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ABSTRACT1  

Urban traffic networks consisting of partially blocked roads often need to remain open to traffic before, 
during, and after disasters because of their vital roles to hazard preparation, emergency response, and 
recovery of urban communities. Conducting effective traffic planning of disrupted transportation 
networks highly depends on accurate prediction of travel time on partially blocked roads, which is very 
different from that on intact roads. Due to the lack of appropriate models, travel time prediction 
approaches developed for intact roads have often been directly applied to partially blocked roads, leading 
to inaccurate travel time estimates. Unrealistic travel time estimates of partially blocked roads as well as 
the whole transportation network further affect traffic planning, emergency response, and other decisions 
that are heavily reliant on travel time prediction. A new approach to develop travel time functions for 
partially blocked roads in urban areas is proposed to close this gap based on microscopic traffic 
simulation. First, an improved model for simulating traffic on partially blocked roads is developed by 
extending the existing cellular automaton model. Second, the improved traffic model is validated at 
microscopic and macroscopic levels with measured traffic data from an urban road. Third, traffic 
simulations under various scenarios with different demand flow rates, truck ratios, and blockage ratios are 
conducted through microscopic simulation experiments. Finally, a set of continuous traffic time functions 
are further developed for disrupted traffic flow with parameters estimated from the generated traffic data. 
The developed travel time functions for a typical urban arterial road are then compared with the standard 
Bureau of Public Roads function. The comparison suggests that the standard Bureau of Public Roads 
function would considerably underestimate the travel time on partially blocked roads, and the proposed 
travel time functions can offer a more realistic prediction. The proposed methodology of developing the 
travel time functions of partially blocked roads will be helpful for accurate estimation of traffic demand of 
post-hazard transportation networks. 

  

  

 
1 This study has been published as a journal paper: Hou, G. and Chen, S. (2022). “Development of travel time 
functions for disrupted urban arterials with microscopic traffic simulation,” Physica A: Statistical Mechanics and its 
Applications, https://doi.org/10.1016/j.physa.2022.126961  

https://doi.org/10.1016/j.physa.2022.126961
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1. INTRODUCTION AND LITERATURE REVIEW  

1.1 Background 

Transportation networks are critical for post-disaster evacuation, emergency response, and long-time 
recovery activities. Road networks are easily disrupted during or following some hazards, such as by 
damaged bridges and roadways, fallen trees and utility facilities, and debris from nearby damaged 
buildings. In the emergency response phase, disrupted roads with full or partial closure might prevent 
access to the impacted areas, causing delay in rescue and relief operations. In the recovery stage, the 
restoration of other lifeline infrastructures, such as electrical, water supply, and telecommunication 
networks, may also be affected by extra travel delay on disrupted roads.  

Travel time function or volume delay function describes the relationship between travel time and traffic 
volume on a road link. In traffic demand modeling, travel time is usually treated as a cost, which directly 
influences travelers’ route choices. Travel time function, as a sub-model of static traffic assignment 
procedure, plays a very important role in traffic demand modeling, and the Bureau of Public Roads (BPR) 
function is one of the most widely used travel time functions [1]. Despite reduced traffic capacity, 
partially blocked roads (PBR) of some critical urban traffic networks often remain open to traffic before, 
during, and after many hazards. To conduct effective traffic planning of road networks involving PBR 
highly depends on accurate prediction of travel time on PBR, which is very different from those on intact 
roads. Because there is so far no available travel time function for PBR, the standard BPR function for 
intact roads has been often adopted by simply applying the reduced capacity for post-hazard 
transportation demand modeling. However, not only is the traffic capacity reduced for PBR, the travel 
time-volume relationship is also significantly changed from its normal condition because of the 
interaction between vehicles and obstructions. Thus, the standard BPR function will likely give inaccurate 
travel time prediction on PBR, which may lead to erratic results in the post-hazard transportation network 
analysis. So, there is great need to develop travel time functions for PBR that reflect the relationship 
between travel time and demand flow rate realistically. 

The primary objective of the study is to develop a methodology to predict the travel time functions for 
PBR in urban areas based on microscopic traffic simulation. Firstly, an improved cellular automaton (CA) 
model for traffic flow simulation on disrupted urban arterials is proposed based on the two-lane safety 
driving (SD) model, with which unrealistic deceleration behaviors can be avoided and driver behaviors 
during traffic signal change intervals can be realistically replicated. Secondly, the proposed model is 
calibrated and validated at microscopic and macroscopic levels with measured traffic data from an urban 
road in Colorado. Finally, traffic data under various scenarios with different demand flow rates, truck 
ratios, and blockage ratios are generated through microscopic simulation experiments. A continuous 
traffic time function is then developed for disrupted traffic flow and its parameters are estimated with the 
generated traffic data. The primary contributions of this paper include (1) an improved CA model for 
traffic simulation on PBR; and (2) a continuous travel time function that can consider the combined effect 
of demand flow rate, truck ratio, and blockage ratio, which is calibrated with travel time data generated 
through microscopic simulation experiments. The PBR travel time functions, developed for the first time, 
will be helpful for accurate travel demand estimates in post-hazard transportation network analysis. 

The rest of this report is organized as follows. First, related existing works from the literature are 
reviewed; the second section introduces the proposed traffic simulation model, followed by the model 
calibration and validation; the third section describes the process to develop travel time functions for 
PBR; and finally, the conclusions are summarized. 
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1.2 Literature Review 

Travel time functions are usually developed based on measured or simulated traffic data. It is a traditional 
approach to estimate travel time functions by calibrating empirical travel time models based on observed 
traffic data, which can be collected with various techniques, such as floating car, license plate matching, 
ITS probe vehicle, loop detector, and radar. In addition to the well-known Bureau of Public Roads (BPR) 
function [1], there are other empirical travel time estimate models, such as conical travel time function 
[2], Akcelik model [3], Singapore model [4], Skabardonis-Dowling model [5], and HCM formula [6], 
which were all developed to better reflect observed operating conditions and road facility characteristics. 
However, all these models were developed with traffic data of intact roads, and none are suitable for 
travel time prediction on partially blocked roads (PBR) due to the unique characteristics of disrupted 
traffic flow on these roads. 

Accounting for a considerable portion of urban traffic, trucks in heterogeneous traffic flow often 
significantly contribute to traffic delay due to their different sizes, travel speeds, mechanical properties, 
and headways from cars. Previous studies indicate that the flow rate and speed decrease with the increase 
of the truck ratio [7]. The standard BPR function does not reflect the effect of traffic flow heterogeneity 
caused by different vehicle types on traffic congestion. The conversion of trucks into cars by using the 
passenger car equivalent method only recognizes the size difference but ignores the operational difference 
between those vehicle types. A truck’s impact on the traffic time function has been included in only some 
existing studies [8-10]. 

Blockage size is another factor that affects the performance of PBR, which has been preliminarily 
considered in existing studies. For example, lateral and longitudinal blockage sizes have been 
incorporated in the empirical equations to calculate the remaining traffic capacity [11]. Blockage size 
(e.g., work zone length) has been found to directly influence the travel time required for a vehicle to 
traverse a road [12]. Given various possible blockage scenarios following different hazards, incorporating 
the effect of the blockage size in travel time function can be challenging, but it is crucial for rationally 
evaluating the post-hazard performance of disrupted transportation networks by considering the 
interaction between roads and other interdependent infrastructures. However, there is no existing travel 
time function that includes the effect of blockage size.  

