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ABSTRACT 

The transportation sector in the United States is currently dealing with several challenges, such as 
greenhouse gas (GHG) and air pollution emission increases, parking facility costs, congestion, and energy 
consumption. The present report focuses on the development of an innovative multi-business commute 
optimization system (MBCOS) to provide a new means of resolving the aforementioned challenges and 
increase efficiency in transportation systems. MBCOS consists of three integrated components: a website 
(www.commuteopt.com), a travel attributes model, and a multi-objective optimization model. The 
website is designed to facilitate the collection of travel data and delivery of recommended plans. The 
travel attributes model is designed to calculate attributes such as travel time, cost, GHG and air pollution 
emissions, energy use, and calories for all commuting options. MBCOS is designed to model commute 
options, including drive-alone, carpool, use of public transit, bike, walk, and combinations of these 
modes. The optimization model is designed to identify optimal commute plans for each employee in a 
business to minimize GHG and air pollution emissions while complying with commute needs, 
preferences, and convenience. A case study of 47 employees is presented to evaluate system performance 
and demonstrate its capabilities. Results show that the developed system is capable of reducing the total 
GHG and air pollution emissions up to 23.4% compared with reported commute behavior. Furthermore, 
recommendations generated by the model show promising and practical solutions that can successfully 
contribute to a reduction of transportation emissions.  Finally, brief widespread application of the system 
in Colorado and the United States is analyzed to document its potential benefits on a large-scale 
application. 
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1.  INTRODUCTION 

The United States transportation sector has been dealing with several challenges, including traffic 
congestion, air pollution, greenhouse gas (GHG) emissions, and increasing energy and infrastructure 
costs. The transportation sector is reported as the largest and fastest-growing source of GHG emissions in 
the United Stated at 28% (Environmental Protection Agency, 2018). Furthermore, the transportation 
sector is the major source of air pollution, smog, and air toxins, accounting for over 55% of total NOX 
emissions in the United States. Moreover, the congestion of urban road networks costs the United States 
about $85 billion per year, accounting for delays due to extended travel time, reduced mobility, increased 
vehicle operating costs, and environmental degradation (Department of Transportation, 2009). A 
considerable part of transportation challenges comes from the drive-alone commute mode, which is 
reported in 2016 as the predominant commute mode at 76.3%; this is significantly higher than the modal 
shares of carpool at 9%, use of public transit at 5.1%, and walking at 2.7% (U.S. Bureau of the Census, 
2016). Free/subsidized parking cost at workplaces, relatively low price of fuel, inefficient public transit 
systems, urban sprawl, commuter time constraints and intermediate stop needs, along with the absence of 
inequivalent subsidizations for alternative commute modes, are the major causes of the high drive-alone 
modal share. This shows the pressing need for effective transportation planning and programs that could 
reduce the drive-alone mode to address the aforementioned challenges. Practical and smart solutions are 
needed to reduce transportation related emissions while satisfying the commute preferences, convenience, 
and needs of commuters. 

Several motives exist to minimize the vehicle mile travel (VMT) and GHG emissions. They vary from 
environmental concerns to energy dependency, public health, air and noise pollution, and urban sprawl. 
For example, it is shown that the use of public transit systems can save an equivalent of 4.2 billion gallons 
of gasoline, resulting in a reduction of 37 million metric tons of CO2 emissions (Bailey et al., 2008). To 
achieve this vital goal of reducing the United States VMT, departments of transportation (DOTs) are 
consistently active to reduce GHG emissions from the transportation sector using tools and guidelines 
such as: (1) mixed land-use and public transit development; (2) multimodal transportation systems; and 
(3) active-transportation modes. Currently, trips by business employees and commuters with shared 
destinations are not optimized in terms of environmental impacts and costs; rather they rely mainly on 
personal convenience, cost, and time constraints. 
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2. LITERATURE REVIEW 

Studies and policies addressing commute travel behavior have received particularly high attention. This 
may be partially because traffic challenges are specifically prevalent during peak traffic hours, and 
because morning and evening commutes represent a significant proportion of trips during peak traffic 
hours. It may also be partially because commute trips are relatively monotonically repetitive and stable 
compared with other types of trips, which increases the potential effects and success chances of the 
developed policies (Bureau of Transportation Statistics, 2015). Outcomes of such research efforts have 
resulted in the development of many policies and programs. Accordingly, another part of the literature 
focused on the development and assessment of the effectiveness of these programs. The following 
sections discuss these studies and policies in more details. 

2.1 Factors Influencing Commute Mode Choice 

Several statewide and community-level surveys are conducted to identify factors influencing commute 
mode choice by collecting travel-related data such as mode of transportation, duration, distance, and trip 
purpose (Federal Highway Administration, 2011; Yang et al., 2015). These surveys document the 
volumes and patterns of passenger transportation. The surveys can support identifying the shortcomings 
of existing transportation systems and provide insights on commuting needs for expansion of 
transportation services. Results of the surveys show that the motivations of commute modal share include: 
(1) individual determinants such as lifestyle, physiological characteristics, gender, and age; (2) natural 
environment such as air and weather; (3) built environment such as land-use patterns, urban design, and 
transportation facilities; and (4) social environment such as culture and social equity (Yang, 2015). 

Donald et al. studied the psychological factors affecting commute mode choice using the travel behavior 
data of 827 participants in the UK. The study showed that commuters are more concerned with 
environmental impacts for driving mode rather than other factors, including habitual, social, and moral 
factors (Donald et al., 2014). Accordingly, providing information of commute environmental impacts can 
motivate travelers to reduce the modal share of driving. In another study, Legrain et al. studied the 
impacts of commuting stress on commute mode choice using a large-scale university travel survey to 
compare commuter stress across three modes of transportation: walking, driving, and public transit. The 
outcome of the study showed that driving is the most stressful mode of transportation when compared 
with walking and public transit (Legrain et al., 2015). In another research, St-Louis et al. studied the 
levels of satisfaction across six transportation modes, including walking, bicycle, automobile, bus, metro, 
and train to promote their use over automobile. This study showed commuters that use public transit or 
bike are more satisfied with their trips compared with drivers and bus users, mainly due to the commute 
time unreliability factor, which results in early or late arrival (St-Louis et al., 2014). 

2.2 Impacts of Commute Mode Choice 

The lower rates of modal shares for public transit, walk, and bike use is partially due to inefficient 
transportation planning policies that fail to identify the impacts of commute mode choices. Commute 
mode choice has impacts on reducing environmental impacts such as GHG and air pollution emissions, 
reducing energy demand, improving public health, reducing noise and congestion, reducing parking 
facility costs, and achieving savings in commute cost and time. Frequently, transportation programs only 
focus on reducing the commute times, overlooking other important socio-environmental and economic 
benefits of alternative commute mode choice to driving. This results in underinvestment in alternative 
commute modes, such as walking, biking, and using public transit. 
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Handy and Mokhtarian conducted a review of existing research on the correlation among urban 
development, travel, and CO2 emissions by vehicles in the United States. The analysis indicated that using 
public transportation instead of driving can reduce GHG emissions by 30% of work commute travels 
(Handy & Mokhtarian, 2008). In another similar study, Zahabi et al. estimated that increasing public 
transit accessibility by 10% would cause a 3.5% reduction in households’ GHG emissions (Zahabi et al., 
2012). In another study, Anderson focused on the benefits of using public transit using the data from the 
2003 Los Angeles transit workers strike. It is estimated that the annualized congestion relief benefit of 
operating the Los Angeles transit system is nearly $2.6 billion (Anderson, 2014). The health impacts of 
commute mode choices were studied by Deenihan and Caulfield, who showed that increasing the modal 
share of biking from 1.72% to 2.5% reduces the number of deaths per year from 3.4 to 17.9 (Deenihan & 
Caulfield, 2014). 

2.3 Existing Commute Mode Choice Evaluation Tools 

Literature on commuter mode choice is rich; yet, tools that businesses can utilize to identify optimum 
policies and incentives, and associated benefits, are limited. Three available tools include CUTR_AVR 
model (University of South Florida, 1998), Business Benefits Calculator (Center for Urban 
Transportation Research, 2002), and Commuter Choice Decision Support System (CCDSS) (Federal 
Highway Administration, 2003). CCDSS is supported by the USDOT and US EPA. It is designed to help 
employers determine the most appropriate types of commuter choice options for their worksite. Business 
Benefits Calculator, developed by the US EPA, is a web-based calculator that helps business owners 
evaluate financial, environmental, traffic-related, and other benefits of workplace transportation 
programs. CUTR_AVR Model, by the Center for Urban Transportation Research at the University of 
South Florida, was developed based on a large, real-world dataset and uses an artificial neural network to 
predict mode share and average vehicle ridership by inputting attributes of the employer-based 
transportation program. All these tools provide businesses with generalized recommendations for 
commuting policies and estimates on benefits (e.g., GHG emissions reduction). They base their 
recommendations and estimates on aggregate measures of commute data, rather than individualized 
commute information and individual-specific incentives. 

