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ABSTRACT 

Over a century of research suggests that the size and spatial location of various streetscape 

features impacts outcomes such as walkability, livability, and road safety. Current streetscape 

feature measuring/mapping techniques are limited to subjective audit-based methods, crude 

feature counts, or simple 2D geographic information system (GIS) processing of roadside 

features. This project investigates objective methods to extract streetscape features with three 

different classes of light detection and ranging (LiDAR) processed with 3D volumetric pixels 

(voxels). Furthermore, this work introduces new methods for creating comprehensive streetscape 

descriptive statistics from LiDAR data and processed voxel data.  

As the United States Geological Survey (USGS) embarks on a national LiDAR database, with 

the goal of collecting nationwide LiDAR data for public use, this project first investigates what 

streetscape features are detectable within the common USGS QL1 standards. Previous work 

looked at USGS QL2 LiDAR data, and the results were limited to buildings and street trees. QL1 

LiDAR data, being four times denser than QL2 data, results suggest that many more streetscape 

features are detectable. Several streetscape areas with QL1 coverage in Las Vegas, NV, were 

processed and analyzed. In addition to street trees and buildings, an analyst can also legitimately 

extract and statistically quantify walls, fences, landscape vegetation, light posts, traffic lights, 

power poles, power lines, street signs, and miscellaneous street furniture. Previous streetscape-

based studies that utilized remote sensing or GIS data acknowledged the importance of these 

features, yet concluded they were too small to extract with conventional remote sensing data and 

methods. Though many more features were detectable in a QL1 dataset, some of the smallest 

streetscape features were still not detectable and would require denser LiDAR data. 

The second streetscape LiDAR dataset this project investigates is a mobile LiDAR dataset. 

Mobile LiDAR collects over 2,000 points per square meter, which facilitated the measuring and 

quantifying of features such as small landscape furniture, traffic signage, and traffic signals that 

were not detectable with publicly available USGS LiDAR. The results of the mobile LiDAR 

analysis suggest that mobile LiDAR’s density allows for much smaller voxels and to thoroughly 

measure smaller streetscape features in 3D. This also includes street trees, light/lamp posts, street 

furniture, traffic and commercial signage, building window proportions, awnings, and enclosed 

courtyard restaurants. Moreover, mobile LiDAR’s density, which is tied to the ability to quantify 

features into smaller voxels, facilitated the ability to objectively measure and categorize these 

streetscape features in walkable, downtown-like streetscapes. This ability to compartmentalize 

such streetscapes into smaller cubic feet voxels to measure and quantify could supplement or 

replace conventional audit-based streetscape measuring that urban planners currently use to 

measure perceptual qualities in walkable streetscapes. 

The LiDAR datasets studied can measure and quantify nearly all features found in a standard 

streetscape. The methods presented in this report for classifying and quantifying streetscape 

features into voxel height zones ultimately allows for comprehensive tabular descriptive statistics 

to be generated for any single or multiple features within a streetscape. With LiDAR’s high 

precision and accuracy, this project suggests that the methods discussed provide the most 

objective 3D spatial location of streetscape feature data, which can ultimately be applied to 

transportation outcome studies and studies that measure streetscape/built environment perceptual 

qualities. 
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PART 1: MEASURING STREETSCAPE FEATURES WITH HIGH-
DENSITY AERIAL LIDAR 1 

1. Introduction  

Light detection and ranging (LiDAR) is a sophisticated aerial surveying and remote sensing 

technology that is becoming widely available for public use. In the early 2000s, remote sensing 

technologies began to receive recognition in the greater transportation research community when 

the Transportation Research Board held three annual seminars as part of its inaugural National 

Consortium on Remote Sensing (McCord et al. 2001). Since then, remote sensing technologies 

are slowly becoming more mainstream in transportation research, as their accuracy and ability to 

identify and extract discrete features have improved. With its high precision and high-density 

point cloud data, aerial LiDAR has evolved to become the first remote sensing technology to 

achieve survey quality mapping (Csanyi and Toth 2013). As a result, LiDAR has the potential to 

measure quantitatively and map various features within streetscapes and the built environment in 

general. 

For transportation researchers, it is important to distinguish between discrete collection LiDAR 

and navigational LiDAR. Navigational LiDAR is becoming mainstream in the transportation 

sector with the rise of autonomous vehicles and advances with real-time object detection (Funke 

et al. 2017). Discrete LiDAR, on the other hand, is focused on collecting and storing LiDAR data 

for analysis. The United States Geological Survey (USGS) is currently leading a multi-million-

dollar annual investment into acquiring discrete LiDAR throughout the United States. Called the 

3D Elevation Program (3DEP), these data are primarily collected at quality level (QL) 2 and 

QL1 standards. QL2 LiDAR data have a nominal point spacing of around 0.5 m, or a point 

density of around two points per square meter. QL1 is four times denser with a point density of 

around eight points per square meter, as shown in Figure 1.1. With flood risk management stated 

as the most important beneficiary of the 3DEP program, the USGS identified 27 other business 

uses to justify the program economically (Dewberry 2012). 3DEP data are currently in the early 

stages of being applied to fundamental transportation research. 

Golombek and Marshall (Golombek and Marshall 2019) explored the limits of QL2 data by 

designating streetscapes in three-dimensional (3D) pixels—better known as “voxel” grids—and 

found that QL2 data for measuring streetscapes are primarily limited to buildings and street trees. 

Since understanding the impacts of street trees and other clear zone objects is an important 

transportation topic, that study also discussed how 3D measurement of street trees widely differs 

from traditional 2D-derived canopy data. Specifically, the vertical components of the street trees 

were defined by the vertical voxel zone or voxel interval they fell into. Though QL2 is currently 

the more common USGS specification, LiDAR technology is evolving rapidly, more 

specifically, from a point density of one point per five square meters in the mid-1990s to QL1 

 

 

1This portion of the report has been peer-reviewed and published: Golombek, Y. and Marshall, W. 

“Measuring Streetscape Features with High Density Aerial LiDAR.” Transportation Research Record 

(doi.org/10.1177/0361198120944172). 

https://emxpert.net/sageedit/journals/Embox/Index/944172#fig1
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standards being the norm in the near future (Abdullah 2016). With public QL1 data becoming 

more common and being four times denser than QL2, QL1 is expected to be able to measure 

discrete streetscape features objectively well beyond QL2’s buildings and trees. 

In relation to transportation research, finding objective methods to measure streetscapes and 

streetscape features is important for measuring perceptual qualities of streetscapes as well as for 

transportation-related outcomes such as those related to road safety. Perceptual qualities, such as 

“street enclosure,” among many others, have long been studied and analyzed by urban planners 

and designers trying to understand the qualities and characteristics of streetscapes that make 

them more appealing and desirable. Published works on perceptual qualities began in the late 

19th century with Camillo Sitte (Sitte 1889) and continued through the 20th, as Gordon Cullen 

(Cullen 1971), Donald Appleyard (Appleyard 1980), Anotol Rapoport (Rapoport 1990), and 

Henry Arnold (Arnold 1993) all produced literature addressing the importance of perceptual 

qualities in urban design. More recently, since around 2010, research has focused more on 

improving measuring techniques. The next section discusses how buildings and street trees have 

been measured in recent streetscape studies. Smaller and essential streetscape features —such as 

streetlights, signs, landscape features, and streetscape furniture— have not yet been incorporated 

in such studies. 

In relation to road safety outcomes, conflicting research exists around the role of streetscape 

features. For instance with street trees, the research findings have long been contradictory over 

their influence on road safety outcomes (Wolf and Bratton 2006; Zeigler 1986; Dumbaugh 

2005). Some studies suggest that street trees are associated with better safety outcomes 

(Marshall, Coppola, and Golombek 2018), while other studies find them to be hazardous (Zeigler 

1986; Turner and Mansfield 1990). Aside from street trees, transportation research has also 

focused on how physical characteristics of other streetscape features enhance safety. Placement 

and characteristics of streetlights have an effect on pedestrians’ perceived safety (Haans and de 

Kort 2012). The same is true in relation to measurements, placement, and dimensions of 

streetlights (Fisher 1974; Ekrias et al. 2008) as well as street sign placement for drivers 

(Goodenough 1976; Shoptaugh and Whitaker 1984). Along with these features, utility poles and 

other fixed objects in streetscapes have been shown to affect transportation outcomes 

(Dumbaugh 2005). 

With QL1 data becoming more publicly available, the goal of this study is to determine what role 

LiDAR data collected at QL1 standards can play in transportation research. Specifically, this 

study attempts to extract and measure quantitatively the common streetscape features mentioned 

above, in addition to street trees and buildings common to QL2 data analysis. This study will 

present a comprehensive methodology for measuring 3D characteristics of streetscape features 

—based on voxel (3D pixel) zones—using USGS QL1 data for the purpose of compiling 

objective descriptive statistics of how these features are represented in 3D streetscapes. To 

compile descriptive statistics of where features fall from voxels, we process and compile voxel 

height intervals, as shown in Figure 2.1. The voxel-feature data will ultimately be converted into 

vector data to compile tabular descriptive statistics. If the assessment can be adequately 

performed with QL1 data, then it can become common practice and more widely applied in 

municipalities (where QL1 data already exists) and eventually in municipalities across the 

U.S. for assisting the assessment of 3D characteristics of features within streetscapes.  

https://emxpert.net/sageedit/journals/Embox/Index/944172#fig2
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       QL2                         QL1 

 
  

Figure 1.1  Example of LiDAR QL2 and QL1 data for the same intersection 
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2. Literature Review 

Over the past two decades, improving remote sensing technologies and emerging geographic 

information systems (GIS) applications have affected transportation research in ways such as 

how streetscapes are measured and understood in relation to outcomes, such as livability, 

physical activity, and road safety. Over that time, streetscape measuring methods have evolved to 

become more objective. 

Before implementing streetscape measuring with mapping technologies, methods were more 

audit-based. Ewing et al. were among the first urban design researchers to implement audit-based 

measurement techniques within streetscapes (Ewing et al. 2005; Ewing and Handy 2009; Ewing 

and Clemente 2013). These authors developed and implemented a comprehensive manual to 

guide field observation for quantitative measures to pair with concepts such as streetscape 

desirability and walkability. Brownson also compared a significant number of audit-based 

techniques (Brownson et al. 2009) to measure the built environment as it relates to physical 

activity. Brownson acknowledged that these measures are time consuming. His study listed 

dozens of observation-based instruments that can take up to 20 minutes per street segment to 

calculate for each method. According to Brownson, the auditors were often students who usually 

did not have a technical skillset for auditing. Yin mentioned that individuals conducting 

estimated measures through audits often perform subjective observations, which can be 

inconsistent across observers (Yin 2017). 

Auditing seems to have subsided, at least to some extent, as GIS and its spatial data analytics 

became more mainstream. Purciel et al. attempted to implement GIS measures to offset 

complexities involved with manual audit-based assessments of streetscape and assessed their 

results against Ewing et al.’s outcomes. They used New York City to measure streetscape 

features and variables for five primary perceptual qualities of streetscapes: imageability, 

enclosure, human scale, transparency, and complexity. The data Purciel et al. used were simple 

2D GIS polygon data features resulting from various public sources and tabular data. Results 

acknowledged correlations between GIS and observed measures that ranged from 0.28 to 0.89 

(Purciel et al. 2009). This wide and varying correlation range is hard to comprehend because the 

GIS data and the observed measures the GIS data were weighted against contain a lot of 

subjectivity in the data and methods. 

A study by Yin and Shiode went beyond simple GIS data and appended 3D attributes to 2D GIS 

features to evaluate streetscape measures related to walkability research conducted by Ewing and 

Handy (Ewing and Handy 2009) and Purciel et al. (Purciel et al. 2009). In Yin and Shiode’s 

study, GIS and remotely sensed aerial photographs were utilized to extract buildings and trees, 

among other features. Height attributes from the assessor database gave buildings their heights, 

and trees were grouped into small, medium, and large categories. Yin’s study built on these 

previous works by using remotely sensed imagery and 3D GIS to measure street-level urban 

design qualities objectively and test their correlation with observed data. The statistical results 

concluded that 3D GIS helped generate objective measures on view-related variables. Yin’s data 

were more objective than simple 2D GIS data; yet, they were still subjective since the 3D 

components were simply derived from measurement extrapolations appended to 2D GIS data of 

features such as trees and buildings. These 3D GIS methods did, however, yield some 
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improvements to correlations with walkability scores established by Ewing and Purciel (Yin and 

Shiode 2014; Yin 2017). 

Harvey et al. took their objective 3D streetscape mapping techniques even further than Yin and 

Shiode. Harvey et al. published two research articles (Harvey et al. 2015, 2017) utilizing 

advanced GIS methods and high precision data (including LiDAR) to measure streetscape 

skeletons. In both articles, the primary focus was on the buildings surrounding the streetscapes 

discussed as part of the street’s enclosure matrix, and the authors discussed the perceived safety 

of these environments. Although street trees are touched on, the authors noted that walls, fences, 

streetlights, and other design elements were unaccounted for because of the lack of adequate 

spatial data. Also, the authors noted that these features may be insignificant because they 

“embellish the broader streetscape already defined by buildings that dwarf them in size,” 

alluding to their relative insignificance because of surrounding buildings (Harvey et al. 2017). It 

is important to note that these studies take place in high-density areas, primarily New York City, 

but also in Boston and Baltimore, where streetscapes are more enclosed by buildings on each 

side than in most other cities. The majority of U.S. urban streetscapes do not have significant 

buildings to fill the enclosure matrix. Therefore, the common streetscape features that are 

unaccounted for may be critical for mapping typical U.S. urban streetscapes since they are 

features of streetscape focus in the absence of buildings encroaching on roadways. 

Harvey and Aultman-Hall also conducted a comprehensive study in New York City in 2015 

incorporating nearly 240,000 crashes for over 75,000 road segments (Harvey and Aultman-Hall 

2015). This study incorporated many variables, including LiDAR-derived 2D tree polygons, GIS 

building data, and cross-section width between buildings to weigh street enclosure perceptions to 

crash outcomes. However, this study appears to analyze 2D tree polygon coverage area only 

within a streetscape, neglecting LiDAR’s capabilities to assess 3D tree features. For example, if 

two streetscapes had 15% total tree coverage, one could have significantly more tree 

density/biomass because the 3D characteristics are not considered. It is such characteristics that 

may be critical for understanding the impact of urban streetscape features on transportation-

related outcomes. 

