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ABSTRACT 
 
When designing transportation infrastructure, stormflow hydrographs are commonly estimated using 
synthetic unit hydrograph (UH) methods, particularly for ungauged basins. Current synthetic UHs either 
consider very limited aspects of basin geometry or require explicit representation of the basin flow paths. 
None explicitly considers the channel network type (i.e., dendritic, parallel, pinnate, rectangular, and 
trellis). The goal of this study is to develop and test a nonlinear synthetic UH method that explicitly 
accounts for the network type. The synthetic UH is developed using kinematic wave travel time 
expressions for hillslope and channel points in the basin. The effects of the network structure are then 
isolated into two random variables whose distributions are estimated based on the network type. The 
proposed method is applied to 10 basins from each classification and compared with other related 
methods. The results suggest that considering network type improves the estimated UHs compared with 
neglecting it, but the classification is an adequate substitute for the individual network configuration only 
for pinnate basins. 
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1.  INTRODUCTION 

Transportation infrastructure, such as bridges and culverts, must safely convey storm flows in order to 
assure continued functionality and public safety. To assess the hydrologic performance of such 
infrastructure, consultants frequently use modeling software. Many widely used hydrologic models, such 
as HEC-HMS (Feldman, 2000) and SWAT (Arnold and Fohrer, 2005), represent spatial variability within 
a watershed using a semi-distributed approach. In this approach, the basin is divided into sub-basins (or 
hydrologic response units), and within each sub-basin excess rainfall (or runoff) is generated with little 
consideration of spatial variability. The excess rainfall is then commonly transformed into stormflow at 
the sub-basin outlet using a unit hydrograph (UH) method, which assumes a linear relationship between 
the excess rainfall and stormflow. Despite their simplicity, semi-distributed models have been shown to 
exhibit similar performance to fully distributed models (Abu El-Nasr et al., 2005; Haghnegahdar et al., 
2015; Reed et al., 2004). 

In many cases (particularly ungauged basins) the UH is synthesized. Commonly used synthetic UHs 
include the SCS (1972), Snyder (1938), and Clark (1945) methods (see Singh et al., 2014, for a recent 
review of synthetic UHs). These methods estimate the UH based on relatively few physical characteristics 
of the watershed. For example, the original SCS/NRCS method used a single dimensionless UH for all 
watersheds (SCS, 1972). The dimensionless UH was then rescaled based on the coordinates of the UH 
peak, where the coordinates were typically calculated using watershed characteristics such as the area, 
mainstream length, and average watershed slope. More recently, the method was updated so that the 
dimensionless UH shape can vary based on a selected peaking factor (NRCS, 2007). 

Watersheds exhibit differences beyond those directly considered in traditional synthetic UH methods. In 
particular, they can exhibit very distinct channel network structures depending on the geomorphic 
conditions under which the networks developed. These differences have led to network classifications 
such as dendritic, parallel, pinnate, rectangular, and trellis (Fig. 1.1) (Howard, 1967; Mejía and Niemann, 
2008; Parvis, 1950; Zernitz, 1932). Dendritic networks are tree-like with channels oriented in many 
directions and acute angles at confluences. This network type develops when few lithologic or 
topographic constraints are present (Zernitz, 1932). Parallel networks have major channels that are 
aligned with each other and develop when the region has a pre-existing slope (Castelltort et al., 2009; 
Howard, 1967; Phillips and Schumm, 1987; Zernitz, 1932). Pinnate networks tend to be feather-like with 
a single main channel and many smaller channels joining the main channel at acute angles, but the origin 
of this network type is unclear (Jung et al., 2011; Parvis, 1950; Phillips and Schumm, 1987; Zernitz, 
1932). Rectangular networks have channels with right-angle bends and tributaries that merge at right 
angles. They form when the channels exploit orthogonal jointing in the bedrock (Howard, 1967). Trellis 
networks resemble a garden trellis with numerous short tributaries joining irregular main streams. This 
network type develops in fold-and-thrust belts like the Appalachian Mountains (Parvis, 1950; Zernitz, 
1932). Channel networks are often classified by visual inspection, but quantitative methods have been 
developed to ensure objectivity. These methods include empirical approaches (Argialas et al., 1988; 
Hadipriono et al., 1990; Ichoku and Chorowicz, 1994) and an approach based on scaling invariance 
(Mejía and Niemann, 2008). The network classification has also been shown to affect the time of 
concentration of a watershed. For example, Jung et al. (2017) showed differences in relationships between 
time of concentration with bifurcation ratio and maximum hydraulic length of flow path between network 
types. 
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Figure 1.1  A typical channel network from each network classification. Black dots indicate the basin  
 outlets. 

