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ABSTRACT 

Traffic volume data are crucial in many applications, including transportation operation analysis, 
congestion management, and accident prevention. Yet an extensive capture of accurate volume 
information on a large-scale network can be difficult and costly. This research focuses on hourly traffic 
volume prediction in a statewide network using spatial-temporal features and heterogeneous data sources. 
We present a classic machine learning technique – support vector machine (SVM) – and compare its 
efficiency for traffic volume prediction with traditional estimation methods. Further, the study develops 
an innovative spatial prediction method. The method is built off a state-of-the-art tree ensemble model – 
extreme gradient boosting tree (XGBoost) – to handle the large-scale features and hourly traffic volume 
samples. Moreover, spatial dependency among road segments is considered using graph theory. 
Specifically, we build a traffic network graph using probe trajectory data, and implemented a graph-based 
approach – breadth first search (BFS) – to search neighboring sites in this graph for computing spatial 
dependency. The proposed spatial dependency feature is subsequently incorporated as a new feature fed 
into XGBoost. The proposed methods are applied to 101 continuous count station (CCS) sites in the State 
of Utah. Prediction accuracy and training time are compared across the proposed models. 
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EXECUTIVE SUMMARY 

Traffic volume is a critical piece of information in many applications, such as transportation long-range 
planning and traffic operation analysis. Effectively capturing traffic volumes on a network scale is 
beneficial to transportation systems management & operations (TSM&O). Yet an extensive capture of 
accurate volume information on a large-scale network can be difficult and costly. Previous literature 
attempting volume estimation mostly focuses on annual average daily traffic (AADT) prediction using 
various statistical techniques. On one hand, AADT is not able to reflect traffic flow variation in finer 
granularity for operational analysis purposes. On the other hand, hourly volume estimation is more 
challenging due to fluctuations induced by spatial-temporal features. Besides, predicting hourly traffic 
volumes with high accuracy requires larger datasets and more features that might potentially impact 
traffic flow. As such, a model’s predictive capability and time complexity should be taken into account 
simultaneously. This research focuses on hourly traffic volume prediction in a statewide network using 
spatial-temporal features and heterogeneous data sources. We present a classic machine learning 
technique – support vector machine (SVM) – and compare its efficiency for traffic volume prediction 
with traditional estimation methods. 

Furthermore, in many traffic volume prediction efforts, spatial prediction techniques are widely 
performed to estimate traffic volumes at sites without sensors. In retrospect, most relevant studies resort 
to machine learning methods and treat each prediction location independently during the training process, 
ignoring the potential spatial dependency among them. To address this, we applied a state-of-the-art tree 
ensemble model – extreme gradient boosting tree (XGBoost) – to handle the large-scale features and 
hourly traffic volume samples due to the model’s powerful scalability. Moreover, spatial dependency 
among road segments is taken into account in the proposed model using graph theory. Specifically, we 
build a traffic network graph using probe trajectory data, and implemented a graph-based approach – 
breadth first search (BFS) – to search neighboring sites in this graph for computing spatial dependency. 
The proposed spatial dependency feature was subsequently incorporated as a new feature fed into 
XGBoost. The proposed model was tested on the road network in the state of Utah. Numerical results not 
only indicated high computational efficiency of the proposed model, but also demonstrated significant 
improvement in prediction accuracy of hourly traffic volume compared with the benchmarked models.   
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1. INTRODUCTION 

1.1 Problem Statement 

Traffic volume, or throughput, serves as a crucial indicator in highway performance and transportation 
operation analysis. Highly granular traffic volume provides key information in identifying congested 
roadways, assisting traffic redistribution, and implementing accident prevention strategies (Cheng, Lu, 
Peng, & Wu, 2018; El Esawey, Mosa, & Nasr, 2015; Karlaftis & Golias, 2002; Liebig, Piatkowski, 
Bockermann, & Morik, 2017). Furthermore, it is the disaggregated source for calculating annual average 
daily traffic (AADT).  AADT at the network level offers a measure of overall utilization of a highway 
facility, implies the level of service of roads, and can be used for highway planning, trend studies, and 
project prioritization (Lam & Xu, 2000). Currently, traffic count (volume) is mainly obtained from 
sensors such as inductive loop detectors, radar detectors, and/or continuous counting stations (CCSs) 
(Leduc, 2008). Yet installing sensors with a large network coverage can be impractical and expensive 
given budget constraints, especially in rural areas (Zhan, Zheng, Yi, & Ukkusuri, 2017). As a result, how 
to spatially estimate/predict traffic volume to substitute massive sensor deployment has been an intriguing 
topic over the past decade. 

Spatial prediction of traffic volume at locations without sensors is usually conducted by utilizing relevant 
information, including road characteristics, spatial-temporal features, socioeconomic indices and other 
factors that may affect traffic flow, to build a model. On top of that, spatial prediction can also be 
performed by interpolating traffic flows from neighboring roads, as spatial dependency exists among 
neighboring road segments. However, quantifying spatial correlation between roads is difficult because 
traffic patterns vary by urban topologies and time, making it hard to capture correlations. From the 
perspective of aggregation level, traffic volume prediction problems can be classified into small-
granularity prediction (e.g., 15-minute or hourly traffic volume) and AADT estimation. Small-granularity 
volume data are more valuable than AADT for micro-level analysis (Castro-Neto, Jeong, Jeong, & Han, 
2009; Z. Chen, Liu, & Zhang, 2016; Cheng, Lu, Peng, & Wu, 2018; Gastaldi, Gecchele, & Rossi, 2014; 
F. Zhao & Chung, 2001). Yet predicting small-granularity traffic volume is more challenging than 
AADT. First of all, small-granularity traffic volume varies both spatially and temporally. Miscellaneous 
factors such as spatial-temporal features and traffic flow characteristics with finer granularity need to be 
considered (Sekuła, Marković, Vander Laan, & Sadabadi, 2018). Second, data size for small-granularity 
volume prediction is much larger than for AADT prediction (Zhao, Chen, Wu, Chen, & Liu, 2017). It 
generally requires more observations and features. To summarize, two main challenges exist for spatial 
small-granularity traffic volume prediction. The first one is accurately capturing spatial correlations; and 
the second challenge is incorporating a large amount of historical data points and aforementioned features 
into building a more efficient model. To this end, a model that is capable of accurately capturing 
neighboring spatial correlation and efficiently handling big data is required for small-granularity traffic 
volume prediction. 

1.2 Objectives 

This research project focuses on predicting hourly traffic volume on road segments distributed in the state 
of Utah. Currently, UDOT deploys over a hundred CCSs to count traffic volumes at different locations in 
order to achieve geographic distribution of count information. Although it is doable to move the CCSs 
across different locations, it is still difficult to capture traffic characteristics of the entire Utah road 
network within a short time period. As a result, computational methods that are easily implementable on a 
large-scale dataset and are able to estimate traffic volume with satisfactory accuracy present an attractive 
alternative. 
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The primary objective of this project is to implement machine learning (ML) techniques to predict hourly 
traffic volumes using features that are associated with the variation of traffic volume. To achieve this, 
spatial-temporal features as well as traffic flow characteristics are collected from multiple sources. Then a 
fraction of road segments with ground-truth volume data are trained through the proposed models in 
combination with collected features. Lastly, the constructed models are tested on new locations for 
performance evaluation. 

The secondary objective of the project is to enhance the prediction accuracy by exploring methods to 
quantify the spatial dependency among road segments. To this end, we present a spatial prediction of 
hourly traffic volume using the road network in the State of Utah. Considering the large-scale features 
and observed hourly samples, a state-of-the-art tree ensemble model – extreme gradient boosting tree 
(XGBoost) – is applied to estimate hourly traffic volume. Compared with other ML methods (e.g. support 
vector machine (SVM) and deep neural networks), XGBoost model runs more than 10 times faster on a 
single machine and scales to billions of examples in memory-limited settings (Chen & Guestrin, 2016). 
Apart from its high computational efficiency, XGBoost is also highlighted for its interpretability, which 
allows it to rank variables’ importance (Pourebrahim, Sultana, Niakanlahiji, & Thill, 2019; Tuv, Borisov, 
& Torkkola, 2006). Alajali et al. (2018) implemented XGBoost to predict traffic volumes at intersections 
in the city of Melbourne, where it achieved the lowest mean squared error (MSE) among proposed ML 
models, including gradient boosting regression tree (GBRT), random forest (RF), regression tree (RT), 
and SVM. Moreover, to explore the aforementioned spatial dependency among road segments, a weighted 
graph is constructed leveraging probe trajectory data. The graph uses nodes to represent CCS sites, and 
weighted edges to delineate their spatial correlation intensity. A graph-based theory Breadth First Search 
(BFS) is implemented to search neighboring CCS sites and compute a spatial dependency feature. This 
feature is then utilized as a new feature for prediction purposes. 

1.3 Outline of Report  

The rest of the report is structured as follows. Chapter 2 summarizes the literature on traffic volume 
prediction and ML methods. The proposed methodology, including the formulation of SVM, XGBoost, 
and implementation of BFS algorithm, are explained in Chapter 3. Chapter 4 details the description of 
data sources. And Chapter 5 presents model performance and spatial correlation analysis. Implications 
and conclusions are presented in Chapter 6.  
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2. LITERATURE REVIEWS 

Traffic volume estimation problems can be mainly branched into two categories: predicting future 
volumes at locations equipped with traffic sensors and estimating historical traffic volumes at locations 
without sensors (also referred to as “spatial traffic volume prediction”). In this study, previous literature 
in terms of future traffic volume prediction is first reviewed and followed by the historical traffic volume 
prediction reviews. Further, historical traffic volume prediction literature is divided into two sub-
categories: historical traffic volume prediction without considering spatial correlation, and historical 
traffic volume prediction considering spatial correlation. Finally, the SVM and tree ensemble models are 
introduced. 