The outcome of existing studies and the limited success of existing policies reveal a pressing need to 
develop a new approach for identifying the optimal selection of commute alternatives that simultaneously 
minimize businesses commute emissions as well as commute time and cost of individual commuters. This 
new approach requires modeling employees’ constraints, preferences, and footprint coupled with 
monetary and health incentives to generate practical solutions that are capable of changing existing 
commute behavior and maximizing sustainability of the transportation systems. 
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3. RESEARCH OBJECTIVES & METHODS 

This report presents the development of a new multi-business commute optimization system (MBCOS), 
which is designed to identify optimal commute plans of employees at multiple businesses that are co-
located or employees of a business with different work locations. MBCOS is designed to minimize the 
total GHG and air pollution emissions while maintaining preferences and convenience of business 
commuters. MBCOS is designed to achieve the vital goal of reducing business commute GHG and air 
pollution emissions by changing the commute behavior of each employee from drive alone to alternative 
commute modes, such as using public transit, carpooling using existing vehicle, biking, walking, or using 
combinations of these modes. Monetary incentives can be provided by business owner(s) to motivate 
employees to follow the recommended commute plans and to cover the extensions in commute duration 
due to use of public transit, walk, bike, and carpool, all of which usually take longer. The present model 
extends the capabilities of the previously developed single business commute optimization system 
(BCOS) (Abdallah et al., 2019) by considering multiple businesses that are co-located. This allows 
MBCOS to identify more carpooling options to further reduce the GHG and air pollution emissions from 
business commutes. 

MBCOS consists of a web-based travel survey, a geographical information system (GIS) network, and an 
optimization model. A website is designed to facilitate the collection of travel survey data, including 
employees commute information such as origin and destination addresses, arrival and departure times 
to/from work, and original commute method. The GIS model is designed to calculate GHG and air 
pollution emissions, travel time, cost, energy consumption, and calories burned for every possible 
commute mode, including drive-alone using existing vehicle, use of public transit, bike, walk, and carpool 
with other commuters. The optimization model is designed to identify the optimal commute behavior 
change of employees from drive-alone to alternative commute modes that result in minimum total GHG 
and air pollution emissions. To evaluate the performance of the developed system and demonstrate its 
new capabilities, a case study of 47 employees to nine different work locations is analyzed. The following 
sections discuss the details of MBCOS components. 

3.1 Web-based Travel Survey 

A website that can be accessed at www.commuteopt.com has been designed and developed to facilitate 
the collection of employee travel data. Users who participated in this study were required to create an 
account on the website. After registration, users filled out commute information and needs surveys on the 
website. These surveys were designed to collect data on existing commute information, such as departure 
and arrival times, existing commute method, origin and destination, type of vehicle, parking location and 
its cost, available access to commute methods, and commuter flexibility and convenience. 

3.2 Geographical Information System Network 

The GIS network is designed to analyze feasible commute methods, such as drive existing vehicle alone, 
carpool with another commuter, using public transit, bike, and walk based on the data collected from the 
website. After that, the GIS network will generate outputs of each commute method, which includes the 
commute time, cost, distance, GHG emissions, air pollution, burned calories, and energy consumption. 
The GIS model is composed of model inputs, model process, and model outputs, which are discussed as 
follows: 

http://www.commuteopt.com/
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3.2.1 Model Inputs 

The MBCOS GIS model inputs are:  
1) Travelers’ info: While a business’s human resources office typically keeps records of 

employee home addresses and office locations, the web-based travel survey explained in the 
previous section was designed and utilized to capture additional and up-to-date information, 
such as departure times, required intermediate stops, parking location, parking cost, and other 
information.  

2) Existing transportation network: This includes identifying a model of the structure and 
properties of the transportation network for all modes of transportation considered in the 
developed GIS network. This step also includes understanding the assumptions and 
limitations of the model (e.g., walk speed and maximum transit walk radius). The four 
primary transportation modes considered are walk, bike, transit, and drive. 

3) Travel attributes. This set includes identifying the travel attributes the business desires in 
optimizing or measuring (e.g., travel times, travel costs, energy, emissions, and calories). 
Eight travel attributes could be selected for modeling, including travel time, travel distance, 
travel cost, CO2 emissions, NOx emission, VOC emissions, energy, and calories. 

3.2.2 Model Process 

The GIS computations are composed of the following steps:  
1) Geocoding origins and destinations. This step entails transforming the travelers’ origins and 

destinations (usually in text format) into geo-referenced data points in the GIS model.  
2) Editing the transportation network. This step entails ensuring the suitability of the utilized 

transportation network in computing representative travel times and distances of all commute 
trips and using all possible travel modes. For example, the step involves ensuring appropriate 
travel speeds for the different travel modes, as well as ensuring the suitability of the adopted 
network in producing multimodal travel attributes of multimodal trips, e.g., walk, bus, and 
wait travel characteristics of walk-transit trips. 

3) Identifying the travel attribute parameters. In this step, parameters required to compute travel 
attribute values from travel times and distances are identified (e.g., a parameter that estimates 
travel cost from travel distance, such as cost per mile) for every transportation mode. Table 
3.1 lists the attribute parameters utilized in the GIS module. 

4) Identifying the travel alternatives. This step identifies the travel alternatives that are required 
to be considered. As mentioned above, four primary transportation modes were considered in 
this work. However, six travel alternatives were identified: walk, bike, walk-transit, bike-
transit, drive-alone, and carpool. 

5) Developing the attributes functions. This step develops the different functions for calculating 
the attribute values associated with every commute trip using every travel alternative. As 
mentioned earlier, the travel attributes are a function of travel times and travel distances. 
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Table 3.1  Attribute parameters adopted in the GIS module 
Mode Travel Attributes 

CO2 NOX VOC Cost Energy Calories 
Walk 85.3 g/mi 0 0 0 0 85 cal/mi 
Bike 88.01 g/mi 0 0 0.1 ₡/mi 0 48 cal/mi 
Transit + 
Walk 294.6 g/mi 1.643 g/mi 0.039 g/mi Fare $1.25 0.04049 

gal/mi 
1.133 cal/min 
+ 85 cal/mi 

Transit + Bike 294.6 g/mi 1.643 g/mi 0.039 g/mi Fare $1.25 + 
0.1 ₡/mi 

0.04049 
gal/mi 

1.133 cal/min 
+ 85 cal/mi 

Drive 368.4 g/mi 0.693 g/mi 1.034 g/mi 59.2 ₡/mi + 
Parking Fee 

0.04049 
gal/mi 

1.133 cal/min 
+ 85 cal/mi 

 
3.2.3 Model Output 

As mentioned earlier, the objective of the GIS is to compute the commute footprints of every employee 
using every possible mode of travel. Accordingly, the GIS outputs include the measured travel attributes 
for every commuter and for every commute alternative. 

3.3 Optimization Model 

The optimization model is designed to identify the optimal selection of commute alternatives of 
employees with multiple work destinations based on the data collected from the website and travel 
attributes measured in the GIS network. The optimization model minimizes the total negative 
environmental impacts of employees while complying with the available business budget for incentives 
and commuter convenience and flexibility. The optimization model is developed in two main steps: (1) 
model formulation, which identifies decision variables and formulates objective functions and constraints; 
and (2) model implementation, which executes the computations to identify the optimal values of decision 
variables that result in the minimum transportation emissions. 

3.3.1 Model Formulation 

Four types of decision variables were identified to model all possible commute modes for each commuter, 
as shown in Figure 3.1. 𝑋𝑋�𝑖𝑖,𝑗𝑗 and 𝑋𝑋�𝑖𝑖,𝑗𝑗 are binary decision variables used to model six types of commute 
alternatives for outgoing and return trips, respectively, as shown in Figure 3.1. These commute 
alternatives include drive alone, use of public transit and walk, use of public transit and bike, bike only, 
walk only, and carpool picked up by another commuter; where 𝑖𝑖 represents a business commuter and 
ranges from 1 to number of commuters (𝑁𝑁𝑁𝑁) and j represents the type of transportation mode and ranges 
from 1 to 6, as shown in Figure 3.1. 𝑌𝑌�𝑘𝑘,𝑙𝑙  and 𝑌𝑌�𝑘𝑘,𝑙𝑙 are binary decision variables used to model all 
carpooling options of two commuters; where commuter 𝑘𝑘 picks up commuter l for outgoing and return 
trip, respectively, as shown in Figure 3.1. 

The outgoing trip legs for commuter k to pick up commuter l include (1) driving from commuter k home 
location to commuter l location; (2) driving from commuter l home location to commuter l work location; 
(3) driving from commuter l work location to commuter k parking location; (4) searching for parking spot 
at commuter k parking location; and (5) walking to commuter k work location. Likewise, the return trip 
legs for commuter k to pick up commuter l include (1) walking from commuter k work location to 
commuter k parking location; (2) driving from commuter k parking location to commuter l work location; 
(3) driving from commuter l work location to commuter l home location; and (4) driving from commuter l 
home location to commuter k home location. 
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Figure 3.1  Identified decision variables to model commute options 

The objective function is designed to quantify and minimize the total equivalent social cost of GHG and 
air pollution emissions, as shown in Eq. (1). The objective function can be minimized by reducing the 
selection of drive alone options, where convenient to commuters and based on the model constraints. 