The authors’ recent streetscape LiDAR study (Golombek and Marshall 2019) discussed 

streetscape features that can be extracted from USGS QL2 data. This study determined that QL2 

data are limited to extracting buildings and trees in the streetscape. Since other studies linking 

LiDAR building classifications with building footprints show strong correlations (J. Wang, Zeng, 

and Lehrbass 2012; Saraf et al. 2018), and since street trees are a significantly analyzed topic in 

transportation research, the study examined and found significant statistical differences between 

deriving 3D characteristics of trees against 2D LiDAR-derived polygons. However, QL2 data are 

limited in relation to usefulness for transportation-based feature extraction, as many more critical 

features other than buildings and trees exist in a typical streetscape environment. 

Research extracting streetscape features (aside from buildings and trees) from LiDAR is limited. 

Recently, a cut-graph segmentation method was used with mobile LiDAR to extract urban street 

poles automatically, resulting in a 90% success rate (Zheng, Wang, and Xu 2017). Unfortunately, 

QL1 data are not nearly dense enough to apply this method, and the methods section below 

explains why automated processes in general are not applied to this research. Mobile LiDAR is 

far denser than QL2 or QL1 LiDAR, but mobile LiDAR typically requires private collection, and 
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processing is slow and labor intensive because of its high point density. This research study 

attempts to analyze publicly available USGS QL1 LiDAR data to extract and measure a variety 

of smaller and more discrete streetscape features that could not legitimately be detected in a 

common QL2 dataset. 

 

Figure 2.1  Example of voxel grid over streetscape features (left image represents a vertical 

view; right image represents a diagonal view) 

Note: blue = buildings; green = tall vegetation; red = streetlight; pink = power pole; yellow = power lines; 

peach = fence 
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3. Data & Methods 

Aside from street trees and buildings derived from QL2 LiDAR data (Golombek and Marshall 

2019), other features common to typical urban streetscapes include light poles/lamp posts, power 

lines, landscape features, traffic signals, street signs, property walls/fences, and street furniture. 

Research on roadside landscape improvements has been linked to safer driving environments 

(Mok, Landphair, and Naderi 2006; Jody Rosenblatt Naderi 2003; Dumbaugh 2006). Quantities 

and positions of street lighting can also affect safety within streetscapes (Haans and de Kort 

2012; Yoshiura, Fujii, and Ohta 2013). Response time to street signs affects transportation 

outcomes (Shoptaugh and Whitaker 1984), and measurement and location of street signs are 

likely correlated with response time. Roadside walls and street furniture affect various perceptual 

qualities when assessing streetscapes for walkability and desirability (Ewing et al. 2005; Ewing 

and Clemente 2013). 

Harvey et al. (Harvey et al. 2015, 2017) are among the few researchers to have utilized advanced 

geospatial data and methods to measure streetscape features. They acknowledge, however, that 

publicly available remote sensing data are not advanced enough to detect these common 

streetscape features. Therefore, the methods presented in this study will analyze and identify 

approaches to mapping and measuring these distinct features that were previously cited as 

undetectable. In doing so, it will assess how each individual street corridor/streetscape section is 

statistically composed of the streetscape features the authors are trying to extract from QL1 data. 

Sectionalized voxel zones at specified intervals are used to understand how common streetscape 

features noted above can be quantified and measured in 3D. This study will show a descriptive 

statistics output model of these data that can be applied to transportation research studies. In 

geospatial terms, a voxel is a 3D pixel and will be discussed in depth later in this section. To 

conduct this study, an urban QL1 dataset is required. 

3.1 Data 

QL1 data of Las Vegas are currently publicly available via the USGS National Map website. 

This environment was chosen since streetscape features in urban Las Vegas, with its desert 

environment, appear distinct and separate from one another and will therefore provide a good 

baseline in relation to our ability to detect them within QL1 point cloud data. However, the large 

size of these datasets, which cover the area of interest (AOI), make them prone to data noise. 

Fortunately, USGS requires its LiDAR collection vendors to place all noise data on a separate 

point cloud classification layer (Hans Karl Heidemann 2018). USGS then runs internal 

proprietary checks to assure noise mitigation compliance. Therefore, additional noise mitigation 

is not necessary. The AOI is a sample section in urban Las Vegas amounting to 12 street 

segments, encompassing around four linear miles of streetscape, and specifically, five streetscape 

sample areas polygons. Six-inch aerial imagery, simultaneously collected with the LiDAR data 

that cover the AOI, was also used for referencing when needed. 
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3.2 Methods 

3.2.1   Creating Streetscape Sample Areas 

Since the aim is to append quantitative statistics of streetscape features within a streetscape, it is 

important to devise an adequate method to create individual streetscapes. Creating individual 

streetscape corridors means that a segment will have a cutoff, either in its center or through the 

intersection. A preliminary look at our sample area shows that long overhanging traffic signals 

and light posts may be cut off if the streetscape is divided at the intersection. Also, intersections 

tend to be focal areas with high activity and thus more traffic-related features. Therefore, a 

method to cut off the segments between the intersections rather than the middle of them is 

preferred for this study. 

The AOI is divided into Thiessen proximal polygons (or Voronoi polygons as mathematicians 

call them). The ESRI ArcGIS® Thiessen polygon processing tool is used and the street 

intersection centroids input for the polygon center-points. Thiessen polygon datasets are 

mutually exclusive and non-overlapping. Thiessen polygons are used in this model because they 

divide the polygons (streetscapes in this case) in a clean and somewhat uniform manner and can 

be created with a GIS application around a designated focal point set. The intersection centers 

were used as centroids for this focal point set. The Thiessen/Voronoi method gives weights to 

high event/focal areas and is a popular model and spatial method for focusing on focal event 

points (Gold 1991).  

Additionally, the streetscape sample areas are designed to include the full street right-of-ways 

that extend 10 feet to 20 feet beyond the street curb. Extending the streetscape to include these 

peripheral views within the streetscape is important since the majority of objects that constitute a 

streetscape’s perceptual qualities are located off the street itself (Ewing and Clemente 2013). 

Furthermore, the parcel data for the AOI are joined and used to erase all non-streetscape right-of-

way areas, resulting in the sample areas in Figure 3.1. 

  

https://emxpert.net/sageedit/journals/Embox/Index/944172#fig3
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3.2.2   Devising 3D Streetscape Extents 

As mentioned, this study incorporates 3D pixels, or voxels, to quantify streetscape features. A 

significant component of this proposed method is voxelization of the street segments to quantify 

street features and understand how the features are represented in 3D space, specifically different 

height zones within a streetscape. As mentioned, QL1 LiDAR emits around eight survey points 

per square meter, so it is expected that above-ground streetscape features will absorb these points 

to a much higher degree than the far less dense QL2 data. This study will provide area and length 

statistics of discernable streetscape features within the voxel height zone in which they appear. 

The features will be grouped by each streetscape section/feature. 

A voxel is a pixel with a height or third dimension component when analyzed with 

LiDAR. Figure 2.1 shows an example of LiDAR enclosed in voxels. Optimizing the vertical and 

horizontal height of the voxel depends on the features detected and the spacing of LiDAR data. 

USGS standards stress the importance of consistency of point patterns for horizontal spacing 

throughout a dataset and set a standard for spatial distribution of at least one point per grid cell 

(39). However, with QL1 data having nominal point spacing greater than one point per every 

Figure 3.1  Area of interest and streetscape polygons (red numbered streetscape polygon IDs 

link to Tables 4.1 and 4.2) 

https://emxpert.net/sageedit/journals/Embox/Index/944172#bibr39
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half-square-foot, adhering to these minimum standards is not necessary because tiny grid cells 

would cause datasets to be large in size and difficult to process. 

When setting the vertical voxel dimensions, it is important to consider occluded LiDAR data. 

Dense tree canopies can occlude LiDAR data. Voxels that were completely hidden from the laser 

instrument are considered occluded. Occluded voxels are those that are theoretically traversed by 

the pulses, meaning the pulses would have reached the voxel, but all energy was already 

intercepted because of earlier interactions of the laser pulses with canopy material (Kükenbrink 

et al. 2017). An in-depth study by Kukenbrink et al. is one of the few studies that address 

occluded voxels and attempt to minimize their presence. In a recent study investigating 

streetscape measuring with QL2 data (Golombek and Marshall 2019), the authors investigated 

Kukenbrink et al.’s results and concluded that a voxel height of 5 feet is ideal for both limiting 

occluded data and providing adequate vertical intervals or zones for analysis. 

As QL1 data have a nominal point spacing of around 0.4 feet, and per the USGS standard for 

horizontal grid spacing, the horizontal cell size can be set much smaller than the 5-ft vertical 

spacing. However, setting the horizontal parameters too small would skew the voxel 

significantly. Since optimal street tree collection limits the setting of the voxel to 5 feet, this 

study will use the horizontal dimensions of 3 ft by 3 ft used previously in the authors’ successful 

QL2 study. Therefore, the streetscape will be set up into 5-ft elevation zones with each classified 

pixel having 3 ft by 3 ft dimensions. 

3.2.3   Classifying Streetscape Data 

LiDAR data classification is either performed manually or by automated filtering processes. 

Creating bare-earth models is the most common automated process, although automated 

processing to filter LiDAR data specifically for trees and buildings is also common. Road and 

grassed areas are other features that have automated extraction capabilities from aerial LiDAR 

(Lodha, Fitzpatrick, and Helmbold 2007), though this study is not concerned with features on the 

ground. A 2012 study by Shyue et al. attempted to incorporate hybrid approaches to assist with 

urban feature extraction, yet that study was limited only to buildings, trees, grass, and roads 

(Shyue et al. 2012). Methods are emerging to extract street poles from LiDAR automatically 

(Zheng, Wang, and Xu 2017), though the methods specified for doing so are from street-based 

mobile LiDAR as opposed to open source and publicly available USGS data. Since automated 

methods for extracting streetscape features with QL1 data are not publicly available, the authors 

defer to manual classification of features common to LiDAR feature extraction in general. As 

mentioned above, buildings and trees are classified via automated processes. 

When LiDAR hits non-solid vegetation, the energy of the light pulse continues to the ground and 

records each instance, or return, of vegetation hits until it reaches the ground. The exception to 

this is when tall and thick vegetation occlude the LiDAR. In general, LiDAR will stop at the first 

solid feature it hits. Therefore, three types of above-ground objects LiDAR can hit are: 

1. A hanging object in space. Examples include the arms of light poles and power lines. 

2. A continuous object. Specifically, an object that continues all the way to the ground. 

Examples include a property wall, building, power pole, and base of a light pole (Figure 

3.2). 

3. Vegetation. A multi-point return object such as a tree. 
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Type 1 above will be represented by where the point hits the voxel that contains the feature. 

Type 2 will also be represented by where the point hits the feature/voxel; however, the features 

will be captured and noted with a 3D shapefile so that the entire feature is draped to the ground 

through its lower voxel zones. Type 3 will utilize automated, multi-point return vegetation 

extraction processes common to LiDAR processing software. Vegetation multi-point returns are 

clusters of LiDAR points that intercept multiple targets within a short height interval. In this 

case, trees that are common to Las Vegas will be noted. Palm trees, for instance, tend to have 

small, elevated canopies with long trunks, as opposed to most deciduous trees. If necessary, the 

3D draping of features will be utilized like the continuous objects (type 2), so the long 

standalone trunks are represented as well. 

An automated LiDAR feature extraction method is preferred when extracting various feature 

classes covering a large area. After an extensive literature review, it appears that automated 

methods have not materialized to classify most streetscape features beyond street trees and 

buildings derived from aerially collected QL1 data. This study used common automated LiDAR 

processing tools available within MARS® software to classify buildings and trees. The above 

literature review cites research that automatically classifies streetlights (Zheng, Wang, and Xu 

2017), though the dataset used was mobile LiDAR, which is dozens of times denser than 

publicly available QL1 data. Reviewing recent research attempting to extract urban features 

automatically (Zhang, Lin, and Ning 2013; Ao et al. 2017), researchers utilize manual 

classification of point cloud data for ground truthing their automated methods, likely because of 

LiDAR’s highly accurate positional characteristics. These studies utilize LiDAR data densities 

like QL1 but do not extract any additional necessary streetscape features discussed except 

powerlines. The isolated nature of powerlines makes them easily detected when already 

classifying features manually. Since previous research focused on a manual method for 

automated process truthing, along with LiDAR’s highly accurate output, this study utilizes 

similar manual classification to accurately compile the streetscape feature classes. In the case of 

the manually classified USGS QL1 point cloud, the data will have relative accuracy or root mean 

square error of within 1/3-ft vertical and within 1-ft horizontal based on USGS specs and 

collection metadata (Hans Karl Heidemann 2018; American Society for Photogrammetry and 

Remote Sensing 2014). 

Merrick and Company’s MARS® LiDAR processing software was utilized to classify the LiDAR 

data manually. MARS® has a feature to pair Google Earth with any current LiDAR view. 

Per Figure 3.3, this pairing allows for the LiDAR data to be present on one computer screen and 

Google StreetView’s identical location to be present on an adjoining computer screen. With 

highly accurate USGS LiDAR data, the MARS®/Google dual visual setup/pairing allows for 

accurate and seamless classification of the various feature classes noted below. 

MARS® was also used to establish and process data into the voxel zones. The features described 

below can be processed into the noted voxel zones. Aerial LiDAR scan angles can cause parts of 

small features to be missed. For example, thin overhead electric lines and arms of overhanging 

light posts may be captured at nadir but missed when the scan angle is too high. Therefore, ESRI 

ArcGIS® is used to draw polygons around feature point cloud clusters with high resolution 

imagery to help complete line and polygon features when necessary. A tool in MARS® will 

populate constructed polygons with applicable z-values. A LiDAR generated ground elevation 

grid is then used to subtract feature height from ground to determine the exact height above 



12 

ground of classified and processed features, and to be sure they are classified into the correct 

voxel zone. Since the City of Las Vegas collects and maintains global positioning system (GPS) 

data for all its streetlights and street signs, the municipal GPS point data was also used as an 

additional check to confirm the streetlights and street sign base locations. The counts in this 

study matched the city’s counts. 

