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ABSTRACT 

Autonomous Vehicles (AVs) have the potential to offer benefits and flexibility in travel, which can lead 
to significant reductions in the generalized travel cost and possibly, more demand. The combination of the 
AV technology with Mobility as a Service (MaaS) creates a new disruptive transportation mode – Shared 
Autonomous Vehicles (SAVs) that have the promise to re-define the transportation landscape by 
improving mobility and competing with conventional transportation modes. While SAVs could 
potentially be on the market in the near future, the long-range transportation planning process has yet to 
account for their impact. We fill this gap by presenting a framework of modeling SAVs to seamlessly 
integrate them into the four-step travel demand models widely used by transportation agencies. Using the 
Wasatch Front region in the State of Utah as a case study, this project presents such modeling effort for 
the year 2040 forecast horizon. Delineated by different combinations of trip growth rates and SAV market 
attractiveness, the designed scenarios revealed that SAVs could increase the total number of trips by 1%–
7%. SAVs could shift travel away from conventional transportation modes. It is estimated that SAVs will 
increase daily Vehicle Miles Traveled (VMT) by 4%–9% across designed scenarios due to improved 
mobility of underserved populations and additional repositioning trips. The results will assist public 
agencies in understanding the impacts of SAVs on travel patterns to further consider the special needs of 
AV technology in long-range cost estimates and programming processes.  

 
 
  



iv 
 

TABLE OF CONTENTS 

1. INTRODUCTION ................................................................................................................................ 1 

1.1 Problem Statement ........................................................................................................................ 1 

1.2 Objectives ..................................................................................................................................... 2 

1.3 Outline of Report .......................................................................................................................... 2 

2. LITERATURE REVIEWS................................................................................................................... 3 

3. METHODOLOGY ............................................................................................................................... 6 

3.1 The WF Travel Model .................................................................................................................. 7 

3.2 Trip Generation Modifications ..................................................................................................... 8 

3.2.1 Impact on Households with Children and Elderly ........................................................... 8 

3.2.2 Impact on Mobility-impaired Population ........................................................................ 9 

3.3 Mode Choice Modifications ....................................................................................................... 12 

3.4 VMT Estimation ......................................................................................................................... 14 

4. RESULTS AND DISCUSSIOIN ....................................................................................................... 15 

5. CONCLUSIONS ................................................................................................................................ 18 

REFERENCES ........................................................................................................................................... 19 



v 
 

LIST OF FIGURES 

Figure 3.1  The conceptual overview of the WF travel model ...................................................................... 7 

Figure 3.2  Trip rates before and after adjustments (TR: trip rate before SAV; NTR: new trip rate 
due to the introduction of SAV, considering improved mobility of children and elderly 
populations) ............................................................................................................................... 9 

Figure 3.3  Modified WF mode choice model for accommodating SAVs ................................................. 12 

Figure 4.1  Designed scenarios trip production increase compared to the base scenario ........................... 15 

Figure 4.2  Daily mode split across designed scenarios .............................................................................. 16 

Figure 4.3  Daily VMT across designed scenarios ..................................................................................... 17 

 

LIST OF TABLES 

Table 2.1   Assumptions for the four scenarios in Childress et al. (2015) .................................................... 4 

Table 3.1   Experimental design.................................................................................................................... 6 

Table 3.2   Modified trip rates for different trip generation scenarios ........................................................ 10 

Table 3.3   MaaS in-vehicle time values across different scenarios ........................................................... 13 

Table 3.4   MaaS operating cost across different scenarios ........................................................................ 13 

Table 3.5   MaaS initial pick-up time in different area types across scenarios ........................................... 13 

Table 3.6   Cost split factor and pick-up time factor for shared MaaS modes ............................................ 13 

 

  



vi 
 

EXECUTIVE SUMMARY 

It is anticipated that ongoing advancement of computational capabilities will make it possible to build 
Autonomous Vehicles (AVs) with a high level of reliability operating under various complex situations. 
AVs can provide travelers with additional benefits and flexibility reducing the cost of travel, which, in 
turn, may lead to increased travel demand. In conjunction with the growth of AV technology is an 
evolving transportation service — Mobility as a Service (MaaS) — which can be seen in today’s 
Transportation Network Companies. Combining the AV technology with MaaS creates a new 
transportation mode — Shared Autonomous Vehicles (SAVs), which have the promise to re-define the 
transportation landscape by generating more trips and competing with conventional transportation modes. 
While  
 
SAVs could potentially be on the market in a decade or two, Metropolitan Planning Organizations 
(MPOs) and Departments of Transportation (DOTs) are just beginning to estimate the impacts of SAVs 
on travel behavior. This research fills this gap by investigating the impact of SAVs on travel demand in 
Utah in the 2040 horizon year. 
 
In this project, we modified the Wasatch Front (WF) travel demand model to estimate the impact of SAVs 
on Vehicle Miles Traveled (VMT). These model modifications were made in the trip generation and 
mode choice modules of the WF travel model. To address the impact of SAVs on trip generation, we 
adjusted the mobility of seniors, people with disabilities or driving-restrictive medical conditions, and 
children — demographics that often encounter challenges when traveling independently. The research 
assumes that SAVs will improve the mobility of these populations for non-work and non-school trips. To 
accommodate SAVs in the mode choice module, a new mode — MaaS — was added within the 
motorized branch. The attractiveness of the MaaS mode — as expressed in a utility function — is 
calculated based on the burden of in-vehicle-time, initial pick-up time, and operating cost. To model the 
additional benefits and flexibility that SAVs offer, we reduced the generalized cost of this mode 
compared to conventional transportation modes. Finally, 12 scenarios were designed and analyzed to 
investigate the impact of various combinations of trip growth and SAV market penetrations on VMT. 
 
Results revealed that SAVs can increase the total number of trips by a range 1%–7% across designed 
scenarios. Comparing mode shares across scenarios showed that while SAVs can shift mode shares from 
all conventional transportation modes, it competes most effectively with auto and non-motorized modes. 
Higher mode shifts were found for SAV shared ride modes when compared to SAV ride alone, partially 
due to Utah’s demographics, with larger average household sizes. 
 
