZs if more patrons arrive from 17:00 – 18:00, fewer customers will arrive at 
those TAZs from 18:00 – 19:00. Figure 5.2f highlights a similar pattern for departure trips. The variation 
of temporal patterns peaks during 7:00 – 8:00 and 8:00 – 9:00, yet in opposite directions. Moreover, PC3 
and PC4 each explains around 10% of the total variation for both arrival and departure trips. The 
proximity of variance explained by PC1, PC2, PC3, and PC4 suggests a variety of underlying temporal 
patterns in pre-COVID microtransit activities, which, to some extent, uncovers the diversity of trip 
purposes. 

To deepen our understanding of the causal mechanisms for the patterns displayed in Figure 5.2, we focus 
on the temporal pattern of first-mile/last-mile trips. In this study, the first-mile/last-mile trips either start 
from or end at any transit station identified in Figure 4.1. Figure 5.3 shows the percentage of first-
mile/last-mile trips over total trips that start in each hour for the pre-COVID and post-COVID periods, 
respectively. The average value in Figure 10 is the average percentage of total first-mile/last-mile trips 
over total trips for the pre-COVID and post-COVID periods, respectively. The percentage of first-
mile/last mile-trips of both arrival and departure trips peaks between 6:00 – 9:00 and 16:00 – 19:00. This 
result means that many patrons travel to or from transit stations during those time periods. It is important 
to note that the first-mile/last-mile trip patterns are quite similar pre- and post-COVID. In other words, 
although there is an overall reduction (from 58.07% to 47.88%) in percentage, first-mile/last-mile trips 
still account for a large portion of the total trips. One can observe the same peaks in Figure 5.2a and 
Figure 5.2e. This pattern implies that when the percentage of first-mile/last-mile trips is high, the 
variation in travel patterns is more extensive and vice versa. As we further examine PC3 and PC4 of 
arrival and departure trips, please note that the variation peaks between 6:00 – 9:00 and 16:00 – 19:00. 
These windows are when the percentage of first-mile/last-mile trips is above average (Figure 5.3). It 
indicates that PC1, PC3, and PC4 all capture part of the variation caused by first-mile/last-mile trips. 



 

20 
 

 
Figure 5.3  Percentage of first-mile/last-mile trips 

Figure 5.4 presents the eigendecomposition of post-COVID trips. One focus of the eigendecomposition is 
to study how COVID-19 has altered the temporal patterns of microtransit activities. For example, Figure 
5.4a and Figure 5.4e illustrate a similar two-peak pattern for arrival and departure trips. For arrival trips, 
the largest variation occurs from 8:00 – 9:00 and 18:00 – 19:00. For departure trips, the peak periods are 
6:00 – 7:00 and 16:00 – 17:00. Thus, one might suggest that specific patterns emerged after the outbreak 
of COVID-19. However, the variance explained by PC1 for arrival and departure trips decreased from 
37.4% and 36.4% to 27.5% and 23.9%, respectively. This decrease in variance explained by PC1 suggests 
that the temporal patterns of post-COVID trips are more diverse. Also, different patterns can be found 
based on the PCs. For instance, PC2 for post-COVID arrival trips demonstrates a different one-peak 
pattern. Specifically, for some TAZs, trip arrival is most active and diverse from 13:00 – 14:00 (Figure 
5.4b). That said, PC2, PC3, and PC4 do not exhibit such a pattern for pre-COVID arrival trips. The 
difference between the two eigendecomposition results suggests a substantial pattern transition after the 
outbreak of COVID-19.  

Based on the results of eigendecomposition, the first-mile/last-mile trips are likely to be the primary 
source of variance, which PC1 explains in both pre- and post-COVID periods. Moreover, transit-
dependent users remain inelastic despite the threats brought by COVID-19 (Figure 5.3). However, the 
patterns are mutable. For example, there are reductions in microtransit activity along with first-mile/last-
mile trips. In addition, there is a dispersive trend for pick-up and drop-off locations and the emergence of 
new travel patterns. In the next section, we analyze the coordinates of pick-up and drop-off locations to 
detect underlying community structures and compare the temporal patterns of these locations to the 
service area averages.  
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Figure 5.4  Eigendecomposition of post-COVID arrival & departure trips 