Minimize 𝑇𝑇𝑁𝑁𝑇𝑇 = 

���𝑋𝑋�𝑖𝑖,𝑗𝑗 + 𝑋𝑋�𝑖𝑖,𝑗𝑗�
6

𝑗𝑗=1

𝑁𝑁𝑁𝑁

𝑖𝑖=1

× �𝑁𝑁𝑖𝑖,𝑗𝑗 + 𝑁𝑁𝑖𝑖,𝑗𝑗 + 𝑉𝑉𝑖𝑖,𝑗𝑗� + ��𝑌𝑌�𝑘𝑘,𝑙𝑙 + 𝑌𝑌�𝑘𝑘,𝑙𝑙�× �𝑁𝑁𝑘𝑘,𝑙𝑙 + 𝑁𝑁𝑘𝑘,𝑙𝑙 + 𝑉𝑉𝑘𝑘,𝑙𝑙�
𝑁𝑁𝑁𝑁

𝑘𝑘=1

 Eq. (1) 

𝑁𝑁𝑖𝑖,𝑗𝑗 = 𝑁𝑁𝑇𝑇𝑖𝑖,𝑗𝑗 × 𝐹𝐹𝑁𝑁𝐶𝐶2 Eq. (2) 

𝑁𝑁𝑖𝑖,𝑗𝑗 = 𝑁𝑁𝑇𝑇𝑖𝑖,𝑗𝑗 × 𝐹𝐹𝑁𝑁𝐶𝐶𝑋𝑋  Eq. (3) 

𝑉𝑉𝑖𝑖,𝑗𝑗 = 𝑉𝑉𝑇𝑇𝑖𝑖,𝑗𝑗 × 𝐹𝐹𝑉𝑉𝐶𝐶𝑁𝑁 Eq. (4) 

𝑁𝑁𝑘𝑘,𝑙𝑙 = 𝑁𝑁𝑇𝑇𝑘𝑘,𝑙𝑙 × 𝐹𝐹𝑁𝑁𝐶𝐶2 Eq. (5) 
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𝑁𝑁𝑘𝑘,𝑙𝑙 = 𝑁𝑁𝑇𝑇𝑘𝑘,𝑙𝑙 × 𝐹𝐹𝑁𝑁𝐶𝐶𝑋𝑋  Eq. (6) 

𝑉𝑉𝑘𝑘,𝑙𝑙 = 𝑉𝑉𝑇𝑇𝑘𝑘,𝑙𝑙 × 𝐹𝐹𝑉𝑉𝐶𝐶𝑁𝑁 Eq. (7) 

Where: 𝑇𝑇𝑁𝑁𝑇𝑇 is the total equivalent social cost of GHG and air pollution emissions. 𝑁𝑁𝑖𝑖,𝑗𝑗 ,𝑁𝑁𝑖𝑖,𝑗𝑗 and 𝑉𝑉𝑖𝑖,𝑗𝑗 are 
the equivalent social cost of CO2, NOX and VOC emissions for commuter 𝑖𝑖 using transportation mode 𝑗𝑗, 
respectively, which are calculated as in Eqs. (2-4). Similarly, 𝑁𝑁𝑘𝑘,𝑙𝑙 ,𝑁𝑁𝑘𝑘,𝑙𝑙 and 𝑉𝑉𝑘𝑘,𝑙𝑙 are the equivalent social 
cost of CO2, NOX and VOC emissions for commuter 𝑘𝑘 using carpool and pick up commuter 𝑙𝑙, 
respectively, which are calculated as in Eqs. (5-7). 𝑁𝑁𝑇𝑇𝑖𝑖,𝑗𝑗,𝑁𝑁𝑇𝑇𝑖𝑖,𝑗𝑗, and 𝑉𝑉𝑇𝑇𝑖𝑖,𝑗𝑗 are the CO2, NOX, and VOC 
emissions in grams for commuter 𝑖𝑖 using transportation mode 𝑗𝑗, respectively, which are the GIS model 
output. 𝑁𝑁𝑇𝑇𝑘𝑘,𝑙𝑙 ,𝑁𝑁𝑇𝑇𝑘𝑘,𝑙𝑙, and 𝑉𝑉𝑇𝑇𝑘𝑘,𝑙𝑙 are the CO2, NOX, and VOC emissions in grams for commuter 𝑘𝑘 using 
carpool and pick up commuter 𝑙𝑙, respectively, which are the GIS model output. 𝐹𝐹𝑁𝑁𝐶𝐶2 ,𝐹𝐹𝑁𝑁𝐶𝐶𝑋𝑋 , and 𝐹𝐹𝑉𝑉𝐶𝐶𝑁𝑁 are 
equivalent social cost of 1-gram emission of CO2, NOX, and VOC, which are $40 × 10−6, $10.3 × 10−9, 
and $2.4 × 10−9, respectively (Environmental Protection Agency, 2014; Victoria Transport Policy 
Institute, 2013). 

To ensure that the identified commute plans of employees are practical, four types of constraints are 
integrated in the model. These constraints are (1) model logic constraints, (2) consistency constraints, (3) 
convenience constraints, and (4) incentive constraints. The model logic constraints are used to ensure the 
possibility of identified commute modes. For example, for every commuter, only one commute mode 
should be selected in each outgoing and return trip, as shown in Eq. (8-9). Consistency constraints ensure 
rationality of the optimal commute plans of employees. For example, a commuter who bikes in the 
outgoing trip can only be recommended to bike or use public transit and bike in the return trip, as shown 
in Eq. (10). Convenience constraints are used to maintain the convenience of commuters. For example, 
commute modes that extend travel time of commuters more than their specified time tolerances are 
identified as infeasible in the model, as shown in Eqs. (11-12). Lastly, the incentive constraint ensures 
that the total monetary incentives for all commuters will not exceed the business incentives budget. 

�𝑋𝑋�𝑖𝑖,𝑗𝑗

6

𝑗𝑗=1

+ �𝑌𝑌�𝑘𝑘,𝑙𝑙

𝑁𝑁𝑁𝑁

𝑙𝑙=1

= 1 𝑖𝑖 = 𝑘𝑘 = 1,2, … ,𝑁𝑁𝑁𝑁 Eq. (8) 

�𝑋𝑋�𝑖𝑖,𝑗𝑗

6

𝑗𝑗=1

+ �𝑌𝑌�𝑘𝑘,𝑙𝑙

𝑁𝑁𝑁𝑁

𝑙𝑙=1

= 1 𝑖𝑖 = 𝑘𝑘 = 1,2, … ,𝑁𝑁𝑁𝑁 Eq. (9) 

� 𝑋𝑋�𝑖𝑖,𝑗𝑗
𝑗𝑗 ∈ {3,5}

− � 𝑋𝑋�𝑖𝑖,𝑗𝑗
𝑗𝑗∈{3,5}

= 0 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁 Eq. (10) 

�𝑋𝑋�𝑖𝑖,𝑗𝑗 × 𝑇𝑇�𝑖𝑖,𝑗𝑗

6

𝑗𝑗=1

− 𝑂𝑂𝑁𝑁𝑇𝑇𝑖𝑖 ≤ 𝑂𝑂𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁 Eq. (11) 

�𝑋𝑋�𝑖𝑖,𝑗𝑗 × 𝑇𝑇�𝑖𝑖,𝑗𝑗

6

𝑗𝑗=1

− 𝑅𝑅𝑁𝑁𝑇𝑇𝑖𝑖 ≤ 𝑅𝑅𝑇𝑇𝑇𝑇𝑖𝑖 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁 Eq. (12) 

Where: 𝑂𝑂𝑁𝑁𝑇𝑇𝑖𝑖 and 𝑅𝑅𝑁𝑁𝑇𝑇𝑖𝑖 are the outgoing and return trip existing commute time, respectively, for 
commuter 𝑖𝑖. 𝑂𝑂𝑇𝑇𝑇𝑇𝑖𝑖 and 𝑅𝑅𝑇𝑇𝑇𝑇𝑖𝑖 are the outgoing and return trip extended commute time tolerances, 
respectively, of commuter 𝑖𝑖. 
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3.3.2 Model Implementation 

The developed optimization model is implemented in three steps: (1) collecting input data from the GIS 
network and travel survey data to the optimization model; (2) executing the model computations using 
open-source Gurobi IntLinProg solver built-in interface for Matlab®2019a; (3) generating the 
individualized optimal commute plans. The calculated travel attributes for each commute mode for both 
outgoing and return trips by the GIS network, along with the commute preference and needs from the 
travel survey data, are fed into the optimization model. The optimization model is coded based on a 
problem-based optimization programming feature introduced in Matlab®2017b, where the decision 
variables, objectives, and constraints are symbolically defined. Compared with the conventional solver-
based optimization programming, the problem-based optimization is easier to create and debug, and it is 
convertible to the solver-based version. The mixed integer linear programing is used since it guarantees 
the global optimum within a reasonable computational time. Finally, the optimization model organizes the 
model output and summarizes the results by generating commute plan recommendations for each 
employee based on the identified solution. The recommended commute solutions are designed to include 
detailed plan information such as commute mode, reduction in GHG and air pollution emissions, savings 
in commute time, cost, and energy, monetary incentives, and increase in burned calories. 