 
Several UH methods have been developed to consider channel network structure, but none have explicitly 
considered network classifications. The Geomorphologic Instantaneous UH estimates the probability 
density function (PDF) of travel times using Horton’s Ratios, which are derived from the network 
structure (Gupta et al., 1980; Rodríguez-Iturbe and Valdes, 1979). This approach has also been 
generalized to allow a nonlinear relationship between excess rainfall and stormflow (Rodríguez‐Iturbe et 
al., 1982) and to consider the effects of hillslope travel times (van der Tak and Bras, 1990). Gupta and 
Waymire (1983) also proposed a geomorphic instantaneous UH based on stream links instead of Strahler 
(1957) stream ordering. Other UH methods explicitly represent the watershed’s flow paths. For example, 
the modified Clark method in HEC-HMS allows the user to enter a time-area distribution, which 
describes the distribution of travel times to the watershed outlet, but that time-area distribution must be 
determined outside of the modeling framework (Feldman, 2000). It is usually found using a digital 
elevation model (DEM). Similarly, spatially distributed travel time (SDTT) methods explicitly represent 
the flow paths in a watershed using a DEM (Du et al., 2009; Lee et al., 2008; Maidment, 1993; Muzik, 
1996). Then they calculate a travel time in each DEM grid cell using its physical properties (Du et al., 
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2009; Zuazo et al., 2014). The UH is then found from the distribution of travel times from the watershed 
cells to the outlet. Some SDTT methods also overcome the linearity assumption of UH methods because 
the travel times vary in time (Du et al., 2009; Lee and Yen, 1997). However, SDTT methods operate on 
the DEM grid and thus cannot be implemented within semi-distributed (or lumped) models. 

The objective of this study is to develop and test a nonlinear synthetic UH method that accounts for the 
network type. The synthetic UH is developed by adapting an SDTT method. It uses kinematic wave 
theory to derive flood wave travel time expressions for hillslope and channel cells of a DEM. It then 
estimates the required characteristics for each cell (e.g., channel slope and width) using simplifications 
and empirical relationships that are applied throughout the watershed. This step allows the properties of 
each cell to be estimated based on watershed-wide model parameters. It also isolates the effects of the 
flow path network in two random variables (one for the hillslopes and one for the channels). These two 
random variables are then represented using theoretical distributions, and the parameters of those 
distributions are estimated for the five network types. The resulting synthetic UH is nonlinear and can be 
implemented inside a semi-distributed (or lumped) model if the user provides the model parameters and 
selects one of the five network types. 

The outline of the paper is as follows. Section 2 presents the analytical framework used to determine the 
synthetic UHs. Section 3 describes the basins used to evaluate the model for each network type. Section 4 
evaluates the synthetic UH results by comparing them to the results of an SDTT method (which explicitly 
represents that actual flow paths for each basin). It also considers whether the network types produce 
substantial differences in the synthetic UHs. Finally, Section 5 summarizes the key conclusions of the 
study. 
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2.  MODEL DEVELOPMENT 

2.1  Hillslope Travel Time Distribution 

The flood wave travel time for a hillslope cell is based on an expression derived by Wong (1995), who 
applied the kinematic wave approach to a sloping plane where flow enters from upslope and is generated 
locally by excess rainfall. If this expression is combined with Manning’s equation and written for a 
hillslope cell at location j, it becomes: 

 ( ) ( )
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where h,j  is the travel time for hillslope cell j, nh,j is Manning’s roughness coefficient, Lj is the flow 
length, Sj is the slope, Ej is the excess rainfall rate, and flow, j is the ratio of the flow entering from upslope 
to the flow that is produced within the plane.  