2.1 Future Traffic Volume Prediction  

Future traffic volume prediction generally involves estimation of immediate future volume at the same 
locations within a short time period based on historical information. One of the most common solutions to 
future volume prediction is the time-series method, namely auto-regressive integrated moving average 
(ARIMA) and its variations. Sarby et al. (2007) explored two forecasting techniques, logistic regression 
and ARIMA, for daily traffic prediction on Egyptian intercity roads. Historical traffic volume data from 
1990 to 2001 are used to forecast traffic volumes for years 2002 and 2003. Their analysis indicates that 
ARIMA outperforms logistic regression, especially for average monthly and average weekly daily traffic 
volume estimation. Williams and Hoel (2003) implemented seasonal ARIMA (SARIMA) to predict 
traffic volume on two freeway locations, one in the United States (I-75) and one in the United Kingdom 
(M25). Predictions were performed every 15 minutes from 5:00 am to 12:00 pm for an arbitrarily selected 
weekday. Meanwhile, the predictive performance of SARIMA was tested against heuristic forecasting 
methods (i.e., random walk, historical average, and deviation from historical average). Results indicated 
that SARIMA obtains the lowest prediction error on both freeways, with mean absolute percentage error 
(MAPE) being 8.74% for M74 and 8.97% for I-75. Gavirangaswamy et al. (2013) also assessed the 
effectiveness of ARIMA-based models on traffic volume prediction. Their empirical tests showed that 
ARIMA-GARCH outperforms ARIMA and SARIMA, with stable model order across different historical 
volume records. 

2.2 Historical/Spatial Traffic Volume Prediction without 
 Considering Spatial Correlation 

Spatial prediction usually aims at estimating traffic volumes at locations without sensors. To achieve this 
goal, traffic flow characteristics, geographic features, economic indices, and other factors that might 
impact traffic flow are frequently utilized to model the traffic volume at different locations. Xia et al. 
(1998) constructed a multiple regression model using roadway characteristics (number of lanes, 
functional classification), socioeconomic indices (population density, dwelling units), and other factors 
from 450 non-state roads to estimate AADT in Broward County, Florida. The result shows a strong 
relationship between those factors and AADT, where the adjusted R2 of the model is 0.607. To further 
improve model’s prediction accuracy, Zhao and Chung (2001) used a larger dataset by incorporating 
AADT information from state roads, and the best result of their proposed four models achieves an R2  of 
0.82.  

Although the aforementioned parametric methods (i.e., ARIMA-based models and linear regression) are 
relatively easy to implement and capable of explaining the relationship between independent and 
dependent variables, those models usually simplify the intricate relationship between traffic volume and 
potential variables, resulting in lower prediction accuracy. To improve model performance, a plethora of 
non-parametric approaches have been applied for traffic volume estimation. Castro-Neto et al. (2009) 
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used SVM to estimate future-year AADT. In Tennessee, 25 counties were tested utilizing AADT values 
from 1985 to 1999 to estimate AADT in the next five years. The analysis indicated that the average 
MAPE for SVM is only 2.14% for rural roads, and 2.26% for urban roads, which demonstrates an 
excellent prediction result. Gastaldi el al. (2014) used artificial neural network (ANN) to estimate AADT 
from one-week traffic counts. Similarly, in a case study of historical hourly volume prediction in 
Maryland, Sekuła et al. (2018) estimated hourly volume over 45 CCSs with ANN. The features used for 
volume prediction consist of temporal-spatial features and probe vehicle data for 45 road segments. 
Results show that the average R2 is 0.85 for ANN model. Xu, et al. (2013) implemented a decision tree 
model – classification and regression tree (CART) – to estimate short-term traffic flow. The proposed 
model is tested on five freeways in Portland every 15 minutes in one day, and achieves 8.53% MAPE on 
test set, showing fairly good prediction performance. 

2.3 Historical/Spatial Traffic Volume Prediction Considering 
 Spatial Correlation 

As mentioned earlier, non-parametric approaches can generate fewer prediction errors for estimation. Yet 
none of the aforementioned literature utilizes spatial dependency for spatial prediction. Instead, all road 
segments are treated independently for model construction. In fact, traffic flows are spatially correlated 
(Kerkman, Martens, & Meurs, 2017; Shi, Gong, Deng, Yang, & Xu, 2018). Ignoring spatial dependency 
can result in misspecification of models. As a result, spatial prediction via geographical dependency has 
been investigated as a sub-branch of traffic volume prediction. One of the applicable approaches for 
exploring spatial correlation is K nearest neighbors (K-NN). Smith and Demetsky (1996) introduced the 
idea of using K-NN for short-term traffic flow prediction on freeways, and claimed that this non-
parametric regression model can provide robust and accurate prediction results. Habtemichael and Cetin 
(2016) implemented an enhanced K-NN, which applies weighted Euclidean distance and winsorization 
skill to augment short-term traffic flow forecasting accuracy. Results imply that the proposed method 
reduces MAPE by more than 25%. 

Another stream of research for spatial prediction often resorts to the Kriging-based method. Wang and 
Kockelman (2009) used ordinary Kriging to forecast AADT across the entire Texas road network. 
However, ordinary Kriging does not allow analysts to control for point-specific characteristics. In a 
continued research, the authors (Selby & Kockelman, 2013) applied a more complex model than ordinary 
Kriging – universal Kriging (UK) – to lower the prediction errors. Yet both ordinary Kriging and UK use 
point-based interpolation, which may lead to inaccurate estimation for a road segment. To address this 
issue, Song et al. (2019) performed segment-based regression Kriging (SRK) to assess volume of heavy 
vehicles in western Australia. However, results from the aforementioned Kriging-based approaches show 
that prediction error remains high in certain locations, particularly those with low volume and less 
populated areas. It could be explained by two reasons. First, spatial-based methods usually ignore 
differences of road characteristics and other factors by locations. Traffic volumes on road segments with 
different functional classifications (e.g., freeways vs. local streets) and road characteristics can vary 
significantly. This issue can be simply solved by incorporating additional features to reflect road 
discrepancies. Another reason is that most Kriging-based approaches use Euclidean distance for 
interpolation. 

Nevertheless, Euclidean distance sometimes cannot reflect correct spatial correlation between two sites 
(e.g., impedance over two locations). To this end, Euclidean distance can be replaced by other metrics to 
examine spatial relationships. In a case study of transit ridership estimation for subway stations at New 
York City (Zhang & Wang, 2014), the authors applied the Kriging method with network distance – a 
graph-based distance – to resemble the fact that subway stations are connected by tunnels. Similarly, 
Lowry (2014) used centrality to interpolate AADT spatially in a community’s street network, and 
demonstrated the advantages of applying this graph-based metric over Euclidean distance. In fact, such 
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graph theory-based concepts have been frequently applied to model social networks, transportation 
networks, and other networks (Leskovec & Mcauley, 2012). For instance, graphs can dynamically 
simulate the variation of traffic flow between different zones (Du, Song, Wang, Huang, Yu, & Ruan, 
2018), explore the shortest path given two locations (Sun, Yu, Bie, & Song, 2017), and optimize freight 
transportation in service networks (Kelley, Kuby, & Sierra, 2013). Compared with Kriging-based 
methods, a weighted network graph can better explain traffic flow patterns. Zhang et al. (2019) leveraged 
high-resolution bike trajectory data to construct a biking traffic network graph with weights, and 
identified clusters with high concentration of bike usage via percolation theory. Salamanis et al. (2016) 
built a large-scale traffic network graph, where each node represents a road and each edge a straight 
connection between any two nodes, to predict future travel-time. In order to explore potential spatial 
correlation between roads, a modified BFS is implemented to find the most correlated roads in 
neighboring regions. This searching technique is further incorporated with Graph Based Lag-STARIMA 
(GBLS) for travel-time estimation. Compared with other non-parametric models, such as k-NN, RF, and 
SVM, their proposed method achieves the lowest root mean square error (RMSE) on the two datasets in 
Berlin and Thessaloniki, respectively. Moreover, the modified BFS method significantly reduced 
computational complexity. Due to BFS’s successful applications in exploring spatial correlation in graph, 
we therefore adopted this algorithm in this study. 

2.4 SVM Model 

SVM was originally developed to classify observations given a set of attributes (Cortes and Vapnik, 
1995). In other words, the SVM classifier divides different categories in a feature space with a gap as 
wide as possible.  Drucker et al. (1996) introduced SVM for regression – also referred to as SVR. SVR 
follows the same concept as the SVM classifier, with only minor differences. 

A few studies have used SVR in predicting AADT (Castro-Neto et al., 2009; and Khan et al, 2017). 
Castro-Neto et al. (2009) used SVR with data-dependent techniques, where SVR parameters are 
computed based on the distribution of a training dataset to estimate AADT on Tennessee highways with 
short-term automatic traffic recorders. They compared the SVR results with the Holt-Winters exponential 
smoothing technique and with OLS. It is reported that SVR outperforms both methods. Khan et al. (2017) 
trained SVM and ANN to estimate AADT from short-duration traffic counts in South Carolina. The result 
showed that SVR outperforms ANN, traditional factor-methods (currently used by DOTs), and regression 
models. However, the major weakness of SVR is the dependency of its accuracy on the selection of a 
kernel function, a cost function, and a maximum error allowed. These parameters are chosen based on 
experiences and application-specific knowledge. In addition, the SVR is not robust to outliers.  