3.4 Performance Evaluation 

A case study of a student community was analyzed to evaluate the performance of the developed MBCOS 
and demonstrate its new capabilities. Case study data were collected using an online survey instrument 
developed by the authors. The data documented real-world commute behavior for 21 undergraduate 
engineering students as they commuted to/from the university. Input data included information about 
transportation mode choice, arrival and departure times, and commute origin and destination. Figure 3.2 
demonstrates the origins and destination of the student commuters. In the morning event, the origins 
(shown in green) represent residences, and they are identical to the destinations (shown in red) in the 
afternoon commutes. The university is represented by the destinations (shown in red) in the morning 
commutes and the origins (shown in green) in the afternoon commutes. The general location of the 
university can be identified on the map by the cluster of points (destinations in the morning commute and 
origins in the afternoon commute) on the map. All the events display similar patterns of trip ends, with a 
few differences. A few points digress from the expected patterns, which represent the differences in a 
commuter travel plan. For example, a commuter’s set afternoon trips consisted of going to work from the 
university in one event and to home in the other event. Table 3.2 shows the 21 students’ individual 
commuter departure and arrival times and main transportation modes, which were collected using the 
online survey. 

 
(a) Monday AM   (b) Monday PM 

Figure 3.2  Geographical distribution of 21 students  
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Commuters’ origin and destination data were input into the GIS model component of MBCOS. Table 3.3 
and Table 3.4 show samples of all trip attribute values for commuting-alone and carpooling options for 
commuter 1 that are generated using the GIS model. Such data represent input data for the multi-objective 
optimization model component of MBCOS. 

Table 3.2  Commuter departure and arrival times and transportation modes of 21 students  
Commuter Morning Commute Afternoon Commute 

Departure 
time 

Primary 
Transportation 

Mode 

Arrival time Departure 
time 

Primary 
Transportation 

Mode 

Arrival 
time 

1 9:01 AM Drive car 9:05 AM 5:56 PM Drive car 6:00 PM 
2 8:23 AM Ride bike 8:25 AM 9:58 AM Ride bike 10:00 AM 
3 9:46 AM Drive car 9:55 AM 2:01 PM Drive car 2:10 PM 
4 8:16 AM Drive car 8:20 AM 6:25 PM Drive car 6:30 PM 
5 12:07 PM Drive car 12:23 PM 3:54 PM Drive car 4:10 PM 
6 8:39 AM Drive car 8:46 AM 10:57 AM Drive car 11:00 AM 
7 8:11 AM Walk 8:12 AM 2:59 PM Walk 3:00 PM 
8 7:34 AM Carpool 7:43 AM 6:22 PM Carpool 6:30 PM 
9 8:52 AM Drive car 9:00 AM 11:53 AM Drive car 12:00 PM 

10 8:11 AM Drive car 8:15 AM 8:11 PM Drive car 8:15 PM 
11 7:37 AM Ride bike 7:40 AM 3:58 PM Ride bike 4:00 PM 
12 8:05 AM Carpool 8:15 AM 10:51 PM Carpool 11:00 PM 
13 7:35 AM Drive car 7:40 AM 7:36 PM Drive car 7:40 PM 
14 7:57 AM Drive car 8:01 AM 9:56 AM Drive car 10:00 AM 
15 8:51 AM Drive car 9:02 AM 1:55 PM Drive car 2:00 PM 
16 9:59 AM Walk 10:00 AM 12:08 PM Walk 12:10 PM 
17 6:10 PM Drive car 6:14 PM 7:56 PM Drive car 8:00 PM 
18 4:30 PM Walk 4:32 PM 9:28 PM Walk 9:30 PM 
19 9:43 AM Drive car 9:55 AM 9:53 PM Drive car 10:05 PM 
20 10:59 AM Walk 11:00 AM 4:59 PM Walk 5:00 PM 
21 8:08 AM Drive car 8:20 AM 4:48 PM Drive car 5:00 PM 

 

Table 3.3  Values of trip attributes for commuting-alone options (Sample GIS model output for 
commuter #1) 

𝑚𝑚 = 1 Commute alternatives Performance Measures 
Commute Time 

(𝑁𝑁𝑇𝑇𝑚𝑚,𝑛𝑛) 
Commute 
Distance 
(𝑁𝑁𝐶𝐶𝑚𝑚,𝑛𝑛) 

Commute Cost 
(𝑁𝑁𝑁𝑁𝑚𝑚,𝑛𝑛) 

Equivalent 
Social Cost of 

Emissions 
  minutes miles $ $ 

n = 1 Walking only 33.3 1.8 0.0 0.000 
n = 2 Biking only 10.7 1.8 0.0 0.000 
n = 3 Skateboarding only 13.3 1.8 0.0 0.000 
n = 4 Driving-alone 3.0 1.8 1.9 0.044 
n = 5 Walking and riding bus 15.0 1.9 0.0 0.035 
n = 6 Biking and riding bus 6.5 1.9 0.0 0.035 
n = 7 Skateboarding and riding bus 7.5 1.9 0.0 0.035 
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Table 3.4  Values of trip attributes for carpooling options (Sample GIS model output for commuter #1) 
𝑚𝑚 = 1 Pick up 

commuter  
𝑙𝑙 

Performance Measures 

Commute Time 
(𝑁𝑁𝑇𝑇𝑚𝑚,𝑙𝑙) 

Commute Distance 
(𝑁𝑁𝐶𝐶𝑚𝑚,𝑙𝑙) 

Commute Cost 
(𝑁𝑁𝑁𝑁𝑚𝑚,𝑙𝑙) 

Equivalent Social 
Cost of Emissions 

𝑛𝑛 = 8 

 minutes miles $ $ 
𝑙𝑙 = 2 2.1 1.9 1.8 0.043 
𝑙𝑙 = 3 6.8 8.5 4.0 0.093 
𝑙𝑙 = 4 5.0 5.7 3.7 0.088 
𝑙𝑙 = 5 13.9 18.4 9.8 0.231 
𝑙𝑙 = 6 7.6 11.3 6.5 0.153 
𝑙𝑙 = 7 2.7 1.7 1.6 0.038 
𝑙𝑙 = 8 6.3 11 6.0 0.142 
𝑙𝑙 = 9 6.4 12.4 6.0 0.141 
𝑙𝑙 = 10 5.2 5.1 3.9 0.091 
𝑙𝑙 = 11 0.6 1.9 0.8 0.029 
𝑙𝑙 = 12 7.9 13 7.0 0.165 
𝑙𝑙 = 13 4.9 5.7 4.0 0.095 
𝑙𝑙 = 14 4.1 4.7 3.2 0.075 
𝑙𝑙 = 15 9.0 13.3 6.4 0.151 
𝑙𝑙 = 16 2.5 2 2.6 0.060 
𝑙𝑙 = 17 4.7 4.7 3.2 0.075 
𝑙𝑙 = 18 3.1 2.1 2.3 0.055 
𝑙𝑙 = 19 9.5 19.6 10.4 0.246 
𝑙𝑙 = 20 2.7 1.7 1.6 0.038 
𝑙𝑙 = 21 12.8 17.6 10.4 0.245 

 
3.4.1 Analysis of Performance Results of the System 

Based on the collected data, the optimization model component calculated total commute time at 325.15 
minutes as well as equivalent cost of GHG and air pollution emissions of the existing commute scenario 
at $3.45. MBCOS is then used to identify the optimal selection of commute alternatives that generate 
optimal tradeoffs among the two optimization objectives of (1) minimizing equivalent social cost of GHG 
and air pollution emissions, and (2) minimizing total commute time of the business transportation 
network. 

To run the optimization analysis, additional input data were fed into MBCOS, including convenient 
commute time limits for biking and walking, commuter hourly rates, available daily incentives that can be 
used to incentivize commuters to implement the recommended commute plan, carpooling 
departure/arrival time tolerance, commute-duration tolerance, and increments for identifying Pareto 
optimal solutions. The value of students’ time was set at a rate of $18 per hour (based on average 
university student pay rates) and the business budget for incentives was set in this case study at a 
maximum monetary incentive of $200 per day. The daily convenient commute times for biking and 
walking are set in MBCOS up to 38.6 minutes and 23 minutes, respectively, according to the American 
Commuting Survey Report (McKenzie, 2014). The carpooling departure/arrival time tolerance was set in 
the model to 180 minutes, which allows carpooling only for commuters who do not have differences in 
their arrival time in the morning commute and departure time in the afternoon commute greater than 180 
minutes. A large value was set for the carpooling departure/arrival time tolerance in order to allow 
carpooling of four occupants per vehicle and show the capabilities of the designed system; otherwise, 
limited carpooling options could be identified due to the students’ variance in their departure/arrival 
times. 
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The full range of the optimization objectives depends on the value of commute time tolerance. For 
example, the full range of the total commute time of the student community was identified at 221.8 
minutes for a 25-minute commute time tolerance and, accordingly, the Pareto-optimal solutions are 
generated using 0.01 minutes as increments of ɛ (i.e., 0.45% of the full range of the travel time objective). 
Based on the selected increments, a total of 22,181 single objective optimization problems were solved, or 
individually solved in 0.46 seconds. The optimization model completed the model computations for the 
21 students within 2.83 hours on a personal computer (Intel Core i7-4770 M with CPU 3.4 GHz with 16 
GB memory). Regarding the large search space of the case study, the computational time is reasonable 
and shows that the designed optimization model is efficient in generating Pareto-optimal solutions. 
MBCOS is capable of generating Pareto optimal solutions for a larger number of commuters. For 
example, MBCOS can identify the optimal solutions for a business of 100 employees in 8.45 hours. It 
should be noted that increasing the size of the increments (ɛ) can significantly reduce the computational 
time and identify a sufficient variety of the Pareto optimal solutions. 