Several studies have considered the impact of PBR in the post-hazard urban transportation network 
analysis, most of which focused on the connectivity analysis of disrupted transportation networks with 
fully and partially closed roads [13-15]. Only a few studies considered the effect of PBR on traffic delay 
by modeling the post-hazard traffic demand. Tamima and Chouinard [16] evaluated system vulnerability 
of transportation networks after earthquakes and considered road closure due to fallen debris from 
damaged buildings. The reduced capacity of PBR was estimated by assuming there is a linear relationship 
between the remaining capacity and the percentage of the road width being covered by debris. However, 
the travel time on PBR in this study was calculated by the standard BPR function, including the normal 
free-flow time and reduced capacity rather than realistic travel time functions for disrupted PBR 
scenarios. 

Despite the essential role of PBR travel time prediction for the resiliency analysis of disrupted 
transportation networks, extensive literature review has not identified any published literature regarding 
travel time functions of PBR. One big challenge for developing travel time functions of PBR is the lack of 
real-world traffic data. As a result, microscopic traffic simulation has become a good alternative. Among 
those existing microscopic traffic simulation models, the cellular automaton (CA) model is one of the 
most widely used models, thanks to its high efficiency and flexibility [17]. Many existing studies 
investigated the disrupted traffic flow on PBR induced by tollbooths, accidents, lane reduction, and work 
zones with CA models [18-27].  
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Despite recent efforts toward realistic simulation of disrupted traffic, one major challenge for CA-based 
traffic flow simulation is about unrealistic deceleration behavior. There are generally two types of 
unrealistic deceleration behavior in existing CA models for disrupted traffic. Firstly, when a vehicle 
approaches a static obstruction or traffic jam, it may make a sudden stop by sharply reducing its 
maximum velocity to avoid a rear-end crash. In this situation, the required deceleration rate is much 
higher than the mechanical deceleration capability by most vehicles, making the deceleration rate 
unrealistic. This is caused by some limitations of most existing models: a vehicle’s velocity is determined 
only by the gap between itself and its preceding vehicle, and vehicles tend to brake abruptly at the last 
second. Secondly, on a disrupted road, when a vehicle enters the merging area before an obstruction, it 
usually decelerates gradually to a safe speed (e.g., posted reduced speed limit). However, such a 
deceleration process in existing CA models would be completed within one second regardless, which may 
lead to an unrealistically high deceleration rate. Although unrealistic driving behavior may still lead to 
reasonable long-term averaged cumulative outcome for normal traffic flow, it may cause erratic detailed 
disrupted traffic flow results, which are important for PBR performance. Lan et al. [28] improved the CA 
model with piecewise-linear speed variation to avoid the first type of unrealistic deceleration behaviors in 
the work zone traffic simulation. However, the second type of unrealistic deceleration behavior still 
existed in their model. Therefore, a general CA-based model for simulation of disrupted traffic flow that 
can fully consider realistic deceleration driving behavior is still needed. 

The literature review also suggests that existing studies related to travel time functions mainly focused on 
normal traffic, and very few studies had examined the development of travel time functions on PBR. In 
the meantime, the impact of trucks on travel time under normal conditions had been studied previously, 
but the effect of blockage size also needs to be incorporated when estimating travel time on PBR. 
Moreover, existing CA-based traffic simulation models need to be improved to fully consider realistic 
deceleration driving behavior. This study aims to overcome these limitations and propose a new 
methodology to develop the travel time functions of PBR in urban areas through microscopic traffic 
simulation. 

1.3  Organization of This Report 

The report is composed of five chapters: Chapter 1 introduces pertinent background information and 
literature review results related to the present study. In Chapter 2, the formulation methodology of 
microscopic traffic simulation model of PBR is introduced. In Chapter 3, the model calibration and 
validation are conducted. In Chapter 4, the travel time functions for PBR are developed. The report 
concludes with Chapter 5.  
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2.  FORMULATION OF MICROSCOPIC TRAFFIC SIMULATION 
MODEL 

2.1  A Typical PBR Scenario 

For urban U.S. transportation systems, four-lane arterials (i.e., two lanes in each direction) and two-lane 
arterials (i.e., one lane in each direction) are the most popular arterial types. If one lane of a two-lane 
arterial is blocked, there will be no traffic in that direction unless manual traffic intervention is applied, 
such as alternating one-way traffic for both directions. Such a scenario involves very low traffic capacity 
and is beyond the scope of the present study. This study will focus on the two-lane traffic in each 
direction on four-lane arterials. Depending on the specific hazard and surrounding environment, road 
links can be blocked in many ways. Traffic performance of a PBR is determined by the specific blockage 
scenario. One of the most common blockage scenarios for two-lane traffic is that one lane is partially 
closed and the other lane is open to traffic, which is like the two-lane traffic with a work zone, as shown 
in Figure 2.1. Although there are other more complicated blockage scenarios, this study will focus on the 
most typical disruptive scenario in Figure 2.1. This is because other blockage scenarios either lead to full 
closure (e.g., multiple blockages near each other) or can be simplified into the scenario being studied here 
(e.g., multiple blockages far apart). 

 
Figure 2.1  Schematic diagram of a road section with a blockage 

As shown in Figure 2.1, a blocked area with a length of 𝐿𝐿𝑏𝑏 is included in the road section. A warning sign 
is usually placed at the upstream of the blockage showing how far ahead of the lane is closed, often 
accompanied by reduced speed limit. The area between the warning sign and the blocked area is called a 
merging area with the length of 𝐿𝐿𝑚𝑚 , where drivers on the blocked lane will try to switch to the adjacent 
lane. In the meantime, vehicles often need to slow down to the reduced speed limit before moving into the 
blocked area. Any area beyond the blocked and merging areas is called the normal area. 

In some situations, warning signs may not be immediately available following an incident or a hazard 
before traffic management is implemented. In this situation, the length of the merging area and reduced 
speed limit will depend on individual drivers and traffic conditions. Due to different driving behavior, 
timid drivers may merge lanes far before the blockage and drive slowly in the blocked area, while 
aggressive drivers may begin to merge lanes very late and drive relatively fast. 

As shown in Figure 2.1, vehicles enter the road section from the left end of the figure and there is a traffic 
light at the right end with the cycle length of 𝑇𝑇. The durations of green-light, yellow-light, and red-light 
phases are 𝑇𝑇𝑔𝑔, 𝑇𝑇𝑦𝑦, and 𝑇𝑇𝑟𝑟, respectively. If a vehicle reaches the right end of the road section, it will leave 
when the traffic light is green and stop when the traffic light is red. During a change interval, drivers will 
stop or proceed through the intersection depending on the distance to the intersection and the driving 
speed. 
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2.2  CA-based Model 

To avoid unrealistic deceleration behavior mentioned in Chapter 1, an improved CA model is proposed 
for heterogeneous traffic flow on partially blocked urban roads by extending the two-lane safety driving 
(SD) model [7]. The SD model is known for its ability to fully avoid unrealistic deceleration behaviors in 
traffic simulation. Because vehicles on partially blocked roads experience frequent deceleration, the SD 
model is needed to realistically simulate this type of disrupted traffic. The original SD model was 
developed for simulation of normal traffic on highways. Through the extension, the improved CA model 
can simulate traffic not only on PBR but also on urban arterials with traffic lights. In this model, the lanes 
are discretized into many identical cells. Each cell is either empty or occupied by a vehicle at a time. 
Depending on the length of each individual vehicle, different numbers of cells may be occupied by each 
vehicle. The vehicle velocity is an integer varying from 0 to 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, which is the maximum velocity of a 
vehicle. At each time step, the position and velocity of each vehicle are updated through the forwarding 
rule and lane-changing rule.  