2.5 Tree Ensemble Model 

The tree-ensemble model combines a collection of base learners, specifically decision trees, to form a 
stronger model. It has been frequently and successfully applied to prediction problems due to its 
capability in lowering variance (e.g., RF, Breiman, 2001), mitigating bias (e.g., GBDT, J. H. Friedman, 
2002), and improving computational efficiency. Among tree ensembles, XGBoost is a novel boosting tree 
recently proposed by Chen and Guestrin (2016). It has received wide popularity among ML challenges. In 
comparison with traditional tree ensembles (e.g., RF and GBDT), a series of techniques, such as split 
finding algorithms, data compression, and column block for parallel learning, are applied to make 
XGBoost a scalable ML system for tree boosting. This trait highlights XGBoost by allowing training on a 
large dataset efficiently. Meanwhile, as a member of tree ensembles, it enables the evaluation of variable 
importance based on its interior tree structure. Important features can be consequently identified to offer 
insights on their impacts to traffic volumes.  
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3. METHODOLOGY 

3.1 SVM Method  

SVM is a supervised learning algorithm used for classification and regression analysis, and it can be 
further divided into linear SVM and non-linear SVM models. For classification problems, given the 
training samples, {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), … , (𝑥𝑥 𝑛𝑛,𝑦𝑦𝑛𝑛)}, where 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚 is a feature vector with m features, 
𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅1 is the target value, n is the size of training dataset and m is the size of features, linear SVM 
constructs a hyperplane (or set of hyperplanes) with the largest margin to separate the samples into 
different classes. This hyperplane is: 

〈𝑤𝑤∗,𝑥𝑥〉 + 𝑏𝑏∗ = 0              (1) 
 

where 〈𝑤𝑤, 𝑥𝑥〉 is the dot product of w and x; 𝑤𝑤∗ ∈ 𝑅𝑅𝑚𝑚 and 𝑏𝑏∗ are the parameters of the hyperplane with the 
largest soft margin. The corresponding classification function is: 
 

𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(〈𝑤𝑤∗,𝑥𝑥𝑖𝑖〉 + 𝑏𝑏∗)             (2) 
 

where 𝑓𝑓(𝑥𝑥𝑖𝑖) is the predicting value for the ith sample. One can derive parameters 𝑤𝑤∗ and 𝑏𝑏∗ by solving the 
following convex optimization problem: 
 

𝑚𝑚𝑠𝑠𝑠𝑠(𝑤𝑤,𝑏𝑏,𝜉𝜉)    1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑛𝑛

𝑖𝑖=1                               (3) 
 

s.t. 𝑦𝑦𝑖𝑖(〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 ,    𝑠𝑠 = 1,2, … ,𝑠𝑠           (4) 
 

𝜉𝜉𝑖𝑖 ≥ 0,                                    𝑠𝑠 = 1,2, … ,𝑠𝑠           (5) 
 

where 𝐶𝐶 is the penalty hyperparameter, controlling the trade-off between soft margin and classifying 
training samples correctly; 𝜉𝜉𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚 are slack variables for the misclassified samples. One can transform 
and solve the optimization problem through its dual. The above formulation illustrates the linear 
classification case, where one can use the parameter 𝑤𝑤∗ to interpret the importance of features, similar to 
linear regression model.  

Meanwhile, by conducting kernel trick with the dot product in Eq.(1) to map samples into higher 
dimensional space, linear SVM can be transformed into non-linear SVM model. This is able to benefit 
model when the samples are non-linear separable. In this study, we use Gaussian kernel as the kernel 
function, which is expressed as: 

K�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = 𝑒𝑒
−1
2𝜎𝜎2�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2

              (6) 
 

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 correspond to 𝑤𝑤∗ and 𝑥𝑥 in Eq.(1). Non-linear SVM has kernel trick to power its 
prediction performance. Nevertheless, non-linear SVM requires longer training time to obtain the 
optimized hyperparameters. In this project, both linear SVM and non-linear SVM are trained to predict 
hourly traffic counts. 
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3.2 Graph Theory-Based Spatial Correlation Method  

Figure 3.1 shows the methodological framework for predicting hourly traffic volumes on road segments 
using a proposed graph-based method. A traffic network graph is built on the basis of probe trajectory 
data, and a graph-based approach – BFS – is applied to extract spatial dependency between CCS sites 
from the proposed graph. This spatial dependency feature, together with other characteristics collected 
from heterogeneous sources, is fed into this framework to train the XGBoost. The model is then tested on 
new locations for performance evaluation. In this section, the graph representation, BFS method, spatial 
dependency feature computation, and XGBoost model are introduced in detail. 

 
Figure 3.1  Methodological framework for hourly traffic volume prediction 

3.2.1 Graph Representation 

In order to explore spatial correlations among CCS sites, traffic network is abstracted as a graph first, and 
then BFS is implemented to find highly correlated neighboring CCS sites. In general, a weighted graph 
consists of a set of nodes, a set of edges, and weights associated with the edges. Formally, given a graph 
G, it is defined as: 

G = (𝑉𝑉,𝐸𝐸,𝑤𝑤)                                     (7) 

where V represents a set of vertices; E represents a set of edges, and w denotes the weights assigned to the 
edges. 

Based on the construct of traffic network and purpose of the study, a node in the graph represents a CCS 
site, and an edge indicates the existence of spatial connection between two CCS sites. Adjacency matrix 
M is used to measure the intensity of those connections (i.e., the weight). Figure 3.2 illustrates an example 
of adjacency matrix. In this matrix, the elements in row i and column j represent the correlation intensity 
between CCS sites indexed by i and j. Probe trajectory data are used to measure connections between 
nodes. Specifically, an edge exists between node i and node j if there is more than one trajectory passing 
through i to j directly: 

𝐸𝐸𝑖𝑖,𝑗𝑗 = � 0 𝑠𝑠𝑓𝑓 𝑇𝑇𝑖𝑖,𝑗𝑗 = 0
1  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑠𝑠𝑠𝑠𝑒𝑒

              (8) 

 



 

8 
 

where 𝑇𝑇𝑖𝑖,𝑗𝑗 denotes the number of probe trajectories between node i and j. Then, the correlation intensity 
between node i and j is defined as follows: 

𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑇𝑇𝑖𝑖,𝑗𝑗
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

              (9) 

where 𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥 represents the maximum number of probe trajectories across all edges in this entire traffic 
network. If  𝑀𝑀𝑖𝑖,𝑗𝑗 is 0, it simply denotes that no edge exists between the two nodes. Since CCS captures the 
total traffic counts (non-directional), it is difficult to delineate the traffic volume on each direction. Thus, 
the proposed graph is a weighted undirected graph. Consequently, the corresponding adjacency matrix is 
symmetric (i.e., 𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑀𝑀𝑗𝑗,𝑖𝑖). 

 
Figure 3.2  A 6 by 6 adjacency matrix of a graph 

3.2.2 Breadth First Search (BFS) 

BFS is a graph-based algorithm for traversing or searching purposes. It is commonly applied to examine 
connectivity or compute the shortest path from a single source node to other nodes of unweighted graphs 
(Kurant, Markopoulou, & Thiran, 2010). BFS is capable of identifying neighboring nodes within a certain 
depth. Specifically, given a source node, BFS first detects all neighboring nodes that are directly 
connected with the source node, marks them as visited nodes, and defines them as nodes in layer 1 
(depth=1). In a similar fashion, each vertex in layer 1 checks all of the directly connected nodes to see if 
they are unvisited. Those unvisited nodes will be marked as visited and labeled as nodes in layer 2 
(depth=2). This process repeats iteratively until all connected nodes are visited or the depth of layer 
reaches the maximum allowed depth. 

One important feature of BFS is that, during each iteration, it will only visit all vertices at the same depth 
before visiting any at further depths. This enables finding neighboring nodes of source node by 
accumulating visited nodes at each layer. It is noted that the depth of layer denotes the minimum number 
of edges to the source node, instead of the geographical distance between nodes. 