Figure 3.4 below shows the difference between a QL1 and QL2 dataset for the same intersection 

in relation to these streetscape features. Unlike QL2 data, it is assumed that many features stand 

out with QL1 data and can be properly classified. The authors’ QL2 study (Golombek and 

Marshall 2019) already discussed extracting the following features: 

• Tall trees (any vegetation with a trunk, not classified as landscape vegetation). Common 

automated processes classify street trees. The points in the first zone were manually 

classified when classifying landscape vegetation. The automated process was set to 

exclude the lowest zone because of interference of urban reflecting objects (Hollaus et al. 

2010; Koma, Koenig, and Höfle 2016). 

• Buildings. Buildings and houses enter the streetscape peripherally. Common LiDAR 

processing procedures were used to create building polygons and a height attribute helped 

place these features into voxel zones. Since the height is always the top voxel zone, the 

building is then draped through the lower voxel zones until it reaches the ground. 

With high-density QL1 data, the authors attempted to explore the limits of this LiDAR data 

standard and to extract all additional above-ground features that make up a streetscape. These 

features include the following: 

• Walls/fences. LiDAR points on top of walls and fences are clearly discernable. Lines are 

drawn across these points and are draped to ground level. 

• Landscape vegetation (low brush). Although LiDAR acceptably detects vegetation 

through an automated process, low-lying vegetation is best classified manually as 

obstructions causing interference can distort data. In the present example, landscape 

features are easily discerned when LiDAR is overlaid with either imagery collected 

simultaneously with the LiDAR or pairing LiDAR street scenes with Google StreetView, 

as mentioned above. 

• Tall trees (low zone[s] only) as noted in the QL2 description above, the lowest zones are 

manually classified. 

• Light posts. These generally have two parts. Light post LiDAR points are clearly seen, 

and elevation is extracted. If the light is overhanging a street, a polygon is constructed 

around the clustered points and that polygon is inserted into the appropriate voxel zone. 

The second part is the vertical post (or non-overhanging streetlight), which is split off 

from an overhanging light and draped through the voxel zones to the ground. 

• Traffic lights. In this sample set, traffic light points are easily discerned. A polygon is 

drawn around the clustered points and placed into its respective voxel zone. 

• Power poles/lines. The poles are clearly distinguished. The lines are hit and miss. The 

poles are captured and draped. Since we know lines generally connect to poles in 

streetscapes, the available line points are connected, and Google StreetView is used to 

verify. 

• Street signs. Street signs are often connected to light posts and power poles. When they 

are independent, they generally have a few LiDAR points. In our sample set, all signs are 

within the first two voxel zones, as noted in the results below. 

https://emxpert.net/sageedit/journals/Embox/Index/944172#fig6
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• Additional street furniture (anything on the sidewalk or median not noted above, such as 

benches, bus stops, garbage cans, etc.). QL1 data successfully capture many street 

furniture features, such as pedestals, bus stops, large garbage cans, multiple residential 

mailboxes, large benches, and non-traffic signs, to name a few. Unfortunately, some are 

too small to distinguish, such as common fire hydrants and small benches. Most street 

furniture features are within the first voxel zone. 

The voxel processing tool generates an individual height-zone raster grid for each streetscape 

feature that was classified. The raster grids are converted into vector features ultimately to 

calculate percentage coverage, counts, or feature length, as noted in Table 4.1. When processing 

is complete, descriptive statistics in tabular format of the noted features above are represented in 

each streetscape segment, also noted in Table 4.1. 
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Figure 3.2  Example of draped features with light pole base, house, and fence draped to ground 

Note: Fence features appear like actual fence from Google StreetView and actual fence from Google StreetView (right) 
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Figure 3.3  Example of Google view paired with MARS® 

Notes: Rectangular box at far-left view shows profile box. Left-center view shows light detection and ranging (LiDAR) data visible in profile view. This is where 

manual classification occurs. Right view is paired Google view to assist with seamless manual classification. 
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Figure 3.4  Sample views of an intersection 

Notes: (top) Google StreetView; (middle) QL1 image: 1 = traffic lights, 2 = dual streetlight, and 3 = power lines, (bottom) same view with lower quality QL2 data 
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4. Results/Discussion 

Table 4.1  Descriptive statistics of streetscape features from the QL1 sample dataset derived from voxel intervals 

 
Streetscape 

Polygon 

Percent 
Tree 

Coverage 

Tree 

Density* 

Landscape 
Area (sq. 

feet) 

Building 
Area 

(sq. feet) 

Percent 
Building 

Coverage 

Over-

Hanging 

Street Light 

Count** 

Overhanging 

Street Light 

Area (sq. 

feet)** 

Light 

Pole 

Only 

Count*** 

Light 

Pole 
Only 

Area(sq. 

feet)*** 

Sign 

Count 

Wall 
Length 

(feet) 

Traffic-

Light 

Area (sq. 

feet) 

Electric 
Pole 

Count 

Electric 

Line**** 

Length 

(feet) 

Street 
Furniture 

Count 

Street 

Furniture 

Area (sq. 

feet) 

Zone 1 (0-5Ft) 
 

 
  

 
 

  
  

 
 

 
  

 
1 0.05% 1.13 24453 5813 0.90% 0 0 76 955 22 2056 0 5 0 17 2759 

 
2 0.17% 1.32 7776 10616 2.18% 0 0 48 603 21 3943 0 12 0 10 743 

 
3 0.14% 1.11 13950 37279 5.56% 0 0 68 2321 43 3815 0 0 0 14 1056 

 
4 0.13% 1.03 5202 78946 13.73% 0 0 31 390 27 2466 0 0 0 14 1479 

 
5 0.16% 1.09 9693 47809 12.27% 0 0 31 389 11 1955 0 0 0 5 347 

Zone 2 (5–10 Ft)   
  

 
 

  
  

 
 

 
  

 
1 2.95% 1.43 5733 5813 0.90% 0 0 76 955 22 2025 0 5 0 10 1413 

 
2 4.13% 1.15 756 10616 2.18% 0 0 48 603 21 3557 0 12 0 5 430 

 
3 3.44% 1.06 1233 37279 5.56% 0 0 68 2321 43 3750 0 0 0 8 784 

 
4 3.54% 1.18 1368 78946 13.73% 0 0 31 390 27 2431 0 0 0 5 942 

 
5 4.00% 1.31 6381 47809 12.27% 0 0 31 389 11 1955 0 0 0 4 316 

Zone 3 (10–15 Ft)   
  

 
 

  
  

 
 

 
  

 
1 4.26% 1.53 0 4873 0.76% 0 0 76 955 0 0 0 5 0 4 529 

 
2 6.08% 1.08 0 8597 1.77% 0 0 48 603 0 0 0 12 0 2 245 

 
3 5.36% 1.19 0 36380 5.42% 0 0 68 2321 0 90 0 0 0 1 118 

 
4 4.70% 1.25 0 78796 13.70% 0 0 31 390 0 0 0 0 0 1 115 

 
5 6.61% 1.62 0 35687 9.16% 0 0 31 389 0 0 0 0 0 1 11 

Zone 4 (15–20 Ft)   
  

 
 

  
  

 
 

 
  

 1 3.60% 1.45 0 4218 0.66% 0 0 76 955 0 0 163 5 0 0 0 

 2 4.40% 1.08 0 2306 0.47% 0 0 48 603 0 0 0 12 0 2 245 

 3 5.08% 1.17 0 31143 4.64% 0 0 68 2321 0 90 0 0 0 1 118 

 4 4.15% 1.25 0 43481 7.56% 0 0 31 390 0 0 0 0 0 1 115 

 5 4.80% 1.61 0 22024 5.65% 0 0 31 389 0 0 0 0 0 0 0 

Zone 5 (20–25 Ft)   
  

 
 

  
  

 
 

 
  

 
1 2.94% 1.38 0 3501 0.54% 0 0 76 955 0 0 468 5 0 0 0 

 
2 2.78% 1.11 0 246 0.05% 0 0 48 603 0 0 735 12 0 0 0 

 
3 3.80% 1.20 0 22312 3.33% 0 0 68 2321 0 90 901 0 0 1 118 
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4 3.06% 1.18 0 8905 1.55% 0 0 31 390 0 0 0 0 0 0 0 

 
5 2.78% 1.74 0 9829 2.52% 0 0 31 390 0 0 657 0 0 0 0 

Zone 6 (25–30 Ft)   
  

 
 

  
  

 
 

 
  

 
1 1.87% 1.52 0 1750 0.27% 1 31 76 955 0 0 0 5 1287 0 0 

 
2 1.82% 1.04 0 123 0.03% 3 93 48 603 0 0 0 12 2641 0 0 

 
3 3.10% 1.37 0 11156 1.66% 2 62 68 2321 0 90 0 0 0 0 0 

 
4 2.42% 1.11 0 4453 0.77% 0 0 31 390 0 0 0 0 0 0 0 

 
5 1.68% 1.39 0 4915 1.26% 0 0 31 390 0 0 0 0 0 0 0 

Zone 7 (30–35 Ft)   
  

 
 

  
  

 
 

 
  

 
1 1.25% 1.49 0 0 0.00% 61 1891 74 930 0 0 0 4 0 0 0 

 
2 1.02% 1.10 0 0 0.00% 43 1333 45 566 0 0 0 12 0 0 0 

 
3 2.48% 1.30 0 0 0.00% 54 1674 64 1110 0 90 0 0 0 0 0 

 
4 2.02% 1.01 0 0 0.00% 31 961 31 390 0 0 0 0 0 0 0 

 
5 1.24% 1.41 0 0 0.00% 25 775 31 380 0 0 0 0 0 0 0 

Zone 8 (35–40 Ft)   
  

 
 

  
  

 
 

 
  

 
1 0.72% 1.48 0 0 0.00% 6 186 4 50 0 0 0 4 640 0 0 

 
2 0.45% 1.24 0 0 0.00% 7 221 2 25 0 0 0 12 0 0 0 

 
3 1.87% 1.32 0 0 0.00% 5 155 8 407 0 0 0 0 0 0 0 

 
4 1.12% 1.23 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 
5 1.12% 1.25 0 0 0.00% 5 155 4 50 0 0 0 0 0 0 0 

Zone 9 (40–45 Ft)                

 
1 0.42% 1.47 0 0 0.00% 0 0 0 0 0 0 0 1 0 0 0 

 
2 0.23% 1.45 0 0 0.00% 0 0 0 0 0 0 0 12 0 0 0 

 
3 1.03% 1.35 0 0 0.00% 0 0 8 407 0 0 0 0 0 0 0 

 
4 0.34% 1.01 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 
5 0.78% 1.43 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

Zone 10 (45–50 Ft)   
  

 
 

  
  

 
 

 
  

 
1 0.10% 1.15 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 
2 0.15% 1.13 0 0 0.00% 0 0 0 0 0 0 0 8 2641 0 0 

 
3 0.37% 1.75 0 0 0.00% 0 0 6 345 0 0 0 0 0 0 0 

 
4 0.01% 1.14 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 
5 0.18% 1.88 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

Zone 11 (50–55 Ft)   
  

 
 

  
  

 
 

 
  

 1 0.00% 1.00 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 
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 2 0.04% 1.39 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 3 0.03% 2.00 0 0 0.00% 0 0 5 314 0 0 0 0 0 0 0 

 4 0.00% 0.00 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 5 0.03% 0.71 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

Zone 12 (55–60 Ft)   
  

 
 

  
  

 
 

 
  

 
1 0.00% 0.00 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 
2 0.02% 1.58 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 
3 0.00% 0.00 0 0 0.00% 0 0 5 314 0 0 0 0 0 0 0 

 
4 0.00% 0.00 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

 
5 0.04% 1.16 0 0 0.00% 0 0 0 0 0 0 0 0 0 0 0 

All “area” units are square feet. “Length” units are feet. Measurement type is listed in each column/feature title. 

*Tree Density is the total number of LiDAR tree points per voxel with tree point cloud data.  

**Overhanging streetlights are those that encroach the roadway.  

***Light poles are either vertical lights or the pole-only component to overhanging lights. 

****Electric lines are electric transmission lines connected to power poles. 
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Table 4.2  Area of each sample streetscape  

Streetscape 

Polygon 

Streetscape Area 

(Square feet) 

1 643,829 

2 486,311 

3 670,979 

4 575,050 

5 389,698 

Note: Used to calculate percent coverage of some features in Table 4.1 

The results of this study enable access to an array of objective descriptive data not previously 

available, as USGS QL1 publicly available data is relatively new. When downloading, 

processing, and classifying streetscape QL1 data via these methods, researchers can obtain 

quantifiable 3D characteristics of streetscapes to apply to various transportation research 

needs. Table 4.1 shows sample descriptive statistics available and how they are broken into their 

relevant height zones. Table 4.2 shows the areas for each corresponding polygon in Figure 

3.1 above. 

Note that Table 4.1 is an extensive example. For instance, the percentage of tree coverage, as a 

whole, for each streetscape polygon is noted in the first column of Table 4.1. The results show 

tree coverage initially increases and then decreases toward the higher zones. For example, the 

highest tree coverage recorded for any sample area in any zone is 6.61% coverage in zone 3, 

which is the 10- to 15-ft zone. Buildings show similar results. Table 4.1 has both linear coverage 

and total percent coverage for buildings. Since typical buildings or dwellings are widest at 

ground level, statistics show how building coverage is highest at the low height intervals and 

reduces in coverage as the intervals increase. For example, sample area #4 in Table 4.1 shows 

13.7% coverage in the initial two zones, yet by zone 6 (between 20 feet and 25 feet above 

ground) coverage for this sample area is below 2%. 

It is important to display an extensive example of the descriptive statistics available, since many 

streetscape features are detectable with QL1 data, and researchers may have an interest in 

quantifying different features for different reasons. These statistics can be quantified by counts, 

lengths, and areas. Area relates to voxel horizontal area coverage per zone. For linear features 

like walls/fences and power lines, feature length is detected by digitizing the classified features 

with a best-fit 3D polyline. For example, take 150 feet of continuous point cloud classified as 

wall 10 feet above ground. Given the 5-ft vertical setting for each voxel, and the continuous 

object draping method mentioned previously, that wall would contribute 150 linear feet in zone 1 

and 150 linear feet in zone 2. For the sample areas, wall lengths were detected that varied from 

1,955 square feet to 3,943 square feet. After zone 2, the voxel zones show “0” for wall length 

because the dataset does not have any walls or fences above 10 feet, except sample area 

3 that had 90 feet of tall fence surrounding a sports field. 