Gironás et al. (2009) modified this expression for use in an SDTT method. The excess rainfall is allowed 
to vary in time but is constrained to be homogeneous in space, so it becomes Ei where i is an index for 
time. It is assumed that the excess rainfall is produced uniformly across the basin’s DEM, so variable 
source areas are not considered (Dunne and Black, 1970). Because the excess rainfall rate varies in time, 
the travel time varies in time and becomes h,i,j. In reality, flow, j also varies in time, but Gironás et al. 
(2009) made the approximation that flow, j = Aup,j / A, where Aup,j is the total area that is upslope of the grid 
cell and A is the area of the grid cell itself. This approach assumes that the duration of the storm is long 
enough for the entire upslope area to contribute flow simultaneously to the grid cell. This assumption has 
been made by others (e.g., Melesse and Graham, 2004; Rodríguez‐Iturbe et al., 1982) and was evaluated 
in detail by Zuazo et al. (2014), who found it to be a good approximation of full kinematic wave routing 
on hillslopes. Using these approximations, Eq. (1) becomes: 

 
0

,

0.6
.6 0.6

, 0.4 ,

, , 1up j uh j j

i

j

p j

h i j

n L A A
E

A AS
τ − + −=

      
             

  (2) 

Even though every grid cell has the same area A, the length Lj can vary between grid cells to account for 
flow paths in the diagonal and cardinal directions of the grid. 

An expression can then be written for the total hillslope travel time (Th,i,k) for flow that starts at any cell k 
in the basin and moves to the basin outlet: 
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where the summation includes all the hillslope cells on the path between cell k and the basin outlet. Eq. 
(3) indicates that the hillslope travel time depends on a variety of local characteristics. To simplify the 
model, three approximations are implemented. First, variation in the local flow length is neglected by 
replacing Lj with L, which is an effective flow length for all grid cells. Assuming that flow directions are 
equally likely to occur in all cardinal and diagonal directions, that effective length is the average of the 
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cardinal and diagonal flow lengths of the grid cells ( ( ) 0.50.5 1 2L A= + ). Second, all hillslope cells are 

assumed to have the same roughness nh, which is frequently assumed when applying similar models (e.g., 
Gironás et al., 2009; Robinson and Sivapalan, 1996; Zuazo et al., 2014). Third, it is assumed that all 
hillslope cells have the same effective slope Sh. In reality, most basins tend to have convex-up hillslopes 
due to slope-dependent transport processes, such as rain splash, bioturbation, and soil creep (Gilbert, 
1909; Roering et al., 2001; Tucker and Bras, 1998). However, planar hillslopes are a common assumption 
in many similar models (e.g., Gironás et al., 2009; Robinson and Sivapalan, 1996). Using these 
approximations, the total hillslope travel time becomes: 
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To simplify the notation, the constant basin properties are collected into a single hillslope coefficient 
0.6 0.3 0.4

h h hm n S L− −≡ . In addition, the summation in Eq. (4) is defined as Ash,k, where the subscript k is included 
because each location where flow starts k has a different path to the outlet and thus a different value for 
that summation. This summation depends on the accumulation of area along the hillslope flow paths, so it 
is closely related to the aggregation of the flow network. Substituting these variables into Eq. (4), it 
becomes: 

 0.4
,, , i h shh i kkT E m A−=   (5) 