3.2.3 Spatial Correlation Calculation 

After extracting all neighboring CCS sites within a given depth by BFS, the spatial dependency feature is 
created by aggregating the hourly traffic volumes from neighboring CCS sites. In fact, not all CCS sites 
captured by BFS algorithm can be utilized in the calculation. In this study, CCS sites are divided into 
training set, validation set, and test sets, where training set is used for model training, validation set for 
model calibration, and testing set for evaluating model performance. As a result, only information from 
CCS sites in training set can be extracted by BFS and be deemed known. Besides, traffic volumes vary 
greatly across road functional classifications (Malenkovska Todorova, Donceva, & Bunevska, 2009). 
Therefore, including CCS sites with different functional classifications may largely deviate from the 
ground truth values. To this end, neighboring CCS sites that are neither in training set nor in the same 
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functional classification as the source node are excluded. Then, hourly volumes from qualified CCS sites 
are averaged by corresponding correlation weights. Specifically, the calculation of neighboring hourly 
volumes for a source node s (i.e., prediction site) at a specific time t is defined as follows: 

𝑣𝑣𝑠𝑠,𝑡𝑡 = ∑ 𝑤𝑤𝑠𝑠,𝑖𝑖
𝑁𝑁
𝑖𝑖 ∗𝑉𝑉𝑖𝑖,𝑡𝑡
∑ 𝑤𝑤𝑠𝑠,𝑖𝑖
𝑁𝑁
𝑖𝑖

             (10) 

where N is the total number of qualified neighboring CCS sites; 𝑣𝑣𝑖𝑖,𝑡𝑡 is the hourly volume of CCS i at time 
t; 𝑤𝑤𝑠𝑠,𝑖𝑖 is the correlation weight from source node s to the node i. 𝑤𝑤𝑠𝑠,𝑖𝑖 is calculated as: 

𝑤𝑤𝑠𝑠,𝑖𝑖 = min (𝑀𝑀𝑠𝑠,𝑗𝑗1 ,𝑀𝑀𝑗𝑗1,𝑗𝑗2 , … ,𝑀𝑀𝑗𝑗𝑘𝑘,𝑗𝑗𝑘𝑘+1 , … ,𝑀𝑀𝑗𝑗𝑘𝑘−1,𝑗𝑗𝑘𝑘 ,𝑀𝑀𝑗𝑗𝑘𝑘,𝑖𝑖)           (11) 

where 𝑗𝑗𝑘𝑘 and 𝑗𝑗𝑘𝑘+1 are two consecutive intermediate nodes along the path s to i. The correlation weight 
calculation borrows from the concept of capacity constraints in the maximum flow problem (Yuan, Bae, 
& Tai, 2010), where the total amount of traffic flow on a single path is dictated by capacity of the edge 
with minimum capacity along that path. Similarly, it makes sense that the spatial correlation between two 
CCS sites connected via a path is constrained by the edge with minimum weight along that path. It is 
worth mentioning that in case there is no qualified CCS site within the maximum allowed depth, the 
hourly volume information from the same functional classification with the closest Euclidean distance 
will be assigned to 𝑣𝑣𝑠𝑠,𝑡𝑡 directly. 

3.2.4 XGBoost Model 

XGBoost is a highly effective tree boosting system that achieves state-of-the-art results on many 
challenging problems. For example, among the 29 challenge winning solutions published in Kaggle 
competition during 2015, 17 solutions used XGBoost (Chen & Guestrin, 2016). The tree boosting model 
forms a stronger learner by combining weak base learning models. XGBoost uses CART as the base 
learner. It is developed from GBDT, a classic boosting tree proposed by Friedman (2002). For a given 
dataset with 𝑠𝑠 samples and 𝑚𝑚 features 𝐷𝐷 = {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)} (|𝐷𝐷| = 𝑠𝑠, 𝑥𝑥𝑖𝑖 ∈  ℝ𝑚𝑚, 𝑦𝑦𝑖𝑖 ∈ ℝ), GBDT predicts the 
output 𝑦𝑦�𝑖𝑖 using K additive functions: 

𝑦𝑦�𝑖𝑖 = Φ(𝑥𝑥𝑖𝑖) = ∑ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖),    𝑓𝑓𝑘𝑘 ∈ ℱ𝐾𝐾
𝑘𝑘=1 ,    (𝑓𝑓𝑜𝑜𝑒𝑒 𝑠𝑠 = 1, … ,𝑠𝑠)           (12) 

where ℱ = �𝑓𝑓(𝑋𝑋) = 𝑤𝑤𝑞𝑞(𝑋𝑋)� (𝑞𝑞: ℝ𝑚𝑚 → 𝑇𝑇,𝑤𝑤 ∈  ℝ𝑇𝑇) is the space of CART, 𝑞𝑞 represents the structure of 
each CART that maps an example to the corresponding leaf index, and 𝑇𝑇 is the number of leaves in the 
tree. Each 𝑓𝑓𝑘𝑘 corresponds to an independent tree 𝑞𝑞 and leaf weight 𝑤𝑤. For prediction, each tree contains a 
continuous score on each of the leaf, where the score on ith leaf is denoted by 𝛼𝛼𝑖𝑖. GBDT updates the new 
tree by minimizing a specified loss function. However, traditional optimization method in Euclidean 
space cannot be used to optimize parameters of a new tree. Instead, GBDT greedily builds the model in a 
forward stagewise fashion (J. Friedman, 2001): 
 

𝑦𝑦�𝑖𝑖𝑡𝑡 = 𝑦𝑦�𝑖𝑖𝑡𝑡−1 + 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)               (13) 

where 𝑦𝑦�𝑖𝑖𝑡𝑡−1 is the sum of predictions on previous 𝑜𝑜 − 1 optimized trees. Mean square error function is 
applied as the loss function of GBDT for regression problem (Friedman, 2001), which is defined as: 

 
𝐿𝐿(𝑦𝑦,𝑦𝑦�) = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1                                    (14) 
 
The final prediction is derived by summing up the scores in the corresponding leaves in the decision trees. 
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As an improvement, XGBoost adds a regularization term to the loss function to help smooth the final 
weights 𝛼𝛼 to avoid overfitting. The objective function for XGBoost can be written as: 

 
𝑂𝑂𝑏𝑏𝑗𝑗(𝑦𝑦,𝑦𝑦�) =  𝐿𝐿(𝑦𝑦,𝑦𝑦�) + ∑ Ω(𝑓𝑓𝑘𝑘)𝐾𝐾

𝑘𝑘=1              (15) 

where Ω(𝑓𝑓𝑘𝑘) = 𝛾𝛾𝑇𝑇 + 1
2
𝜆𝜆 ∑ 𝛼𝛼𝑗𝑗2𝑇𝑇

𝑗𝑗=1                                        (16)  

where 𝛾𝛾 and 𝜆𝜆 are hyperparameters to penalize model’s complexity. XGBoost applies second-order 
Taylor expansion (GBDT uses first-order) to quickly optimize the objective function as follows: 

 
𝑂𝑂𝑏𝑏𝑗𝑗(𝑡𝑡)(𝑦𝑦,𝑦𝑦�) ⋍ ∑ [𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑡𝑡−1) + 𝑠𝑠𝑖𝑖𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) + 1

2
𝑛𝑛
𝑖𝑖=1 ℎ𝑖𝑖𝑓𝑓𝑘𝑘2(𝑥𝑥𝑖𝑖)] + Ω(𝑓𝑓𝑘𝑘)          (17) 

where 𝑠𝑠𝑖𝑖 and ℎ𝑖𝑖 are the first and second gradient statistics of loss function, and 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑡𝑡−1) is a constant 
term that can be removed. Because each sample only corresponds to one leaf node in a decision tree, the 
loss function can be reformulated as the sum of loss for each leaf node: 
 

𝑂𝑂𝑏𝑏𝑗𝑗(𝑡𝑡)(𝑦𝑦,𝑦𝑦�) ⋍ ∑ �(∑ 𝑠𝑠𝑖𝑖)𝛼𝛼𝑗𝑗 + 1
2𝑖𝑖∈𝐼𝐼𝑗𝑗 (∑ ℎ𝑖𝑖 + 𝜆𝜆𝑖𝑖∈𝐼𝐼𝑗𝑗 )𝛼𝛼𝑗𝑗2�𝑇𝑇

𝑗𝑗=1 + 𝛾𝛾𝑇𝑇          (18) 

where 𝐼𝐼𝑗𝑗 is the sample set of leaf j. Eventually, the optimal weight 𝛼𝛼𝑗𝑗∗ of leaf j can be derived by 
minimizing the objective function: 
 

𝛼𝛼𝑗𝑗∗ = −
∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝑗𝑗
               (19) 

and consequently, the corresponding optimal value of objective function is:  
 

𝑂𝑂𝑏𝑏𝑂𝑂� ∗(𝑡𝑡)(𝑦𝑦,𝑦𝑦�) = −1
2
∑

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑗𝑗 )2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝑗𝑗
 𝑇𝑇

𝑗𝑗=1 + 𝛾𝛾𝑇𝑇             (20) 

The optimal weight 𝛼𝛼𝑗𝑗∗ can be calculated once a tree structure 𝑞𝑞 is fixed. CART is a binary tree model, 
which grows recursively by splitting from a father node to left and right children nodes using one of the 
features. In fact, it is intractable to enumerate all possible tree structures. A greedy algorithm is therefore 
applied to find the optimal split point with the largest loss reduction for each split: 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 = 1
2
�

(∑ 𝑔𝑔𝑖𝑖)𝑖𝑖∈𝐼𝐼𝐿𝐿
2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝐿𝐿
+

(∑ 𝑔𝑔𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑅𝑅
2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼𝑅𝑅
− (∑ 𝑔𝑔𝑖𝑖)𝑖𝑖∈𝐼𝐼

2

∑ ℎ𝑖𝑖+𝜆𝜆𝑖𝑖∈𝐼𝐼
� − 𝛾𝛾            (21) 

where 𝐼𝐼, 𝐼𝐼𝐿𝐿, and 𝐼𝐼𝑅𝑅 are samples of father node, left children, and right children, respectively. A tree 
structure will be determined once 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 does not improve significantly. 

In order to achieve scalability, XGBoost adopts a series of strategies to accelerate the training process, 
such as the greedy approach for feature split and a column block technique. Hourly volume prediction 
involves a large number of features, making XGBoost well suited for handling the problem efficiently. In 
addition, tree-based models are capable of interpreting feature importance (Tuv, Borisov, & Torkkola, 
2006). In CART, every node split uses a single feature with the largest loss function (Equation 21). One 
can compute the loss reduction accordingly, and rank features according to the average loss reductions 
across all trees in the model (also called mean decrease impurity). The larger the average loss reduction, 
the more important this feature is. This method enables us to identify critical components in affecting 
traffic volume variation. 
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3.3 Performance Assessment 

Model performance is mainly evaluated based on prediction accuracy. In this study, coefficient of 
determination (𝑅𝑅2), MAE, and MAPE are used for performance assessment. Mathematical formulations 
and brief descriptions are shown in Table 3.1. 