  

https://emxpert.net/sageedit/journals/Embox/Index/944172#table1
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As mentioned in the introduction, there are conflicting research findings about the impact street 

trees and landscape improvements have on road safety, and one possible source of conflict has 

been our inability to measure these features properly. The authors’ previous study exploring the 

limits of USGS QL2 data expresses and legitimizes voxel use for measuring trees (Golombek 

and Marshall 2019). Although some manual classification is involved with the QL1 process, 

actual objective and measurable landscape features can coincide with street tree data to assist 

with such research. 

Evaluating buildings and how they encroach streetscapes has been done in the past. However, 

studies can now incorporate objective data that take into account building characteristics based 

on highly accurate measured outcomes as opposed to crude building outlines commonly 

available with open source GIS data. Furthermore, street walls/fences are objectively measured 

in both length and height. Although this study is limited in that not every piece of street 

furniture can be legitimately extracted, many can be. Ewing and Clemente (Ewing and Clemente 

2013) discuss in their research the importance of these types of features for measuring perceptual 

streetscape qualities, such as enclosure, human scale, and transparency, which can now be 

objectively measured and compared with previous crude methods. 

When looking at Table 4.1, it is interesting to note the diversity of height-space. Some features 

such as street trees are covered throughout. Others such as street furniture, street signs, and 

landscape features are in the lower zones. Traffic lights and overhanging streetlights do not hit a 

low voxel zone. Similar to previous streetscape research relying on 2D-derived polygons, these 

types of features have yet to be applied to transportation research incorporating their 3D 

measurements. The diversity of space shows how quantitative 3D groupings of data are much 

different than crude 2D data, and thus, can lead to different results when applied to transportation 

research outcomes. 

The literature review noted the recent streetscape measuring studies done by Harvey et al. that 

have produced some extensive and comprehensive work on the topic. Harvey et al. specifically 

mentioned in two of their studies that smaller features such as walls, fences, streetlights, and 

other design elements are typically unaccounted for because of lack of adequate spatial data 

(Harvey et al. 2015, 2017). The above results completely change that assumption, and as QL1 

data become more mainstream, so will the ability to incorporate these features into fundamental 

transportation research. 

The role that street trees and streetscape design variables play in transportation research 

continues to be evaluated, and what may be the most important element to transportation 

research outcomes is the availability of legitimate streetscape descriptive statistics. Marshall et 

al. (Marshall, Coppola, and Golombek 2018) applied GIS-based descriptive streetscape 

statistics in a negative binomial generalized linear regression model to evaluate street trees 

and safety-related transportation research outcomes. Harvey and Aultman-Hall (Harvey and 

Aultman-Hall 2015) applied streetscape descriptive statistics, limited to 2D street trees and crude 

building outlines, to a binary logistic regression model. The QL1-derived descriptive statistics 

in Table 4.1 are far more objective and comprehensive and can have a much greater impact when 

utilizing spatial data to study transportation research outcomes. 

https://emxpert.net/sageedit/journals/Embox/Index/944172#table1
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Since this study involves an in-depth manual feature classification process, note the level of 

effort involved to classify all the features stated above. After incorporating automated buildings 

and trees, the process initially took between one and one-and-a-half hours per linear mile to 

classify each entire mile of streetscape corridor. Of course, effort depends on the complexity and 

quantity of features in the streetscape, though in the present sample, the effort might be reduced 

to near or under 1 h per linear mile if the effort repeats itself enough. Eventually, these processes 

could be automated, such as with machine-learning techniques.  
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5. Conclusions 

The results suggest that QL1 data allow us to extract and quantify many features that were 

previously unobtainable when limited to QL2 data. Streetlights, landscape vegetation, signs, 

traffic lights, property walls, and many general street furniture features are apparent in urban 

QL1 data and can be classified, extracted, and measured at their true locations within the 

streetscape. We can detect streetlight and utility pole counts. For example, light pole counts for 

the five sample areas range from 31 to 76 (in the lowest height zone), and their corresponding 

area coverage ranges from 389 square feet to 2,321 square feet. Street trees and encroaching 

building coverage is calculated by total area coverage, and Table 4.1 shows much diversity 

through the various height zones—much more so than appears from simple evaluated traditional 

2D polygon coverage. We are also able to obtain a viable sample of street furniture items, and 

(per Table 4.1) their coverage diversity is prevalent through the first five height zones. Given 

that most visible features are detectable within a QL1 dataset, and given that it is possible to 

quantify the feature classes described in the methods section of this paper, the authors are 

satisfied with these results as this study presents objective 3D locational and quantifiable data on 

most streetscape features more so than any other study they are aware of. Furthermore, previous 

research on this topic is limited to either crude feature counts or simple 2D representations of 

how these features appear in space. While 2D GIS has been widely used in planning, it is limited 

in relation to visualizing and analyzing physical objects, which is why it is important to consider 

3D methods. 

As mentioned above, this study is unique and an advancement in understanding detectable 

streetscape and urban built environment features with publicly available LiDAR data. This study 

is the first the authors are aware of that explores the limits of which features are detectable and 

extractable in a QL1 dataset. There are some limitations, however, and perhaps the biggest 

limitation is that automatic methods to extract the features noted in this study have not yet 

materialized. Manual classification methods are certainly feasible, especially for a trained 

LiDAR technician, though automated methods to classify these features will likely be more 

efficient in the future. Additionally, even though QL1 data require eight points per square meter, 

this may still not be dense enough for some smaller street furniture features, such as public 

garbage cans, fire hydrants, and small benches. 

Since LiDAR hit the commercial market around 20 years ago, the technology has continually 

improved in collecting data at higher and higher densities, which will likely lead to greater and 

continued coverage of QL1 (or better) data throughout the U.S. The unique methodology and 

new concepts about measuring streetscape features presented in this study will hopefully provide 

transportation researchers with more definitive answers on the role that streetscape features play 

in transportation-related outcomes. 

  

https://emxpert.net/sageedit/journals/Embox/Index/944172#table1
https://emxpert.net/sageedit/journals/Embox/Index/944172#table1
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PART 2: HIGH-DENSITY MOBILE LIDAR FOR MEASURING 
STREETSCAPE FEATURES 

6. INTRODUCTION  

Lane widths, shoulder widths, curbs, and paint markings are all measured and designed with 

precise dimensions. Much less attention is given to vertical and outer streetscape features, such 

as trees, benches, signage, and building frontage, to name a few. At the same time, there is over a 

century of literature regarding how such features are important for outcomes such as livability, 

with writings from Sitte, Cullen, Appleyard, Rapoport, and Arnold (Sitte 1889; Cullen 1971; 

Appleyard 1980; Rapoport 1990; Arnold 1993). More recent research shows how these features 

may also impact road safety (Dumbaugh 2006; Wolf and Bratton 2006; Jody R. Naderi 2002), 

economics (Ewing and Dumbaugh 2009; Marshall, Coppola, and Golombek 2018), as well as 

public health outcomes (Brownson et al. 2009; Purciel et al. 2009). Yet, the research regarding 

the role streetscape features has on such outcomes remains somewhat conflicted, both in terms of 

the strength of the associations as well as the direction in some cases. These conflicts may be due 

to inconsistencies in measuring streetscape features.  

Over the past decade, however, measuring-technique research for streetscape features has started 

to shift from audit-based methods (Ewing and Clemente 2013; Ewing et al. 2005; Brownson et 

al. 2009) toward GIS/remote sensing methods (Purciel et al. 2009; Yin and Shiode 2014; Yin 

2017; Harvey et al. 2017). In order to further reduce subjectivity, the most recent research is now 

beginning to use LiDAR (Light Detection and Ranging). Research by Golombek and Marshall, 

for instance, explored the streetscape mapping and streetscape feature detection/extraction 

capabilities of publicly available aerial LiDAR data. More specifically, this research tested data 

derived from the national United States Geological Survey (USGS) 3D elevation program, which 

included Quality Level (QL) 2  LiDAR data (Golombek and Marshall 2019) as well as the four 

times denser QL1 LiDAR data (Golombek and Marshall 2020). These studies designated entire 

streetscapes into 3D pixels, better known as “voxel” grids. With the lower USGS QL2 standard, 

feature extraction was primarily limited to street trees and buildings, while the QL1 standard 

expanded feature extraction to traffic lights, traffic signage, utility poles, walls, fences, as well as 

some larger street furniture. 

These studies showed how LiDAR could be a valuable technology for providing objective data 

in transportation research for perceptual quality and safety outcome studies. Still, even the QL1 

LiDAR point density standard had significant limits to what it could detect. For example, an 

urban QL1 dataset may collect only a few points on a street sign, which is enough to know the 

sign exists, but it neglects the overall dimensions and appearance of the sign. Smaller landscape 

features, such as benches, garbage cans, and bike racks, to name a few, were not able to be 

detected with a QL1 dataset. Additionally, aerial LiDAR at these QL standards can detect tops of 

buildings but not features in a peripheral view from the ground level, such as windows, awnings, 

and building signage. Such features have also been shown to be important with respect to 

walkability.  
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Mobile, ground-based LiDAR, however, is dozens of times denser than publicly available QL1 

aerial-LiDAR data and is collected from the vantage point of the street (Figure 6.1 shows a 

comparison between QL1 and mobile LiDAR data). Many tests and advances over the past 15 

years have developed mobile LiDAR scanning platforms into an acceptable and accurate survey-

grade feature collection mechanism (Williams et al. 2013; Haala et al. 2008). As a result, mobile 

LiDAR has unique potential to quantitatively and objectively map various features within 

streetscapes. For transportation-related research, it is important to decipher between LiDAR 

technology and platforms used for discrete feature collection and navigational purposes. At 

present, much research is being done with navigational LiDAR to support autonomous vehicle 

navigation advancements. This form of LiDAR differs from discrete urban collection in that it 

focuses on quick real-time identification of features mainly pertaining to the roadway itself, such 

as curbs, centerlines, other vehicles, and pedestrians (H. Wang et al. 2019; Gao et al. 2018). 

Discrete collection LiDAR platforms, on the other hand, focus on collecting and storing 

data/features for analysis for all areas within a streetscape. 

The overarching goal of this study is to understand the role that mobile LiDAR can play in 

quantitatively mapping and measuring features in an urban environment. We will evaluate 

sample datasets collected with mobile LiDAR in Denver, Colorado, and propose methods to 

quantify streetscapes with 3D voxel grids/zones. In this study, we assess two approaches to this 

goal. First, we seek to present objective measuring tools as potential alternative or supplementary 

options to subjective audit-based approaches for measuring streetscape features related to 

outcomes such as walkability and livability (Ewing and Clemente 2013). More specifically, we 

create volumetric descriptive statistic matrices for select streetscape features that have been cited 

as being affiliated with transportation-related and livability outcomes. For this approach, we will 

evaluate several segments in a walkable town-center-type environment in Denver, Colorado. Our 

second approach focuses on the data gaps discussed above, where aerial QL1 LiDAR was 

insufficient, and created descriptive statistic matrices to incorporate these critical streetscape 

features, particularly street signage, traffic lights, and street furniture. Ultimately, we attempt to 

create objective descriptive statistic matrices that can be applied to transportation and urban 

research studies as well as inform municipal planning efforts. 
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Figure 6.1  Comparison of QL1 (top) data to Mobile LiDAR (bottom) data for two similar 

intersections  

Note: For the top image, 1 = traffic light, 2 = light posts above traffic light, 3 = power lines 
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7. LITERATURE REVIEW  

Over the past few decades, many researchers have developed quantifiable measuring techniques 

for measuring walkable streetscapes. Ewing et al. were among the first, and with Clemente and 

Handy, they developed comprehensive audit-based techniques and published these techniques in 

various manuals (Ewing et al. 2005; Ewing and Clemente 2013). Ewing et al.’s measuring 

techniques were audit based and dependent on the auditors having the appropriate skillset with 

respect to the ability to visually assess and measure seemingly subjective qualities (Brownson et 

al. 2009). In a related study, Ewing et al. measured 20 streetscape features over nearly 600 New 

York City blocks related to pedestrian activity (Ewing, Hajrasouliha, Neckerman, Purciel-Hill et 

al. 2016). Many of the features being detected, such as street furniture, window measurements 

and proportions, building heights, various landscape features, and outdoors dining, tended to be 

measured via visual, subjective audit-based methods. Despite Ewing et al. checking for inter-

rater reliability, these methods are time consuming and can still be subject to human error 

(Brownson et al. 2009). 

Purciel et al. attempted to utilize basic GIS integration as an alternative to measuring some 

primary perceptual qualities. Purciel tested five of Ewing’s primary perceptual qualities—

imageability enclosure, human scale, transparency, and complexity—and found a wide range of 

correlation (0.28 to 0.89) between GIS and the field-observed measures (Purciel et al. 2009). Yin 

and Shiode attempted to use remotely sensed images to digitize 2D features, followed by 

assessor GIS data in order to create 3D streetscape features, but they were limited to a few large 

features such as buildings and trees (Yin 2017; Yin and Shiode 2014). These advancements are 

certainly important, though none can objectively measure the numerous small-scale streetscape 

features that Ewing et al. discuss over various studies. 

Further advancing the use of spatial technologies with streetscape mapping, Harvey and 

Aultman-Hall addressed the streetscape measuring paradigm with respect to road safety 

outcomes while also incorporating aerial LiDAR (Harvey et al. 2016). They concluded that 

additional tree enclosure was significantly associated with a reduction in overall crashes.  Harvey 

et al. attempted to utilize spatial technologies to further address road safety and concluded that 

GIS had limitations for collecting and/or addressing smaller features (Harvey et al. 2017).  

Golombek and Marshall took objective streetscape measuring a step further and introduced 

voxel-based quantitative streetscape feature extraction of USGS QL1 and QL2 data; this step 

created descriptive statistics for how various features mentioned above are represented in a 

streetscape in 3D. These studies are among the most objective methods to date, but as also 

mentioned in the introduction, many smaller streetscape features were still not detectable, even 

with the higher-density QL1 standard (Golombek and Marshall 2019, 2020). Also, ground level 

vertical features, such as windows, awnings, and building signage, are important parts of 

perceptual quality studies but also not detectable with QL1 data. 