Eq. (5) describes the hillslope travel time from an arbitrary point k to the outlet. For a given storm event, 
flow is expected to begin at all locations in the basin. Thus, one can consider Ash,k as the outcome (for 
location k) of a random variable Ash. The variable Ash probabilistically describes the collection of values of 
Ash,k  that occur across the basin. It is assumed that Ash is described by the Johnson Special Bounded (SB) 
distribution (this assumption is evaluated later). This distribution is related to the normal distribution, 
which is associated with sums (George and Ramachandran, 2011; Kottegoda, 1987), and Ash,k is a sum, as 
shown in Eq. (4). The Johnson SB PDF is written: 
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where h is a shape parameter that primarily controls the skewness, and h is a second shape parameter 
that primarily controls the kurtosis. h is the location parameter, and h is the scale parameter. It is 
assumed that h, h, h, and h can be estimated from the network type and maximum upslope area for any 
hillslope cell Ahmax. These assumptions and the nature of any such dependence is examined later. 

2.2  Channel Travel Time Distribution 

A very similar approach is used to calculate the travel time distribution for the channels. The flood wave 
travel time in a channel cell is based on an expression derived by Wong (2001), who considered a wide 
rectangular channel where flow enters from both upstream and locally under the kinematic wave 
approximation. If the Wong (2001) equation is applied to a channel cell at location j, it can be written:  
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where c,j is the travel time in channel cell j, nc,j is Manning’s roughness coefficient for the cell, Wj is the 
channel width, Qdown,j is the flow at the downstream end of the cell, and Qup,j is the flow that is contributed 
to the cell from upstream. Unlike the hillslope cells, which drain relatively small areas, it is unlikely that 
the entire upstream area simultaneously contributes flow to a channel cell for storms with realistic 
durations. Following Iacobellis and Fiorentino (2000), it is assumed that only some fraction r  of the 
upstream area contributes flow simultaneously. Thus, Qup,j = rEi Aup,j and ( ), ,down j i up jQ rE A A= +  if excess 
rainfall is again assumed to be spatially homogeneous.  

An expression can then be written for the total channel travel time from a cell k in the basin to the basin 
outlet Tc,i,k : 
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where the summation includes the channel cells on the path between cell k and the outlet.  

 
Several approximations are implemented to simplify Eq. (8). Local variations in cell flow lengths are 
again neglected by replacing Lj with L, and all channel cells are assumed to have the same roughness nc, 
which is a common approach (e.g., Gironás et al., 2009; Zuazo et al., 2014). In addition, the channel slope 
is assumed to depend on the contributing area according to a power function Sj = b(Aup,j  + A)− where b 
and  are constants that can vary between basins (Flint, 1974; Hack, 1957; Sklar and Dietrich, 2013; 
Tarboton et al., 1989; Willgoose et al., 1991). The coefficient b is related to the vertical relief of the basin, 
while  describes the concavity of the longitudinal profiles of the channels. The slope-area relationship 
describes the average slope at a given contributing area, but much variation typically occurs around this 
average value (Cohen et al., 2008; Niemann et al., 2001; Tarboton et al., 1989). In addition, deviations 
from a power function can also occur (Ijjasz-Vasquez and Bras, 1995). Such complexities are neglected 
here. Finally, the channel width is also assumed to depend on the contributing area according to a power 
function Wj = d(Aup,j  + A)e where d and e are constants that can vary between basins. Such dependence has 
been observed empirically (Hack, 1957; Leopold and Maddock, 1953; Montgomery and Gran, 2001; 
Wolman, 1955) and has been used in similar models in the past (Snyder et al., 2003). Employing these 
simplifications in Eq. (8), one obtains: 
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To simplify the notation, the constants in front of the summation are collected into a single channel 
coefficient 0.4 0.6 0.3 0.4 0.3 0.4 0.4e

c cm r n b d A θ− − + −≡ , and the summation in Eq. (9) is defined as Asc,k. This variable 
describes how area accumulates along the channel flow path and is expected to depend on the channel 
network structure. Using these definitions, Eq. (9) can be written: 

 0.4
,, , i c scc i kkT E m A−=   (10) 
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It is assumed that Asc is described by the Johnson special bounded (SB) distribution: 
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Where c primarily controls the skewness, and c primarily controls the kurtosis. c is the location 
parameter, and c is the scale parameter. It is assumed that  c, c, c, and c and can be estimated based 
on the network type and maximum upstream area for any channel cell Amax. The nature of any such 
dependence is examined later. 