5.2 K-clique Percolation  

5.2.1 Pre-COVID Period 

There are 17,980 trips in the pre-COVID period from 1,235 different users in 1,163 pick-up and drop-off 
locations. The maximum number of trips is 348, while the minimum number is 1. We first vary I 
(intensity thresholds) to see how communities progress. We present the evolving pattern of communities 
with increasing values of I in Figure 5.5. Specifically, Figure 5.5a displays the total number of 
communities in response to changes in I. Figure 5.5b demonstrates the size ratio of the largest community 
to the second-largest community. For higher values of I, community formation decreases. This type of 
pattern is not always monotonic. For example, when I increases, cliques with lower levels of intensity will 
disappear. Simultaneously, these eliminations will dissolve large communities into smaller ones. For 
instance, in Figure 5.5b, the ratio is well above 2 when I is small, indicating a gigantic community, with a 
few small communities containing a minimal number of nodes. The formation of a gigantic community 
suggests a wide connection across the service region, apart from a few pick-up or drop-off locations. The 
vertical dashed line in Figure 5.5 highlights the “critical” point, which is detailed in Chapter 3. 
Specifically, when I increases from 0, fewer 3-cliques remain in the network. Until I reaches 0.031, the 
gigantic community that contains most of the nodes breaks down into two medium-sized communities 
with a ratio of 4.05. Thus, we identify I = 0.031 as the critical point for the pre-COVID microtransit 
network.  
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Figure 5.5  Community summary under different intensity thresholds: (a) the number of communities; 
and (b) the size ratio of the largest community to the second-largest community 

We further explore the characteristics of communities using 10 unique values for I: 0, 0.031, 0.047, 0.063, 
0.079, 0.095, 0.111, 0.127, 0.143, and 0.159. I = 0 represents the point when all 3-cliques remain in the 
network without any isolated node. I = 0.031 is the critical point. When I = 0.159, only one community 
remains in the network. The remaining seven values are interpolated at an increment of 0.016 from I = 
0.031 to I = 0.159. We present these results in Table 5.2, along with the corresponding community 
attributes. When multiple communities have the same number of nodes, we break the tie by selecting the 
community with the highest trip rate. We select the two largest communities for illustrative purposes 
because their size ratio is an important indicator of community structure. Also, the two largest 
communities account for a majority (≥ 85%) of the total trips. In Table 5.2, Size represents the number of 
nodes contained in the community. Trips are the indicator of the total amount of trips captured by the 
community. FMLM trips stand for first-mile/last-mile trips with a calculated percentage of total trips. 
Users are the unique number of customers who appeared across the trips. Avg. Trips equal to trips divided 
by users. Duration is the average trip length of all trips in the unit of minutes in that community. 
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In general, the evolution of communities follows a hierarchical structure. As values of I increase, 3-
cliques with lower values of intensity begin to disappear. However, when I = 0, all 3-cliques survive. 
Again, this turns the network into an unweighted and undirected graph. This scenario means that one can 
consider any link as only connected or disconnected. The communities detected when I = 0 are a good 
reflection of the connectivity across the region. There are 22 communities in the network, and the largest 
one is a gigantic community that contains 601 nodes. The remaining communities contain only 3 or 4 
nodes (Table 5.2). It is worth mentioning that the remaining 22 communities include 626 nodes in total, 
leaving 537 nodes forming no 3-cliques. In other words, 537 nodes do not belong to any clique. These 
isolated nodes demonstrate a commuting pattern for specific individuals. In other words, trips concerning 
the 537 pick-up or drop-off locations are user-centric. The locations are not likely to be shared across 
different users.  

When I = 0.031 (critical point), the gigantic component breaks down into two medium-sized communities 
(81 and 20). In this scenario, the community structure is strong, maximum information is present, yet it 
displays a distinguishable pattern. For example, Figure 5.6 and Figure 5.7 demonstrate the spatial 
distribution of the two largest communities and the shared nodes when I = 0.031. Figure 5.6 suggests that 
the spatial pattern of the network includes a distribution of nodes from the entire region, accounting for 
six of 85.7% (6 of 7) of the major transit stations. However, a new spatial pattern emerges in Figure 5.7. 
The second-largest community contains a congregation of 20 nodes from the west side of the service area. 
The corresponding trips gravitate to the Daybreak Parkway station, with 81% of trips being first-mile/last 
-mile trips. This result suggests that the pick-up and drop-off locations surrounding Daybreak Parkway 