The optimization model was designed to first identify the minimum and maximum total commute times 
for 5-, 10-, 15-, and 25-minute commuter tolerance for extended commute duration per trip. For every 
value of ɛ𝑖𝑖, the two-objective optimization problem was converted into a single-objective optimization 
problem, where the total travel time was incorporated into the optimization problem as a constraint and 
then the minimum total equivalent social cost of GHG and air pollution emissions was identified. 
Initially, ɛ1 was set to the minimum value of the total commute time, which was obtained in the previous 
step, and the optimization model was solved to find the corresponding minimum total equivalent social 
cost of GHG and air pollution emissions. In order to generate the rest of Pareto-optimal solutions, the 
optimization model was solved for different values of ɛ𝑖𝑖 with a fixed increment of 0.01 minutes (i.e., ɛ𝑖𝑖 =
 ɛ𝑖𝑖−1 + 𝜖𝜖) up to the maximum total commute time. Accordingly, MBCOS generated Pareto-optimal 
solutions for the two aforementioned optimization objectives for each specified commuter’s tolerance, as 
shown in Figure 3.3. Based on the results of MBCOS, the identified Pareto-optimal solutions were 
expanded and higher reductions in emission and total commute time were achieved as the commuter 
tolerance increased. Specifically, for a commuter tolerance of 25 minutes per trip, the equivalent social 
cost of GHG and air pollution of the business commute can be reduced to $2.4 (≈ 30.4% reduction), as 
shown in Figure 3.3 for solution “S4.” Solutions S1, S2, S3, and S4 show the extreme solutions with 
greatest reduction of GHG and air pollution emissions and longest commute time for 5-, 10-, 15-, and 25-
time extension tolerance per trip, as shown in Figure 3.3. In contrast, solution S0 shows the solution with 
the greatest GHG and air pollution emissions but shortest commute time, as shown in Figure 3.3. 

 



 
 

13 

 
Figure 3.3  Pareto-Optimal solutions of MBCOS for various commuter’s tolerance 

Several Pareto-optimal solutions that MBCOS generated have lower total commute time and equivalent 
social cost of GHG and air pollution emissions as compared with the existing commute scenario, as 
shown in Figure 3.3. Furthermore, Figure 3.3 shows that a much higher reduction of emissions can be 
achieved if the commute tolerance is increased; however, total commute increases. The Pareto-optimal 
solutions that were identified for each commuter tolerance include two extreme solutions with (1) 
minimum possible negative environmental impacts and (2) minimum possible total commute time. 
Additionally, several solutions are identified between the two extreme solutions, which represent non-
dominated solutions as discussed in the implementation phase. For example, 205 Pareto-optimal solutions 
could be identified for a commute tolerance of 25 minutes, as shown in Figure 3.4. Solution S1 shows the 
Pareto-optimal solution with the least total commute time and the maximum equivalent social cost of 
GHG and air pollution emissions. In contrast, solution S205 is the solution with the highest total commute 
time and minimum total equivalent social cost of GHG and air pollution emissions. Eight other non-
dominated solutions as well as the existing commute are highlighted in Figure 3.4. Figure 3.4 shows the 
frequency of commuters using drive-alone, public transportation, bike, walk, and carpool for the 
identified solutions from S1 to S205. For example, solution S1, which has the least total commute time, 
identified one commuter drives alone, 10 commuters pick up 10 other commuters, while no commuters 
use public transportation, biking, or walking as they will result in increasing the total commute time. In 
addition, S205, which has the least equivalent cost of GHG and air pollution emissions, identified three 
commuters drive alone, five commuters use public transportation, and 13 commuters use biking. It should 
be noted that the selection of driving cars option decreases and the selection of biking option increases as 
the model moves from S1 (minimum commute time) to S205 (minimum emissions), as shown in Figure 
3.4. 
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Figure 3.4  Frequency of commuters for solutions S1 to S205. 

The optimization model is designed to generate a commute plan, which includes individual-specific 
commute recommendations, differences in commute times, and available incentives, as shown in Table 
3.5 for solution S103 with commuter’s tolerance of 25 minutes per trip. The results show that MBCOS 
recommended commute mode, daily commute duration and difference from existing commute time, 
equivalent social cost of GHG and air pollution emissions, daily commute cost, and individualized 
monetary incentive. The results of this solution show negative values for the difference in commute time 
for commuters 2, 7, 16, 18, and 20. These negative values resulted because these commuters originally 
walked, except for commuter 2, who originally biked, and the model recommended that commuter 2 bike 
or drive to work, resulting in a shorter commute time. The model is designed to calculate the incentives 
for commuters based on the increase in their commute time proportional to their hourly rate ($18/hour for 
this case study). For example, the commute time of commuter 5 increased by 28.2 minutes as a result of 
using public transit and bike. Such a change resulted in a monetary incentive of (28.2/60) × $18 = $8.5, as 
shown in Table 3.5. Furthermore, MBCOS is designed to identify reduction in environmental impacts 
expressed in equivalent social cost of GHG emissions and air pollution, as shown in Table 3.5. Finally, 
findings in Table 3.5 demonstrate that the optimization model solution extended trip duration of only four 
commuters (commuters 4, 5, 10, and 13) out of 21. Accordingly, 12 commuters were not impacted or 
potentially had their commute time reduced while 7.7% of emission reduction was achieved. It should be 
noted that solution S115 is a mid-solution and further reductions in GHG and air pollution emissions can 
be achieved as the solutions get closer to the extreme solution S205. 
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Table 3.5  Selected commute alternatives and their difference in commute time and incentives of a mid-
solution, S103, for 25-min commuter’s tolerance 

C
om

m
ut

er
s Original 

commute 
mode 

Recommended 
commute mode  

Daily 
commute 

time 
(min) 

Difference 
in the daily 
commute 

time (min) 

Reduction of 
equivalent social 
cost of GHG and 

air pollution 
emissions 

Daily 
commute 

cost 

Incentive 
($) 

Reduction 
in commute 

cost 

1 Drive-alone Drive-alone 6.0 0.0 0%  $3.7   -  0% 
2 Bike Drive-alone 3.5 -7.6 NA  $1.9   -    NA 
3 Drive-alone Drive-alone 16.9 0.0 0%  $8.5   -    0% 
4 Drive-alone Bike 31.2 20.5 -100% -     $6.9  -37% 

5 
Drive-alone Public 

Transportation + 
Bike 

59.8 28.2 -46%  $0.3   $8.5  56% 

6 Drive-alone Drive-alone 9.2 0.0 0%  $6.3   -  40% 
7 Walk Bike 5.0 -10.5 NA  -     -    NA 
8 Drive-alone Drive-alone 15.5 0.0 0%  $12.4   -  1% 
9 Drive-alone Drive-alone 14.4 0.0 0%  $10.9   -  12% 

10 Drive-alone Drive-alone 23.0 15.9 -100%  -     $4.8  -20% 
11 Bike Bike 13.2 0.0 NA  -     -    NA 
12 Drive-alone Drive-alone 18.7 0.0 0%  $14.4   -  0% 
13 Drive-alone Bike 28.6 25.2 -100%  -     $6.2  8% 
14 Drive-alone Drive-alone 6.4 0.0 0%  $3.9  - 0% 
15 Drive-alone Drive-alone 15.1 0.0 0%  $10.1   -  22% 
16 Walk Bike 2.4 -12.1 NA  $1.4   -    NA 
17 Drive-alone Bike 7.4 0.0 0%  $3.9   -    0% 
18 Walk Bike 4.0 -30.3 NA  $1.9   -    NA 
19 Drive-alone Drive-alone 22.7 0.0 0%  $21.3   - 0% 
20 Walk Bike 5.0 -10.4 NA  -     -    NA 
21 Drive-alone Drive-alone 23.6 0.0 0%  $15.8   - 0% 

 
3.4.2 Sensitivity Analysis 

A sensitivity analysis was conducted to analyze the sensitivity of the model results to variations in (1) 
optimization model parameters to generate Pareto-optimal solutions, (2) commuters’ origin and departure 
times, and (3) commuter home addresses. The number of Pareto-optimal solutions that can be identified 
using ɛ-constraint method is dependent on the selected increments (ɛ value). Selecting small value of ɛ 
(i.e., ɛ = 0.00045% = 0.001 minutes of the optimization objective range) will result in a large number of 
single objective optimization problems, which will require long computation time and effort. On the other 
hand, selecting large value of ɛ (i.e., ɛ = 4.5% =10 minutes of the optimization objective range) will result 
in a limited number of single-objective optimization problems with short computation time. However, the 
quality of the obtained Pareto-optimal solutions might be jeopardized, as many of the Pareto-optimal 
solutions might be overlooked. 