 
2.3  Total Travel Time Distribution 

The total travel time from an arbitrary point k to the outlet (Ti,k) is the sum of the hillslope and channel 
travel times from that point, so one can write: 

 ( )0.4

, , , , , , ,i k h i k c i k i h sh k c sc kT T T E m A m A−= + = +   (12) 

If the time-invariant portion of the overall travel time is defined as , ,k h sh k c sc kX m A m A≡ + , then the PDF 
for X can be determined by a convolution assuming that mh Ash,k and mc Asc,k are independent. The hillslope 
scale is typically similar irrespective of the hillslope’s position in the basin (Tucker et al., 2001), so the 
hillslope and channel travel times from a point to the outlet are expected to be independent (Rodríguez-
Iturbe and Valdes, 1979). Because an analytical solution for this convolution is not known, the 
convolution is performed numerically: 
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where n is the number of discrete increments of X used in the numerical evaluation, X is the size of the 
increment, and l is an index for those increments. Finally, the instantaneous UH (IUH) associated with 
excess rainfall Ei can be found from the PDF for Ti, which is: 
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  (14) 

The IUH varies in time because Ei varies in time. UHs and direct runoff hydrographs can then be 
calculated by a convolution of the excess rainfalls and IUHs as described by Gironás et al. (2009). 

In summary, this modeling approach isolates the effect of the drainage network structure in the random 
variables Ash and Asc. The other basin properties are represented by a series of constants (nh, Sh, nc, r, b, d, 
, and e), which can be set for the basin of interest. The method also includes two constants that imply the 
spatial resolution of the calculations: L and A. These constants transform the PDFs for Ash and Asc into the 
time-invariant PDF for X. Then the PDF for X is modified using the time-varying excess rainfall rate Ei to 
determine the time-varying PDF for Ti, which is the time-varying IUH for the basin. 
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This method is similar to the time-area methods developed by Zoch (1934) and Clark (1945) because it 
uses travel times that are determined from the basin shape. Those methods used simplified watershed 
geometries, but that approach has since been generalized to use real watershed configurations (Kull and 
Feldman, 1998; Peters and Easton, 1996; Saghafian et al., 2002). The proposed model also differs from 
those methods because the travel times vary in time, which produces a time-varying IUH. The use of 
time-varying UHs has also been explored by others (Du et al., 2009; Lee et al., 2008; Xia et al., 2005). 
Also, those methods used a linear reservoir to represent the attenuation of the flood wave by storage in the 
basin (Clark, 1945; Zoch, 1934). The effects of including a linear reservoir in the proposed synthetic UH 
method will be explored later in this paper. 
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3.  APPLICATION TO BASINS 

 
The synthetic UH method is evaluated by application to 10 basins from each of the five classifications. 
Nearly all the basins were originally processed by Mejía and Niemann (2008). In their collection, 
however, Buckeye Run, WV, (dendritic) and Stony Run, WV, (trellis) are sub-basins of other included 
basins. Furthermore, Hill Creek, UT, (parallel) does not strongly exhibit parallel characteristics. Thus, 
these three basins were replaced with Rockcastle Creek, KY, (dendritic), Penns Creek, PA, (trellis), and 
Mancos River Tributary, CO, (parallel). The new basins were selected from regions where the networks 
had been previously classified (Mejía and Niemann, 2008). 