Analysis of the modal shifts by trip purpose showed that for all trip purposes, except Nonhome-Based 
(NHB) trips, SAVs compete more with auto and non-motorized modes. For NHB trips, transit 
experiences the largest mode shift to SAVs. Among available transit modes, Bus, BRT, and Light Rail are 
estimated to experience the highest degree of shift to MaaS. An analysis of trip length distributions 
revealed that the SAV mode is more desirable for shorter trips than longer ones. Moreover, while 
reducing the generalized cost of SAVs makes it more competitive for longer trips, it does not significantly 
impact the share of SAVs for shorter trips. Eventually, it is observed that SAV increases daily VMT by 
4%–9% across designed scenarios due to both improved mobility of underserved population and 
additional VMT from the repositioning of vehicles toward the next rider.
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1. INTRODUCTION 

1.1 Problem Statement 

Recent advancement of computational capabilities in terms of hardware, algorithms, communication 
architecture, sensing, and navigation systems has made it possible to build Autonomous Vehicles (AVs) 
with a high level of reliability and to operate in complex driving situations. The Society of Automotive 
Engineer (SAE) International, building on the earlier work of National Highway Traffic Safety 
Administration (NHTSA), has defined automation levels from 0 to 5. Level 5 vehicles will have the 
maximum level of automation and can be operated without a supervised driver under all roadway and 
environmental conditions (Miller, et al., 2014). Vehicles with lower levels of automation currently 
available on the market are equipped with different automation features, such as adaptive cruise control, 
lane keeping systems, and parking assistance, etc. Since 2009, Google reported over five million miles 
driven with AVs, mostly on public roads (Lee, 2017). Moreover, most major automobile manufacturers 
including General Motors (LeBeau, 2013), Mercedes Benz (Andersson, 2013), Nissan (Nissan Motor 
Company, 2013), and Volvo (Carter, 2012), target to sell vehicles with automated driving features by 
2020. Although fully automated vehicles are currently not available for purchase, it is foreseen that they 
could potentially be on the market in a decade or two (Levin and Boyles, 2015). 
 
On the other hand, the number of states in the United States considering legislation related to AVs is 
gradually increasing every year. In 2017, 33 states had introduced legislation and 21 states had passed 
legislation related to AVs. While current regulations in most places require the presence of a driver 
behind the steering wheel to take control of the vehicle in case of an emergency, it is likely that such 
requirements might change in the near future (Autonomous Vehicles, 2018). Given that AVs are 
increasingly heralded to re-define the transportation landscape, they are brought to the attentions of 
Metropolitan Planning Organizations (MPOs) and Departments of Transportation (DOTs) to be 
considered in their long-range transportation plans. 
 
AVs could provide travelers with additional travel benefits and flexibility. For instance, travelers can 
engage in various activities, such as reading, playing video games, and sending emails, while traveling. 
They may also have AVs drop them off at their destinations, then park elsewhere to avoid excessive 
parking fee (Levin and Boyles, 2015). AVs might have the potential to increase the mobility of children, 
seniors, and people with driving-restrictive medical conditions by eliminating human involvement during 
driving (Harper et al., 2016). Moreover, AVs could substantially reduce the number of crashes due to 
various human errors, such as slow reaction time, speeding, driving under the influence, and lack of 
experience (Arvin et al., 2019). These benefits could lead to a significant reduction in the generalized cost 
of travel, and subsequently more demand for travel and a modal shift away from public transport, 
passenger train, and air (Wadud et al., 2016). 
 
While the ownership of AVs can be a huge, fixed cost, another stream of research has been focusing on 
combining AVs with Mobility-as-a-Service (MaaS). MaaS presents people with different mobility options 
reducing or eliminating the need to own a private vehicle. It is also referred to as “shared mobility” in 
certain contexts and can come in various forms, such as personal vehicle sharing, bike sharing, 
carpooling, vanpooling, ride sourcing and ride hailing. Ride sourcing and ride hailing are typically served 
by Transportation Network Companies (TNCs), leveraging smartphone apps to connect drivers with 
passengers.  
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Combining AV technology with MaaS creates a new mode – Shared Autonomous Vehicles (SAVs), 
which could provide inexpensive and flexible, on-demand service. SAVs may operate on the TNC model, 
enabling travelers to obtain a ride through a smartphone application. SAVs can also reposition themselves 
to a more favorable location with lower parking cost and higher demand. These advances may provide 
environmental benefits in terms of reduced parking and vehicle ownership needs. However, there are 
potential downsides of such services. For instance, the inexpensive cost of this new mobility service could 
result in more trips and, in turn, higher Vehicle Miles Traveled (VMT). It could also cause modal shifts 
from conventional public transportation. Moreover, travelers could walk less due to the convenience of 
such on-demand mobility service, incurring adverse health effects. Consequently, while SAVs might have 
substantial positive impacts, such as improved safety, efficiency, accessibility, and mobility, they could 
also induce greater travel demand and modal shift from other active transportation modes. 
 
Given the growing interests and promising market of SAVs, it is important for MPOs and DOTs to start 
modeling how SAV technology would impact the regional travel patterns and consider the special needs 
of AV in long-range cost estimates and programming process. This research paves the way by presenting 
a framework of modeling SAVs to seamlessly integrate it into the existing four-step, travel demand 
models. Using the Wasatch Front (WF) region in Utah as a case study, we propose various modifications 
to the regional travel demand model to explore the impact of SAVs on travel behaviors. A scenario-based 
analysis is then used to predict a range of VMT increase on the introduction of SAV within the study 
region in the year 2040 forecast horizon.   
 
1.2 Objectives 

The primary objective of this study is to estimate the impact of SAVs on VMT in Utah in the year 2040 
forecast horizon. The results of this research will assist UDOT and WFRC to understand the impact of 
SAVs on travel patterns in terms of increased trip generation and shift from traditional modes of travel. 

 
1.3 Outline of Report  

The rest of the report is structured as follows. Chapter 2 summarizes the literature review. The proposed 
methodology, including a discussion on modifications to the Trip Generation and Mode Choice 
Models, are explained in Chapter 3. Chapter 4 details the results and discussion. Implications and 
conclusions are presented in Chapter 5.  
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2. LITERATURE REVIEWS 

In recent years, there has been increased research interests in AVs. Yet, much of the literature has focused 
on technological hurdles in operating AVs safely on the road (e.g. sensing system). Here, we attempt to 
provide a comprehensive summary of recent research efforts in examining the impacts of AVs (or SAVs) 
on travel patterns from the travel demand modeling perspective.  
 
Levin and Boyles (2015) developed a multiclass, four-step model and used a generalized cost function of 
travel time, monetary fees, and fuel consumption to assess the impact of AV ownership on trip, mode, and 
route choice behaviors. Three modes of transportation, including car, transit, and AV, are considered via a 
nested logit model. AV users were assumed to have the option of either parking the vehicle (with a 
parking fee) or sending it back to the origin (with no parking fee and incurring fuel costs). Static link 
performance functions were modified to predict capacity improvements due to AVs on each link. 
Travelers seek to minimize the generalized cost of travel time, fuel, and parking fees. It is assumed that 
market penetration, trip productions and attractions are known. The proposed model was tested on the 
Austin downtown network considering the presence of transit. Results revealed that parking cost was the 
main incentive for transit use, and the presence of AV round-trip caused a reduction in transit demand. 
They predicted a 61.4% reduction in transit ridership as a result of lower costs of AVs. 
 