Table 5.2  The result of 3-clique percolation for the pre-COVID period 
I Community  Size 

 
Trips FMLM Trips 

(% of total trips) 
Users Avg. Trips 

(trips/person) 
Duration 
(minutes) 

0 1 601 15735 9818 (62%) 1039 15.1 10.3 
 2 4 13 11 (85%) 5 2.6 12.3 
0.031 1 81 4930 4330 (88%) 361 13.7 9.6 
 2 20 699 564 (81%) 65 10.8 8.2 
0.047 1 42 3128 2835 (91%) 237 13.2 8.8 
 2 8 441 400 (91%) 38 11.6 8.6 
0.063 1 26 2240 1992 (89%) 156 14.4 9.0 
 2 6 336 319 (95%) 35 9.6 7.7 
0.079 1 15 1410 1338 (95%) 117 12.4 9.4 
 2 5 291 231 (79%) 16 18.2 6.0 
0.095 1 5 471 466 (99%) 51 9.2 12.2 
 2 4 321 306 (95%) 28 11.5 7.3 
0.111 1 4 321 306 (95%) 28 11.5 7.3 
 2 4 244 189 (77%) 11 22.18 6.2 
0.127 1 4 321 306 (95%) 28 11.5 7.3 
 2 3 409 409 (100%) 49 8.3 13.0 
0.143 1 4 321 306 (95%) 28 11.5 7.3 
 2 3 409 409 (100%) 49 8.3 13.0 
0.159 1 3 239 224 (94%) 14 17.1 6.72 
 2       
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station maintain a connection, which provides valuable information for possible vehicle dispatching and 
routing optimization. 

 
Figure 5.6  The largest community and shared nodes when 𝐼𝐼 = 0.031 in the pre-COVID period 

 
Figure 5.7  The second-largest community and shared nodes when 𝐼𝐼 = 0.031 in the pre-COVID period 
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Section 5.1 explored how first-mile/last-mile trips contribute to the spatio-temporal patterns of 
microtransit activities. Similarly, we observe a dominant percentage of first-mile/last-mile trips for 
different Is in Table 5.2. When I = 0, the largest community has 15,735 trips, with 62% being first-
mile/last-mile trips, slightly higher than the average (58.07%). However, only 35% of trips occur outside 
of network communities, with the majority connecting isolated nodes. This difference suggests that first-
mile/last-mile trips enhance the connectivity between popular pick-up and drop-off locations. Trips 
connecting isolated nodes are more user-specific and less dependent on transit. Further, at the critical 
point, first-mile/last-mile trips account for a large portion of the total trips in both the largest and second-
largest communities with a minimum of 77% and a maximum of 100% (Table 5.2). Clearly, first-
mile/last-mile trips play a crucial role in connecting the entire region. 

We also explore 3-clique communities, their overlap, and levels of connectivity. We use the average 
clustering coefficient, 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂, to measure local community cohesiveness. Without any processing, the 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂 
of the original network is 0.169. This high value suggests significant overlap between communities in the 
pre-COVID period. Also, it means that when two communities overlap, they are likely to overlap with 
each other. Figure 5.8 presents this trend graphically. As values of I increase, there is a removal of 
isolated nodes and 3-cliques with lower I values. This trend results in increasing values of 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂, although 
there is some fluctuation. The results suggest that popular (i.e., large trip counts) pick-up and drop-off 
locations are tightly connected, resulting in high 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂. 

Community structure is also important to consider, especially at the critical point. When  𝑰𝑰 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎, 
there are nine shared nodes with clustering coefficients ranging from 0.017 to 0.32. Note that six of these 
nine nodes with the lowest clustering coefficient correspond to major transit stations, while the top three 
correspond to an apartment, a private company, and a supermarket (Figure 5.6 and Figure 5.7). The 
average clustering coefficient of the six transit stations is 0.0275, well below 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂 (0.169) of the original 
network. Moreover, among the six transit stations, Draper Station has the largest nodal degree, yet the 
smallest clustering coefficient, 0.017. In contrast, Kimballs Lane Station has the lowest nodal degree yet 
the largest clustering coefficient, 0.049. A similar pattern emerges for the top four nodes that are not 
transit stations. All have smaller nodal degrees and larger clustering coefficients, with a maximal of 0.32. 
This result suggests a different distribution pattern between transit stations vs. non-transit stations. For 
transit stations, a hub-and-spoke pattern best describes the system surrounding them. In short, traffic 
travels along the links connecting different nodes to a central distribution center (transit stations). 
However, those nodes themselves are not well connected. For apartments, private companies, and 
supermarkets, the underlying pattern better corresponds to a point-to-point structure. In these instances, 
riders can use microtransit to travel directly between those locations without going through a central hub.  
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Figure 5.8  The average clustering coefficient at different I 