To analyze the sensitivity of MBCOS to time increments in identifying optimal solutions, various ɛ values 
(10, 1, 0.1, 0.01, and 0.001 minutes) were used to identify the number of Pareto-optimal solutions for 5-, 
10-, 15- and 25-minute commute time tolerances, as shown in Figure 3.5. For example, when the 
incremental steps are set to 10 minutes, only 23 Pareto-optimal solutions are identified for a commute 
time tolerance of 25 minutes, as shown in Figure 3.5. As the incremental steps decrease to 0.001 minutes, 
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209 Pareto-optimal solutions are identified, as shown in Figure 3.5. However, the computational time to 
generate these Pareto-optimal solutions is 28.6 hours, as shown in Table 3.6. Selecting incremental steps 
10 times larger than 0.001 minutes will result in the 205 number of Pareto-optimal solutions, only missing 
four solutions; while the computational time is significantly reduced to 2.83 hours, as shown in Table 3.6. 
Accordingly, the minimal ɛ value to generate all Pareto-optimal solutions for the community of 21 
students is 0.001 minutes. It should be noted that an ɛ value of 0.10 minutes identified the majority of 
Pareto-optimal solutions (189 solutions), as shown in Figure 3.5, and with computational time of 0.211 
hours. Furthermore, decision makers can identify a good variety of Pareto-optimal solutions with short 
computational time for ɛ value of 10 minutes or 1 minute, as shown in Figure 3.5. 

 
Figure 3.5  Sensitivity analysis for different values of ɛ 

Table 3.6  Computational time of different values of increments (ɛ) 
Increments (minutes) ɛ = 10 ɛ = 1 ɛ = 0.1 ɛ = 0.01 ɛ = 0.001 

Computational Time (hrs.) 0.011 0.026 0.211 2.83 28.6 

 
To analyze the sensitivity of the optimization model to the input data of commuters in terms of home 
addresses, the home address for commuters 3 and 11 were changed where their travel time was reduced 
by 50%. After identifying the Pareto-optimal solutions for the case of 25 minutes’ commute time 
tolerance, the average total commute time for all the Pareto-optimal solutions was identified at 284.6 
minutes, which is a reduction of ≈ 14.2% compared with the average total commute time for all Pareto-
optimal solutions identified in the original case study (331.7 minutes). Furthermore, the average 
equivalent social cost of GHG and air pollution emissions was reduced from $3.01 to $2.23, representing 
a 26% reduction in negative environmental impacts. It should be noted that when commuter home 
addresses are closer to the destination, not only does the contribution of these commuters to GHG and air 
pollution emissions reduce when either driving or public transportation, it also makes green commute 
modes, such as biking and walking, more feasible and thus presents opportunities for greater reductions in 
negative environmental impacts. 

Finally, to analyze the sensitivity of the optimization model to the departure and arrival times of the 
commuters, these times were changed in the morning and afternoon to make them the same for 
commuters 3 and 11 as commuter 1. This change allowed commuters 1, 3, and 11 to be able to carpool, 
which was not feasible in the original case study. This change resulted in an 18.5% reduction of the 
average total commute time for all the Pareto-optimal solutions as compared with the original case study. 
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Furthermore, the reduction in the negative environmental impacts was calculated at 19.2%, which is less 
than the reduction achieved by changing the commuters’ home addresses. The reason for this difference is 
that changing the departure times of commuters 3 and 11 resulted in more feasible carpooling options, 
which still contribute to the GHG emissions of the commuters; however, changing the home location of 
commuters 3 and 11 closer to the business location allowed biking and walking, which are associated 
with zero emissions, to be feasible. 

3.4.3 Discussion of System Performance 

In general, with increases in commuter tolerance and allowing for greater flexibility in departure and 
arrival times, the model recommends switching from riding in cars to carpooling, biking, or public transit 
and biking to minimize negative environmental impacts. The model generally recommends biking over 
walking and skateboarding; however, the multi-objective optimization seeks to minimize environmental 
impacts simultaneously with total commute time, and biking is faster than either walking or 
skateboarding. It should be noted that skateboarding may appear to be a relatively minor mode of 
transportation, but it was included in this case study as an intermediary transportation option relevant to a 
community of students and allowed greater granularity for the optimization model in the context of the 
analyzed case study. 

One notable observation based on the study’s findings is that the social cost of negative environmental 
impacts is small compared with the value of people’s time. Specifically, as discussed before, the model 
assigned social costs as estimated by the EPA and Victoria Transport Policy Institute for GHG, NOX, and 
VOC emissions (Environmental Protection Agency, 2014; Victoria Transport Policy Institute, 2013). As 
can be seen in Figure 3.3 and Figure 3.4, the social cost of the negative environmental impacts is 
undervalued as compared with commuter’s value of time. For example, social cost of negative 
environmental impacts is reduced up to $3.45 per day for increase in the students commute time up to 470 
minutes. However, the model assigns a value of $18/60 minutes of people’s time based on student hourly 
pay rates at the university. Accordingly, the results of the developed model show that the estimated social 
costs of the negative environmental impacts by EPA and Victoria Transport Policy Institute for GHG, 
NOX, and VOC emissions are undervalued as compared with commuters’ value of time. Finally, it should 
be noted that the model identifies the importance of GHG, NOX, and VOC emissions according to their 
reported social cost by EPA and Victoria Transport Policy Institute; however, different evaluations of the 
social costs for GHG, NOX, and VOC emissions could lead to different model results, and may, in fact, be 
desirable based on differing perceived importance from business owners or governments. 
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4. CASE STUDY 

A case study of government employees was analyzed to evaluate the performance of the system. The 
department of human resources sent an invitation email to all employees who worked in the county 
buildings. The invitation email asked the employees to create user accounts and fill out commute 
information and commute needs surveys on the website (www.commuteopt.com). The employees were 
provided with video tutorials on how to use the MBCOS website to specify their commute information 
and needs. The case study was designed to be performed in a four-week duration. Employees were given 
two weeks to fill out the surveys; the authors then performed the system computations and uploaded the 
results to the website, and lastly, employees took one week to check the system recommended commute 
plans. Forty-seven participants filled out the two surveys specifying their home and work addresses, 
existing commute mode, willingness to change their commute behavior, ranges of their departure and 
arrival times, intermediate stops, and parking information. Figure 4.1 shows 47 commuters’ home 
locations with nine distinctive work locations. 

 
Figure 4.1  Commuters’ home and work locations 

Travel survey data of commuters collected from the website were fed into the GIS network to calculate 
the travel attributes of each employee, including the travel time, distance, cost, and equivalent social cost 
of GHG and air pollution emissions from the origin to destination addresses for outgoing and return trips, 
and for every commute mode, as shown in Table 4.1. 

http://www.commuteopt.com/
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Table 4.1  Sample of calculated outgoing travel attributes for Commuter 1 by the GIS network 
 

Travel Attributes 
  

Commute Alternatives 
Drive 
alone 

Public Transit 
& Walk 

Public Transit 
& Bike 

Walk 
only 

Bike 
only 

C
om

m
ut

er
 1

 Travel Time (min.) 36.2 161.7 136.3 314.9 100.3 
Travel Distance (mile) 15.0 16.0 16.0 14.6 14.7 
Energy Consumption 
(gallons of gasoline) 0.6 0.6 0.6 0.0 0.0 

Equivalent Social Cost of GHG and 
Air Pollution Emissions ($) 0.6 0.6 0.6 0.0 0.0 

Travel Cost ($) 9.9 1.3 1.4 0.0 1.5 
 
The decision variables of the optimization model were used to model all the commute modes, including 
drive-alone, use of public transit and walk or bike, bike only, walk only, and carpool with one employee. 
The four types of constraints, model logic constraints, consistency constraints, convenience constraints, 
and incentive constraints were integrated in the model based on the commute preferences and needs 
collected from the travel surveys on the website. The constraints were formulated based on the 
employees’ required arrival time in the outgoing trip and departure time in the return trip, preferred 
transportation alternatives, possibility of carpooling, flexibility in extending commute time, and business 
incentive budget. The objective function was designed to identify the optimal selection of commute 
modes for each employee to minimize the total GHG and air pollution emissions. The computations of the 
optimization model were then executed on a personal computer, the Intel Core (TM) i5 2.5GHz processor 
and 8GB RAM. The computations of the optimization model, including the modeling of optimization 
problem, identifying the optimal solution, and generating the results took approximately four minutes. 

Figure 4.2a shows the percentage reduction in GHG and air pollution emissions compared with the 
existing commute behavior for weekdays and based on commute tolerance of 20 minutes. The reason that 
the reductions in GHG and air pollution emissions vary from one day to another is due to employees’ 
different commute needs on each day. For example, two employees might be recommended to carpool on 
Monday since their required arrival time at work is less than a specified tolerance. However, these two 
employees cannot carpool on Tuesday due to significant difference in their arrival times. On average, the 
total reduction of GHG and air pollution emissions was calculated at 23.4%, as shown in Figure 4.2a. The 
resultant change in the employees’ commute behavior can lead to reductions in the total commute time, 
cost, distance, and energy, as shown in Figure 4.2b. The greatest reduction was achieved in the total 
commute cost at 25% since the employees can save the driving cost, including the fuel consumption, 
maintenance, and parking cost, by changing their commute behavior. 
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Figure 4.2  Percentage reductions – (a) in GHG and air pollution emissions for weekdays; 

(b) breakdown of total travel time, cost, distance and energy for Monday 

Figure 4.3 shows the frequency of the recommended optimal commute modes, and the existing commute 
behavior on Monday. Out of the 45 employees who need to commute on Monday, 43 employees 
originally drive alone, while only one employee uses public transit and walks, and one employee walks to 
the work destination. Based on the generated solution by MBCOS, 15 employees are recommended to 
drive alone to maintain their convenience. For example, an employee who is not flexible to extend his/her 
commute time more than 20 minutes cannot receive a recommendation that increases his/her commute 
more than 20 minutes. Furthermore, MBCOS recommended 11 employees to carpool. The two employees 
who previously walked and used public transit and walked were recommended to commute the same as 
their existing commute behavior. The rest of the recommended commute plan is shown in Figure 4.3. 