Hörl (2016) used an agent-based transport simulation model, MATSim, to simulate AVs. Four modes of 
transportation, including public transport, private car, autonomous taxi (AT), and walking, are considered 
in this study. Individuals selected their travel options such that travel disutility is minimized. Travel 
disutility for each mode is defined as “a function of mode-specific disutility, travel time, and travel cost.” 
The classic Sioux Falls, South Dakota, network was selected as a test case for the proposed model. 
Results revealed that AV mode mainly decreased the share of public transport and walking; however, it 
enabled the shifts of previously private vehicle users to AVs. The presence of AVs reduced the average 
travel distance for public transport and walking agents because long trips using these modes will be 
replaced by AVs. Moreover, AVs were found to increase VMT, which has negative effects on 
environment and congestion. They concluded that availability of AVs without administrative regulations 
would attract mode shifts from all the other three modes (i.e. public transport, walking and private car), 
and attract more public transport users than private car users. 
 
Zhang et al. (2015) applied an agent-based model to explore the potential benefits of SAVs with Dynamic 
Ride Sharing (DRS). Vehicle-trips were generated based on the 2009 National Household Travel Survey 
(NHTS) data for an imaginary 10-mile by 10-mile grid-based city. They assumed that two individuals 
might share their ride voluntarily if both are willing to share rides with strangers and the higher delay 
incurred by ridesharing can be offset by travel cost reductions. They reported that SAV with DRS could 
provide a better level of service compared to SAV without DRS by reducing trip delay and costs, offering 
more reliable service particularly in peak hours, and generating less VMT. The model results indicated 
that the average delay per trip is approximately 13% lower throughout the day with the presence of SAV 
with DRS, and around 37% lower during peak hours. Moreover, the availability of SAV with DRS was 
found to generate 4.74% less VMT compared to SAV without DRS. 
 
Childress et al. (2015) assessed potential change in travel patterns in the Puget Sound, Washington, 
region using an activity-based model. They modeled AV under assumptions of four different scenarios. 
The first scenario assumes that AVs use existing facilities more efficiently and increase all freeway and 
major arterial capacities by 30%. The second scenario is built on the first one, assuming that with capacity 
improvements, travelers using AVs perceive in-vehicle time less burdensome compared to driving in 
regular vehicles. In the third scenario, it is assumed that all cars are self-driving and none are shared. 
Similar to the third scenario, all cars are assumed to be automated in the fourth scenario, but the main 
difference is the consideration of SAVs. Table 2.1 summarizes assumptions used in these four scenarios. 
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To investigate potential effects of AVs, the model outputs from scenarios 1 through 4 were compared 
against a year 2010 baseline. Scenarios with a capacity increase (scenarios 1 through 3) experienced 
increased VMT, ranging from 4% to 20%.   
 
Bischoff and Maciejewski (2016a) assessed the impact of AT fleets on traffic congestion using an agent-
based simulation model. They found that although ATs increase traffic volumes they can reduce traffic 
congestion assuming capacity increase by 50%. 

 
Table 2.1  Assumptions for the four scenarios in Childress et al. (2015) 
Assumptions Scenario 1 Scenario 2 Scenario 3 Scenario 4 

1 

30% capacity 
increase on 
freeways and 
major arterials 

30% capacity 
increase on 
freeways and major 
arterials 

30% capacity 
increase on 
freeways and 
major arterials 

All trips are 
provided by 
AV/SAVs 

2 
 

The value of time 
for AV mode was 
reduced from $24 
to $15.6/hr for the 
highest income 
households 

The value of time 
for AV mode was 
reduced from $24 
to $15.6/hr for all 
households 

The system 
provides the 
same service as 
private cars but 
at a higher rate 
($1.65/mi) 

3     50% parking cost 
reduction   

 
Fagnant et al. (2015) examined the implications of SAVs at a low market penetration (1.3% of regional 
trips). They used an agent-based model to simulate SAVs in a dense urban area of Austin, Texas. Results 
indicated that each SAV could replace nine private vehicles, but that increases VMT by 8% due to 
repositioning trips. In another study, Fagnant and Kockelman (2018) advanced an existing model by 
enabling DRS, optimizing fleet size, and anticipating profitability for private operators. They showed that 
the availability of SAVs with DRS could limit VMT increase to 4.5%. Moreover, they reported that DRS 
might significantly reduce waiting time, particularly during peak hours. A myriad of previous studies 
revealed that AV/SAV can increase VMT in the range of 4–40% (Brown et al., 2014, Gucwa, 2014, 
Childress et al., 2015, Fagnant et al., 2015, Harper et al., 2016, Wadud, 2016, Milakis et al., 2017, 
Fagnant and Kockelman, 2018). 
 
Bischoff and Maciejewski (2016) investigated the potential replacement of private cars with AT in Berlin, 
Germany, using an agent-based simulation model. Results showed that a fleet of 100,000 ATs could 
replace the car fleet with high service quality. In another study, Bischoff et al. (2018) integrated parking 
search behavior to the existing agent-based simulation model to assess the impact of AV fleets on parking 
search. They reported that the introduction of AVs can reduce parking search time for conventional, 
private cars. Levin et al. (2017) studied replacing personal vehicles with SAVs in downtown Austin, 
Texas, using AM peak demand. They developed an event-based framework to integrate SAVs with traffic 
flow models; however, the impact of SAV on trip generation was not taken into consideration. They 
showed that SAVs could increase congestion due to empty repositioning trips.  
 
Wen et al. (2018) proposed a modeling framework to simulate and evaluate possible integration of AV 
with public transportation systems. AV is modeled to provide first-mile connections to rail stations and 
also efficient service in suburban areas. An agent-based model of service, in combination with a discrete 
choice model of demand, were used to model the interaction between service operators and travelers. The 
proposed framework was implemented on a case study in Delft, Netherland.  
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Hörl et al. (2019) used an agent-based model to evaluate the performance of different operational polices 
for controlling and dispatching SAV fleets in Zurich, Switzerland. They found that SAVs can provide 
higher occupancy rates than conventional cars. Moreover, they reported that SAVs cannot compete with 
public transport or private cars in the short term if travelers’ mode choice decision is solely based on 
monetary cost. The choice of efficient operational policy was found to have a significant impact on 
potential benefits that SAV service could offer.   
 