Open boundary conditions are used in this model. Vehicles enter the road section from the left end with a 
flow rate of 𝑞𝑞, and the time headway ℎ is assumed to follow a displaced exponential distribution, which 
has a cumulative probability distribution 𝐹𝐹(ℎ) = 1 − 𝑒𝑒−𝜆𝜆(ℎ−𝑡𝑡𝑚𝑚), where 𝑡𝑡𝑚𝑚 is the minimum headway 
between vehicles and 𝜆𝜆 = 𝑞𝑞/(1 − 𝑡𝑡𝑚𝑚𝑞𝑞). We assume that the position of the left-most vehicle is 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, and 
the maximum velocity and length of the new vehicle 𝑛𝑛 are 𝑣𝑣𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑙𝑙𝑛𝑛, respectively. If 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 >
𝑣𝑣𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑙𝑙𝑛𝑛 and vehicle 𝑛𝑛 meets the time headway condition, it will enter the system at the position of 
𝑥𝑥𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑛𝑛 − 𝑣𝑣𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚,𝑣𝑣𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚� with a velocity of 𝑣𝑣𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 

Forwarding rule in the green-light phase 

During different traffic light phases, drivers have different driving behavior so the forwarding rules in the 
CA model are also different. Therefore, forwarding rules in the green-light phase and yellow and red-light 
phase are introduced. During the green-light phase, there are four consecutive steps in the forwarding 
rules that are performed in parallel for all vehicles. 

S1: Safe distance. Obtain three safe distances for vehicle 𝑛𝑛, including safe acceleration distance 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, 
safe keep velocity distance 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛, and safe deceleration distance 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛. To safely accelerate, keep a 
velocity, or decelerate, a vehicle must maintain a safe following distance with its preceding vehicle, 
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛, or 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, respectively. The worst possible scenario is assumed to calculate those distances: 
the preceding vehicle begins to brake with the maximum deceleration rate at time step 𝑡𝑡 and the following 
vehicle may accelerate, keep its velocity, or decelerate at time step 𝑡𝑡, and begins to brake with the 
maximum deceleration rate at time step 𝑡𝑡 + 1. If the distance the following and preceding vehicles have 
to travel until they stop are 𝑠𝑠𝑛𝑛+1 and 𝑠𝑠𝑛𝑛, respectively, the difference of the travel distances between the 
two vehicles 𝑠𝑠𝑛𝑛 − 𝑠𝑠𝑛𝑛+1 is deemed the safe distance to avoid a collision. This provides the basis for 
calculating those three safe distances for typical car-car cases with Eqs. (1)-(3). However, the basic 
algorithm will not work when the preceding and following vehicles have vastly different maximum 
deceleration rates, for example a truck being the proceeding vehicle and a passenger car being the 
following vehicle in heterogeneous traffic. Therefore, the three safe distances for special car-truck cases 
are obtained by Eqs. (4)-(6), which are modified from Eqs. (1)-(3). Detailed explanations of Eqs. (1)-(6) 
can be found in references [7, 29].  When a vehicle approaches a stationary obstacle, the driver will 
accelerate, keep its velocity, or decelerate according to the distance from the obstacle. Similarly, the three 
safe distances for the vehicle-obstacle cases can be calculated by Eqs. (7)-(9), which are also modified 
from Eqs. (1)-(3). 
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For the typical car-car cases, where vehicle 𝑛𝑛 + 1 is followed by vehicle 𝑛𝑛, 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, 𝑑𝑑𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑛𝑛, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 are 
obtained with the following equations: 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚�0, � [(𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑎𝑎) − 𝑖𝑖𝑀𝑀𝑛𝑛]

(𝑣𝑣𝑛𝑛(𝑡𝑡)+𝑎𝑎)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛

𝑖𝑖=0

− � [(𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1) − 𝑖𝑖𝑀𝑀𝑛𝑛+1]

(𝑣𝑣𝑛𝑛+1(𝑡𝑡)−𝑀𝑀𝑛𝑛+1)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛+1

𝑖𝑖=0

�          (1) 

𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚�0, � [𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑀𝑀𝑛𝑛]

𝑣𝑣𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛

𝑖𝑖=0

− � [(𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1) − 𝑖𝑖𝑀𝑀𝑛𝑛+1]

(𝑣𝑣𝑛𝑛+1(𝑡𝑡)−𝑀𝑀𝑛𝑛+1)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛+1

𝑖𝑖=0

�                 (2) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚�0, � [(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑) − 𝑖𝑖𝑀𝑀𝑛𝑛]

(𝑣𝑣𝑛𝑛(𝑡𝑡)−𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛

𝑖𝑖=0

− � [(𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1) − 𝑖𝑖𝑀𝑀𝑛𝑛+1]

(𝑣𝑣𝑛𝑛+1(𝑡𝑡)−𝑀𝑀𝑛𝑛+1)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛+1

𝑖𝑖=0

�           (3) 

For special car-truck cases, when both the velocity 𝑣𝑣𝑛𝑛(𝑡𝑡) and limited deceleration capability 𝑀𝑀𝑛𝑛 of 
vehicle 𝑛𝑛 (car) are higher than 𝑣𝑣𝑛𝑛+1(𝑡𝑡) and 𝑀𝑀𝑛𝑛+1 of the leading vehicle 𝑛𝑛 + 1 (truck), 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛, and 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 are calculated with the following equations. 

For 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, we set ∆𝑣𝑣 = 𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1 − (𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑎𝑎), ∆𝑀𝑀 = 𝑀𝑀𝑛𝑛+1 −𝑀𝑀𝑛𝑛, 𝜏𝜏1 = ∆𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 Δ𝑀𝑀, 𝜏𝜏2 =
(𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑎𝑎)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛. In Eq. (4), 𝜏𝜏1 and 𝜏𝜏2 are two special time instants, at which the local minimum space 
gap between the two vehicles is reached. The smaller of the two space gaps calculated with 𝜏𝜏1 and 𝜏𝜏2 is 
deemed as the safe acceleration distance of the following car. The detailed derivation is not given for the 
sake of brevity. However, this information is available in Li et al. [7]. It is noted that 𝜏𝜏1 and 𝜏𝜏2 have the 
similar meaning in the following Eqs. (5) and (6). 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 � � ��(𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑎𝑎) − 𝑖𝑖𝑀𝑀𝑛𝑛� − �(𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1)− 𝑖𝑖𝑀𝑀𝑛𝑛+1��
𝜏𝜏1 𝑜𝑜𝑜𝑜 𝜏𝜏2

𝑖𝑖=0

�           (4) 

For 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛, we set ∆𝑣𝑣 = 𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1 − 𝑣𝑣𝑛𝑛(𝑡𝑡), ∆𝑀𝑀 = 𝑀𝑀𝑛𝑛+1 −𝑀𝑀𝑛𝑛, 𝜏𝜏1 = ∆𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 Δ𝑀𝑀, 𝜏𝜏2 = 𝑣𝑣𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛. 

𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 � � �(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑀𝑀𝑛𝑛)− �(𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1)− 𝑖𝑖𝑀𝑀𝑛𝑛+1��
𝜏𝜏1 𝑜𝑜𝑜𝑜 𝜏𝜏2

𝑖𝑖=0

�                   (5) 

For 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, we set ∆𝑣𝑣 = 𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1 − (𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑), ∆𝑀𝑀 = 𝑀𝑀𝑛𝑛+1 −𝑀𝑀𝑛𝑛, 𝜏𝜏1 = ∆𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑 Δ𝑀𝑀, 𝜏𝜏2 =
(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 � � ��(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑) − 𝑖𝑖𝑀𝑀𝑛𝑛� − �(𝑣𝑣𝑛𝑛+1(𝑡𝑡) −𝑀𝑀𝑛𝑛+1)− 𝑖𝑖𝑀𝑀𝑛𝑛+1��
𝜏𝜏1 𝑜𝑜𝑜𝑜 𝜏𝜏2

𝑖𝑖=0

�           (6) 

For vehicle-obstacle cases, where vehicle 𝑛𝑛 is the nearest vehicle behind an obstacle, 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑝𝑝𝑛𝑛, and 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 are calculated with the following equations: 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚�0, � [(𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑎𝑎) − 𝑖𝑖𝑀𝑀𝑛𝑛]

(𝑣𝑣𝑛𝑛(𝑡𝑡)+𝑎𝑎)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛

𝑖𝑖=0

�                                 (7) 
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𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, � [𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑀𝑀𝑛𝑛]

𝑣𝑣𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛

𝑖𝑖=0

�                                            (8) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, � [(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑) − 𝑖𝑖𝑀𝑀𝑛𝑛]

(𝑣𝑣𝑛𝑛(𝑡𝑡)−𝑑𝑑)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛

𝑖𝑖=0

�                                 (9) 

S2: Slow to accelerate.  Determine the stochastic noise parameter 𝑅𝑅𝑎𝑎 based on the vehicle’s velocity 𝑣𝑣𝑛𝑛(𝑡𝑡). 

𝑅𝑅𝑎𝑎 = 𝑚𝑚𝑖𝑖𝑖𝑖(𝑅𝑅𝑑𝑑 ,𝑅𝑅0 + 𝑣𝑣𝑛𝑛(𝑡𝑡) ∙ (𝑅𝑅𝑑𝑑 − 𝑅𝑅0)/𝑣𝑣𝑠𝑠)                  (10) 

S3: Update the velocities of all vehicles simultaneously by comparing the vehicle’s space gap 𝑑𝑑𝑛𝑛(𝑡𝑡) with 
the calculated three safe distances. When vehicles approach the merging area, they need to decelerate to 
the reduced speed limit 𝑣𝑣𝑟𝑟 gradually in a short time and obey the speed limit until moving out of the 
blocked area. At the same time, in the merging area, vehicles in the blocked lane (lane 1) will try to 
change to the unblocked lane (lane 2) as soon as possible. Therefore, the forwarding rules in the merging 
and blocked areas are different from those in the normal area. 

S3a: Acceleration.  

In the normal area, where the maximum velocity is 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, if 𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, or in the merging and 
blocked areas, where the maximum velocity is 𝑣𝑣𝑟𝑟, if 𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 and 𝑣𝑣𝑛𝑛(𝑡𝑡) ≤ 𝑣𝑣𝑟𝑟  

𝑣𝑣𝑛𝑛(𝑡𝑡 + 1) = �
𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑛𝑛(𝑡𝑡) + 𝑎𝑎, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑣𝑣𝑟𝑟), 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() ≤ (𝑅𝑅𝑎𝑎)

𝑣𝑣𝑛𝑛(𝑡𝑡), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒             (11) 

S3b: Random slowing down.  

In the normal area, if 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 > 𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛, or in the merging and blocked areas, if 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 > 𝑑𝑑𝑛𝑛(𝑡𝑡) ≥
𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 and 𝑣𝑣𝑛𝑛(𝑡𝑡) ≤ 𝑣𝑣𝑤𝑤𝑤𝑤 

𝑣𝑣𝑛𝑛(𝑡𝑡 + 1) = �
𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑, 0), 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() ≤ (𝑅𝑅𝑠𝑠)

𝑣𝑣𝑛𝑛(𝑡𝑡),𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (12) 

S3c: Braking.  

In the normal area, if 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 > 𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, 

𝑣𝑣𝑛𝑛(𝑡𝑡 + 1) → 𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑, 0)                       (13) 

In the merging and blocked areas,  

𝑣𝑣𝑛𝑛(𝑡𝑡 + 1) = �
𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑, 0), 𝑖𝑖𝑖𝑖 𝑣𝑣𝑛𝑛(𝑡𝑡) ≤ 𝑣𝑣𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 > 𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑑𝑑, 0), 𝑖𝑖𝑖𝑖 𝑣𝑣𝑛𝑛(𝑡𝑡) > 𝑣𝑣𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑛𝑛(𝑡𝑡) ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛
𝑣𝑣𝑛𝑛(𝑡𝑡),𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

   (14) 
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S3d: Emergency braking. If 𝑣𝑣𝑛𝑛(𝑡𝑡) > 0 and 𝑑𝑑𝑛𝑛(𝑡𝑡) < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, 

𝑣𝑣𝑛𝑛(𝑡𝑡 + 1) → 𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑛𝑛(𝑡𝑡) −𝑀𝑀𝑛𝑛, 0)                       (15) 

S4: Vehicle movement. 

𝑥𝑥𝑛𝑛(𝑡𝑡 + 1) → 𝑥𝑥𝑛𝑛(𝑡𝑡) + 𝑣𝑣𝑛𝑛(𝑡𝑡 + 1)                        (16) 

Here, 𝑥𝑥𝑛𝑛(𝑡𝑡) and 𝑣𝑣𝑛𝑛(𝑡𝑡) denote the longitudinal position and velocity of vehicle 𝑛𝑛 at time step t, 
respectively; 𝑑𝑑𝑛𝑛(𝑡𝑡) denotes the space gap of vehicle 𝑛𝑛 , which is the clear distance between vehicle 𝑛𝑛 and 
its preceding vehicle 𝑛𝑛 + 1 on the current lane, 𝑑𝑑𝑛𝑛(𝑡𝑡) = 𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛 − 𝑙𝑙𝑛𝑛; if vehicle 𝑛𝑛 is the first vehicle 
on its lane, a large value will be assigned to 𝑑𝑑𝑛𝑛(𝑡𝑡); 𝑙𝑙𝑛𝑛 denotes the length of vehicle 𝑛𝑛; 𝑎𝑎 and 𝑑𝑑 denote the 
normal acceleration and deceleration rates, respectively; 𝑀𝑀𝑛𝑛 denotes the limited deceleration rate of 
vehicle 𝑛𝑛;  𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑 𝑌𝑌 denotes the integer division, which is defined as 𝑋𝑋𝑑𝑑𝑑𝑑𝑑𝑑 𝑌𝑌 = [𝑋𝑋/𝑌𝑌], where "/" denotes 
normal division and [𝑧𝑧] is the floor function; 𝑣𝑣𝑠𝑠 is a constant velocity slightly above 0; 𝑅𝑅0 and 𝑅𝑅𝑑𝑑 are 
given constants that control the velocity fluctuations of vehicles, 0 < 𝑅𝑅0 < 𝑅𝑅𝑑𝑑 ≤ 1; 𝑅𝑅𝑎𝑎 = 𝑅𝑅0 when the 
𝑣𝑣𝑛𝑛(𝑡𝑡) = 0, and 𝑅𝑅𝑎𝑎 = 𝑅𝑅𝑑𝑑 when 𝑣𝑣𝑛𝑛(𝑡𝑡) ≥ 𝑣𝑣𝑠𝑠; 𝑅𝑅𝑠𝑠 is the slowing down probability. 