 
Figure 4.3  Frequency of the recommended commute modes 
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As mentioned in model implementation step, the optimization model generates individualized commute 
plans for employees of the business. The individualized commute plans show details of recommended 
commute mode for each employee, changes in commute time, monetary incentives and cost savings, as 
well as changes in daily commute footprints, as shown in Table 4.2 and Table 4.3 for Monday commute. 
It should be noted that recommended commuting options for outgoing and return trips can be different. 
For example, commuter 43 is recommended to drive alone for the outgoing trip, but for the return trip, 
he/she is recommended to carpool and pick up commuter 39, as shown in Table 4.2. 
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Table 4.2  Sample of recommended commute modes and commute time impacts 
# Existing 

Mode 
Recommended Mode Outgoing Trip Return Trip 

Outgoing Trip Return Trip Existing 
Travel Time 

(min.) 

Recommended 
Travel Time 

(min.) 

Reduction in 
Travel Time 

(min.) 

Existing 
Travel Time 

(min.) 

Recommended 
Travel Time 

(min.) 

Reduction in 
Travel Time 

(min.) 

1 DRIVING 'Carpool: Picked up by 
commuter 2' 

'Carpool: Picked up by 
commuter 2' 

36** 19** 17 35 20 15 

2 DRIVING 'Carpool: pick up 
commuter 1' 'Carpool: pick up commuter 1' 36 38 -2 31 32 -1 

3 DRIVING 'Driving alone' 'Driving alone' 20 20 0 20 20 0 
4 DRIVING 'Driving alone' 'Driving alone' 26 26 0 19 19 0 
5 DRIVING 'Driving alone' 'Driving alone' 26 26 0 23 23 0 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

43 DRIVING 'Driving alone' 'Carpool: pick up commuter 39' 56 56 0 56 70 -14 

44 

TRANSIT 
+ 

WALKIN
G 

'Transit + Walk' 'Transit + Walk' 

69 69 0 61 61 0 

45 DRIVING 'Carpool: pick up 
commuter 10' 'Driving alone' 36 50 -14 35 35 0 

46* [] 
47 DRIVING 'Driving alone' 'Driving alone' 28 28 0 26 26 0 
*   Commuters 35 & 46 do not need to commute on Monday 

** Commuter reported a 15-minute walk from parking to work address and a 2-minute search for a parking spot 
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Table 4.3  Sample of monetary incentives and savings, and commute impacts of employees 

  Monetary Incentives and Savings ($) Recommended Commute 
Footprint 

Existing Commute 
Footprint 

Reductions 

# Monetary 
incentive

s from 
riders 

outgoing 

Monetary 
incentives 
from riders 

return 

Monetary 
incentives to 

driver 
outgoing 

Monetary 
incentives 
to driver 

return 

Outgoing 
saving 

Return 
saving 

Cost 
($) 

Time 
(min.) 

Emissions 
($) 

Cost 
($) 

Time 
(min.) 

Emissions 
($) 

Cos
t 

($) 

Time 
(min.

) 

Emission
s 

($) 

1 0.0 0.0 5.9 5.5 3.9 3.2 11.8 39.5 0.0 19.0 71.5 0.5 7.1 32.0 0.5 
2 5.9 5.5 0.0 0.0 5.9 5.3 8.1 70.6 0.5 19.5 66.3 0.5 11.4 -4.3 0.0 
3 0.0 0.0 0.0 0.0 0.0 0.0 11.6 39.8 0.3 11.6 39.8 0.3 0.0 0.0 0.0 
4 0.0 0.0 0.0 0.0 0.0 0.0 8.6 45.1 0.2 8.6 45.1 0.2 0.0 0.0 0.0 
5 0.0 0.0 0.0 0.0 0.0 0.0 11.1 48.8 0.3 11.1 48.8 0.3 0.0 0.0 0.0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

43 0.0 14.8 0.0 0.0 0.0 12.7 43.2 125.7 1.4 55.9 111.4 1.4 12.7 -14.4 0.0 
44 0.0 0.0 0.0 0.0 0.0 0.0 2.5 129.7 0.1 2.5 129.7 0.1 0.0 0.0 0.0 
45 9.5 0.0 0.0 0.0 6.6 0.0 24.6 85.2 0.8 31.2 70.5 0.8 6.6 -14.7 -0.1 
46* [] 
47 0 0 0 0 0 0 10.26 53.23 0.23 10.26 53.23 0.23 0 0 0 

* Commuters 35 & 46 do not need to commute on Monday 
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5. WIDESPREAD APPLICATIONS AND IMPACTS 

U.S. DOTs are focusing on promoting and developing transportation programs that can reduce VMT per 
capita. Therefore, it is essential to analyze the widespread applications and impacts of the developed 
transportation programs or systems based on estimated reductions in VMT per capita. The analysis of 
widespread impacts of the system provides clear understanding of the efficiency of developed systems to 
achieve the GHG and air pollution emissions reduction targets. Furthermore, the analysis provides a clear 
vision on the resultant impacts of the developed system and therefore supports the transportation planners 
and decision makers in promoting the use of the developed system. 

The widespread applications and impacts of transportation programs or systems can be analyzed by 
generalizing the obtained results from the case studies. However, because of their limited number, the 
case studies may be extended by randomly generated problems, which can be a good representation of the 
entire population. Accordingly, randomly generated problems can be verified by the results of the case 
studies. The objective and methodology of analyzing widespread impacts are next discussed in detail. 

5.1 Objectives and Methodology of Analyzing Widespread Applications 

The primary objective is to analyze the widespread applications and impacts of the developed system by 
generalizing the obtained results from the case studies across the United States. The analysis of 
widespread application of MBCOS focuses on estimating the reduced VMT per employee of businesses 
with different numbers of employees. Additionally, the analysis of widespread application of MBCOS 
can lead to a clear understanding of reductions in transportation GHG and air pollution emissions, total 
commute cost, time, distance, and energy. 

Two case studies were analyzed to estimate the reductions in VMT per employee. The reduction of VMT 
per employee as a result of using MBCOS at businesses of different numbers of employees is calculated. 
The reduction in VMT per employee of using MBCOS at businesses with different numbers of employees 
was estimated for each case study, as shown in Table 5.1. For case study one, 5, 15, and 23 employees 
were randomly selected, and the IR was estimated. For example, the IR of using MBCOS for randomly 
selecting five employees in the case study is 0.9 VMT per employee in a single day, as shown in Table 
5.1. As the number of employees increases, more carpooling options become available and thus more 
reduction in VMT can be achieved along with IR increases. Similarly, the IR for 5, 15, 25, and 35 
employees was estimated for case study 2, as shown in Table 5.1.  

Table 5.1  Estimated reduction of VMT per employee for different numbers of employees in the case 
studies 
Case study 1 (single business) Case Study 2 (multi-business) 

Number of employees VMT reduction per 
employee Number of employees VMT reduction per 

employee 
5 0.90 5 0.48 
15 1.98 15 1.09 
23 2.60 25 1.61 
    35 1.96 

Due to the limited number of employees in the case studies, and to generalize the VMT reduction per 
employee for businesses with greater number of employees, several single business problems up to 160 
employees are randomly generated and verified by the results of the case studies. Each generated problem 
consists of employees randomly selected from the 160 employees, as shown in Figure 5.1. Accordingly, 
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the average reduction in VMT per employee of each problem is calculated for businesses of 1, 10, 60, and 
160 employees, as shown in Table 5.2. 