As demonstrated, previous studies mainly focused on four-step planning models and, more recently, 
activity-based (or agent-based) models, to explore the impact of AVs (Levin and Boyles, 2015). The main 
advantage of activity-based models (when compared with traditional four-step models) lies in their 
capability to predict repositioning trips. However, due to constraint on data availability and computational 
requirements, most of these studies relied on unrealistic traffic flow models (Burns et al., 2013, Fagnant 
and Kockelman, 2014, Fagnant and Kockelman, 2016) and/or simplified transportation networks (Poulhès 
and Berrada, 2017, Zhang et al., 2015, Fagnant and Kockelman, 2014). Moreover, many MPOs are still 
heavily dependent on their respective four-step models for long-range transportation planning and do not 
intend to adopt agent-based models in the near future due to cost constraint and reliability concerns of 
these models. Consequently, there is a need to provide guidance toward incorporating AVs/SAVs into the 
existing four-step travel demand modeling, and a method to account for repositioning trips when 
modeling AVs/SAVs’ impacts on VMT. 
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3. METHODOLOGY 

SAVs can potentially increase VMT in two ways: 1) by incurring trips from currently underserved 
populations; and 2) by converting other modal trips to MaaS, which can result in higher VMT (e.g. transit 
or nonmotorized trips are shifted or when additional VMT is generated during a MaaS vehicle being 
repositioned after passenger drop-off). To estimate the range of VMT changes incurred due to SAVs, we 
adopted a scenario-based approach to account for SAVs’ impacts. Using the WF travel demand model as 
an example, we assumed that SAVs will mainly affect the trip generation and mode choice modules as 
explained above. Correspondingly, a total of 12 scenarios were designed to investigate different 
combinations of trip growth rates and SAV market attractiveness (see Table 3.1). Detailed explanations of 
the parameters (i.e. 𝛽𝛽𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑇𝑇𝑇𝑇) will follow.  
 
Table 3.1  Experimental design 

Scenario Trip Generation 
Effect 

Mode Share 
Effect Description 

Base   The current WF Model without any 
modifications 

LowTripGen Low Zero 𝛽𝛽𝑖𝑖 = 0.1,𝑇𝑇𝑇𝑇𝑇𝑇 = 15%, MaaS is not 
included in the mode choice model 

MidTripGen Medium Zero 𝛽𝛽𝑖𝑖 = 0.5,𝑇𝑇𝑇𝑇𝑇𝑇 = 10%, MaaS is not 
included in the mode choice model 

HighTripGen High Zero 𝛽𝛽𝑖𝑖 = 1,𝑇𝑇𝑇𝑇𝑇𝑇 = 0%, MaaS is not 
included in the mode choice model 

LowTripGen_MaaSLow Low Low 
𝛽𝛽𝑖𝑖 = 0.1,𝑇𝑇𝑇𝑇𝑇𝑇 = 15%, MaaS with low 
travel cost included in the mode choice 
model  

LowTripGen_MaaSMid Low Medium 
𝛽𝛽𝑖𝑖 = 0.1,𝑇𝑇𝑇𝑇𝑇𝑇 = 15%, MaaS with 
medium travel cost included in the 
mode choice model 

LowTripGen_MaaSHigh Low High 
𝛽𝛽𝑖𝑖 = 0.1,𝑇𝑇𝑇𝑇𝑇𝑇 = 15%, MaaS with high 
travel cost included in the mode choice 
model 

MidTripGen_MaaSLow Medium Low 
𝛽𝛽𝑖𝑖 = 0.5,𝑇𝑇𝑇𝑇𝑇𝑇 = 10%, MaaS with low 
travel cost included in the mode choice 
model 

MidTripGen_MaaSMid Medium Medium 
𝛽𝛽𝑖𝑖 = 0.5,𝑇𝑇𝑇𝑇𝑇𝑇 = 10%, MaaS with 
medium travel cost included in the 
mode choice model 

MidTripGen_MaaSHigh Medium High 
𝛽𝛽𝑖𝑖 = 0.5,𝑇𝑇𝑇𝑇𝑇𝑇 = 10%, MaaS with high 
travel cost included in the mode choice 
model 

HighTripGen_MaaSLow High Low 
𝛽𝛽𝑖𝑖 = 1,𝑇𝑇𝑇𝑇𝑇𝑇 = 0%, MaaS with low 
travel cost included in the mode choice 
model 

HighTripGen_MaaSMid High Medium 
𝛽𝛽𝑖𝑖 = 1,𝑇𝑇𝑇𝑇𝑇𝑇 = 0%, MaaS with medium 
travel cost included in the mode choice 
model 

HighTripGen_MaaSHigh High High 
 𝛽𝛽𝑖𝑖 = 1,𝑇𝑇𝑇𝑇𝑇𝑇 = 0%, MaaS with high 
travel cost included in the mode choice 
model 
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The following sections describe the WF travel demand model and modifications made to the WF trip 
generation and mode choice modules to incorporate SAVs’ impacts. 
 
3.1 The WF Travel Model 

The WF travel demand model maintained jointly by the Utah Department of Transportation (UDOT), 
Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG) is a 
trip-based, travel model that estimates the movement of people and vehicles within the 4-County (Weber, 
Davis, Salt Lake, and Utah) urbanized area during an average spring/fall weekday. This classic demand 
model consists of four sub-models: trip generation, trip distribution, mode split, and trip assignment.  
 
Figure 3.1 shows the conceptual overview of the WF model.  

 

 

Figure 3.1  The conceptual overview of the WF travel model 

The model has a feedback loop between the trip distribution and traffic assignment, which ensures 
consistency between congestion and travel times that influence trip distribution patterns. The trip 
generation model first estimates trip-ends by Transportation Analysis Zone (TAZ) based on household 
and employment characteristics. Households are stratified jointly by life cycle, income, household size, 
and the number of workers. Three different life cycle categories are considered in the model as follows: 

• LC1: Households with no children and no seniors 
• LC2: Households with children and no seniors 
• LC3: Households with seniors (may have children) 

The trip distribution model then pairs generated trip-ends into trips. In the mode choice model, a mode of 
travel is identified for each trip. Vehicle trips are assigned to the highway network in trip assignment, 
during which congestion levels on each road are estimated consistent with route choices. The WF model 
shows trips that fall into three main classifications: person trips, commercial vehicle/truck trips, and 
external vehicle trips. Person trips are further categorized by different trip purposes, as follows: 

• Home-Based Work Trips (HBW): Trips made between the traveler’s home and the place of 
work in either direction.  

• Home-Based College Trips (HBC): Trips made between the traveler’s home and college.  
• Home Based School Trips (HBSch): Trips made between the traveler’s home and school. 