Forwarding rule in yellow and red-light phase 

Once the yellow light is on, drivers must decide to stop or to cross the intersection. Therefore, at the onset 
of the yellow light, the status of a vehicle needs to be determined based on the vehicle’s distance to the 
intersection and the driving speed. There are three possible statuses for each vehicle, namely “cross 
status,” “stop status,” and “follow status.” A vehicle with a cross status will cross the intersection during 
the yellow-light phase. With a stop status, the vehicle will stop in front of the intersection during the 
yellow and red-light phases. There is only one vehicle with a stop status on each lane. All the vehicles 
behind any vehicle in “stop status” are in “follow status,” which will move by following their preceding 
vehicles. A vehicle’s status will be determined by three algorithms in the proposed CA model. The first 
algorithm is used to reflect the uncertainty of a driver’s decision with a distance-dependent stopping 
probability function. A logistic function adopted by Hsu and Chiou [30] is used to compute the 
probability of stop decision of a vehicle at the onset of yellow light, as expressed in Eq. (17). The logistic 
function describes the relationship between the stopping probability of a vehicle and its distance to the 
intersection. Generally, as the distance to the intersection decreases, the stopping probability increases. 

𝑃𝑃𝑠𝑠 = 1

1+𝑒𝑒−𝛼𝛼(𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠−𝛽𝛽)                                                       (17) 

where 𝑃𝑃𝑠𝑠 is the stopping probability of a vehicle; 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 is the distance to the intersection; 𝛼𝛼 and 𝛽𝛽 are two 
shape parameters. 

The second algorithm is that if a vehicle cannot stop in front of the intersection during the yellow-light 
phase by decelerating from its current speed with the maximum deceleration rate, it will have a “cross 
status.” If not, the vehicle may have a “stop status.” The stopping distance during the yellow-light phase 
can be expressed with Eqs. (18) and (19). 

𝑡𝑡𝑑𝑑 = 𝑣𝑣𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑛𝑛                                                               (18) 
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𝑆𝑆𝑑𝑑 =

⎩
⎪
⎨

⎪
⎧�[𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑀𝑀𝑛𝑛], 𝑖𝑖𝑖𝑖 𝑡𝑡𝑑𝑑 ≤ 𝑡𝑡𝑦𝑦

𝑡𝑡𝑑𝑑

𝑖𝑖=1

�[𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑀𝑀𝑛𝑛]

𝑡𝑡𝑦𝑦

𝑖𝑖=1

, 𝑖𝑖𝑖𝑖 𝑡𝑡𝑑𝑑 > 𝑡𝑡𝑦𝑦

                                                    (19) 

The third algorithm is that if a vehicle driver decides to proceed through the intersection but cannot reach 
the intersection by accelerating with the normal deceleration rate, the vehicle will have a “stop status” 
when it reaches the intersection. The driving distance during the yellow-light phase can be expressed as 
Eqs. (20) and (21). 

𝑡𝑡𝑐𝑐 = �𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑛𝑛(𝑡𝑡)�𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎                                                        (20) 

𝑆𝑆𝑐𝑐 =

⎩
⎪
⎨

⎪
⎧�[𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑖𝑖]

𝑡𝑡𝑐𝑐

𝑖𝑖=1

+ �𝑡𝑡𝑦𝑦 − 𝑡𝑡𝑐𝑐�𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑖𝑖𝑖𝑖 𝑡𝑡𝑐𝑐 ≤ 𝑡𝑡𝑦𝑦

�[𝑣𝑣𝑛𝑛(𝑡𝑡) − 𝑖𝑖𝑖𝑖]

𝑡𝑡𝑦𝑦

𝑖𝑖=1

, 𝑖𝑖𝑖𝑖 𝑡𝑡𝑐𝑐 > 𝑡𝑡𝑦𝑦

                           (21) 

We set the identifier of “stop status,” “cross status,” and “follow status” as 𝑠𝑠𝑠𝑠 = 2, 1,𝑎𝑎𝑎𝑎𝑎𝑎 0, respectively. 
The “stop status” and “cross status” will first be determined by the logic algorithm displayed in Figure 2.2 
by considering all three above-mentioned conditions. The algorithm will be checked for all the vehicles 
from the first to the last one on each lane. Once the vehicles with “stop status” and “cross status” are 
identified, the statuses of the remaining vehicles will be assigned accordingly. 

 

Figure 2.2  Logic algorithm for vehicle status determination   

After the vehicle statuses are all identified, vehicles with different statuses will move by following 
different forwarding rules. Forwarding rules used in the green-light phase will still apply to vehicles with 
a “cross status” and “follow status.” However, those forwarding rules will need some revisions before 
applying to vehicles with “stop status.” First, three safe distances in step S1, including safe acceleration 
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distance 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛, safe keep velocity distance 𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛, and safe deceleration distance 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, will be calculated 
with Eqs. (7) to (9), respectively. Second, in step S3, space gap 𝑑𝑑𝑛𝑛(𝑡𝑡) will be substituted with 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡). 

Lane-changing rule 

The symmetric lane-changing rules are adopted in this model with the incentive and safety criteria. Once 
the lane-changing rules are satisfied, a vehicle will perform a lane-changing maneuver with a probability 
of 𝑅𝑅𝑐𝑐. Vehicles in different areas have different lane-changing behavior: vehicles in the blocked area 
cannot change lanes; moreover, vehicles in the merging area will try to switch from lane 1 to lane 2 but 
are not allowed to switch from lane 2 to lane 1. Therefore, different lane-changing rules will be applied 
depending on which area any vehicle is currently in. In the normal area, the incentive and safety criterion 
of lane change can be expressed by Eqs. (22) and (23), respectively. 

𝑑𝑑𝑛𝑛 < 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 and 𝑑𝑑𝑛𝑛,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 ≥ 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒                   (22) 

𝑑𝑑𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 > 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑛𝑛                                      (23) 

where 𝑑𝑑𝑛𝑛,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 denotes the gap between vehicle 𝑛𝑛 and the nearest vehicle in front of it in the adjacent 
lane, i.e., the front vehicle; 𝑑𝑑𝑛𝑛,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 denotes the gap between vehicle 𝑛𝑛 and the nearest vehicle behind it in 
the adjacent lane, i.e., the back vehicle; 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 denotes the safe acceleration distance of vehicle 𝑛𝑛 if it 
switches to the adjacent lane; and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑛𝑛 denotes the safe deceleration distance of the back vehicle if 
vehicle 𝑛𝑛 is switched to the adjacent lane. 

Because vehicles in the merging area will try hard to switch from lane 1 to lane 2, the incentive criterion 
of lane change for them becomes less strict than that of vehicles in the normal area. Therefore, the 
incentive criterion is modified as follows. 