The new basins were processed in the manner used by Mejía and Niemann (2008). Specifically, the 
TauDEM toolbox for ArcGIS was used to fill pits, determine flow directions (according to the D8 
algorithm), and calculate upslope/upstream areas and slopes (O’Callaghan and Mark, 1984; Tarboton, 
2003; Tarboton et al., 1991). To avoid infinite travel times in the model, any zero slope was replaced by 
the lesser of the calculated slope resolution and 0.8 times the minimum nonzero slope present in the 
processed DEM.  

A cell is considered to contain a channel if the contributing area exceeds a selected threshold. 
Montgomery (2001) divided the slope-area plot into five geomorphic zones (hillslopes, valley heads, 
colluvial channels, bedrock channels, and alluvial channels), and we evaluated two threshold areas based 
on these zones. The first threshold separates the valley heads and colluvial channels, and the second 
distinguishes the colluvial and bedrock channels. The presented results use the second threshold because 
it avoids producing unrealistic adjacent, parallel channels at small contributing areas (the results when the 
first threshold is used are discussed later). 

Basic characteristics for the 50 basins are summarized in Table 3.1. The pinnate basins tend to be larger 
than the other types with an average area of 1,014 km2. The parallel and rectangular basins are the 
smallest with average areas of 217 and 254 km2, respectively. The pinnate basins also have the coarsest 
DEM resolutions with an average of 76.4 m, while the DEM resolutions for the remaining types are, on 
average, 27 m. The channel threshold area (which also determines Ahmax) is largest for pinnate basins (on 
average 688,560 m2) and smallest for dendritic and parallel basins (on average 53,720 and 76,850 m2, 
respectively). 
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Table 3.1  Basic characteristics of the 50 basins analyzed in this study 

  
Basin Name Outlet 

Lat. (deg) 
Outlet Long. 

(deg) 

DEM 
Resolution 

(m) 

Basin Area 
(km2) 

Channel 
Threshold 

(m2) 

D
E

N
D

R
IT

IC
 Bluestone Creek, WV 39.3020 -80.7787 27.2 324 33,300 

Buffalo Creek, WV 40.2509 -80.5976 27.0 419 56,000 
Captina Creek, OH 39.8706 -80.8193 27.0 460 29,200 
Cedar Creek, GA 31.6712 -81.5048 28.5 219 115,500 
Little Saluda River, SC 34.0773 -81.5942 28.1 565 102,900 
Rockcastle Creek, KY 38.0020 -82.5189 27.9 314 53,400 
Tenmile Creek, PA 39.9804 -80.0240 27.0 512 95,500 
Turkey Creek, SC 33.7773 -82.1606 30.0 625 63,000 
Tygarts Creek, KY 38.3926 -82.9601 27.4 291 79,100 
Wheeling Creek, WV 40.0506 -80.6673 27.0 739 36,500 

PA
R

A
L

L
E

L
 Albert Creek, WY 41.5065 -110.6095 26.8 439 57,400 

Black Sulphur Creek, CO 39.8676 -108.2931 27.1 266 73,300 
Duck Creek, CO 39.9787 -108.3820 27.0 142 80,300 
Greasewood Creek, CO 40.1301 -108.4126 27.0 61 65,200 
Mancos River Trib., CO 37.0950 -108.5070 28.3 113 133,100 
Piceance Tributary 1, CO 39.8884 -108.3959 27.1 156 70,600 
Piceance Tributary 2, CO 39.8620 -108.2998 27.1 74 47,600 
Sheep Creek, WY 41.5645 -110.6154 26.8 487 215,100 
Willow Creek, UT 39.4223 -109.6293 27.2 350 55,400 
Yellow Creek, CO 39.9654 -108.3898 27.1 85 110,000 

PI
N

N
A

T
E

 