HBSch trips include kindergarten through high school.  
• Home Based Shopping Trips (HBShp): Trips made between the traveler’s home and shopping 

(e.g. retail) locations.  
• Home Based Other Trips (HBOth): Trips made between the traveler’s home and all other non-

work-related destinations not already accounted for by the previously defined trip purposes.  
• Non-Home-Based Work Trips (NHBW): Trips made between the traveler’s work and some 

other non-home location.  
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• Non-Home-Based Non-Work Trips (NHBNW): Trips made between non-home and non-work 
locations.  

The WF model was calibrated to represent 2011 base-year travel conditions by adjusting model input 
data, assumptions and parameters so intermediate and final outputs could closely match field 
observations. Model outputs are validated against real-world data. Origin-destination flows, roadway 
vehicle volumes, vehicular travel times and speeds, and transit ridership are some of the model outputs 
used for validation. For future forecast years, the model output is reviewed for reasonableness to validate 
model results. 

 
3.2 Trip Generation Modifications 

SAVs can potentially increase the mobility of underserved populations. Specifically, many seniors, 
people with travel restrictive disabilities or medical conditions, and children often encounter challenges 
traveling independently and must rely on family members, friends, and other service providers to meet 
their mobility needs. In this research, we assumed that SAVs would improve the mobility of these 
populations for non-work and non-school trips. Since work-based and school-based trips are among those 
necessary trips that every traveler, including underserved populations, regularly makes, it is expected that 
SAVs will not have a great effect on these specific trip purposes. SAVs may, however, increase trip 
making for other, discretionary trips. To address the improved mobility of the underserved population, the 
following modifications are made to the WF demand model:  

 
3.2.1 Impact on Households with Children and Elderly 
 
To capture the improved mobility of children and elderly members in the WF model, we increased the trip 
rates of households classified under LC2 and LC3 for non-work and non-school trip purposes. It is 
assumed that before the introduction of SAV, children and elderly members of high-income households 
have higher mobility than lower-income households, since they are less constrained by travel costs 
(WFRC/MAG Demand Model, 2016). Based on this assumption, we can expect that the availability of 
SAV mode offers the same level of mobility for lower income households. Thus, SAVs will increase trip 
generation rates for lower income households toward the trip generation rates of higher income 
households.  
 
The 2012 household travel diary data is used to extract the high-income household trip generation rates by 
life cycle and household size for three trip purposes: HBO, HBShp, and NHBNW. Once these rates were 
calculated, the trips rates for different trip generation scenarios were calculated as follows: 

𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝑃𝑃𝑖𝑖 = 𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑀𝑀𝑜𝑜𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽𝑖𝑖 ∗ (𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) (1) 

where 𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝑃𝑃𝑖𝑖 and 𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 denote the trip generation rates for households with life cycle 𝐿𝐿, size 𝑆𝑆, 
and trip purpose 𝑃𝑃 in scenario 𝑖𝑖 and base scenario (current version of the WF model without any 
modifications), respectively. 𝑇𝑇𝑅𝑅𝐿𝐿𝐿𝐿𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  represents the trip generation rate for households with life 
cycle 𝐿𝐿, size 𝑆𝑆, and trip purpose 𝑃𝑃 for high income population and 𝛽𝛽𝑖𝑖 is the adjustment factor for scenario 
𝑖𝑖. When 𝛽𝛽𝑖𝑖 is 1, the trip generation rates for all income categories are set to those of high-income 
households. When 𝛽𝛽𝑖𝑖 is 0, the trip generation rates for all income categories are set to those of the base 
model (null or “no build”).  Different values for 𝛽𝛽𝑖𝑖 are used to populate three scenarios with different trip 
generation growth. For low, medium, and high trip generation scenarios, 𝛽𝛽𝑖𝑖 is set to 0.1, 0.5, and 1, 
respectively.   
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Figure 3.2 shows the trip rates of households under LC2 and LC3 categories for non-work and non-school 
trip purposes against household size. The blue and purple lines (TR_LC2 and TR_LC3) show the trends 
of trip rate increase before improving the mobility of LC2 and LC3. The red and green lines (NTR_LC2 
and NTR_LC3) illustrate the same trends after improving the mobility for LC2 and LC3 households. As 
shown in this figure, for most households, trip rates increase as the household size increases. Moreover, 
the trends of the trip rate increase are generally consistent with the before and after mobility 
improvement. There are three cases (circled in black) where the trends of trip rate increase after mobility 
improvement are not conforming with that of before improvement. This might be explained by the small 
sample size of households within these categories in household travel diary data. These trip rates were 
adjusted to follow the same trend as before mobility improvement (as shown in the second column of 
graphs in Figure 3.2 titled “After Adjustment”) 
 

 

 

Figure 3.2  Trip rates before and after adjustments (TR: trip rate before SAV; NTR: new trip rate due to 
the introduction of SAV, considering improved mobility of children and elderly populations) 

3.2.2 Impact on Mobility-impaired Population 

SAVs can potentially increase the mobility of mobility-impaired population (i.e., people with driving-
restrictive medical conditions) for non-work and non-school trips. Ideally, SAVs would enable a 
mobility-impaired traveler to generate the same number of trips as a traveler with no impairment. The 
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current WF travel model does not differentiate between people with driving-restrictive medical conditions 
and those without. Thus, it is reasonable to assume that the current trip generation rates are a weighted 
average of trip generation rates for the disabled and non-disabled populations as follows: 

𝑇𝑇𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑇𝑇𝑅𝑅𝑊𝑊𝑊𝑊 ∗ 𝑃𝑃𝑊𝑊𝑊𝑊 + 𝑇𝑇𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊 ∗ 𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊  (2) 

where 𝑇𝑇𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 denotes trip generation rates in the base model, 𝑇𝑇𝑅𝑅𝑊𝑊𝑊𝑊 and 𝑇𝑇𝑅𝑅𝑊𝑊𝑊𝑊D represent the trip 
generation rates of households with and without mobility-impaired members in the study region, and 𝑃𝑃WD 
and 𝑃𝑃𝑊𝑊𝑊𝑊D are the percentages of households with and without mobility-impaired members in the study 
region. We assumed a trip reduction (or suppression) rate (TRR) for households with mobility-impaired 
members and calculated trip rates for those households as follows: 
𝑇𝑇𝑅𝑅𝑊𝑊𝑊𝑊 = 𝑇𝑇𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊 ∗ (1 − 𝑇𝑇𝑇𝑇𝑇𝑇)                                                                                                   (3)                                                                            

  
Based on the finding of Sweeney (2004), the trip suppression rate for households with mobility-impaired 
members was assumed to be 20%, meaning that households with mobility-impaired members on average 
generate 20% fewer trips than households without mobility-impaired members.  
 