Table 3.1  Measurements of model performance for hourly volume prediction 

Name of measurement Mathematical formulation Brief description 

R2 𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 
𝑅𝑅2  is the proportion of traffic volume variance that is 
explained by predicting models, and it provides a measure of 
how well observed outcomes are replicated by the model. 

MAE MAE =
1
𝑠𝑠�

|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 
MAE is a measure of difference between actual values and 
predicted values, which gives a clear interpretation of 
average magnitude of the errors for predictions. 

MAPE MAPE =
1
𝑠𝑠��

𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 

MAPE is a statistical measure of prediction accuracy, where 
the prediction error is presented as a percentage. Smaller 
values indicate better prediction power. 

 
In Table 3.1, 𝑦𝑦𝑖𝑖 is actual traffic volume of the ith sample, 𝑦𝑦�𝑖𝑖 is estimated hourly traffic volume of the ith 
sample, 𝑦𝑦� is sample average, and n is the number of total sample size. Note that 𝑅𝑅2 can vary from −∞ to 
1, and values closer to 1 represent better predictive capability. Conversely, MAE and MAPE closer to 0 
indicate better model performance. 
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4. DATA DESCRIPTION 

Here we introduce the datasets used in this study. Probe trajectory data are exclusively utilized to 
construct the traffic network graph for the graph-theory based method, and the rest datasets are used for 
model building. 

4.1 Probe Trajectory Data 

To create the traffic network graph, probe vehicle data provided by INRIX are utilized in this study (Inrix 
Data, 2019). Probe data refers to the information extracted from a portion of a vehicle stream using probe 
sensors (e.g., cell phone and automated vehicle location [AVL]). The raw data include 2.5 million 
trajectory records with 130 million GPS points in the state of Utah during September 2018. A trajectory is 
defined as a trace consisting of a set of GPS points from origin to the destination of a trip. Each GPS 
point contains basic information of a unique trajectory ID, time stamp, and geographical coordinates. The 
median sampling rate is 50 seconds. 

Using this dataset, we will be able to capture the number of trajectories traversing a roadway segment 
equipped with CCS. In order to do that, the trajectory data need to be preprocessed. Considering that GPS 
points may deviate from the actual locations due to measurement errors inherent to GPS technology, and 
trajectories with low frequency of sampling rate are difficult to capture, a computationally intense map 
matching technique is carried out with the OpenStreetMap tool, which applies a hidden Markov model to 
reconstruct the most likely road-based route from a time-stamped sequence of latitude/longitude pairs. As 
a result, the raw GPS points are mapped on the nearest streets, and the number of GPS points grows from 
130 million to 970 million by interpolating artificial points along the trajectories. However, due to signal 
loss and other GPS errors, a portion of trajectories are either broken into two parts, or represented by 
sparse GPS points far apart from each other even after interpolation. These anomalous trajectories are 
further removed due to quality control. Note that anomalous trajectory in this study is defined as the 
trajectory that has missing values, or has two consecutive GPS points that either the time span is beyond 
10 minutes, or the Euclidean distance is longer than 2.5 km. Finally, 1.5 million trajectories are obtained 
for analysis. 

4.2 Inputs and Outputs for Prediction 

Prediction is a subcategory of the supervised ML problem. Supervised ML uses algorithms to learn the 
mapping function from input to output (Alpaydin, 2009). In supervised learning, each sample in the 
dataset consists of input variables (typically a feature vector) and an output variable. The mapping 
function trains the algorithm so that it can use new input variables to predict the output variable with good 
accuracy. In this study, the output consists of ground truth hourly traffic counts (a), which are used to 
train and evaluate model performance. Apart from our proposed spatial dependency feature, input features 
such as spatial, temporal, and traffic flow characteristics are subcategorized into six parts (b-g). Data for 
each subcategory are briefly explained in the following. 

(a) CCS data 

Throughout the year, CCS records continuous counts of traffic on road segments, which can be translated 
into hourly volume. In this study, we use historical hourly traffic counts from 94 CCSs from May to 
December 2017 provided by the Utah Department of Transportation (UDOT). These CCSs are located in 
different geographical regions in the state of Utah with records ranging from 0 to 12,000 veh/hr. 
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(b) Probe data 

Other than the trajectory data, iPeMS, an online database owned by the UDOT, provides access to 
aggregated probe data collected by HERE in the state of Utah (HERE Probe Data, 2019). Measured 
average speed and estimated free-flow speed from May to December 2017 are retrieved from HERE (all 
data are collected every five minutes and aggregated by the hour). 

(c) Temporal features 

To delineate temporal variation of hourly volumes, hour-of-day (1:00 to 24:00), time-of-day (morning vs. 
midday vs. afternoon vs. evening vs. midnight), day-of-week (Monday to Sunday), and season (spring to 
winter) are added as temporal features. Meanwhile, federal holidays during the observed period 
(Memorial Day, Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving Day, and 
Christmas Day) are also accounted for. 

(d) Infrastructure characteristics 

UDOT provides infrastructure information for each CCS site. Variables, including road functional 
classification (interstate, freeway, major/minor arterial), segment speed limit, number of through lanes 
and number of high-occupancy vehicle (HOV) lanes, are extracted. 

(e) Surrounding road network 

We hypothesize that the complexity of a surrounding road network may affect the traffic volume of a 
segment. As a result, the length of roads, classified by functional classification, in a one-mile radius of a 
CCS site is captured using ArcGIS. Specifically, these features are the total length of interstate, 
expressway, principal arterial, minor arterial, major collector, minor collector, and local streets, 
respectively. 

(f) Weather 

MesoWest, a program started at the University of Utah, provides current and historically archived weather 
observation (MesoWest, 2019). Weather information recorded every five minutes is retrieved from 24 
weather stations across Utah and then aggregated by hour. Each CCS site is associated with the weather 
information of its closest weather station. The information contains weather conditions (clear, cloudy, 
rainy, snowy and others), distance to the closest weather station, air temperature, dew point temperature, 
wind speed, and range of visibility. 

(g) Socioeconomic factors 

UDOT also provides socioeconomic features, which contain average income, employment density, school 
enrollment rate, number of households, household size, and population density. All socioeconomic 
features are considered within a three-mile radius of each CCS site. Those features are used to represent 
potential socioeconomic impacts on traffic flow. 
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In sum, continuous historical hourly volumes of 94 CCS sites were collected from May 17 to December 
31, 2017. However, due to malfunction and/or other unknown reasons, some CCSs failed to record the 
complete data across the entire period, where the missing values accounted for 22% of the total 
observations. Feature values associated with missing labels are therefore removed. Among the 
aforementioned 33 features (including spatial dependency feature) and categorical variables (i.e., hour-of-
day, time-of-day, day-of-week, season, and weather conditions) are converted into dummy variables using 
One-Hot Encoding. Finally, our dataset contains 384,879 data points with 73 features. 
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5. RESULTS AND ANALYSIS  

5.1 Overview  

In this section, the proposed ML approaches are implemented for hourly volume prediction. This analysis 
explores models’ performance in response to the size of input features. A computer with an Intel i5 8400 
processor clocked at 2.81 GHz is used to conduct numerical analysis. In this study, model training is 
implemented in Python 3.7 and R. Open source packages Scikit-learn and XGBoost API are used to train 
SVM and XGBoost, separately. 

5.2 SVM Modeling Result  

In this subsection, both linear SVM and non-linear SVM are performed on the dataset. Model calibration 
and prediction are conducted subsequently, followed by the result analysis and comparison. 

5.2.1  Model Calibration 

Linear SVM is capable of training datasets with faster speed than non-linear SVM. In linear SVM, 
parameter C needs to be adjusted to optimize model performance, where C is the regularization parameter 
controlling the trade-off between low training error and low testing error. The values of parameter C are 
selected as [0.001, 0.01, 0.05, 0.1], respectively, to test on the training set, and prediction accuracy for the 
linear SVM is displayed in Figure 5.1. 

         
               Figure 5.1  Model calibration result from linear SVM model 

From Figure 5.1, it is observed that the highest prediction accuracy on validation set only reaches 0.61 
when C is set as 0.01. As the value of C continues increasing, prediction accuracy on validation set starts 
to decrease, which indicates overfitting. 

Meanwhile, parameters in non-linear SVM are calibrated. As mentioned earlier, non-linear SVM is a 
powerful ML technique due to kernel tricks. However, the model’s time complexity is O(𝑠𝑠3), where n is 
the sample size. This implies that non-linear SVM can be computationally expensive when the sample 
size is large. To avoid excessive training time, only 30,000 samples are randomly chosen from the 
training set. In non-linear SVM model, two parameters C and σ need to be adjusted, where C is the same 
parameter as in linear SVM and σ denotes the parameter from Gaussian kernel equation. Grid search 
method is used to adjust the two parameters simultaneously. For parameter C and σ, five numbers (i.e., 
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C ∈ [10, 100, 250, 500, 1000], and σ∈ [0.005, 0.0075, 0.01, 0.05, 0.1]) are chosen, respectively, to 
perform in CV. Figure 5.2 shows the prediction accuracy (R2) on training set and validation set. 