5.2.2 Post-COVID period 

There were 13,188 trips by 794 unique users (334 new) between 1,040 pick-up and drop-off locations in 
the post-COVID period. The maximum number of trips is 221, while the minimum number is one. We 
present the results of the 3-clique percolation in Figure 5.9.  In Figure 5.9a, the same decreasing pattern 
with fluctuations is apparent. In Figure 5.9b, the ratio is well above 2 when I is small, but the value has 
dropped slightly because of less microtransit activity in general. The vertical dashed line stands for the 
critical point in the post-COVID period.  

 
Figure 5.9  Community summary under different intensity thresholds in the post-COVID period: (a) the 

number of communities; and (b) the size ratio of the largest community to the second-largest 
community 
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The characteristics of communities is further explored at 10 values of I in the same manner: 0, 0.066, 
0.087, 0.108, 0.129, 0.150, 0.171, 0.192, 0.213, 0.234. Table 5.3 displays the results. 

Table 5.3  The 3-clique percolation for the post-COVID period 
I Community  Sizes 

 
Trips FMLM Trips 

(% of total trips) 
Users Avg. Trips 

(trips/person) 
Duration 
(minutes) 

0 1 492 10948 5737 (52%) 610 17.9 9.5 
 2 6 9 0 (0%) 2 4.5 8.4 
0.066 1 25 1549 1520 (98%) 82 18.9 6.3 
 2 18 1042 919 (88%) 81 12.9 24.3 
0.087 1 11 820 809 (99%) 38 21.6 6.3 
 2 11 817 712 (87%) 50 16.3 5.3 
0.108 1 9 750 748 (99%) 30 25.0 6.3 
 2 7 630 621 (99%) 35 18 5.3 
0.129 1 7 630 621(99%) 35 18.0 5.3 
 2 6 517 516 (99%) 24 21.5 6.3 
0.150 1 6 601 600 (99%) 34 17.7 5.3 
 2 5 468 468 (100%) 18 26.0 6.3 
0.171 1 6 601 600 (99%) 34 17.7 5.3 
 2 5 468 468 (100%) 18 26.0 6.3 
0.192 1 5 551 550 (99%) 30 18.4 5.3 
 2 3 162 162 (100%) 13 12.5 5.2 
0.213 1 5 551 550 (99%) 30 18.4 5.3 
 2 3 157 157 (100%) 11 14.3 7.2 
0.234 1 5 551 550 (99%) 30 18.4 5.3 
 2       

 
When I = 0, the network yields a gigantic component that contains 492 nodes while the remaining 
communities contain six or fewer nodes and 530 nodes in isolation. Compared with the pre-COVID 
period, there are more isolated nodes (51% vs. 46%). This result indicates that the user-centric pattern has 
become more distinct after the outbreak of COVID-19. 

When I = 0.066 (critical point), two medium-sized communities (25 and 18) emerge from the gigantic 
network. Figure 5.10 and Figure 5.11 present the spatial distribution of both and the shared nodes. There 
are some significant spatial changes worth noting. First, the spatial distributions of the two communities 
became less distinct. The largest community contains Draper Station, Draper Town Center Station, and 
Crescent View Station. The second community contains Draper Station, Crescent View Station, South 
Jordan Station, and Daybreak Parkway Station. The major takeaway here is that both communities span 
around major transit stations across the region. Also, their Sizes and Trips (in Tables 5.2 & 5.3) are 
similar, suggesting that these two communities are equally important in the post-COVID period.  

In addition, for all values of I, the number of users has decreased. This result is likely due to the overall 
decline in microtransit activity. However, the average number of trips per user increased compared with 
the pre-COVID period (Tables 5.2 and 5.3). There are two possible explanations. One is that less frequent 
users might have stopped using microtransit due to pandemic concerns. The other is that those who 
depend on microtransit remain riders (e.g., transit dependents and essential workers). Aside from these 
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differences, similarities also emerge. For example, many trips remain in the network for different values 
of I, and the first-mile/last-mile trips account for a large percentage of total trips for both periods. 