The percentage of households with mobility-impaired members within the study region was obtained 
from 2012-2016 American Community Survey (ACS) where the data was collected at the census tract 
level. Finally, trip generation rates for households without mobility-impaired members are calculated as: 

𝑇𝑇𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑇𝑇𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

(1 − 𝑃𝑃𝑊𝑊𝑊𝑊) + ((1 − 𝑇𝑇𝑇𝑇𝑇𝑇) ∗ 𝑃𝑃𝑊𝑊𝑊𝑊)
 (4) 

 
To populate scenarios with various trip generation growth rates to account for the SAVs’ impact, TRR 
was adjusted to reflect various levels of mobility improvements for households with mobility-impaired 
members. When TRR is 20%, the trip generation rates are equal to the base model trip generation rates; 
when TRR is 0%, households with mobility-impaired members are assumed to incur the same number of 
trips as households without mobility-impaired members. For this research, 15%, 10%, and 0% TRR are 
respectively assumed for low, medium and high trip generation scenarios.  
 
Using Equation 2, the trip rate increase due to the improved mobility of households with mobility-
impaired members is estimated. This can be translated into trip rate increase by 0.3%, 0.5%, and 1% for 
low, medium, and high trip generation scenarios, compared to the base scenario. Table 3.2 summarizes 
the modified trip rates and their increase percentages to capture the improved mobility of the underserved 
population in the WF trip generation model.  
 
Table 3.2  Modified trip rates for different trip generation scenarios 

HH 
Size 

Life 
Cycle 

Trip 
Purpose 

Base 
Model 
Rates 

Low Scenario Medium Scenario High Scenario 
Increase 
Percentage Trip Rate1 Increase 

Percentage 
Trip 
Rate 

Increase 
Percentage 

Trip 
Rate 

1 1 HBOth 1.301 0.30 1.305 0.50 1.308 1.00 1.314 
2 1 HBOth 2.322 0.30 2.329 0.50 2.334 1.00 2.345 
3 1 HBOth 3.569 0.30 3.580 0.50 3.587 1.00 3.605 
4 1 HBOth 5.214 0.30 5.230 0.50 5.240 1.00 5.266 
5 1 HBOth 7.265 0.30 7.287 0.50 7.301 1.00 7.338 
6 1 HBOth 9.5685 0.30 9.597 0.50 9.616 1.00 9.664 
2 2 HBOth 2.634 2.05 2.688 9.26 2.878 18.61 3.124 
3 2 HBOth 4.128 1.15 4.175 4.75 4.324 9.54 4.522 
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4 2 HBOth 5.784 0.47 5.811 1.35 5.862 2.71 5.941 
5 2 HBOth 7.826 0.54 7.868 1.71 7.960 3.42 8.094 
6 2 HBOth 9.9762 0.64 10.040 2.22 10.198 4.46 10.422 
1 3 HBOth 1.785 1.63 1.814 7.15 1.913 14.36 2.041 
2 3 HBOth 3.558 0.68 3.582 2.40 3.644 4.83 3.730 
3 3 HBOth 3.569 0.57 3.590 1.88 3.636 3.77 3.703 
4 3 HBOth 4.461 0.50 4.483 1.48 4.527 2.98 4.594 
5 3 HBOth 6.128 4.25 6.388 20.27 7.370 40.74 8.625 
6 3 HBOth 8.6 3.11 8.868 14.59 9.855 29.32 11.121 
1 1 HBShp 0.452 0.30 0.453 0.50 0.454 1.00 0.457 
2 1 HBShp 0.72 0.30 0.722 0.50 0.724 1.00 0.727 
3 1 HBShp 0.753 0.30 0.755 0.50 0.757 1.00 0.761 
4 1 HBShp 1.075 0.30 1.078 0.50 1.080 1.00 1.086 
5 1 HBShp 1.559 0.30 1.564 0.50 1.567 1.00 1.575 
6 1 HBShp 2.15 0.30 2.156 0.50 2.161 1.00 2.172 
2 2 HBShp 0.86 2.05 0.878 9.26 0.940 18.61 1.020 
3 2 HBShp 1.355 4.25 1.413 20.28 1.630 40.75 1.907 
4 2 HBShp 1.752 3.66 1.816 17.31 2.055 34.78 2.361 
5 2 HBShp 1.58 2.11 1.613 9.56 1.731 19.20 1.883 
6 2 HBShp 1.924 0.53 1.934 1.65 1.956 3.31 1.988 
1 3 HBShp 0.57 1.92 0.581 8.63 0.619 17.34 0.669 
2 3 HBShp 1.161 0.64 1.168 2.22 1.187 4.45 1.213 
3 3 HBShp 1.075 3.36 1.111 15.83 1.245 31.81 1.417 
4 3 HBShp 1.075 4.35 1.122 20.80 1.299 41.80 1.524 
5 3 HBShp 1.559 4.25 1.625 20.27 1.875 40.74 2.194 
6 3 HBShp 2.15 2.56 2.205 11.83 2.404 23.78 2.661 
1 1 NHBNW 0.892 0.30 0.895 0.50 0.896 1.00 0.901 
2 1 NHBNW 1.247 0.30 1.251 0.50 1.253 1.00 1.259 
3 1 NHBNW 1.828 0.30 1.833 0.50 1.837 1.00 1.846 
4 1 NHBNW 2.15 0.30 2.156 0.50 2.161 1.00 2.172 
5 1 NHBNW 2.473 0.30 2.480 0.50 2.485 1.00 2.498 
6 1 NHBNW 2.795 0.30 2.803 0.50 2.809 1.00 2.823 
2 2 NHBNW 1.613 2.40 1.652 11.03 1.791 22.16 1.970 
3 2 NHBNW 1.914 1.10 1.935 4.52 2.001 9.08 2.088 
4 2 NHBNW 2.87 0.36 2.880 0.78 2.892 1.57 2.915 
5 2 NHBNW 3.591 1.54 3.646 6.69 3.831 13.44 4.074 
6 2 NHBNW 4.171 4.61 4.363 22.08 5.092 44.37 6.022 
1 3 NHBNW 1.054 4.73 1.104 22.68 1.293 45.58 1.534 
2 3 NHBNW 2.118 4.55 2.214 21.77 2.579 43.75 3.045 
3 3 NHBNW 2.634 3.71 2.732 17.60 3.098 35.38 3.566 
4 3 NHBNW 2.903 3.62 3.008 17.11 3.400 34.39 3.901 
5 3 NHBNW 3.118 4.25 3.250 20.27 3.750 40.74 4.388 
6 3 NHBNW 3.44 3.88 3.573 18.42 4.074 37.02 4.714 

1: Number of trips per household 
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3.3 Mode Choice Modifications 

The current WF travel model adopts a nested multinomial logit mode choice model to estimate the split 
among non-motorized (walk/bike) and motorized (auto and transit) trips. The mode choice model 
estimates the modes of travel separately for HBW, HBO, HBC and NHB trips. For this research, a new 
mode —MaaS – was created to incorporate SAVs into the mode choice model. The MaaS mode was 
added as a new branch within the motorized category. The layout of the new mode choice model is shown 
in Figure 3.3.  