 
(a)                                                          (b) 

Figure 5.2  The predicting accuracy from the grid search method on training set (a) and validation set (b) 

In Figure 5.2(a), the prediction accuracy will increase as C gets larger and σ gets smaller. However, 
corresponding to the same values of C and σ in training set, the prediction accuracy in validation set will 
increase first and then start to drop as shown in Figure 5.2(b). High prediction accuracy on training set 
and low prediction accuracy on validation set denotes overfitting. Consequently, C=100 and σ=0.01 are 
chosen as the optimized parameters due to the highest prediction accuracy on validation set (0.74). 

 
Figure 5.3  The computation time for each trial from the grid search method 

Figure 5.3 shows the model’s computation time for each trial using grid search method. When training 
with optimized parameters, it takes approximately 239 seconds to form the model. Nevertheless, as the 
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model tends to overfit the training data, the training process of non-linear SVM model becomes more 
sophisticated, which results in longer training time. It is noted that the longest training process in grid 
search takes 3,810 seconds. 

5.2.2  Prediction Accuracy on Test Dataset 

Once parameters for SVM are calibrated, two models are performed on the test, and R2 is used to measure 
the models’ prediction effectiveness. The results show that linear SVM achieves an R2 of 0.52, while R2 
on non-linear SVM is 0.76. This indicates that non-linear SVM outperforms linear-SVM despite the fact 
that non-linear SVM is trained with fewer samples. 

In the next step, to explore the difference between predicted and ground-truth values explicitly, two CCS 
sites (i.e., CCS 351-negative direction and CCS 416-positive direction) are selected to visualize the 
prediction results from non-linear SVM in a continuous 14-day period. The results are illustrated in 
Figure 5.4. 

 

 
Figure 5.4  A portion of ground-truth data and predicting result for (a) CCS 351 (negative direction); and 

(b) CCS 416 (positive direction) 
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In Figure 5.4, it is found that the CCS 351 and CCS 416 sites show different levels of traffic flow and 
varying traffic patterns. For the CCS 351 site, hourly traffic volume ranges from 0 to 5,000 veh/h. In 
contrast, for the site of CCS 416, hourly volume is below 250 veh/h in most times of day. Note that in 
general, the prediction curve fits well when the traffic volumes are relatively low. Yet, prediction error 
increases when the traffic volume suddenly spikes. It is also noticed that non-linear SVM underestimates 
hourly volumes during peak hours for the CCS 351 site; whereas, the model overestimates traffic counts 
during peak hours for the CCS 416 site. 

5.2.3 AADT Estimation 

In this subsection, AADT from roads in the test dataset is calculated via ground-truth data and estimated 
values from non-linear SVM. Calculating AADT requires continuous daily traffic count over a year. 
However, the dataset used for this project only spans from May to December 2017. To address this issue, 
two methods for AADT estimation, namely simple average (Figliozzi et al., 2014) and factoring method 
(Gadda et al., 2007), are implemented to produce AADT. Intuitively, simple average method uses the 
average daily volume as the estimation of AADT, which is calculated as: 

𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒 = ∑ 𝑉𝑉𝑜𝑜𝑉𝑉𝑜𝑜𝑏𝑏𝑒𝑒𝑜𝑜𝑜𝑜𝑚𝑚𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛_𝑡𝑡
𝑁𝑁
𝑡𝑡=1           (22) 

where 𝑉𝑉𝑜𝑜𝑉𝑉𝑜𝑜𝑏𝑏𝑒𝑒𝑜𝑜𝑜𝑜𝑚𝑚𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛_𝑡𝑡 is the daily traffic volume at day t either from ground-truth data or predicting 
values, and N is the number of days in observation period. Meanwhile, the calculation of factoring 
method is expressed as follows: 

𝐴𝐴𝐴𝐴𝐷𝐷𝑇𝑇𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑒𝑒𝑒𝑒 = ∑ 𝑉𝑉𝑜𝑜𝑉𝑉𝑜𝑜𝑏𝑏𝑒𝑒𝑜𝑜𝑜𝑜𝑚𝑚𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛_𝑡𝑡 ∗ 𝑀𝑀𝑖𝑖 ∗ 𝐷𝐷𝑂𝑂𝐷𝐷𝑖𝑖_𝑡𝑡
𝑃𝑃
𝑡𝑡=1              (23) 

where 𝑀𝑀𝑖𝑖 is the monthly factor for the functional classification group i; and 𝐷𝐷𝑂𝑂𝐷𝐷𝑖𝑖 is the day-of-week 
factor for the functional classification group i; and P is the number of continuous testing days. 
Empirically, P is chosen as 3 for prediction purpose. The calculated results for 𝑀𝑀𝑖𝑖 and 𝐷𝐷𝑂𝑂𝐷𝐷𝑖𝑖 are 
appended in Appendix A. Figure 5.5 shows the predicted AADT values for CCS sites in the test dataset. 
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Figure 5.5  Predicted AADT from (a) simple average method; and (b) factoring method 

Figure 5.5 shows that the estimated AADT from simple average and factoring method for each site are 
very close. R2 values from the proposed two methods are 0.883 and 0.884, respectively. The result 
indicates that SVM is able to achieve satisfactory prediction accuracy for AADT prediction, although the 
performance on hourly volume prediction is relatively low.   

5.3 Graph Theory Based Spatial Correlation Modeling Result  

5.3.1 Graph construction and visualization 

As mentioned in the Methodology section, the proposed traffic network is an undirected weighted graph, 
where V denotes CCS sites, E represents edges for those CCS sites, and w represents the spatial 
correlation intensity of those edges. An edge exists between two CCS sites only if the two sites are 
“connected.” The probe vehicle trajectory data are utilized to calculate such connectivity and their 
intensity in this paper. Although these 94 CCS sites are widely distributed in Utah, not all trajectories pass 
through those sites. As a result, trajectories that do not traverse any CCS sites are filtered out using 
ArcGIS. 

In the next step, the CCS locations that each trajectory traverses are extracted and sequenced by time. 
Trajectories that pass only one CCS are further removed since an edge requires at least two nodes. A 
sample of trajectory profiles is shown in Table 5.1. 
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Table 5.1  The sequence of traversing CCS sites for a sample of trajectories 
Encoded unique trajectory ID [Timestamp, CCS ID] 

8cad1f9b0a90151761822b2b9037ff76 [[1535825719, -402]---> [1535826252, -621]---> [1535826644, -400]] 

9c3a8b03acfea8474f9e8f24a9d47596 [[1536435629, -402]---> [1536436037, -621]---> [1536436417, -400]] 

81f9fcea8615fa175ec2191c71ce565f [[1537414744, -402]---> [1537415262, -621]] 

8207bb6bb6ea69b84dfeed1c3ee9c792 [[1537396287, -411]---> [1537397073, -412]---> [1537401267, -402]---> 
[1537401695, -621]--->[1537402034, -400]] 

Note that an edge exists between any two CCS sites if there is at least one trajectory record. The total 
number of trajectories for each edge is subsequently counted. For example, the first trajectory in Table 2 
traverses CCS sites 402, 621, and 400 sequentially. Correspondingly, there is an edge between CCS sites 
402 and 621, and another edge between CCS sites 621 and 400. Meanwhile, three out of four trajectories 
in the table traverse between CCS sites 621 and 400. Correspondingly, the total count of trajectories for 
this edge is three. In this study, 686 edges are formed by approximately 1.5 million trajectories among 
these 94 CCS sites. The edge with the maximum number of trajectories has a count of 44,160 trajectories. 
The number of trajectories on each edge is divided by the maximum number of trajectories (44,160) to 
represent the weight w of that edge (ranging from 0 to 1). The distribution of edges by the number of 
trajectories is shown in Figure 5.6. 

 
Figure 5.6  Distribution of edges by the number of trajectories 

Figure 5.6 shows an uneven distribution of the weighted edges, with approximately half of the edges 
having a number of trajectories less than 10. Edges with a trajectory count over 1,000 only account for 
10% of the total edges. Note that although some edges demonstrate high connectivity, they are 
geographically distant from each other. When computing the spatial dependency feature introduced in the 
Methodology section, it is calculated by weighting hourly traffic volume at neighboring CCS sites (same 
BFS depth) at the same time of day. If two CCS sites are too far away, it would be infeasible to justify 
their spatial correlation. The graph is thus pruned by cutting edges whose Euclidean distance is larger 
than 80 kilometers – an empirical value set based on a one-hour driving distance on highway. The 
modified graph eventually contains 328 edges. 

CCSs are distributed on road segments with varying functional classifications. The functional 
classifications are labeled from 1 to 4, representing interstate, freeway, principal arterial, and minor 
arterial, respectively. Figure 4(a) shows the geographical distribution of CCS sites categorized by the 
functional classification of roads they reside in. 
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(a)                                                                          (b) 

Figure 5.7  (a) The geographical distribution of CCS sites; and (b) the constructed traffic network graph 
in this study 

In Figure 5.7(a), note that a significant portion of CCSs are congregated in urbanized areas (especially the 
Salt Lake City region), and the rest are sporadically distributed in rural areas. The distribution of CCSs 
for each functional classification is relatively uneven, where the numbers of CCSs on interstates and 
principal arterials outweigh the numbers on freeways and minor arterials. Specifically, the number of 
CCSs on road segments from Class 1 to Class 4 are 34, 8, 42, 10, separately. Figure 5.7(b) shows the 
weighted traffic network graph, where thickness of the line represents spatial correlation intensity of the 
edge. Note that edges between CCSs located along the interstates tend to have higher weights. This can be 
explained by the fact that interstates carry more traffic (therefore more trajectories) within the state to 
serve people’s mobility. This further demonstrates the advantage of graph-based metric over Euclidean 
distance measure, which previous studies used, when trying to unveil the spatial dependencies of a road 
network. Everything else being equal, two CCS sites with the same distance apart located on different 
road segments (e.g., interstate vs. arterial) show varying spatial correlations using the graph-based 
method.  