Table 5.2  Average reduction in VMT per employee of businesses with different numbers of employees 
Randomly generated single business problems 

Number of employees Reduced VMT per employee 
1 0 

10 1.35 
60 3.86 

160 4.13 
 

 
Figure 5.1  Randomly generated single business problem of 160 employees 

To generalize the estimated reductions of VMT per employee for businesses of different sizes, a 
logarithmic function is fitted to the IR values of randomly generated problems, as shown in Figure 5.2. To 
verify the estimated reductions in VMT per employee of the randomly generated problem, the results of 
the case studies are shown in Figure 5.2. The logarithmic function fitted to the IR values shows that as the 
number of employees increases in a business, the IR increases and reaches a plateau. This IR estimation 
function based on the randomly generated problems is 𝑦𝑦 = 0.7952 ln(𝑥𝑥) − 0.2482 where 𝑥𝑥 is the number 
of employees who participate in the use of MBCOS and follow the recommendations. Accordingly, for 
businesses of different sizes, the IR is calculated using the same function. 
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Figure 5.2  Estimated reductions in VMT for businesses of different number of employees 

5.2 Analysis of Widespread Application of MBCOS 

The widespread application (WSA) of MBCOS is analyzed in three different phases: (1) Phase 1: short-
term WSA, 1 – 3 years; (2) Phase 2: medium-term WSA, 3 – 6 years; and (3) Phase 3: long-term WSA, 6 
– 9 years. The number of businesses using MBCOS and participation rates of employees who use 
MBCOS increase over time; however, the number of employees who follow the MBCOS 
recommendations is assumed to be fixed. In Phase 1, the number of businesses using MBCOS is 
estimated at 35%, where 20% of their employees participate in the use of MBCOS and 50% of them 
follow the recommended commute plans of MBCOS, as shown in Figure 5.3. In Phase 2, the number of 
businesses using MBCOS increases to 55%, where 40% of their employees participate in the use of 
MBCOS and 50% of them follow the recommended commute plans of MBCOS, as shown in Figure 5.3. 
In Phase 3, the number of businesses using MBCOS increases to 75%, where 60% of their employees 
participate in the use of MBCOS and 50% of them follow the recommended commute plans of MBCOS, 
as shown in Figure 5.3. 
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Figure 5.3  Three phases of widespread application of MBCOS 

The number of businesses with different numbers of employees for all counties across the United States are 
obtained from United States Bureau of Labor Statistics, which categorizes businesses in every county to 
less than 20 employees, 20 – 99 employees, 100 – 499 employees, and more than 500 employees (U.S. 
Bureau of Labor Statistics, 2018). For example, Table 5.3 shows the data of number of businesses and their 
employees in Denver, CO. 

Table 5.3  Data of number of businesses and their employees in Denver, CO 
State Name County 

Name 
Firm size Number of 

firms 
Total number 
of employees 

Average number of 
employees per 

business 
Colorado Denver  Fewer than 20 employees   15,530   58,366  10 
Colorado Denver  20 – 99 employees   1,950   66,020  60 
Colorado Denver  100 – 499 employees   809   60,855  300 
Colorado Denver  500+ employees   1,412   214,503  500 

 
The IR of businesses of different sizes is calculated based on the average number of employees of the 
businesses that participate and follow the MBCOS recommendations and logarithmic trendline for 
randomly generated problems. Table 5.4 shows the calculated IR at businesses in Denver with different 
sizes for the three different phases. For businesses of less than 20 employees, IR would be zero during the 
first two phases, while it is expected to be increased to 0.48 VMT per employee per day in the third 
phase. 
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Table 5.4  VMT reduction per employee using MBCOS  
County 
Name 

Firm Size Impact Rates (IR) 
Phase 1 Phase 2 Phase 3 

Denver  Fewer than 20 employees  0 0 0.48 
Denver  20-99 employees  0.41 1.5 2.18 
Denver  100-499 employees  1.94 3.04 3.72 
Denver  500+ employees  2.44 3.53 4.21 

 
Based on the calculated IR for every firm size, and the number of employees who participate and follow 
the MBCOS recommendations, the total reduced VMT is calculated. Figure 5.4 shows the estimated 
annual reduction of VMT in Denver, CO, for businesses of different numbers of employees and 
throughout the three phases. During the first phase of WSA, the total reduction in VMT is 10K reaching 
to 110K and 382K in the second and third phases, respectively.  

 
Figure 5.4  Estimated annual reduction of VMT in Denver, CO 

The existing business-related VMT is calculated by multiplying the number of employees and the average 
business VMT per employee. The average business VMT per employee based on the randomly generated 
problems is 16 miles per day for every employee. For example, if a business has 100 employees, the 
existing VMT of the business is 100 × 16 miles = 1,600 miles. The percentage reduction in VMT 
compared with the existing VMT shows the percentage reduction in business commute emissions. Figure 
5.5 shows the percentage reduction in business commute emissions, based on different firm sizes and 
across the three phases. 
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Figure 5.5  Percentage reduction in business commute emissions 

Similarly, the annual VMT reduction in Colorado, USA, can be estimated. Figure 5.6 shows the estimated 
annual reduction of VMT in Colorado, USA, for businesses of different numbers of employees and 
throughout the three phases. During the first phase of WSA, the total reduction in VMT is 0.1 million, 
and it increases to 1.4 million in second phase, and 4 million in the third phase.   

 
Figure 5.6  Estimated annual VMT reduction in Colorado, USA 

Figure 5.7 shows the percentage reduction in business commute emissions in Colorado, USA, based on 
different firm sizes and across the three phases. In the first phase, the percentage of business commute 
emissions is limited to 0.02% compared with the existing business commute emissions. However, in the 
second phase, the percentage of business commute emissions increases to 1%, and in the third phase it 
increases to nearly 9.3%. 
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Figure 5.7  Percentage reduction in business commute emissions, Colorado, USA 

The total reduction in transportation GHG emissions due to the WSA of MBCOS in the United States can 
be estimated based on the expected reductions in VMT of all U.S. states. Figure 5.8 shows the percentage 
reduction in total transportation GHG emissions as a result of WSA of MBCOS. In the first phase, the 
percentage of reduction in total transportation GHG emissions is 0.06%, 0.25% in the second phase, and 
0.57% in the third phase, as shown in Figure 5.8. 

 
Figure 5.8  Estimated reduction in total transportation GHG emissions, United States 

Based on the estimated reduction in VMT across the entire United States, the total reduction in total 
commute cost, time, and energy consumption can be estimated. Figure 5.9 shows the annual reduction in 
total commute cost, time, and energy consumption as well as the total annual reduction in VMT. 
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Figure 5.9  Estimated reduction in total commute cost, time, energy and VMT, United States 

The widespread application of MBCOS was analyzed considering three different phases, short-term (1 – 3 
years), medium-term (3 – 6 years), and long-term (6 – 9 years). The number of businesses and number of 
employees who participate in using MBCOS is assumed to be increased over time, while the number of 
employees who follow the optimal recommended commute plans of MBCOS is assumed to be fixed at 
50%. These assumptions are dependent on the support of U.S. DOTs. The analysis shows that MBCOS is 
capable of reducing the business commute emissions by 9.3% in Colorado, USA, after the third phase of 
the widespread application of MBCOS. The reductions at larger size businesses in terms of number of 
employees seem to be greater. Additionally, MBCOS is effective in reducing the total transportation 
emissions by 0.57% in the third phase of widespread application of the system. Furthermore, MBCOS is 
effective in reducing the total commute cost, time, and energy consumption. For example, in the second 
phase of widespread application of the system the reduced annual total commute cost is $6.7 billion, 
which is nearly four times larger than that in the first phase, and $15.8 billion in the third phase. 
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6. DISCUSSION & CONCLUSIONS 

This report presented the development of an innovative Multiple Business Commute Optimization 
System (MBCOS) designed to identify optimal commute plans of employees at multiple businesses that 
are co-located or employees of a business with different work locations. MBCOS minimizes the total 
GHG and air pollution emissions while maintaining preferences and convenience of business commuters. 
MBCOS is designed to reduce emissions by influencing and incentivizing commuters at businesses to 
change their behavior from drive alone to alternative commute modes, such as using public transit, 
carpooling using existing vehicle, biking, walking, or using a combination of these modes. MBCOS is 
designed to provide monetary incentives from business owners to incentivize employees to follow 
recommended commute plans. The monetary incentives are provided to support business commuters in 
changing their existing commute behavior, and to cover the inconvenience of commuters due to extended 
commute time of using alternative commute modes, such as bike, walk, carpool, and use of public transit. 
This new system consists of a web-based travel survey, GIS network, and an optimization model. The 
web-based travel survey includes a website, www.commuteopt.com, which is designed to facilitate the 
collection of travel survey data. These data include employees’ commute information such as origin and 
destination addresses, arrival and departure times to/from work, and original commute method. The GIS 
network focuses on calculating the travel attributes, including GHG and air pollution emissions, tleravel 
time, cost, energy consumption, and burned calories for every possible commute mode, such as drive-
alone using existing vehicle, use of public transit, bike, walk, and carpool with other commuters. The 
optimization model is designed to identify optimal commute behavior change of employees from drive-
alone to alternative commute modes that result in minimum total GHG and air pollution emissions. To 
evaluate the performance of the developed system and demonstrate its unique capabilities, a case study 
was analyzed. The results of the case study, based on 47 employees, showed that the GHG and air 
pollution emissions can be reduced by 23.4% on average while allowing up to 20 minutes time extension 
to existing commute behavior of the employees. Additional reductions can be achieved in other case 
studies if the following conditions exist: (1) better access for employees to public transit systems, which 
will allow more feasible alternatives for public transit use, and (2) higher parking costs, which can 
promote the use of carpooling and public transit use due to commute savings. Furthermore, it is believed 
that as the number of participating employees increases, more carpooling options can be identified and 
thus more commute cost savings and reductions in GHG and air pollution emissions can be achieved. 

The widespread application of MBCOS is analyzed for its potential application in Colorado and the 
United States. The authors are currently working on expanding the capabilities of the developed MBCOS 
to model more alternative commute modes, such as using Uber or Lyft, upgrading to hybrid and electric 
vehicles, and carpooling with two or three employees. These new capabilities can achieve higher 
reductions in GHG and air pollution emissions. 

http://www.commuteopt.com/
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