𝑑𝑑𝑛𝑛,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒                               (24) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 denotes the safe deceleration distance of vehicle 𝑛𝑛 if it switches to the adjacent lane. 
The safety criterion of lane change is the same as that in the normal area. Besides, vehicles in lane 2 will 
not change lanes in the advance warning area, and therefore the lane-changing probability is set as 𝑅𝑅𝑐𝑐 = 0.  
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3.  MODEL CALIBRATION AND VALIDATION 

3.1  Data Collection 

The data used in this study were collected from Drake Road between Shields Street and Taft Hill Road, a 
two-lane arterial road in the City of Fort Collins, Colorado. There are two reasons why this road was 
chosen. First, there was a work zone area on one of the two lanes on this road, which can be treated as a 
typical PBR scenario. Second, a data collection system Bluetoad was installed on both ends of the road. 
The total length of the road is 1,610 m with the speed limit of 18 m/s (40 mph). The work zone was 
located from 644 to 1,079 m, with a length of 435 m. There was a warning sign located at 300 m upstream 
of the work zone and there was no posted work zone speed limit. The durations of green, yellow, and red 
phases were 25 s, 5 s, and 60 s, respectively. Characteristics of the studied road segment are listed in 
Table 3.1. The data used in this study were collected between December 9 and December 23 of 2018 
when the work zone was under construction. Two types of traffic data were collected: microscopic and 
macroscopic data. Macroscopic data include travel time, speed, and vehicle volume, which are accessible 
from the data collection system BlueTOAD installed on both ends of the road section. The system 
measures travel time and delay of travelers by detecting Bluetooth MAC addresses of passing devices 
(e.g., mobile phones, earphones, and in-vehicle hands-free audio systems) and comparing the time of 
these addresses from one known location to another. Macroscopic data, including average travel time, 
average traffic speed, and traffic volume on the studied road segment, were collected by BlueTOAD at a 
15-minute interval from 0:00 to 24:00 for 15 days. According to the field observation, the truck ratio is 
about 5%.  

For the microscopic data collection, the video-photographic method is the most widely used technique. 
However, the method is not suitable in this study because many cameras are needed to cover long road 
sections and the accuracy is not guaranteed with fewer cameras. Therefore, a smartphone-based GPS 
method is used to collect the microscopic data of moving vehicles in this study. The instantaneous vehicle 
speed and trajectory were measured through a mobile app called GPS Speedometer installed on the 
drivers’ smartphone, and the mobile app has an accuracy of 98%. Vehicles moved in tandem along the 
road to consider the interaction between vehicles. The limitation of this method is that the data collection 
is restricted by the available resources, such as drivers, vehicles, and smartphones. In this study, during 
each round of data collection, two experienced test drivers were asked to drive through the entire road 
section from the beginning to the end, and the longitudinal trajectory and speed data of the two cars were 
collected with the mobile app at a 1-s interval. To reflect relatively realistic vehicle interaction in 
moderate traffic, the time gap between the two cars was controlled around two seconds. A total of 12 
rounds of data collection were conducted. 

Table 3.1  Characteristics of the studied road segment 
Characteristics Value 
Name Drake 
Type  Urban arterial 
Direction Eastbound 
Lane number 2 
Lane width 3.5 m 
Shoulder bikeway width 1.5 m 
Speed limit 18 m/s (40 mph) 
Length 1610 m 
Work zone length 435 m 
Warning sign location 300 m upstream 
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3.2  Model Calibration 

The proposed model is then calibrated with the collected data macroscopically and microscopically. 
Because microscopic data of trucks are not available, microscopic calibration is conducted for cars only.  
Parameters of trucks, such as vehicle length 𝑙𝑙, acceleration rate 𝑎𝑎, vehicle deceleration rate 𝑑𝑑, and 
deceleration capability 𝑀𝑀 provided in Li et al. [7], are used and shown in Table 3.1. Moreover, it is 
observed that maximum velocities for cars and trucks outside the work zone area are about 18 m/s (40 
mph) and 15.5 m/s (35 mph), respectively. The observed maximum velocity in the work zone area for 
both vehicle types is about 13.5 m/s (30 mph). Preliminary tests show that some model parameters have 
more significant influence on the vehicle trajectory and speed than the rest, while others have greater 
influence on the macroscopic dynamics of traffic flow. Therefore, calibrations are performed in two steps. 
First, eight sets of trajectory and speed data are used to calibrate parameters of cars, including the vehicle 
acceleration rate 𝑎𝑎, vehicle deceleration rate 𝑑𝑑, and deceleration capability 𝑀𝑀. Second, aggregated 
average travel speed data of the first 10 days are used to calibrate model parameters, including the 
randomization probability 𝑅𝑅𝑠𝑠, the stopping probability-related parameters 𝛼𝛼 and β, and the stochastic 
noise-related parameter 𝑣𝑣𝑠𝑠. Following the work by Cunha et al. [31], a genetic algorithm coded in 
Matlab® is used in the macroscopic and microscopic calibration, and the calibrated parameter values for 
the proposed model are found and displayed in Table 3.2.  

Table 3.2  Calibrated parameters for the proposed model 
Parameters Car Truck 

Vehicle length 𝑙𝑙 (m) 6 12 

Acceleration 𝑎𝑎 (m/s2) 1 0.5 

Deceleration 𝑑𝑑 (m/s2) 1.5 1 

Deceleration capability 𝑀𝑀 (m/s2) 4 3 

Maximum velocity 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 (m/s) 18 15.5 

Work zone speed limit 𝑣𝑣𝑟𝑟 (m/s) 13.5 

Stochastic noise related parameter 𝑣𝑣𝑠𝑠 (m/s) 5.5 

Randomization probability 𝑅𝑅𝑠𝑠 0.36 

Stopping probability related parameter 𝛼𝛼 0.17 

Stopping probability related parameter β (m) 55.5 

 

  



 
 

 13 

3.3 Model Validation 

The validation of the proposed model is conducted at microscopic and macroscopic levels. In microscopic 
validation, we compared the trajectory and speed of individual vehicles generated from the proposed 
model with the measured field data. In macroscopic validation, the simulated average travel speeds were 
compared with the measured field data. 

Microscopic validation 

The proposed model is first validated with the remaining four sets of measured trajectory and speed data. 
To generate the same initial headway, observed vehicle arrival distribution and entry speed are used to 
generate vehicles in the simulation. Figure 3.1 shows the comparison of the observed and simulated 
longitudinal trajectories and speeds for two cars. It can be seen from the figure that both cars decelerate 
from the maximum velocity before entering the work zone, accelerate after leaving the work zone, and 
finally stop in front of the red traffic light. There is good agreement between the simulated trajectory and 
speed and the field data for both cars. However, relatively large speed deviations are found in the work 
zone area (Figure 3.1b), especially for car 2, due to the stochastic characteristic of traffic dynamics. This 
indicates that microscopic traffic dynamic is not only affected by the vehicle performance, but also the 
driving behaviors of different drivers, especially in abnormal driving environments such as disrupted 
roadways. Moreover, some obvious trajectory deviations are found for car 2 when it approached the 
traffic light (Figure 3.1a), which mainly resulted from the speed deviations in the work zone area. 