After constructing the traffic network graph, spatial dependency feature 𝑉𝑉𝑠𝑠𝑡𝑡 can be calculated by setting 
the maximum allowable depth for BFS to extract all qualified neighboring CCS sites. Together with this 
proposed feature, other features introduced in Section 4.2 will be fed into XGBoost for model training. 

5.3.2 Hyperparameter Tuning 

The hyperparameter tuning process is crucial for the performance of ML algorithms. Unfortunately, such 
tuning may require domain expertise, rules of thumb, and sometimes brute-force search (Snoek, 
Larochelle, & Adams, 2012). In general, random search, grid search, and Bayesian optimization are 
commonly used methods for hyperparameter tuning. Compared with the latter two, random search, by 
searching over the space of one hyperparameter at a time, ordered by the ones that have more influence 
over other hyperparameters first, is the easiest to implement, yet the accuracy is only marginally affected. 
As a result, random search is performed in this study. 
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To tune the hyperparameters, the entire dataset is split into three parts: training set, validation set, and test 
set. Given a specific range for each hyperparameter, training set is used to fit the model repetitively with 
different hyperparameters. Hyperparameters with the highest accuracy score on the validation sets are 
selected for the final model. Finally, a test set is utilized to report on the model’s generalization 
performance. In this calibration process, R2 is used to indicate the prediction accuracy. CCS sites are 
randomly split into three groups: 70% as training data, 15% as validation data, and 15% as test data, 
respectively. The main hyperparameters for our proposed model are listed below: 

(1)  For BFS method, the maximum allowed depth H is set to refrain the source node from stretching 
endlessly to other connected nodes; 

(2)  XGBoost has a set of parameters (e.g., tree depth, the ratio of column sampling, sub-sampling, and 
L2 regularization coefficient, etc.). Among them, the number of trees T and learning rate  𝜼𝜼 
(shrinkage) are the main hyperparameters that need to be adjusted. Other hyperparameters are set 
as default. 

 
Specifically, for the proposed model, the maximum allowed depth H for BFS is tuned from 1 to 8. The 
number of trees T and learning rate 𝜂𝜂 in XGBoost are adjusted empirically from 100 to 500, and 0.01 to 1, 
respectively. Calibration results for the proposed model are shown in Figure 5.8. 

 
(a)                                                                    (b) 

 

 
     (c) 

Figure 5.8  Calibration results of the proposed model, where (a) the maximum allowed depth for BFS; 
(b) the number of trees for XGBoost; and (c) learning rate are tuned separately 

Figure 5.8(a) shows the effectiveness of BFS by different levels of depth. When the maximum allowed 
depth is set to 1, prediction on validation set is constrained by the limited number of neighboring CCS 
sites, thus causing large biased results. As the threshold of depth level increases, more neighboring CCS 
sites with the same functional classification are included, leading to improvement in prediction accuracy. 
However, when the maximum depth is larger than 5, prediction accuracy starts to decrease on validation 
set. Those CCS sites located far away from the source node may have the same level of traffic volume yet 
different traffic patterns. As a result, incorporating hourly volume information of those CCS sites may 
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introduce noise in the spatial correlation feature. Figures 5.8(b) and (c) indicate that the optimal number 
of trees T is 100, and corresponding learning rate 𝜂𝜂 is 0.1. 

For comparison purposes, three different sets of models are developed to benchmark our proposed one:  
(a)  XGBoost model without spatial dependency feature;  
(b)  XGBoost model with a spatial dependency feature characterized by Euclidean distance.  

Specifically, a ring buffer with radius of K km is created for each test site to average the hourly 
volumes of qualified CCSs within the buffer as spatial dependency feature;  

(c)  XGBoost model with a spatial dependency feature characterized by network distance1. Given a 
maximum allowed network distance D km, the shortest path algorithm is applied to calculate the 
spatial dependency value by searching qualified CCSs for each test site in the network and 
averaging their hourly volumes. 

For model (a), only the number of trees T and learning rate 𝜂𝜂 need to be tuned, where the optimal values 
are 200 and 0.1; for model (b), 𝐾𝐾 ∈ [10,20,30,40,50], and the optimal values for K, T, and 𝜂𝜂 are 20, 100, 
and 0.1, respectively; and for model (c), 𝐷𝐷 ∈ [10,20,30,40,50], and the hyperparameters D, T, and 𝜂𝜂 are 
optimized as 20, 150, and 0.1. 

 
5.3.3 Model Performance and Comparison 

Here, we present the numerical results from our proposed method (XGBoost+BFS) and other 
benchmarked models. To compare the models’ effectiveness and test their generalization ability, the 
testing process is replicated five times by different random seeds. In each random seed, 15% of CCS sites 
are randomly selected and used as testing set. Prediction accuracy in regard to R2, MAE, and MAPE on 
test set for each random seed is recorded in Table 5.2. The average training time across all random seeds 
for the proposed model is 54.6 seconds, which shows the strength of model’s scalability. 

Table 5.2  Prediction performance of different models 
Seed R2 on test set MAE on test set MAPE on test set 

 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 
1 0.849 0.780 0.860 0.895 643 720 619 548 0.80 0.56 0.65 0.57 
2 0.839 0.862 0.811 0.934 645 554 562 404 1.06 0.93 0.51 0.88 
3 0.817 0.875 0.879 0.885 887 773 799 733 1.26 0.57 0.68 0.52 
4 0.859 0.866 0.847 0.868 631 397 420 522 1.96 1.03 1.58 1.33 
5 0.898 0.831 0.936 0.916 347 681 311 308 2.09 1.66 1.07 1.67 

Mean 0.852 0.842 0.866 0.900 631 625 542 503 1.43 0.95 0.90 0.79 
M1: XGBoost model without spatial dependency feature 
M2: XGBoost model with a spatial dependency feature characterized by Euclidean distance 
M3: XGBoost model with a spatial dependency feature characterized by network distance 
M4: XGBoost model with BFS algorithm 

As observed from the results across five random seeds, the proposed approach achieves the highest R2 
and the lowest values of MAE and MAPE on average compared with other models. In contrast, M1 has 
the worst performance in terms of MAE and MAPE. This indicates that the spatial dependency feature 
does improve prediction accuracy of the model. M2 shows an inconsistent performance. In some random 
seeds, the predictions are exacerbated by the spatial dependency feature, which indicates that using 
Euclidean distance to capture the spatial correlation is coarse to some extent. M3 yields better predictions 
than M1 and M2, suggesting the effectiveness of quantifying the spatial dependency using network 

 
1 Network distance is defined as the length of shortest path between two locations in the network. 
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distance. Yet, M4 outperforms M3 with regard to R2, MAE, and MAPE on average. Such results illustrate 
that the quantifying distance by depth in a weighted graph enables a better capturing of spatial correlation 
over Euclidean distance and network distance. R2 values of all random seeds are bounded by narrow 
variations; whereas, MAEs across different random seeds vary significantly from 308 to 887 veh/hr. Such 
variation is due to the fact that hourly volume samples could vary widely across different locations from 0 
to 12,000 veh/hr, and the functional classification of CCS sites in test set can be significantly different 
across each random seed scenario. The same reason applies to the variation of MAPE (from 0.51 to 2.09). 
For example, with the same prediction bias (e.g., 100 veh/hr), MAPE on CCS sites with large traffic 
volume is smaller than those with lower traffic volume. As a result, random seed scenario with a large 
proportion of low volume road segments in test set generally will achieve lower MAE and higher MAPE 
(e.g., Seed 5). To further demonstrate the variation of MAPEs with different levels of hourly traffic 
volumes, Figure 5.9 shows the violin plots of MAPEs on test set across all random seeds categorized by 
different levels of hourly traffic volumes. 