 
Figure 5.10  The largest community and shared nodes when 𝐼𝐼 = 0.066 in the post-COVID period 

 
Figure 5.11  The second-largest community and shared nodes when 𝐼𝐼 = 0.066 in the post-COVID period 
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We are also interested in how the overlapping pattern changes. Figure 5.12 presents the average clustering 
coefficients for different values of I. The 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂 of the original network decreased from 0.169 (pre-
COVID) to 0.129 (post-COVID). This result indicates that the level of network overlap decreased. At the 
critical point, we identify eight shared nodes. The three with the lowest clustering coefficient are transit 
stations with a minimal clustering coefficient of 0.029 (Draper Station) and a maximal clustering 
coefficient of 0.041 (Crescent View Station). The top five nodes contain four supermarkets and one 
residential node (Figure 18) with a minimum coefficient of 0.073 and a maximal coefficient of 0.124. The 
hub-and-spoke distribution for transit stations and point-to-point distribution for supermarkets and 
residential locations were also present in the post-COVID period.  

 
Figure 5.12  The average clustering coefficient at different I 
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6. CONCLUSIONS 

MaaS is a new mode of travel that encompasses several concepts. As applied in this research, MaaS refers 
to an on-call service that would give patrons access to fixed rail transit stations. Modeling MaaS as an 
access mode to transit involves seven steps, described in this research, which must be conducted for both 
the origin (accessing transit on the origin end of the trip) and the destination (accessing the final 
destination from the transit stop on the destination end of the trip) end of the trip. Within the current 
framework of the Wasatch Front travel model, including MaaS-to-transit involves custom scripting using 
the Cube software scripting language.  

To further explore one of the newest variations of MaaS, we unravel the spatio-temporal structures of 
microtransit activities utilizing empirical data from a pilot program in the Salt Lake City, Utah, area, UTA 
Via. The results compare microtransit activity during pre- and post-COVID periods, highlighting how 
some use patterns persist and change after the outbreak.  

The results of the eigendecomposition suggest that first-mile/last-mile trips declined, but the hourly 
distribution remained nearly identical. This finding suggests transit dependency for many riders. 
However, several new patterns emerged. Specifically, the explanatory power of PC1 decreased. This 
finding suggests a temporal dispersion trend for microtransit activity after the pandemic. Furthermore, by 
focusing on first-mile/last-mile trips, our results suggest that a higher percentage of first-mile/last-mile 
trips leads to greater variation for PC1. This result means that first-mile/last-mile trips can be the major 
source of variation in both periods. 

We further apply k-clique percolation to identify the communities in two networks (pre-COVID and post-
COVID). We vary threshold values of I for each network. As I increases, the gigantic component begins 
to break down into medium-sized communities. During this process, the results suggest that first-
mile/last-mile trips account for most of the total trips captured by the network.  

The application of a clustering coefficient revealed that network overlap decreased after the COVID-19 
outbreak. Interestingly there was an emergence of two distinct communities, pre- and post-COVID. The 
communities surrounding transit stations take the form of hub-and-spoke systems, with transit stations 
serving as traffic distribution centers while the surrounding nodes are disconnected. For other popular 
locales, connections are more dispersed, demonstrating a point-to-point distribution style.  

This work aimed to reconstruct and understand the spatio-temporal patterns of microtransit activity in 
portions of Salt Lake City, Utah. The framework is generalizable and can provide additional insights for 
UTA Via as it grows or inspires applications to pilot programs in other cities. By understanding the 
patterns and possible causal factors for microtransit network development, use, and underlying spatio-
temporal patterns, one can enhance the transferability of microtransit programs without additional cost. 
Furthermore, spatio-temporal structures of microtransit usage reveal that the usage is uneven. For 
example, the connection between certain regions is significantly stronger than that of other places. Also, 
the two-peak temporal pattern demonstrates many variations resulting from first-mile/last-mile trips. 
Understanding these structures of microtransit activity can help with possible customer segmentation and 
vehicle dispatching for all microtransit programs. Lastly, by comparing results between pre- and post-
COVID periods, it is possible to inform transit agencies on people’s behavioral changes and the evolution 
of their travel patterns to guide operational strategy adjustments further.  
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