Our research seeks to use mobile-based LiDAR to detect and collect streetscape features to assist 

transportation research fill the gaps where high-density public QL1 is limited.  Many related 

studies from researchers such as Ewing et al., Harvey et al., and Marshall et al. are conducted 

over many square miles of populated areas, which translate to hundreds or thousands of street 

segments. Manual LiDAR classification of features collected with mobile LiDAR is acceptable, 
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though it would be very time consuming; whereas, automated classification methods would 

streamline this process. Sending data to lower wage paying countries like India, China, or 

Vietnam is common business practice for making large manual classification projects 

economically practical, though viable automated methods are more efficient.  

Currently, research is limited on automated mobile LiDAR feature extraction methods, though 

most research on this topic occurred over the last few years and, fortunately, continues to 

advance. Lehtomaki et al. utilized segmentation, segment classification, and machine-learning 

classification to extract various street features from mobile LiDAR, including billboards, traffic 

poles, light posts, cars, and pedestrians (Lehtomäki et al. 2016). An issue with these methods is 

that the accuracy of feature classes ranged from 66.7% to 94.3%, and the methods were only 

tested on 900 meters of roadway, which is not yet enough to be considered a viably tested 

method. Some researches, such as El-Halawany and Lichti (Sensing et al. 2011), Zheng et al. 

(Zheng, Wang, and Xu 2017), and Wu et al. (Wu, Wen, Guo, Wang, Yu, Wang, and Li 2017), 

have solely focused on automated street-pole extraction from mobile LiDAR. Their different 

methods of segmentation and clustering have led in some cases to a success rate of over 90% as 

well as a low false classification rate. Their results are encouraging with respect to the viability 

of automated methods.  

Rivero et al. devised a method focused on the intensity value of traffic signs and utilized 

segmentation and clustering methods to automatically extract signs (Riveiro et al. 2016). Results 

successfully extracted around 80% of signs, though the authors appeared a little vague on the 

false positive rate. Similar methods with some imagery and point cloud processing enhancements 

were used by Soilan et al. (Soilán et al. 2016), which yielded slightly better results than Rivero et 

al. The false positive rate, however, appeared high, and like other similar examples, the test area 

was too small to be considered a thoroughly tested solution. Perhaps the most successful street-

sign extraction methods came from Gargoum et al., who reported a near 100% success rate over 

three sample areas (Gargoum et al. 2018). These areas differed significantly from our sample 

study areas, as they were primarily in rural parts of Alberta, Canada, in areas where the signs 

appeared to be isolated from other nearby features. We further discuss if and how these methods 

can apply to our study in the methods section below. 

Our current and previous studies seek to use different LiDAR standards to objectively measure 

features. Occluded data relate to LiDAR data not reaching all aspects of features, which we 

address here and in our previous studies because occluded data can prevent features from being 

fully captured and therefore improperly measured. Regarding the features themselves in their 

unobstructed environments, some urban mobile LiDAR studies addressed occluded objects. 

Studies by Fan Wu et al. (Wu, Wen, Guo, Wang, Yu, Wang, and Li 2017) and Han Zheng et al. 

(Zheng, Wang, and Xu 2017) constructed automated methods for extracting light poles from 

mobile data, addressed the occlusion issue, and found that complete objects were captured well 

over 90% of the time. Yang et al. (Yang et al. 2015) utilized methods to extract multiple features 

and also concluded that complete features were almost always captured despite potential 

occlusions. Lin et al. validated mobile LiDAR for completed tree understory collection (Y. Lin et 

al. 2014). From this, we conclude that feature occlusion with mobile LiDAR is limited. 
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Objective LiDAR-based methods have made inroads for providing data support for 

transportation research outcomes and perceptual quality measuring. Yet, our most recent aerial-

based LiDAR-based research (Golombek and Marshall 2020) still has limitations, especially for 

thoroughly collecting smaller features such as signs and street furniture. Other limitations 

include the ability to measure ground-based vertical assets, such as building windows, which 

perceptual quality research considers. Mobile LiDAR has potential to fill these gaps. Automated 

classification methods are quickly evolving for large scale/area classification but are currently 

questionable regarding their exactness. 
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8. DATA AND METHODS 

Our previous study relating to measuring streetscape features utilized QL1 data and was able to 

place most features into pre-determined voxel zones for the goal of creating objective descriptive 

statistic matrices (Golombek and Marshall 2020). Now we look to explore mobile LiDAR’s 

dense ground-level collection capabilities to assist the transportation research community with 

two specific objectives. 

One objective is to provide similar descriptive statistic matrices that may be used as alternatives 

to some of the audit-based methods for perceptual quality evaluation with more precise and 

accurate data. Since the research strand tends to revolve around the walkability aspects of 

streetscapes, we attempt to focus on the sidewalk areas of busy downtown-like sidewalks. For 

these streetscapes, we also evaluate mobile LiDAR’s ability to collect vertical building-face data, 

such as window proportions, awnings, and commercial signs, which aerial LiDAR misses.  

Our second objective is to determine mobile LiDAR’s capability of fitting features that were too 

small to be identified (e.g., street signs, traffic lights, and streetscape furniture) with a QL1 

dataset into a similar, but more precise, voxel matrix. As mentioned, an urban QL1 dataset may 

collect a few points on a vertical sign or traffic light, but does not adequately provide strong 

descriptive measures for signs and traffic lights. Additionally, landscape furniture features such 

as benches, bike racks, and fixed garbage cans are often not detected in a QL1 dataset but likely 

detectable with a mobile LiDAR dataset. 

Mobile LiDAR should be highly effective for this level of analysis because our voxel size can be 

refined. Our previous QL1 and QL2 studies had voxels optimally placed at 5-ft vertical intervals. 

As mobile LiDAR is exponentially denser, we can create much smaller voxels that we expect 

will allow us to gather additional streetscape features. 

8.1 Data Collection 

A Trimble MX9 was used to collect data for this study. The MX9 contains a spherical imaging 

system and three oblique view cameras. The MX9 contains Riegl VUX-1HA dual laser scanners 

that measure at 1,000 KHz, with the scanner mirror rotating at 250 revolutions per second and a 

field of view of 360 degrees. A Real-Time-Kinematic (RTK) base station was set up for post 

processing purposes on a nearby National Geodic Survey (NGS) monument set at a 1-second 

interval collection rate. To confirm system accuracy, 13 ground control points (GCP) were 

established throughout the survey area no more than a half-mile apart from each other. Riegl’s 

collection platform uses an internal “multiple-time-around” procedure, which eliminates range 

ambiguities and helps remove data noise. 

A four-mile segment was surveyed along Montview Boulevard in Denver, Colorado, between 

Colorado Boulevard and Havana Street. An additional nearby mile of roadway through a mixed-

use town center area along E. 29th Avenue in Denver was also collected. Each of these segments 

was traveled twice, once in each direction. 

POSPac® was used to process telemetry of the Global Navigation Satellite System (GNSS) 

system, and we used RTK base station data to compute a corrected location of the vehicle path. 
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Trimble Business Center (TBC) software was used to register/adjust overlapping data from the 

multiple runs. TBC also computed point cloud colorization using the registered images that were 

collected in-sync with the scans. 

The combined runs were exported into LAS 1.4 format and 100-ft by 100-ft tiles. A control 

report was run against the GCPs that returned a root mean square error (RMSE) of 0.06-feet/ 

1.83-centimeter RMSE horizontal and a 0.122-feet/3.72-centimeter RMSE vertical. Point cloud 

density consistently averaged over 2,000 points per square meter. 

We also obtained parcel data from the City and County of Denver to determine the right-of-way 

(ROW) for the Montview segment, as discussed below. 

8.2 Methods  

8.2.1 Creating Streetscape Sample Areas 

Similar to our previous studies for quantitative streetscape measuring (Golombek and Marshall 

2019, 2020), we seek to develop quantitative statistics of streetscape features. This first required 

defining streetscape corridor segments. Our previous studies used a method to divide the pre-

determined segments into Thiessen proximal polygons (or Voronoi polygons as mathematicians 

call them).  

To create a Thiessen polygon layer, only a point feature class is required, and the output 

Thiessen polygon dataset is configured where each individual non-overlapping polygon is closest 

to its associated input point. In the Montview dataset, we attempted to avoid segment cutoff at 

intersections since urban intersections tend to be focal areas with high activity and many traffic-

related features we prefer to keep together. By establishing the input point feature class with 

these intersection centroids, the segment breaks occur at a subtle location somewhere between 

these intersections. Figure 8.1 depicts the Thiessen-based streetscape segments we created for 

Montview Boulevard using the ESRI ArcGIS® Thiessen polygon-processing tool.  

Additionally for the Montview section, we designed the streetscape sample areas to include the 

full street ROW that extends beyond the street curb. Extending the streetscape to include these 

peripheral views is important since the majority of objects that fall within a road user’s 

peripheral view are located off the street itself. Therefore, we utilized Denver’s parcel data 

around the area of interest (AOI), merged the parcel data together, and used an ESRI ArcGIS® 

erase function that erased all non-streetscape ROW areas from our AOI. For the Montview 

section, we created six streetscape polygon segments utilizing this method.  

For the town center area, our approach was a little different. Since the focus is more on 

streetscape features related to walkability, we simply digitized the areas between the curb and the 

building, enclosed with a crosswalk on each side. We identified six sample streetscape areas in 

this area, as shown on Figure 8.1, that we assess in this study. 
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8.2.2 Creating Streetscape Voxels for Positional Feature Analysis 

A key objective of this study is to incorporate 3D pixels, or voxels, to quantity streetscape 

features and compile descriptive statistics. Breaking up a streetscape into voxels creates user-

specified height zones. A voxel is a pixel with a height or third dimension component that can be 

useful for analyzing LiDAR data. We applied similar voxel methods to our previous street-

feature voxel analysis studies (Golombek and Marshall 2019, 2020). In those papers, we 

determined that, given aerial LiDAR point densities, a 3-ft by 3-ft horizontal and a 5-ft vertical 

setting was optimal and appropriate. 

The accuracy and density of mobile LiDAR data, however, allows more flexibility in setting 

voxel parameters. With over 1,000 points per meter collected, we suggest setting each voxel to a 

single cubic foot, or 1-ft by 1-ft by 1-ft (x,y,z) dimension. We suggest this parameter because: i) 

this study is attempting to compile descriptive statistics for features that were too small to extract 

in our previous QL2 and QL1 studies; and ii) this dimension facilitates a solid measuring basis 

for descriptive statistic metrics needed in the town center area. Ewing and Clemente often 

reference measuring features from ground to certain levels, like eye-level visibility (Ewing and 

Clemente 2013). If a streetscape was, for example, 500-ft long from crosswalk to crosswalk, 50-

ft wide from storefront/building to curb, and 15-ft tall from ground to the above awnings, that 

streetscape quantitatively would total 375,000 cubic feet. If we calculate that 10 landscape trees 

fill 7,500 single cubic foot voxels, then we can estimate that trees comprise 2% of that 

streetscape.  

8.2.3 LiDAR Feature Extraction Methodology/Classifying the Data 

Table 8.1 provides a list of streetscape features and the minimum LiDAR standard required for 

extracting them. We discuss the process of extracting features with mobile LiDAR below. 

For the four-mile Montview segment, the goal is to devise comprehensive descriptive statistics of 

streetscape features that can be applied to various transportation research studies. Other than for 

street sign extraction, the existing literature did not provide viable automated approaches. Even 

the street sign extraction methods yielded results well below 100% (with a high degree of false-

positives and false negatives) and have not been thoroughly tested at a macro scale. Gargoum et 

al. developed automated street-sign extraction results (Gargoum et al. 2018), though testing was 

primarily in rural areas where signs are isolated. Even if we utilize published automated 

methods, we will still have to manually assess every part of the streetscape to check for false 

positives and false negatives. We also note, after previewing the Montview section, that many 

street signs are on the same horizontal poles as traffic lights, and many are small and/or 

obscured. For example in Figure 8.2, a “No Parking” may be on a light pole or power pole, but if 

it is not wider than the pole, the current automated methods would likely miss these signs. 

Additionally, the streetscape furniture and traffic lights require manual classification since we 

did not find adequate methods to automate extracting those features. 

Since our four-mile sample area is not overwhelmingly large, we utilized a manual classification 

approach with some automated LiDAR functions. The data’s control reports, noted above, 

confirmed very high vertical and horizontal point-cloud accuracy. Also, automated LiDAR 

methods are often tested against manual classification for control, and we saw the same with 
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automated urban mobile LiDAR feature extraction (Yang et al. 2015).We auto-filtered the data 

for ground points and also used an automated process to classify the remaining above-ground 

features together on a single LiDAR classification layer. We utilized Merrick & Company’s 

MARS® LiDAR processing, which has a Google Earth simultaneous location feature, to follow 

the streetscape point-cloud in MARS®, paired with Google Earth on a separate screen, which 

allows a user to visually identify all street signs, traffic signals, and street furniture features 

(Figure 8.3). 

Once completed, we utilized a voxel application tool in MARS®, which incorporates ground 

level and builds a user-specified voxel grid set to 1-ft by 1-ft by 1-ft (x,y,z) dimensions. This tool 

then applies the selected classified street furniture and street sign features into the voxel grids 

and exports a .dat Envi raster dataset, with each band within the .dat file representing a unique 

user specified voxel height zone. Each grid cell that is populated also has a count value that 

specifies how many LiDAR points fell into that 3D voxel grid cell. For this study, we are not 

very concerned with the amount of data in each grid cell, but rather the simple fact that classified 

LAS points are inside that grid cell. Table 9.1 presents a sample descriptive statistics output. 

For the town center area, our descriptive statistic zones for the walkable streets are different 

because we focus more on the walkable areas between the curb and the buildings. For this, we 

used a different approach because we are interested in collecting and measuring features 

affiliated with the buildings themselves, such as the windows, awnings, and hanging signs. Our 

approach for collecting these objects differs because flat objects against buildings, such as 

windows, cannot be extracted like typical streetscape objects. Also, LiDAR often gets obstructed 

at windows and does not yield returns. 

We extracted windows and awnings with mobile LiDAR with the help of a web-based solution 

by Orbit GT technologies. The Trimble MX9 platform collected panoramic images in 

conjunction with the LiDAR. Since the frames of the windows are well defined based on the 

void of LiDAR points within the frames, the Orbit LiDAR software has an interface that allows 

3D feature tracing of the LiDAR data. For windows and awnings, we essentially created vertical 

polygons. After the windows and awnings were drawn in the 3D Orbit software interface, it 

exported the polygons into a Google KML file, which were then converted into 3D shapefiles. 