Error tests are used to quantitatively evaluate the performance of the proposed model. The overall error 
between the simulation results and field data are quantified by the root mean square percent error (RMSE) 
and mean percent error (MPE). The equations of RMSE and MPE can be expressed as follows. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
��

𝑧̂𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘
𝑧𝑧𝑘𝑘

�
2𝑁𝑁

𝑘𝑘=1

                                                     (25) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��

|𝑧̂𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘|
𝑧𝑧𝑘𝑘

�
𝑁𝑁

𝑘𝑘=1

                                                           (26) 

where 𝑧̂𝑧𝑘𝑘 is the simulated value from the proposed model, 𝑧𝑧𝑘𝑘 is the corresponding observed value from 
the field data, and 𝑁𝑁 is the number of observations. Error tests are performed for the trajectories and 
speeds of each vehicle at each second. According to the error test results, the RMSE and MPE of the 
vehicle trajectories are less than 7% and 4%, respectively. The RMSE and MPE of vehicle speeds are less 
than 7% and 6%, respectively. The deviations between the simulation and field data are relatively small 
and deemed acceptable. Therefore, we can conclude that the proposed model can capture the traffic 
dynamics of disrupted flow at the microscopic level with reasonable accuracy.  
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(a) Position 

 

(b) Speed 

Figure 3.1   Comparison between observation and CA simulation 

Macroscopic validation 

The model is then validated with average travel speed data from the remaining five of the 15 days. First, 
the speed-volume relationship from the simulation results was compared with the field data. Figure 3.2 
shows the comparison of the speed-volume relationships from both field data and simulation. It can be 
seen from the figure that the simulated speed-volume relationship has generally good agreement with the 
observed field data. Relatively large discrepancy under moderate traffic conditions possibly results from 
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the stochasticity and instability of urban traffic flow. Second, we compared the simulated time series of 
speed with field data to evaluate how well the proposed model performs in the time domain. Figure 3.3 
shows the comparison of time series of speed from field data and simulation. It is found that the simulated 
speeds match well with the field data in general, although there is a relatively large discrepancy during 
some periods (e.g., 11 am to 1 pm) when the traffic is very unstable. RMSE and MPE are still used for the 
overall error of the aggregated speed between simulation results and field data, which are found to be 
12% and 9%, respectively. These errors are within the acceptable limit as stated by Meng and Weng [24] 
for the CA-based model in terms of travel speed. These results show that the proposed model can 
realistically reproduce the disrupted traffic flow at the macroscopic level. 

 

Figure 3.2  Comparison of speed-volume relationship from field data and simulation 

 

Figure 3.3  Comparison of time series of speed from field data and simulation 
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4.  DEVELOPMENT OF TRAVEL TIME FUNCTIONS FOR PBR 

4.1  Simulation Experiments 

Demand flow rate, truck ratio, and blockage ratio are identified as the three key factors that affected travel 
time in past studies. It is noted that the demand flow exclusively denotes vehicles entering the PBR at the 
upstream entry and the demand flow rate is equal to the flow rate of 𝑞𝑞 in section 3.2. When the demand 
flow rate is higher than the capacity of the PBR, oversaturated traffic is formed. Blockage ratio is defined 
in this study as the ratio between the length of the blockage and the total length of the road. To 
quantitatively evaluate the influence of demand flow rate, truck ratio, and blockage ratio on travel time, 
microscopic simulation experiments are conducted with the validated model on the same disrupted road in 
the last section. A total of 525 combination scenarios for 15 demand flow rates (50 to 750 veh/h/lane with 
a 50 veh/h/lane increment), seven truck ratios (0% to 30% with a 5% increment), and five blockage ratios 
(10% to 50% with a 10% increment) are simulated.  

Figure 4.1 shows the simulated travel time-volume data with different truck ratios when the blockage 
ratio 𝑅𝑅𝑏𝑏 equals 30%. Figure 4.2 shows the simulated travel time-volume data with different blockage 
ratios when the truck ratio 𝑅𝑅𝑡𝑡 equals 20%. Several general observations can be made from the simulation 
results in Figures 4.1 and 4.2. First, the travel time increases as the demand flow rate increases. Second, it 
is found in Figure 4.1 that the travel time increases as the truck ratio increases, and the impact of the truck 
ratio becomes more significant when the demand flow rate is higher. Third, it can be found in Figure 4.2 
that the travel time increases with the increase of the blockage ratio. However, as the demand flow rate 
increases, the influence of the blockage ratio becomes slightly less significant. 

 

Figure 4.1  Simulated travel time-demand flow rate data with different truck ratios (𝑹𝑹𝒃𝒃 = 30%) 
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Figure 4.2  Simulated travel time-demand flow rate data with different blockage ratios (𝑹𝑹𝒕𝒕 = 20%) 

4.1.1 Regression Analysis of Travel Time Functions 

To consider the effect of trucks on the travel time-volume relationship, Yun et al. [10] proposed a revised 
BPR function, which has the following form. 

𝑡𝑡 = 𝑡𝑡0�1 + 𝛼𝛼(1 + 𝑅𝑅𝑡𝑡)𝛽𝛽(𝑓𝑓/𝐶𝐶)𝛾𝛾�                                                    (27) 

where 𝑡𝑡 is the travel time; 𝑡𝑡0 is the free-flow time; 𝑓𝑓 is the demand flow rate; 𝐶𝐶 is the road capacity; 𝛼𝛼, 𝛽𝛽, 
and 𝛾𝛾 are coefficients. The term (1 + 𝑅𝑅𝑡𝑡)𝛽𝛽 in Eq. (27) is used to reflect the impact of the truck ratio on 
the travel time in a reasonable way. First, the value of this term becomes 1 when the truck ratio 𝑅𝑅𝑡𝑡 = 0. 
This ensures that Eq. (27) is consistent with the BPR function. Second, the value of (1 + 𝑅𝑅𝑡𝑡)𝛽𝛽 increases 
as the truck ratio 𝑅𝑅𝑡𝑡 increases when 𝛽𝛽 > 0.  

As discussed earlier, the blockage ratio 𝑅𝑅𝑏𝑏 has the following effects on travel time: a significant increase 
in the free-flow time as 𝑅𝑅𝑏𝑏 increases, and less significant influence when the demand flow rate is higher. 
Therefore, two modifications of Eq. (27) need to be made to consider the effect of the blockage ratio. 
First, a new term 𝑓𝑓(𝑅𝑅𝑏𝑏), which is a function of the blockage ratio 𝑅𝑅𝑏𝑏, is introduced to replace the constant 
free-flow time 𝑡𝑡0. This ensures that different blockage ratios correspond to different free-flow time. 
Several possible function forms (e.g., linear, quadratic, exponential functions) are tested, and it is found 
that a simple linear function can provide a very good fit of the observed data. Second, a power function in 
the form of (1 + 𝑅𝑅𝑏𝑏)𝛽𝛽 is introduced to consider the decreasing effect of the blockage ratio with the 
increase of the demand flow rate. When 𝛽𝛽 < 0, the value of (1 + 𝑅𝑅𝑏𝑏)𝛽𝛽 decreases as the blockage ratio 𝑅𝑅𝑏𝑏 
increases. The other reason that we choose the power function is that it has a consistent form as the term 
about the truck ratio 𝑅𝑅𝑡𝑡, which allows for easy calibration. Finally, the modified travel time function has 
the following form: 

𝑡𝑡 = (𝛼𝛼1 + 𝛼𝛼2𝑅𝑅𝑏𝑏)[1 + 𝛼𝛼3(1 + 𝑅𝑅𝑏𝑏)𝛼𝛼4(1 + 𝑅𝑅𝑡𝑡)𝛼𝛼5(𝑓𝑓/𝐶𝐶)𝛼𝛼6]                 (28) 

where 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3, 𝛼𝛼4, 𝛼𝛼5, and 𝛼𝛼6 are parameters.  
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A nonlinear regression analysis is performed to estimate the parameters of the travel time function shown 
in Eq. (28) with the simulated 525 datasets. The road capacity used in the analysis is determined based on 
the speed-volume relationship from the field data, which is around 600 vehicle/h/lane. The calibrated 
travel time functions are shown as follows. 