 

 

Figure 3.3  Modified WF mode choice model for accommodating SAVs 

The MaaS utility function is calculated based on in-vehicle-time, initial pick-up time, operating cost (i.e. 
distance-based cost, time-based cost, and initial fee), cost split factor, and pick-up time factor. The utility 
function developed for MaaS_alone (Drive Alone) is as follows:   
𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑎𝑎𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝 +
𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑑𝑑𝑑𝑑𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)/(𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)                                                                                                                             
(5) 
where 𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, and 𝑎𝑎𝑎𝑎𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 represent alternative specific constants. 𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑝𝑝 denote in-
vehicle time and pick-up time, respectively. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑑𝑑𝑑𝑑𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡𝑡𝑡𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 represent trip 
distance, distance-based cost, time-based cost, and initial fee for MaaS trips. 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜, and 
𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 denote nesting constants used in the mode choice model. 

Table 3.3 through Table 3.6 show the values used for variables and coefficients across different scenarios 
in Equation 5. The current WF model in-vehicle-time coefficients are referenced and their absolute values 
are reduced in MaaS utility function to make travel time less burdensome for MaaS compared to 
conventional transportation modes (i.e. Auto and Transit modes). Table 3.3 shows default in-vehicle time 
coefficients (Base) currently used for Transit and Auto and those reduced coefficients for modeling MaaS 
mode under low, medium, and high impact scenarios. The operating cost of MaaS for the base scenario 
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was estimated based on current Uber and Lyft fares in Salt Lake City, Utah. All rates are in 2010 dollar. 
For medium and high MaaS market penetration scenarios, operating cost was reduced by 10% and 20%, 
respectively, to reflect a less expensive SAV mode. The initial pick-up time is the time spent after a 
passenger is dropped off and prior to the next passenger pickup. This variable is included in MaaS mode 
and varies by area type. It is lower in the Central Business District (CBD) than in Urban and Rural areas 
due to the availability of more SAVs. For shared rides, cost split factor is used to split the operating costs 
between passengers. Moreover, a pick-up time factor is used to penalize initial pick-up time for MaaS 
shared ride modes. These two factors are multiplicators for 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in Equation 
5 for MaaS SR2 and SR3+ modes.  
 
Table 3.3  MaaS in-vehicle time values across different scenarios 

Trip Purpose 
In-Vehicle Time for Scenario 

Base Low Mid High 
HBW -0.045 -0.0405 -0.036 -0.0315 
HBO -0.035 -0.0315 -0.028 -0.0245 
NHB -0.04 -0.036 -0.032 -0.028 
HBC -0.025 -0.0225 -0.02 -0.0175 

 
Table 3.4  MaaS operating cost across different scenarios 

Cost Type 
Operating Cost for Scenario 

Low/Base Mid High 

Distance-Based Cost ($/mile) 0.679 0.611 0.543 

Initial Fee ($) 2.590 2.331 2.072 

Time-Based Cost ($/min) 0.174 0.157 0.139 
 

Table 3.5  MaaS initial pick-up time in different area types across scenarios 

Area Type 
Scenario 

Low/Base Mid High 
CBD Core 3 3 3 
CBD  5 5 5 
Urban 8 7.2 6.4 
Urban-Rural 12 10.8 9.6 
Rural 15 13.5 12 

 
Table 3.6  Cost split factor and pick-up time factor for shared MaaS modes 

Mode Cost Split Factor Pickup Time Factor 

MaaS 2 0.7 1.5 
MaaS 3+ 0.6 2 
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3.4 VMT Estimation 

Additional VMT induced by SAV repositioning occurs after a passenger is dropped off and prior to the 
next passenger pickup. Due to the macroscopic nature of the four-step model, it is challenging to 
accurately derive such additional VMT within the current modeling framework. To compensate, we 
performed offline post-model analyses to estimate such additional VMT incurred due to those 
repositioning trips. The additional VMT for each MaaS trip was estimated based on initial pick-up time 
and average speed within the trip’s origin area type. Equations 6 and 7 show how this additional VMT 
was estimated for peak period and off-peak period. 

𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 = �𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖, 𝑃𝑃𝑃𝑃 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖,𝑃𝑃𝑃𝑃

5

𝑖𝑖=1

∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖 

 

 

(6) 

𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 = �𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖, 𝑂𝑂𝑂𝑂 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖,𝑂𝑂𝑂𝑂

5

𝑖𝑖=1

∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖 (7) 

where 𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃 and 𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 denote additional VMT due to repositioning trips during peak and 
off-peak periods, 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖, 𝑃𝑃𝑃𝑃 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖, 𝑂𝑂𝑂𝑂 represent number of MaaS trips originating from area type 𝑖𝑖 
during peak and off-peak periods, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖,𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑖𝑖,𝑂𝑂𝑂𝑂 are average speeds within area type 𝑖𝑖 for peak 
and off-peak periods, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖 is the pick-up time within the area type 𝑖𝑖. 

The total VMT considering repositioning trips for MaaS mode can be calculated as follows: 

𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑠𝑠,𝑃𝑃𝑃𝑃 + 𝑉𝑉𝑉𝑉𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑃𝑃𝑃𝑃 (8) 

𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑉𝑉𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑂𝑂𝑂𝑂 (9) 

where 𝑉𝑉𝑉𝑉𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑃𝑃 and 𝑉𝑉𝑉𝑉𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑂𝑂𝑂𝑂 denote model VMT estimates for peak and off-peak periods. The 
daily VMT is consequently calculated as the sum of off-peak and peak periods VMT: as follows: 

𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑃𝑃𝑃𝑃 (10) 
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4. RESULTS AND DISCUSSIOIN  

We ran 12 scenarios (as shown in Table 3.1) consisting of different combinations of trip growth rates and 
MaaS modal attractiveness. This experimental design allowed us to estimate a range of VMT increase as 
a result of SAVs’ introduction in the 2040 forecast year. 
 
Figure 4.1 illustrates the percentage of trip production increase that was due to the improved mobility of 
underserved populations for trip generation scenarios compared to the base scenario (without considering 
the impact of SAVs). Since the rates of work-based and school-based trips remain unchanged (compared 
to the base scenario) these trip purposes were intentionally excluded from the figure. The total number of 
trips increased by approximately 1%, 3.5%, and 7% for low, medium, and high trip generation scenarios, 
respectively. The higher trip production increase was observed for HBShp and NHBNW trips, compared 
to HBOth trip purposes. This is partially explained by the discretionary nature of HBShp and NHBNW 
trips, which makes these trips more sensitive to travel cost variation. 