Since the features are in 3D, calculating the area of these polygons must be captured in 3D as 

well. For this, we created an automated model in ESRI’s® Model Builder to iterate through each 

polygon feature and created a temporary Triangulated Irregular Network (TIN) for each window 

or awning polygon. We then ran surface information statistics on each polygon, utilizing the TIN 

as the surface, which enables the area of each polygon to be calculated. This process created area 

statistics for features like windows that can detected with LiDAR but not directly extracted and 

classified. 

These streets have a handful of fenced outdoor restaurants, which are also focal features for 

studying streetscapes. We used the LiDAR data to locate the fenced areas and drew 2D polygons 

around these areas to estimate the square footage. Akin to the Montview sample, we processed 

the remaining streetscape features in the town center—including small landscape trees, 

light/lampposts, traffic signs, commercial signs (usually hanging in front of shops), and street 

furniture—via a single cubic-foot voxel grid. The result was then exported using .dat Envi raster 

data set with each zone as its own raster band. 
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It is also important to address the topic of occluded data and shadowing. Since mobile LiDAR 

emits horizontally, we need to address if features are prone to being obstructed by other features 

such as moving vehicles, parked vehicles, road users, or other objects. Fortunately, this 

collection occurred in early May 2020 when a Denver mandated stay-at-home order due to the 

COVID-19 pandemic was in effect, which significantly reduced traffic. Some parts of Montview 

Boulevard do not allow street parking, while the areas that do were mostly clear of parked cars.  

The mobile LiDAR vehicle operator was sure to always keep a safe distance from the few 

vehicles on the road. The town center’s shops were either closed, or the few open restaurants 

were take-out only. A few street-side parked cars were present, though they did not obstruct or 

shadow features to a high extent. From our literature review, we concluded that features 

collected by mobile LiDAR are rarely occluded, and despite horizontal collection angles, 

features almost always tend to be completely collected. 

For the Montview and town center examples, we ran automated batch exports to convert the 

voxel height bands within each .dat into vector polygons that were divided into square-foot 2D 

polygon pixels for each feature. We did this for each feature class we were analyzing. We then 

built an automated process through ESRI’s® Model Builder interface to iterate through each 

individual vector polygon voxel zone for each feature class. Model Builder was then programed 

to perform a spatial join that adds up all populated voxels for each feature in each voxel height 

zone and append the data to each individual streetscape polygon. The end result places all data 

into shapefile attribute tables that are cleaned up and exported into Excel tables. The Excel tables 

are the descriptive statistics that ultimately show how each streetscape is made up of these 

features of interest. Table 9.1 and Table 9.2 specifically break out the features discussed above 

into voxel height-based descriptive statistics, where each populated cell in these tables are cubic 

feet counts of that feature in those height zones. 
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Table 8.1  Summary of LiDAR standards (QL2, QL1 or Mobile LiDAR) required to collect 

streetscape features 

Streetscape Feature 
Lowest LiDAR Density Standard Applicable 

to Collecting Feature 

  
Tall Trees QL2. QL1 for tree coverage below 5ft above ground. 

Buildings QL2.  

Walls/Fences 
QL1. QL1 can collect the top of walls/fences. Mobile 

LiDAR required for complete feature. 

Landscape vegetation (low 

brush) 

QL1. Generally matching imagery paired with QL1 will be 

required to collect low vegetation. 

Light Posts 
QL1 collects the top of general street-light boxes and the 

top of posts. Mobile LiDAR required for complete feature. 

Traffic Lights 
QL1 collects the top of traffic lights, and their connecting 

arms. Mobile LiDAR required for complete feature. 

Power Poles/Lines 
QL1 collects the top of poles, cross-arm structure and 

wires. Mobile LiDAR required for complete feature. 

Traffic Signs / Commercial 

Signs 

QL1 obtains some miscellaneous points on unobstructed 

signs. Mobile LiDAR required for complete feature. 

Street Furniture 

QL1 collects large items such as utility boxes and bus stop 

structures. All smaller items like benches and planters 

require Mobile LiDAR 

Streetscape Building 

Windows 

Mobile LiDAR, 3D panoramic imagery collected 

simultaneously is helpful but not required. 

Streetscape Awnings 
Mobile LiDAR, 3D panoramic imagery collected 

simultaneously is helpful but not required. 

Open Air Courtyard 

Restaurants  

Mobile LiDAR suggested for low fence perimeter outline. 

May be obtained with QL1 depending on nearby feature 

spacing and overhead obstructions. 
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Figure 8.1  Sample streetscapes for both Montview Boulevard and the town center area to the north 
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Figure 8.2  Sample features from Montview Boulevard 

Notes: Left - Example of multiple features (signs, traffic signal, pole) grouped together. Top Center - Sign on pole.  

Top Right - No Parking sign on pole. Bottom Right - Hydrant and low landscape vegetation. 
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Figure 8.3  Matching spaces in Google StreetView and Mobile LiDAR dataset 
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9. RESULTS  

Our first objective was to utilize mobile LiDAR for objective measuring and mapping of 

walkable streetscapes, and our second was to fill gaps for streetscape features we could not map 

in our previous QL1 study for more common urban streets (Golombek and Marshall 2020). 

Where our previous studies on this topic isolated features to five-foot vertical voxel zones, our 

results here allow us to isolate streetscape data into much tighter single cubic-foot voxels for 

more precise measuring of features. Table 9.1 shows sample results of the walkable streetscape 

areas. We specifically obtained volumetric streetscape data on trees, traffic signs, 

light/lampposts, hanging/commercial signs, street furniture, awnings, and enclosed open-air 

restaurants. We also obtained street-level calculations of building coverage, window coverage, 

and window proportions related to their buildings. Figure 9.1 shows an example of window 

extraction. Figure 9.2 shows an example of walkable streetscape features classified. Table 9.2 

displays results of features either not obtained or obtained with poor quality from our QL1 study. 

We display processing results for street-signs, traffic lights, and street furniture in single-foot 

elevation layer voxel zones in an effort to provide descriptive statistic matrices. Figure 9.3 shows 

an example of single cubic-foot voxels covering a walkable streetscape. 

For the town center area data presented in Table 9.1, we utilized six single-block segments 

shown in Figure 8.1. We obtained these values by creating a similar descriptive statistic 

breakdown used in our previous street-feature voxel categorizing studies (Golombek and 

Marshall 2019, 2020), which is similar to the Table 9.2 descriptive statistic structure. Since the 

results of Table 9.2 represent area/volume coverage at each voxel height zone, we added these 

figures together for each feature to determine total volumetric coverage, which is more in line 

with the sort of streetscape metrics (Ewing and Clemente 2013; Ewing, Hajrasouliha, 

Neckerman, Purciel-Hill, et al. 2016; Ewing and Handy 2009) that we are trying to objectively 

enhance. Whereas traditional methods may show crude tree counts and estimate their sizes or 

count windows and estimate their proportion, Table 9.1 shows that trees comprise between 2,347 

cubic feet and 7,502 cubic feet of the six sample streetscapes. Table 9.1 also shows that window 

coverage range from 26% to 61% for the sample streetscapes. This is important to note since 

public aerial LiDAR is unable to obtain vertical building information. 

As another example, areas 5 and 6 are very similar in size and shape and have the same number 

of trees. Yet, area 6 has nearly three times the amount of actual tree coverage per Table 9.1.  

Some descriptive statistics that public aerial LiDAR would not show is that area 2 appears to 

have twice the street furniture coverage as area 1, yet a similar amount of street furniture 

features. Also, the complete commercial and traffic signage coverage in Table 9.1 was not 

collectable with QL1 data.  

Table 9.2 includes the results of our Montview Boulevard analysis. In Table 9.3, the numbers 

next to each abbreviation designate the lower part of the height zone; so height, for example 

SS_1 (SS = Street Signs), would be from 1 foot above ground to 2 feet above ground. TS (TS = 

Traffic Signal) starts at TS_10, where the first height zones where traffic signals are present are 

around 10 feet above ground, since TS_10 is the voxel height zone from 10 feet to 11 feet. Street 

Furniture (SF) starts at ground, though we eliminate the zero to 1-foot zone because many 

features at this level may be confused with misclassified ground points. Street furniture included 
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benches, garbage cans, bus stops, permanent non-traffic signs, permanent décor, and any 

miscellaneous features that would not fit into any other common streetscape feature class. 

For the Table 9.2 Montview sample, we can clearly see where signs, signals, and street furniture 

are most prominent. For street signs, it appears that most activity is between 8 feet and 12 feet, 

since before 8 feet and after 12 feet, these zones show much less activity. We see more than a 

doubling of street sign face coverage between 7 feet and 8 feet, and this statistic more than 

halves after 12 feet. Traffic signals do not populate voxels until 10 feet above ground. As the 

socioeconomics change, so do the traffic signals. Montview Boulevard begins in an affluent, 

highly tree-covered area. The traffic signals appear lower because many of them are flashing 

signals on the street sides. Farther east, as Montview transitions from Denver to Aurora, we see 

more traffic signals, which appear to be higher above ground. Table 9.2 highlights additional 

examples of objective street feature measurements that, if applied to discussed transportation 

outcome research, could reshape results.   
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Table 9.1  Descriptive statistics of streetscape features from high-density mobile LiDAR derived from voxel intervals for the town 

center district for compiling perceptual quality statistics  

Area 

ID 

Trees 

Volume 

Trees 

Points 

Street 

Sign 

Area 

Street 

Sign 

Points 

Light/Lamp 

Area 

Light/Lamp 

Point 

Hanging 

Sign 

Area 

Hanging 

Sign 

Count 

Street 

Furniture 

Area 

Street 

Furniture 

Count 

1 6124 10 126 5 252 9 138 7 412 19 

2 7280 10 95 4 386 10 141 5 882 21 

3 3022 3 121 5 91 5 89 3 339 12 

4 2347 4 79 3 109 5 52 2 106 6 

5 2847 6 60 3 276 6 94 3 135 4 

6 7502 6 113 4 268 6 63 3 138 6 

           

Area 

ID 

Streetscape 

Area 

Building 

Length 

Building 

Face 

Area* 

Window 

Count* 

Window 

Area* 

Window 

Percentage* 

Awning 

Area* 

Enclosed 

Open 

Restaurant 

Area 

  

1 3652 281 3091 44 1373 44.4% 579 1007 
  

2 3990 282 3102 47 1527 49.2% 473 636 
  

3 2861 119 1309 20 343 26.2% 31 56 
  

4 2926 118 1298 28 455 35.1% 56 165 
  

5 6175 207 2278 58 1239 54.4% 1382 0 
  

6 6488 207 2277 61 1385 60.8% 1361 120 
  

All area and volume units represent are in square feet and cubic feet. 

*Statistics are based on the ground level views, up to the top of the first story or awning. 
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Table 9.2  Descriptive statistics of streetscape features from high-density mobile LiDAR derived from voxel intervals 

for Montview Boulevard 
Area ID  SS_1 SS_2 SS_3 SS_4 SS_5 SS_6 SS_7 SS_8  TS_10 TS_11 TS_12 TS_13 TS_14  SF_1 SF_2 SF_3 

1 
 

0 3 5 5 8 10 42 95 
 

26 25 25 24 17 
 

63 54 46 

2 
 

2 12 11 11 11 21 102 242 
 

31 25 27 22 37 
 

215 191 109 

3 
 

0 3 0 0 0 23 127 253 
 

64 81 87 101 57 
 

332 334 256 

4 
 

0 3 9 21 33 44 121 238 
 

101 94 96 93 58 
 

254 266 269 

5 
 

3 13 12 22 26 23 117 248 
 

113 111 109 112 77 
 

803 661 468 

6 
 

0 2 6 22 22 18 114 244 
 

61 60 58 53 20 
 

305 445 301 

 
 

        
          

 Area ID   SS_9 SS_10 SS_11 SS_12 SS_13 SS_14 SS_15 SS_16   TS_15 TS_16 TS_17 TS_18 TS_19   SF_4 SF_5 SF_6 

1 
 

116 102 102 95 52 16 18 16 
 

0 0 0 16 34 
 

31 25 23 

2 
 

289 292 292 267 105 20 15 13 
 

38 16 15 7 2 
 

67 24 19 

3 
 

308 298 283 231 110 68 51 56 
 

37 50 44 28 16 
 

191 129 134 

4 
 

260 222 227 193 92 31 30 44 
 

36 5 30 83 113 
 

193 138 96 

5 
 

287 265 206 137 38 12 6 22 
 

41 24 23 89 170 
 

394 354 267 

6 
 

306 279 188 107 11 2 0 21 
 

15 29 101 106 161 
 

210 94 105 

 
 

        
          

 Area ID   SS_17 SS_18 SS_19 SS_20 SS_21 SS_22 SS_23 SS_24   TS_20 TS_21 TS_22 TS_23 TS_24   SF_7 SF_8 SF_9 

1 
 

10 8 31 33 43 21 17 12 
 

63 74 47 25 7 
 

12 11 0 

2 
 

14 13 2 0 0 0 0 0 
 

0 0 0 0 0 
 

9 4 4 

3 
 

63 51 38 12 5 13 13 9 
 

4 0 0 0 0 
 

113 99 40 

4 
 

20 18 91 89 69 5 5 0 
 

165 128 69 18 4 
 

103 13 4 

5 
 

96 83 113 98 112 48 21 13 
 

209 182 125 40 2 
 

262 295 289 

6 
 

56 86 77 48 21 18 0 0 
 

102 64 3 0 0 
 

79 94 67 
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 Area ID 
 

Square Footage per Tile 
 

  Total Ind. Signs Total Traffic Light Units Total Street Furniture Items 
  

1 
  

250,888 
  

 34   9 
   

11 
     

2 
  

510,972 
   

75 
  

10 
   

32 
     

3 
  

521,185 
   

91 
  

17 
   

37 
     

4 
  

508,772 
   

95 
  

26 
   

42 
     

5 
  

601,701 
   

107 
  

35 
   

89 
     

6 
  

485,807 
   

101 
  

24 
   

38 
     

SS = Street Signs, TS = Traffic Signals, SF = Street Furniture 

All units are in cubic feet of coverage. 