𝑡𝑡 = (115.8 + 30.4𝑅𝑅𝑏𝑏)[1 + 0.357(1 + 𝑅𝑅𝑏𝑏)−0.304(1 + 𝑅𝑅𝑡𝑡)1.36(𝑓𝑓/𝐶𝐶)2.387]        (29) 

To measure how well the regression model describes the simulated data, the goodness-of-fit statistics are 
evaluated. The high value of 𝑅𝑅2 (0.99) clearly indicates that the calibrated travel time functions can 
capture the relationship between the travel time and the demand flow rate, truck ratio, and blockage ratio 
very well. The high value of 𝐹𝐹 (41815) also indicates overall significance of the regression model.  

The calibrated travel time functions are further validated by predicting the travel time of the random 
traffic scenarios and comparing them against the actual values. A randomly selected scenario (𝑅𝑅𝑏𝑏 = 0.33 
and 𝑅𝑅𝑡𝑡 = 0.18) that was not included in the previous simulation is used in the validation analysis. The 
validation results are shown in Figure 4.3, from which all new simulation data of the selected scenario 
falls in the 95% prediction intervals of the regression travel time. Similar validation results are also 
obtained for other random scenarios, and this indicates that the calibrated travel time functions can predict 
new observations with acceptable accuracy. 

 

Figure 4.3  Validation results for a random selected scenario (𝑅𝑅𝑏𝑏 = 0.33 and 𝑅𝑅𝑡𝑡 = 0.18) 

4.1.2 Discussion on the Application of Travel Time Function for PBR 

Accurate estimation of travel time on PBR is very important for the performance assessment of post-
hazard transportation networks. Previously, however, the standard BPR function was usually used for 
travel time prediction on PBR in the post-hazard transportation demand modeling, due to the 
unavailability of travel time functions derived specifically for PBR. In this section, we will compare the 
developed travel time functions with the standard BPR function to identify the difference between them. 
The comparison of the calibrated travel time functions of different traffic scenarios and the standard BPR 
function for PBR is shown in Figure 4.4. There are six different combination scenarios in Figure 4.4, 
including three blockage ratios and two truck ratios. In line with previous practice, the free-flow time 
under normal condition (𝑡𝑡0 = 109 s) and the reduced traffic capacity (𝐶𝐶 = 600 Veh/h/lane) are substituted 
into the standard BPR function, 𝑡𝑡 = 𝑡𝑡0(1 + 0.15(𝑓𝑓/𝐶𝐶)4), to get the travel time function. 
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Several limitations of the standard BPR function can be identified from Figure 4.4. First, since there is 
only one curve for the standard BPR function, it cannot consider the difference between different traffic 
scenarios with different vehicle compositions and blockage sizes. Second, the curve of the standard BPR 
is considerably different from that of the calibrated functions. Although the values from both functions 
increase over demand-to-capacity ratio, the increment is much smaller under undersaturated conditions 
for the standard BPR function, because the interaction between vehicles and the obstruction was not 
considered. Third, the standard BPR function underestimates the travel time under both undersaturated 
and oversaturated conditions as compared with the calibrated functions. For example, for the scenario 
where the blockage ratio 𝑅𝑅𝑏𝑏 = 10% and truck ratio 𝑅𝑅𝑡𝑡 = 10%, the estimated travel time by the standard 
BPR function is 25% lower when the demand-to-capacity ratio is 1.0. Underestimation of travel time with 
the standard BPR function will lead to biased travel demand estimates. Apparently, the calibrated travel 
time functions can give a more realistic travel time prediction over the standard BPR function, which in 
turn leads to realistic travel demand estimates in post-hazard transportation network analysis. 

 
Figure 4.4  Comparison of calibrated travel time functions and standard BPR function 
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5. CONCLUSIONS 

By overcoming the limitations of previous studies, we have, for the first time, established the 
methodology of developing the travel time functions of PBR in urban areas and studied the feasibility of 
developing such functions by calibration and validations with the field data. First, an improved CA model 
was proposed for heterogeneous traffic flow on partially blocked arterial roads by extending the two-lane 
SD model. With the proposed model, two types of unrealistic deceleration behaviors in most existing CA 
models can be avoided. Meanwhile, drivers’ behaviors during traffic signal change intervals were 
realistically replicated by determining the vehicle status based on the vehicle’s distance to the 
intersection, driving speed, and stopping probability. Second, the proposed model was calibrated and 
validated with the collected field traffic data in both macroscopic and microscopic scales. The validation 
results show that the proposed model can simulate the disrupted traffic flow with acceptable accuracy. 
Finally, the traffic data under various scenarios with different demand flow rates, truck ratios, and 
blockage ratios were generated through microscopic simulation experiments. The experiment results 
demonstrate that both blockage ratio and truck ratio have significant influence on the travel time. A 
continuous traffic time function was proposed for the disrupted traffic flow to capture the effect of the 
blockage ratio and truck ratio on the travel time. Its parameters were then estimated through a nonlinear 
regression analysis with the generated traffic data. Comparison results show that the developed travel 
time functions can provide more flexible and accurate predictions of travel time for PBR than the standard 
BPR function. 

Like the traditional BPR function, new travel time functions that are intended for practical use should be 
extensively validated with field data from sites with varying supply and demand conditions (e.g., road 
classes, signal settings at downstream intersections). Because there are no sufficient and reliable traffic 
data of partially blocked roads at this point, the proposed travel time functions in this study are calibrated 
and validated with field data from a single site. Therefore, this study does not aim to propose a universal 
and practice-ready travel time function, rather develop the simulation-based methodology and study the 
feasibility of developing such travel time functions for PBR once sufficient traffic data become available 
in the future. This study also has some limitations: (1) the impact of the relative location of the blocked 
area is not investigated in this study. Although the proposed methodology can simulate different relative 
locations of the blocked areas, a large amount of field datasets is needed to calibrate and validate the 
simulation results. Due to the scarcity of the traffic data on disrupted roads, this can be an important topic 
which will be explored in the future; (2) due to the scope limit, the signal setting of the downstream 
intersections was not studied. In a future study, traffic signal designs of typical intersections can be 
incorporated by extending the proposed methodology.  

There are many potential applications and future studies based on the proposed methodology. For 
example, developed travel time functions of PBR can be used to accurately predict the traffic demand of 
post-hazard transportation networks with disrupted roads, and further help enhance transportation network 
resilience. Besides, travel time functions of PBR can be employed to develop effective work zone 
management plans by estimating negative impacts of work zones on traffic mobility in the network level. 
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