 
Figure 4.1  Designed scenarios trip production increase compared to the base scenario 

Figure 4.2 illustrates daily mode shares across designed scenarios for all trip purposes. Auto_2Plus and 
MaaS_2Plus represent market shares of shared ride trips in Auto (SR2 and SR3 under Auto branch shown 
in Figure 3.3) and MaaS (SR2 and SR3 under MaaS branch shown in Figure 3.3), respectively. In the 
Base scenario, the market split is Auto, Non-motorized, and Transit (from high to low). The market share 
of shared ride mode (Auto_2Plus) is higher than non-shared ride mode (Auto_DriveAlone). This is 
partially explained by the unique demographics in Utah where the larger average household size creates 
more shared ride trips, usually with family members. Therefore, many of the shared rides can be 
attributed to household members traveling together. In those scenarios where MaaS mode is available, the 
market split is Auto, MaaS, Non-motorized, and Transit modes (from high to low). Auto_2Plus has a 
higher share than Auto_DriveAlone; similarly, shared ride MaaS mode (MaaS 2Plus) has a greater share 
than non-shared MaaS mode (MaaS-RideAlone). Comparing across scenarios, it reveals that MaaS gains 
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most of its share from Auto mode. However, there is still some shift from Non-motorized and Transit 
modes to MaaS. It ws also observed that shared ride MaaS mode attracts more market share from total 
modal shifts than non-shared MaaS mode. As expected, comparing MaaS mode share across scenarios 
with a low, medium, and high MaaS market attractiveness shows that reducing the generalized cost of 
MaaS (i.e. in-vehicle time, initial pick-up time, and operating cost) makes MaaS more competitive against 
conventional modes of transportation. 

 
Figure 4.2  Daily mode split across designed scenarios 

Figure 4.3 shows the daily VMT estimated by the model and post offline analysis (adding repositioning 
trips) across all scenarios. Note that MaaS mode is not available in Base, LowTripGen, MidTripGen, and 
HighTripGen scenarios. Comparing VMTs of LowTripGen, MidTripGen, and HighTripGen scenarios 
with that of Base scenario shows the increase in daily VMT due to improved mobility of underserved 
populations as a result of the availability of AVs. As expected, the higher increase in trip rates is 
associated with a greater increase in daily VMT.  
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Figure 4.3  Daily VMT across designed scenarios 

Introducing MaaS as a new mode to the mode choice model led to a slight decrease in VMT for all 
scenarios with MaaS available (compared to the “zero” scenarios, namely, LowTripGen, MidTripGen, 
and HighTripGen in Table 3.1). For example, as shown in Figure 4.3, low trip generation with MaaS 
(LowTripGen_MaaSLow, LowTripGen_MaaSMild, LowTripGen_MaaSHigh) scenarios have lower 
VMT compared to the Base scenario, which might appear to be counterintuitive. The reason lies in the 
slightly higher shifts from non-shared modes to shared ride modes. As discussed above, this finding is 
attributable partially to the unique demographics in Utah households and may not accurately account for 
additional factors discouraging a “pool” mode, such as discomfort in traveling with strangers. Given the 
current modeling framework, reducing the generalized cost of MaaS across scenarios to represent the low, 
medium, and high MaaS attractiveness, leads to a reduction in VMT, which is largely due to the shift 
from drive alone to MaaS2+. 

Yet, the post offline analysis added the daily VMT from trip repositioning for scenarios with the MaaS 
mode, as shown in red in Figure 4.3. For the MaaS scenarios, significant VMT increase due to 
repositioning trips was observed. Moreover, higher MaaS penetration resulted in smaller VMT increase. 
This is because when MaaS is readily available, the repositioning trips have a shorter length (as the more 
distant passengers could be picked up by other MaaS). The daily VMT was estimated to increase in the 
range of 4%–9% across designed scenarios. 
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5. CONCLUSIONS 

SAV is defined as “the combination of AV technology with MaaS,” which offers a new ridesharing 
option for travelers. The growing interests and promising market of SAVs over the past several years urge 
the need for public agencies to model their impact on the regional travel patterns for long-range 
transportation planning cost estimates and programming. In this research, we presented a framework of 
modeling SAVs to seamlessly integrate it into the four-step travel demand models that are widely used by 
the public agencies.  
 
Using the WF region in Utah as a case study, we captured the effects of SAVs on travel behavior through 
modifying its regional travel demand model. The model modifications were made mainly on the trip 
generation and mode choice modules. In the trip generation module, trip rates of households with 
children, elderly, and mobility-impaired members were increased to reflect the improved mobility that the 
AV technology can offer. Overall, a range of — MaaS -— was added, which competes with the 
conventional modes of automobile, transit, and non-motorized. Finally, 12 scenarios were designed to 
investigate different combinations of trip growth rates and MaaS market attractiveness. This experimental 
design yielded an estimate of a 4%–9% range of VMT increase due to SAVs in the year 2040 forecast 
horizon. Our results revealed that SAVs could increase the total number of trips by 1%–7% across 
designed scenarios. Mode share comparison among scenarios showed that while MaaS can take market 
shares away from all conventional transportation modes, it competes more with auto. Reducing the 
generalized cost of MaaS makes the mode more appealing against conventional modes. Higher market 
shares were found for shared ride MaaS due, in part, to the larger average household size in Utah. This 
finding, however, does not account for potential disbenefits of sharing a ride, such as discomfort in 
traveling with strangers. 
 
In this study, several assumptions were made in regard to the trip rate increase and SAV utility function. 
In the future, there will be a need to verify these assumptions via survey. In addition to that, while SAV 
fleet size might have a significant impact on pick-up time, it is not considered in the modeling process. 
Regarding repositioning trips, an offline, post-processing analysis was performed to estimate the number 
and length of repositioning trips. Due to such post-process, repositioning trips were not assigned to the 
modeled network such that their impacts on congestion and traffic flow were not assessed during the 
modeling process. While SAV might also affect roadway capacity and auto ownership, we did not 
incorporate these impacts in our study — we left them for future research attempts. Further, we modeled 
the MaaS mode choice as MaaS Alone, MaaS2, and MaaS3+. Given how ridesharing decisions are 
currently made (e.g. Uber and Lyft), a more appropriate modeling approach would be to include only two 
MaaS choices: MaaS Alone and MaaS Pool. Such a shift of paradigm may affect the attractiveness of 
MaaS Pool, leading to a slight change of results from this research. Additionally, security and safety 
concerns might present themselves due to SAV’s vulnerability to hacking and/or sharing a ride with 
strangers when there is no driver. Such impedance is not modeled in this study, and future research could 
investigate the impacts of these factors on SAV attractiveness.   
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