Numeric figures after each abbreviation indicates voxel height zone above ground. 
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Figure 9.1  Example of collecting windows off imagery and LiDAR point cloud 
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Figure 9.2  Sample of feature classification in the town center streetscape 

Notes: Trees are green, traffic signage pink, lamposts red, street furniture yellow, commercial sign blue, parked car white. 
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Figure 9.3  Example of single cubic feet voxels covering walkable streetscape area 
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10. CONCLUSION 

Mobile LiDAR data have proven to be useful for the objective measuring of walkable 

streetscapes and infrastructure components that enclose a streetscape. Our results provide 

complete volumetric calculations of various features, such as street signage, ranging from 60 

cubic feet to 126 cubic feet, and hanging commercial signs, ranging from 52 cubic feet to 141 

cubic feet of total coverage throughout individual streetscape segments. Our results also provide 

examples of actual window areas, and we see significant discrepancies between window area as 

a proportion or percentage of the building’s street level face, ranging from 26% to over 60%. 

Enclosed open-air restaurants range from zero to over 1,000 square feet. This level of descriptive 

statistics provides a unique niche for mobile LiDAR that cannot be obtained with publicly 

available aerial LiDAR. 

For urban streets, our results also show that mobile LiDAR enables access to more refined 

descriptive statistics of critical features that cannot be obtained from a standard aerial QL1 or 

QL2 level collection effort. Although our previous aerial QL1 and QL2 studies contribute 

significantly to dividing a standard streetscape into 3D voxel zones for providing detailed 

streetscape descriptive statistics, mobile LiDAR facilitates smaller features like street furniture, 

traffic signs, and traffic lights. Whereas common aerial efforts are more limited to wider voxel 

zones, mobile LiDAR collected features easily fit into single cubic foot voxel zones. For 

example, we see that street signs appear most prevalent between 8 feet and 12 feet; we also see 

street furniture most prevalent at lower height zones and topping off around 10 feet. 

We believe mobile LiDAR analytics has the potential to quantitatively supplement and/or replace 

time consuming, and possibly subjective, audit-based streetscape measures. For instance, the 

town-center area represents walkable streets that are similar to areas analyzed by Ewing et al. 

Ewing et al. considered factors such as enclosure, human scale, and imageability (Ewing and 

Clemente 2013) by visually assessing items—such as street trees, street lamps/lights, window 

area, hanging signs, planters, bike racks, and fenced restaurant seating—that we can now 

quantify with mobile LiDAR. Moreover, this research can also contribute to traffic outcome 

studies, as various researchers remain conflicted regarding the roles that street trees and other 

streetscape features have on road safety outcomes. Marshall et al., for instance, recently 

completed a study suggesting that street trees are associated with better road safety outcomes, 

which runs counter to conventional wisdom (Marshall, Coppola, and Golombek 2018). Our 

results have the potential to improve the objective measuring of streetscapes, which can 

supplement the audit-based efforts and help resolve long-standing inconsistencies over what 

features actually lead to better outcomes. 

It is important to point out some potential limitations for a larger scale study of this nature. First 

and foremost, this study utilized manual classification methods. If this study was performed on a 

larger scale, similar to the hundreds of blocks that cited research utilizing audit-based or GIS-

based methods, it would be important to improve automated LiDAR classification methods. Per 

our discussion above, the automated methods appear to be improving, with significant 

advancements over the past few years. Still, some features have no affiliated automated methods 

and may still require manual classification. Regardless, any automated improvement will 

significantly reduce the amount of time it takes to properly classify data. Additionally, 

shadowing due to parked vehicles is a limitation. As mentioned, the COVID-19 pandemic 
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heavily reduced parked vehicles; however, city coordination, or perhaps coordination with street-

sweeping days, may be necessary to limit parked vehicles when collecting data. 

This research shows mobile LiDAR to be a valuable tool for quantitatively mapping streetscape 

features in 3D. Paired with our previous USGS aerial LiDAR studies, we believe our work 

addresses nearly all above-ground streetscape features for the purpose of quantitatively mapping 

them in 3D utilizing a voxel-based method. Utilizing our unique methods will hopefully provide 

transportation and urban design researchers valuable tools to help assess the roles that various 

streetscape features play in transportation outcomes. 

  



49 
 

11. REFERENCES 

AASHTO, American Association of State Highways and Transportation. A Policy on Geometric Design 

of Highways and Streets. 2004. 

Abdullah, Q. A. A "Star is Born: The State of New Lidar Technologies." Photogrammetric Engineering 

& Remote Sensing, Vol. 82, No. 5, 2016, pp. 307–312. 

Ai, C., and Y.C.J. Tsai. 2015. "Critical Assessment of an Enhanced Traffic Sign Detection Method Using 

Mobile LiDAR and INS Technologies." Journal of Transportation Engineering Vol. 141 (5), 2015, 

1–12.  

Allen, M. P. Understanding Regression Analysis. Plenum Press, N.Y., 1997. 

American Society for Photogrammetry and Remote Sensing. "ASPRS Positional Accuracy Standards for 

Digital Geospatial Data." Photogrammetric Engineering & Remote Sensing, Vol. 81, No. 3, 2015, 

pp. A1–A26.  

Anderson, E. S., J. A. Thompson, and R. E. Austin. "LIDAR Density and Linear Interpolator Effects on 

Elevation Estimates." International Journal of Remote Sensing, Vol. 26, No. 18, 2005, pp. 3889–

3900. 

Ao, Z., Y. Su, W. Li, Q. Guo, and J. Zhang. "One-Class Classification of Airborne LiDAR Data in Urban 

Areas using a Presence and Background Learning Algorithm." Remote Sensing, Vol. 9, No. 10, 

2017, p. 1001. 

Appleyard, D. "Livable Streets: Protected Neighborhoods?" The Annals of the American Academy of 

Political and Social Science, Vol. 451, No. 1, 1980, pp. 106–117. 

Arnold, Henry. Trees in Urban Design. New York: Van Nostrand Reinhold, 1993. 

Asvadi, A., L. Garrote, C. Premebida, P. Peixoto, and U.J. Nunes. "Multimodal Vehicle Detection : 

Fusing 3D-LIDAR and Color Camera Data." Pattern Recognition Letters 2018, 115: 20–29.  

Brownson, R. C., C. M. Hoehner, K. Day, A. Forsyth, and J. F. Sallis. "Measuring the Built Environment 

for Physical Activity: State of the Science." American Journal of Preventive Medicine, Vol. 36, 

No. 4, 2009, pp. S99–S123.e12. 

Chen, Z., B. Xu, and B. Gao. "Assessing Visual Green Effects of Individual Urban Trees Using Airborne 

Lidar Data." Science of the Total Environment, 2015, 536: 232–44.  

Csanyi, N., and C. K. Toth. "Improvement of Lidar Data Accuracy Using Lidar-Specific Ground 

Targets." Photogrammetric Engineering & Remote Sensing 2013, 73 (4): 385–96.  

Cullen, G. The Concise Townscape. Van Nostrand Reinhold, New York, 1971. 

Dewberry. National Enhanced Elevation Assessment_LiDAR_REPORT. 2012. 

http://www.dewberry.com/docs/default-source/documents/neea_final-report_revised-3-29-

12.pdf?sfvrsn=0. 

Dogon-yaro, M. A., P. Kumar, A. A. Rahman, and G. Buyuksalih. "Extraction of Urban Trees From 

Integrated Airborne Based Digital Image and Lidar Point Cloud Datasets - Initial Results." ISPRS - 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 

2016, XLII-2/W1 (October): 81–88.  

Dumbaugh, E. "Safe Streets, Livable Streets: A Positive Approach to Urban Roadside Design." Doctoral 

Dissertation. Georgia Institute of Technology, Atlanta, GA, 2005. 



50 
 

Dumbaugh, E. "Safe Streets, Livable Streets." Journal of American Planning Association, Vol. 71, 2005, 

pp. 283–300. 

Dumbaugh, E. "Design of Safe Urban Roadsides an Empirical Analysis." Transportation Research 

Record: Journal of the Transportation Research Board, 2006. 1961: 74–82. 

Ekrias, A., M. Eloholma, L. Halonen, X. J. Song, X. Zhang, and Y. Wen. "Road Lighting and Headlights: 

Luminance Measurements and Automobile Lighting Simulations." Building and Environment, Vol. 

43, No. 4, 2008, pp. 530–536. 

Ewing, R., and O. Clemente. Measuring Urban Design. Island Press, Washington, D.C., 2013. 

Ewing, R., O. Clemente, S. Handy, R. C. Brownson, and E. Winson. "Measuring Urban Design Qualities 

Related to Walking." Active Living Research Program, 2005.  

Ewing, Reid, and Eric Dumbaugh. "The Built Environment and Traffic Safety A Review of Empirical 

Evidence." Journal of Planning Literature 2009, 23 (4): 347–67. 

Ewing, Reid, Amir Hajrasouliha, Kathryn M. Neckerman, Marnie Purciel-Hill, and William Greene. 

2016. "Streetscape Features Related to Pedestrian Activity." Journal of Planning Education and 

Research 36 (1): 5–15. https://doi.org/10.1177/0739456X15591585. 

Ewing, R., A.Hajrasouliha, K. M. Neckerman, M. Purciel-hill, and W. Greene. "Streetscape Features 

Related to Pedestrian Activity." Journal of Planning Education and Research,  2016, 36 (1): 5–15.  

Ewing, R, and S. Handy. "Measuring the Unmeasurable: Urban Design Qualities Related to Walkability." 

Journal of Urban Design, Vol. 14, No. 1, 2009, pp. 65–84.  

Fan, C., and D. Zhang. "A Note on Power and Sample Size Calculations for the Kruskal-Wallis Test for 

Ordered Categorical Data." Journal of Biopharmaceutical Statistics, Vol. 22, No. 6, 2012, pp. 

1162–1173. 

Fisher, A. J. "The Luminous Intensity Requirements of Vehicle Front Lights for Use in Towns." 

Ergonomics, Vol. 17, No. 1, 1974, pp. 87–103. 

Funke, J., M. Brown, S. M. Erlien, and J. C. Gerdes. "Collision Avoidance and Stabilization for 

Autonomous Vehicles in Emergency Scenarios." IEEE Transactions of Control Systems 

Technology, Vol. 25, No. 4, 2017, pp. 1204–1216. 

Gao H, Cheng B, Li K, Zhao J, and Deyi L. "Object Classification Using CNN-Based Fusion of Vision 

and LIDAR in Autonomous." IEEE Transactions of Industrial Informatics, 2018; 14 (9): 4224–31.  

Gargoum S, El-basyouny K, Sabbagh J, and Froese K. "Automated Highway Sign Extraction Using Lidar 

Data." Transportation Research Record. 2018; 2643(1): 1–8.  

Glass, G. V., P. D. Peckham, and J. R. Sanders. "Consequences of Failure to Meet Assumptions 

Underlying the Fixed Effects Analyses of Variance and Covariance." Review of Education 

Research, Vol. 42, No. 3, 1972, pp. 237–288. 

Gold, C. M. "Problems with Handling Spatial Data: The Voronoi Approach." CISM Journal, Vol. 45, No. 

1, 1991, pp. 65–80. 

Golombek, Y., and W. E. Marshall. "Use of Aerial LiDAR in Measuring Streetscape and Street Trees." 

Transportation Research Record: Journal of the Transportation Research Board, 2019. 2673: 125–

135. 

Golombek Y, and Marshall W.E. "Measuring Streetscape Features with High Density Aerial LiDAR." 

Transportation Research Record. 2020; In Press  

  



51 
 

Gonzalez, P., G. P. Asner, J. J. Battles, M.A. Lefsky, K.M. Waring, and M. Palace. "Forest Carbon 

Densities and Uncertainties from Lidar, QuickBird, and Field Measurements in California." 2010, 

Remote Sensing of Environment 114 (7): 1561–75.  

Goodenough, D. R. "The Role of Individual Differences in Field Dependence as a Factor in Learning and 

Memory." Psychological Bulletin, Vol. 83, No. 4, 1976, pp. 675–694. 

Gu, H., and P. A. Townsend. "Mapping Forest Structure and Uncertainty in an Urban Area Using Leaf-

Off Lidar Data." Journal of Urban Ecosystems, Vol. 20, No. 2, 2017, pp. 497–509. 

Guan, H., J. Li., S. Cao., and Y. Yu. "Use of Mobile LiDAR in Road Information Inventory: A Review." 

International Journal of Image and Data Fusion 2016, 7(3): 219–42.  

Guan, H., J. Li., Y. Yu, Z. Ji, and C. Wang. "Using Mobile LiDAR Data for Rapidly Updating Road 

Markings." IEEE Transactions on Intelligent Transportation Systems 2015, 16 (5): 2457–66.  

Haala N, P.M Kremer and J. Hunter G. "Mobile Lidar Mapping For 3D Point Cloud Collection In Urban 

Areas – A Performance Test." Procedings XXIst International Society Photogrammetry and Remote 

Sensing Congress. 2008; 1119–24. 

Haans, A., and Y. A. W. de Kort. "Light Distribution in Dynamic Street Lighting: Two Experimental 

Studies on its Effects on Perceived Safety, Prospect, Concealment, and Escape." Journal of 

Environmental Psychology, Vol. 32, No. 4, 2012, pp. 342–352. 

Heidemann, H. K. "Lidar Base Specification." Chapter 4 Section B, U.S. Geological Survey Standards 

Book 11 Collection and Delineation of Spatial Data, U.S. Geological Survey, 2018. 

Harvey, C., and L. Aultman-Hall. "Urban Streetscape Design and Crash Severity." Transportation 

Research Record: Journal of the Transportation Research Board, 2015. 2500: 1–8. 

Harvey, Chester, and L. Aultman-Hall. "Measuring Urban Streetscapes for Livability: A Review of 

Approaches." The Professional Geographer, 2016 68:1, 149-158. 

Harvey, C., L. Aultman-Hall, S. E. Hurley, and A. Troy. "Effects of Skeletal Streetscape Design on 

Perceived Safety." Landscape and Urban Planning, Vol. 142, 2015, pp. 18–28. 

Harvey, C., L. Aultman-Hall, A. Troy, and S. E. Hurley. "Streetscape Skeleton Measurement and 

Classification." Environmental Planning B: Urban Analysis and City Science, Vol. 44, No. 4, 2017, 

pp. 668–692. 