 
Figure 5.9  MAPE distribution of hourly volume prediction in test set across five random seeds classified 

by volume range 

For each “violin” in the figure, a box plot is drawn inside, and its margin shows the Gaussian distribution 
of the dataset. In Figure 5.9, it is noted that predictions for lower volumes generally have higher MAPE 
value, especially when the actual hourly volume is below 100 veh/hr. This is because MAPE calculated 
with “low volume” scenarios are more sensitive to prediction errors as explained earlier. As the hourly 
volume increases, the median of MAPEs drops significantly. Meanwhile, models considering spatial 
dependency outperform the XGBoost model without the spatial dependency feature on all volume 
categories, indicating the advantage of utilizing the information of neighboring road segments. To better 
visualize model performance, ground truth hourly counts from test set in Seed 1 are compared against 
predicted values in Figure 5.10. 
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Figure 5.10  Comparison of ground-truth hourly volumes vs. predicted outputs from Seed 1 by 

(a) XGBoost model without spatial dependency feature; (b) XGBoost model with a spatial 
dependency feature characterized by Euclidean distance; (c) XGBoost model with a spatial 
dependency feature characterized by network distance; and (d) XGBoost model with BFS 
algorithm 

As shown in Figure 5.10(d), results from the proposed model are the closest to the benchmarked diagonal 
overall, which indicates the best prediction performance among all. In contrast, a greater portion of data 
points tend to deviate further from the diagonal by only using the XGBoost model for prediction (Figure 
5.10(a)). Such deviation is more pronounced when the actual hourly volume ranges between 5,000 and 
10,000 veh/hr, which subsequently causes high MAEs and MAPEs. On the other hand, it is also observed 
that prediction is unexpectedly exacerbated using the Euclidean distance buffer to capture the spatial 
dependency feature (Figure 5.10(b)). One possible explanation is that the Euclidean distance ring buffer 
captures spatial correlation in a coarse level. For instance, in dense road network where nodes (CCSs) are 
distributed closely, two neighboring connected roads (spatially connected) might be irrelevant in terms of 
traffic pattern, yet Euclidean distance will deem them as spatially dependent given the close vicinity in 
distance. As a result, the aggregated neighboring volumes may incorrectly reflect the traffic condition at 
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prediction sites, inducing over- or under-estimation of traffic volumes. Note that using network distance 
can boost the prediction accuracy compared with the model without using spatial dependency feature 
(Figure 5.10(c) vs. Figure 5.10(a)). Yet, the improvement is less significant than the proposed method. 
Overall, the BFS approach decreases the average prediction errors steadily and effectively. 

5.3.4 Spatial Correlation Analysis 

Compared with the XGBoost model without spatial dependency feature, the proposed model obtains 
better performance based on all indicators. As mentioned earlier, one highlight of tree ensembles is their 
ability to interpret feature importance. Mean decrease impurity is implemented for each split in XGBoost 
during the training process. Thirty-three features are ranked based on their importance to the prediction. 
The feature importance ranking and feature category split are presented in Figure 5.11.

 

(a)                                                             (b) 
Figure 5.11  (a) Feature importance ranking; and (b) pie chart of importance split via mean decrease 

impurity by feature category, where the sum of importance coefficients equals to 1 

In Figure 5.11(a), variables’ contributions to prediction accuracy are highly imbalanced, with only 7 
variables’ importance coefficients exceeding 0.05. The spatial dependency feature ranks as the second 
most important feature for prediction with a coefficient of 0.138. This result highlights the fact that spatial 
dependency plays a critical role in estimating small-granularity traffic volumes. By effectively 
quantifying spatial correlation, prediction accuracy can be significantly improved. Figure 5.11(b) 
indicates that road characteristics, socioeconomic factors, spatial dependency, and temporal features are 
the most influential feature categories, which is consistent with the findings in Zhao and Chung (2001) (F. 
Zhao & Chung, 2001). Probe data and surrounding road network features, such as the total length of 
nearby interstates, also contribute to traffic volume prediction to a certain extent. However, weather 
factors only account for 0.01 of the total importance. This might be because the data collection period was 
mostly under normal weather conditions. Such feature importance analysis provides insightful guidance 
for future traffic volume prediction projects. Such techniques may ultimately provide transportation 
agencies or state DOTs with the tools to accurately estimate traffic volumes at relatively low cost. First, 
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given that infrastructure characteristics, socioeconomic features, and temporal features are significantly 
influential to traffic volume and can be readily available, those features should be regarded as essential 
data for estimating traffic volume. This prioritization can ensure a relatively good model performance 
while saving a huge amount of time on data collection and data filtering processes. Second, exploring 
spatial dependency can augment the prediction accuracy. Thus, we recommend utilizing additional 
features (such as trajectory data) to build the traffic network and quantify such spatial correlation. Lastly, 
probe data, surrounding road network information, and weather data are more variant and require extra 
time to collect and preprocess; whereas, they contribute relatively less to the prediction. If higher 
prediction accuracy is required, those features might be collected and fed into the model. 

We further explore the scenarios where the spatial dependency feature demonstrates prediction superiority 
and reveals underlying reasons. Specifically, MAPEs for CCSs in testing dataset of each random seed are 
displayed in Figure 5.12. It is observed that, in Seeds 1 and 3, there are more testing CCS sites 
congregating around the center of the Salt Lake City cluster compared with other scenarios. Figures 
5.12(a) and (c) indicate relatively lower prediction errors for those CCS sites, which correspondingly 
result in better average prediction results on test set for those two seeds. The reason lies in the fact that 
those nodes have higher degree centrality (due to the congregation), and consequently have more 
neighboring nodes to obtain the spatial dependency feature. Such augmented information would result in 
better prediction result. On the contrary, for testing nodes that are sporadically located, prediction error 
can be significant since very limited information, if any, can be retrieved in the neighboring region. In 
other words, if BFS only captures a few neighboring nodes, there is a higher chance to obtain larger 
biased prediction, as illustrated in Figures 5.12(d) and (e). 

 
(a)                         (b) 
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                                  (c)                                                                          (d) 

 
(e) 

Figure 5.12  MAPE for the CCS sites in the test set, where (a) to (e) displays results across Seeds 1 
through 5 

Based on the above spatial correlation analysis, suggestions are provided for future CCS deployment 
strategy. In a traffic network, roads with high spatial correlation, such as adjacent segments along the 
freeway and roads with higher value of edge weight, tend to present similar traffic patterns. In contrast, 
isolated or remote roads in such networks might exhibit their unique traffic patterns and are difficult to 
extract information from neighboring areas because they are too distant. As a result, we suggest that CCSs 
should be extended with a wider coverage in remote or isolated areas, since traffic volume in spatially 
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correlated regions can be inferenced with higher accuracy, while estimating traffic volume on roads 
distributed sporadically tends to generate larger errors. Besides, the deployment of CCSs should be 
balanced with regard to the roads’ functional classification. The level of traffic volume is highly relevant 
to functional classification. Yet the distribution of CCSs on roads with different functional classifications 
in our dataset is uneven. Such distribution results in the roads that fall into a minority class of functional 
classifications not being able to extract relevant traffic information from neighboring regions. 
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6. CONCLUSIONS 

Hourly traffic volume possesses more valuable information than AADT for micro-level operational 
analysis. However, estimating hourly traffic volume at a new location with high accuracy can be quite 
challenging. This paper applies ML approaches to predict hourly traffic volume in a statewide road 
network managed by UDOT. The models utilize a series of features accounting for the spatial-temporal 
and traffic flow characteristics. Predictive capability and computational efficiency are measured and 
compared among proposed models through CCS sites in the state of Utah for 2017. 

First of all, the performance of linear SVM and non-linear SVM are analyzed. It is found that the non-
linear SVM model is not suitable for a large-scale training dataset due to its computational complexity. 
Although linear SVM can be trained with faster running time, it only achieves 0.52 for R2 value on a test 
dataset, indicating a relatively poor prediction performance. 

We further applied a computationally efficient tree ensemble model – XGBoost – to predict hourly traffic 
volume. The model utilizes a series of features that might affect traffic flows along with the proposed 
spatial dependency feature. In this study, a weighted traffic network graph is created to explore the spatial 
correlation between road segments. A graph-based approach – BFS – is implemented to search the 
neighboring sites and subsequently compute the spatial dependency feature. Predictive capability of the 
proposed model is assessed and compared with three different models: XGBoost model without spatial 
dependency feature, XGBoost model with a spatial dependency feature characterized by Euclidean 
distance, and XGBoost model with a spatial dependency feature characterized by network distance. The 
numerical result demonstrates the advantage of the proposed model over Euclidean distance and network 
distance when quantifying spatial correlation in a network. Specifically, numerical results of five random 
seeds show consistent outperformance of the proposed model with an average R2, MAE, and MAPE 
being 0.9, 503, and 0.79, respectively. The average MAE and MAPE are reduced by 20.3% and 44.8% 
compared with XGBoost alone. Moreover, XGBoost is proven to be capable of training a large-scale 
dataset with high computational efficiency. Feature importance analysis further verifies the relevance of 
the proposed spatial dependency feature, accounting for 13.8% of the total importance among all features. 
In addition, spatial analysis shows that the proposed spatial dependency feature demonstrates its 
superiority for densely clustered regions. Future research will focus on exploring spatial prediction for 
nodes in sparse network and/or isolated islands.  
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8. APPENDIX A: MONTHLY FACTOR AND DAY-OF-WEEK FACTOR 
CALCULATION 

Monthly factor 𝑀𝑀𝑖𝑖 for each month based on functional classification 

Month/Class 1 2 3 4 

1 1.25 1.29 1.39 1.96 

2 1.10 1.09 1.21 1.62 

3 1.01 0.98 1.04 1.10 

4 1.01 1.01 1.00 0.84 

5 0.97 0.99 0.94 0.77 

6 0.92 1.04 0.91 0.81 

7 0.95 1.09 0.93 0.87 

8 0.91 0.97 0.92 0.93 

9 0.97 0.94 0.93 0.83 

10 0.98 0.90 0.95 0.91 

11 1.02 0.86 1.04 1.24 

12 1.07 0.97 1.14 1.72 
 

Day-of-week factor 𝐷𝐷𝑂𝑂𝐷𝐷𝑖𝑖 for each day of week based on functional classification 

DOW/Class 1 2 3 4 

Sun 1.34 1.39 1.38 0.95 

Mon 1.03 0.97 1.01 1.08 

Tue 1.00 0.94 0.99 1.14 

Wed 0.97 0.90 0.97 1.09 

Thu 0.94 0.90 0.95 1.05 

Fri 0.87 0.89 0.87 0.90 

Sat 1.01 1.19 1.05 0.86 
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