Hollaus, M., W. Wagner, G. Molnar, G. Mandlburger, C. Nothegger, and J. Otepka. "Delineation of 

Vegetation and Building Polygons from Full-Waveform Airborne Lidar Data using Opals 

Software." Proc., ISPRS Tech Com IV AutoCarto, Orlando, FL, 2010, p. 7.  

Holmgren, J., A. Persson, and U. So¨derman. "Species Identification of Individual Trees by Combining 

High Resolution LiDAR Data with Multi-Spectral Images." International Journal of Remote 

Sensing, Vol. 29, No. 5, 2008, pp. 1537–1552. 

Huang, M.J., S. W. Shyue, L.H. Lee, and C. C. Kao. "A Knowledge-Based Approach to Urban Feature 

Classification Using Aerial Imagery with Lidar Data." Photogrammetric Engineering & Remote 

Sensing. 2008,74 (12): 1473–85.  

Kim, E., and G. Medioni. "Urban Scene Understanding from Aerial and Ground LIDAR Data." Machine 

Vision and Applications, 2011, 22 (4): 691–703.  

Koma, Z., K. Koenig, and B. Ho¨fle. "Urban Tree Classification Using Full-Waveform Airborne Laser 

Scanning." ISPRS Annals of the Photogrammetry, Remote Sensing, and Spatial Information 

Sciences, Vol. III-3, 2016, pp. 185–192. 



52 
 

Ku¨kenbrink, D., F. D. Schneider, R. Leiterer, M. E. Schaepman, and F. Morsdorf. "Quantification of 

Hidden Canopy Volume of Airborne Laser Scanning Data Using a Voxel Traversal Algorithm." 

Remote Sensing of Environment, Vol. 194, 2017, pp. 424–436. 

Lehtomäki M, A. Jaakkola, J. Hyyppä, J. Lampinen, H. Kaartinen, and A. Kukko. "Mobile Laser 

Scanning Point Clouds in a Road Environment." IEEE Transactions on Geoscience and Remote 

Sensing. 2016;5 4(2): 1226–39.  

Lesky, M. A., W. B. Cohen, G. G. Parker, and D. J. Harding. "Lidar Remote Sensing for Ecosystem 

Studies." Bioscience, Vol. 52, No. 1, 2002, pp. 19–30. 

Li, Bo, T. Zhang, and T. Xia. "Vehicle Detection from 3D Lidar Using Fully Convolutional Network." 

Robotics: Science and Systems Conference, 2016.  

Lin, L., and A.V. Moudon. "Objective versus Subjective Measures of the Built Environment, Which Are 

Most Effective in Capturing Associations with Walking?" Health and Place, 2010, 16 (2): 339–48.  

Lin Y, M. Holopainen, V. Kankare, and J. Hyyppä. "Validation of Mobile Laser Scanning for Understory 

Tree Characterization in Urban Forest." IEEE Journal Of Selected Topics In Applied Earth 

Observations And Remote Sensing, 2014;7(7):3167–73.  

Lix, L. M., J. C. Keselman, and H. J. Keselman. "Consequences of Assumption Violations Revisited: A 

Quantitative Review of Alternatives to the One-Way Analysis of Variance ‘‘F’’ Test." Review of 

Education Research, Vol. 66, No. 4, 1996, pp. 579–619. 

Lodha, S. K., D. M. Fitzpatrick, and D. P. Helmbold. "Aerial Lidar Data Classification using Expectation-

Maximization." Vision Geometry XV, 2007, Vol. 6499, p. 64990L. 

Luo, L., Y. Zang, X. Wang, C. Wang, J. Li, S. Wu, and Y. Liu. "Estimating Road Widths From Remote 

Sensing Images." Remote Sensing Letters, Vol. 9, No. 9, 2018, pp. 819–828. 

Marshall, W. E., N. Coppola, and Y. Golombek. "Urban Clear Zones, Street Trees, and Road Safety." 

Research in Transportation Business and Management, Vol. 29, 2018, pp. 136–143. 

McCord, M. R., M. Hickman, M.S. Bronzini, P.K. Goel, R. B. Gomez, C. J. Merry, P.B. Mirchandani, 

J.L. Morrison, and M. E. Hallenbeck. "Remote Sensing for Transportation Products and Results: 

Foundations for the Future." Proc., Transportation Research Board Conference, Washington, D.C., 

2001, No. 29. 

Minitab. Data considerations for Kruskal-Wallis Test. Minitab Express Support. 2018. 

https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling 

statistics/anova/how-to/kruskal-wallis-test/before-you-start/data-considerations/. 

Mok, J. H., H. C. Landphair, and J. R. Naderi. "Landscape Improvement Impacts on Roadside Safety in 

Texas." Landscape and Urban Planning, Vol. 78, No. 3, 2006, pp. 263–274. 

Naderi, J. R. "Landscape Design in the Clear Zone: The Effect of Landscape Variables on Pedestrian 

Health and Driver Safety." Transportation Research Record: Journal of the Transportation 

Research Board, 2003. 1851: 119–130. 

Naderi, J. R., B. S. Kweon, and P. Maghelal. "The Street Tree Effect and Driver Safety." ITE Journal, 

Vol. 78, 2008, pp. 69–73. 

Naderi, J. R. "Landscape Design in the Clear Zone: The Effect of Landscape Variables on Pedestrian 

Health and Driver Safety." Transportation Research Record: Journal of the Transportation 

Research Board, 2003. 1851: 119–130. 

  



53 
 

Ogawa, T., H.Sakai, Y. Suzuki, K. Takagi, and K. Morikawa. "Pedestrian Detection and Tracking Using 

In-Vehicle Lidar for Automotive Application." Institute of Electrical and Electronics Engineers 

(IEEE) Intelligent Vehicles Symposium (IV), 2011, 734–39.  

Plowright, A. A., N. C. Coops, B. N. I. Eskelson, S. R. J. Sheppard, and N. W. Aven. "Assessing Urban 

Tree Condition Using Airborne Light Detection and Ranging." Urban For Urban Green, Vol. 19, 

2016, pp. 140–150. 

Popescu, S. C., and K. Zhao. "A Voxel-Based Lidar Method for Estimating Crown Base Height for 

Deciduous and Pine Trees." Remote Sensing of Environment, Vol. 112, No. 3, 2008, pp. 767–781. 

Priestnall, G., J. Jaafar, and A. Duncan. "Extracting Urban Features from LiDAR Digital Surface 

Models." Computers, Environment and Urban Systems, 2000, 24: 65–78.  

Purciel, M., K. M. Neckerman, G. S. Lovasi, J. W. Quinn, C. Weiss, M. D. M. Bader, R. Ewing, and A. 

Rundle. "Creating and Validating GIS Measures of Urban Design for Health Research." Journal of 

Environmental Psychology, Vol. 29, No. 4, 2009, pp. 457–466. 

Purciel, M., and E. Marrone. Observational Validation of Urban Design Measures for New York City: 

Field Manual, Columbia University, New York, 2006. 

Rapoport, A. History and Precedent in Environmental Design. Springer US, The Netherlands, 1990, p. 

540. 

Riveiro B, L. Díaz-vilariño, B. Conde-Carnero, M. Soilán, P. Arias. "Automatic Segmentation and Shape-

Based Classification of Retro-Reflective Traffic Signs from Mobile LiDAR Data." IEEE Journal 

Of Selected Topics In Applied Earth Observations And Remote Sensing 2016; 9(1): 295–303.  

Saraf, N. M., J. R. A. Hamid, M. A. Halim, A. R. A. Rasam, and S. Lin. "Accuracy Assessment of 3-

Dimensional LiDAR Building Extraction." Proceedings., IEEE 14th International Colloquium on 

Signal Processing & Its Applications CSPA, Batu Feringghi, Malaysia, 2018, pp. 261–266. 

El-halawany S, Moussa A, Lichti D.D., and El-Sheimy N. "Detection of Road Curb from Mobile 

Terrestrial Laser Scanner Point Cloud." International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Science. 2011; XXXVIII (August): 109–14.  

Shoptaugh, C. F., and L. A. Whitaker. "Verbal Response Times to Directional Traffic Signs Embedded in 

Photographic Street Scenes." Human Factors, Vol. 26, No. 2, 1984, pp. 235–244. 

Shyue, S. W., M. J. Huang, L. H. Lee, and C. C. Kao. "Fusion of Lidar Height Data for Urban Feature 

Classification using a Hybrid Method." International Journal of Innovative Computing, Information 

& Control, Vol. 8, No. 8, 2012, pp. 5455–5472. 

Sitte, C. The Birth of Modern City Planning: City Planning According to Artistic Principles. 1889 George 

R. Collins and Christiane Crasemann Collins (Translators). Rizzoli Publishing, New York, 1986. 

Snyder, G. I., L.J. Sugarbaker, A. L. Jason, D. F. Maune, S. J., and U S Geological Survey. 2013. 

National Requirements for Enhanced Elevation Data. 2013, 

https://pubs.usgs.gov/of/2013/1237/pdf/of2013-1237.pdf 

Snyder, G. I. National Enhanced Elevation Assessment at a Glance. US Geological Survey Fact Sheet, 

2012. pp. 1–2. 

Soilán M, Riveiro B, Martínez-sánchez J, Arias P. "Traffic sign detection in MLS acquired point clouds 

for geometric and image-based semantic inventory." ISPRS Journal of Photogrammetry and 

Remote Sensing. 2016;114:92–101.  

  



54 
 

Stoker, J. M., J.C. Brock, C. E Soulard, K.G. Ries, L. J Sugarbaker, W. E. Newton, P.K .Haggerty, K. E. 

Lee, and J.A. Young. 2015. USGS Lidar Science Strategy—Mapping the Technology to the 

Science: U.S. Geological Survey Open-File Report, 2016, http://dx.doi.org/10.3133/ofr20151209. 

Szarvas, Maite, Utsushi Sakait, and Jun Ogata. "Real-Time Pedestrian Detection Using LIDAR and 

Convolutional Neural Networks." Intelligent Vehicles Symposium, 2016, 213–18. 

Turner, B. D. S., and E. R. Mansfield. "Urban Trees and Roadside Safety." Journal of Transportation 

Engineering-Asce, Vol. 116, No. 1, 1989, pp. 90–104. 

Ural, S., J. Shan, M. A. Romero, and A. Tarko. "Road and Roadside Feature Extraction Using Imagery 

and Lidar Data for Transportation Operation." ISPRS Annals of Photogrammetry, Remote Sensing 

and Spatial Information Sciences II-3/W4 (March 2015): 239–46.  

United States Geological Survey (USGS) Broad Agency Announcement (BAA) FY19/20 Awards. United 

States Geological Survey. Accessed September 2020. https://www.usgs.gov/core-science-

systems/ngp/3dep/expired-solicitation-broad-agency-announcement-baa-fy1920-awards. 

Wang H, Lou X, Cai Y, Li Y, and Chen L. "Real-Time Vehicle Detection Algorithm Based on Vision and 

Lidar Point Cloud Fusion." Journal of Sensors, 2019.  

Wang, J., C. Zeng, and B. Lehrbass. "Building Extraction from LiDAR and Aerial Images and Its 

Accuracy Evaluation." Proc., International Geoscience and Remote Sensing Symposium, IEEE, 

Munich, Germany, 2012, pp. 64–67. 

Williams K, Olsen M.J., Roe G.V., and Glennie C. "Synthesis of Transportation Applications of Mobile 

LIDAR." Remote Sensing. 2013; 5(9): 4652–92.  

Wolf, K. L., and N. Bratton. "Urban Trees and Traffic Safety: Considering U.S. Roadside Policy and 

Crash Data." Arboriculture and Urban Forestry, Vol. 32, No. 4, 2006, pp. 170–179. 

Wolf, Kathleen L. "The Urban Forest in the Roadside : Public Values and Transportation Design." 

Proceedings of the 9th National Conference of the International Society of Arboriculture, Australia 

Chapter (ISAAC). Launceston, Tasmania: ISAAC. 

Wolf, Kathleen L. 2005. 2006. "Roadside Urban Trees: Balancing Safety and Community Values." 

Arborist News, no. December: 56–57. 

Wu F, Wen C, Guo Y, Wang J, Yu Y, Wang C, et al. "Rapid localization and extraction of street light 

poles in mobile LiDAR point clouds: A supervoxel-based approach." IEEE Transactions Intelligent 

Transportation Systems. 2017;18(2):292–305.  

Yang B, Dong Z, Zhao G, and Dai W. "Hierarchical Extraction of Urban Objects from Mobile Laser 

Scanning Data." ISPRS Journal of Photogrammetry and Remote Sensing. 2015;99:45–57.  

Yang, Bisheng, Lina Fang, Qingquan Li, and Jonathan Li. "Automated Extraction of Road Markings from 

Mobile Lidar Point Clouds." Photogrammetric Engineering & Remote Sensing. 2013, 78 (4): 331–

38.  

Yin, L. Book Review: "Measuring Urban Design: Metrics for Livable Places." Journal of Planning 

Literature, Vol. 29, No. 3, 2014, pp. 273–274. 

Yin, L. "Street Level Urban Design Qualities for Walkability: Combining 2D and 3D GIS Measures." 

Computers, Environment and Urban Systems, Vol. 64, 2017, pp. 288–296. 

Yin, L., and N. Shiode. "3D Spatial-Temporal GIS Modeling of Urban Environments to Support Design 

and Planning Processes." Journal of Urbanism: International Research on Placemaking and Urban 

Sustainability, Vol. 7, No. 2, 2014, pp. 152–169. 



55 
 

Yoshiura, N., Y. Fujii, and N. Ohta. "Smart Street Light System Looking Like Usual Street Lights Based 

on Sensor Networks." Proc., 13th International Symposium on Communications and Information 

Technologies, IEEE, Surat Thani, Thailand, 2013, pp. 633–637. 

Zeigler, A. J. Guide to Management of Roadside Trees. FHWA-IP-86-17. Federal Highway 

Administration, McLean, VA, 1986, p. 75. 

Zhang, J., X. Lin, and X. Ning. "SVM-Based Classification of Segmented Airborne LiDAR Point Clouds 

in Urban Areas." Remote Sensing, Vol. 5, No. 8, 2013, pp. 3749–3775. 

Zheng, H., R. Wang, and S. Xu. "Recognizing Street Lighting Poles from Mobile LiDAR Data." IEEE 

Transactions on Geoscience and Remote Sensing, Vol. 55, No. 1, 2017, pp. 407–420. 

 

 