Dniester Tributary 1, UKR 47.9145 30.6362 75.9 2,114 1,037,900 
Dniester Tributary 2, UKR 48.1245 30.0062 75.8 1,356 488,500 
Dniester Tributary 3, UKR 46.3545 28.9412 76.8 1,005 707,800 
Dniester Tributary 4, UKR 46.7937 29.9804 76.4 1,573 540,300 
Dniester Tributary 5, UKR 46.6145 29.2845 76.7 967 706,700 
Dniester Tributary 6, UKR 47.1395 28.9062 76.4 761 1,045,100 
Nistru Tributary 1, MDA 47.3795 30.5062 76.2 697 639,400 
Nistru Tributary 2, MDA 47.3895 30.5562 76.4 589 758,400 
Nistru Tributary 4, MDA 46.1112 28.6129 76.8 723 614,600 
Nistru Tributary 5, MDA 46.0529 28.7587 76.8 350 983,800 

R
E

C
T

A
N

G
U

L
A

R
 

Boquet River, NY 44.2423 -73.4620 26.2 241 108,500 
Boreas River, NY 43.8320 -74.0709 26.3 218 250,500 
Cold River NY 44.1037 -74.3126 26.2 218 104,300 
Hudson River, NY 43.9681 -74.0526 26.3 198 239,700 
Saint Regis River, NY 44.5320 -74.4723 26.1 344 124,600 
Salmon River, NY 44.8673 -74.2970 26.1 495 146,200 
Schroon River, NY 43.9556 -73.7337 26.3 239 172,300 
Summer Brook, NY 44.4076 -74.0837 26.1 147 88,900 
Walker Brook, NY 44.0004 -73.7126 26.2 133 198,400 
W. Br. St. Regis River, NY 44.4387 -74.5912 26.1 304 116,100 

T
R

E
L

L
IS

 

Aughwick Creek, PA 40.2987 -77.8873 27.0 823 141,700 
Cacapon River, WV 39.2533 -78.4549 28.0 865 125,100 
Chestuee Creek, TN 35.2451 -84.6565 27.9 339 54,300 
Evitts Creek, MD 39.6640 -78.7320 27.1 240 168,600 
Jackson River, VA 39.1651 -79.7509 27.4 251 116,300 
Juniata River, PA 40.5070 -77.4381 27.5 539 62,700 
Middle Creek, PA 40.7643 -76.8845 26.8 219 166,300 
Penns Creek, PA 40.85756 -77.4606 27.5 480 956,900 
Peters Run, WV 38.7229 -79.3043 27.3 609 59,600 
Sleepy Creek, WV 39.6206 -78.1459 27.1 294 51,500 
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4.  RESULTS 

4.1  Evaluation of Model Assumptions 

We first examine the distributions of Ash and Asc for the basins. In order to calculate Asc for any basin, 
values must be selected for the width-area exponent e and the slope-area exponent . e was assigned a 
typical value of 0.5 for all basins based on Montgomery and Gran (2001).  was calculated from the 
slope-area plot of each basin. It has averages of 0.37, 0.43, 0.35, 0.38, and 0.39, for the dendritic, parallel, 
pinnate, rectangular, and trellis basins, respectively. Because   might vary with the network type, Asc for 
a given basin was calculated using that basin’s  value. 

Twenty-four theoretical distributions were identified as candidates to describe Ash and Asc based on their 
general properties (e.g., the existence of a lower bound). The parameters of the distributions were 
estimated for each basin using the Easyfit software, which uses different estimation methods depending 
on the type of distribution (maximum likelihood, L-moments, etc.). The fit of each distribution was then 
evaluated using the Kolmogorov-Smirnov (K-S) statistic, which is the maximum deviation between the 
cumulative distribution function (CDF) determined from the DEMs and the theoretical distribution 
(D’Agostino and Stephens, 1986; Weber et al., 2006). The K-S statistic is not compared to a critical value 
in a hypothesis test because the observations of Ash and Asc from the DEMs are not independent due to the 
nested structure of the drainage networks. Thus, they violate the assumptions required to perform such a 
test (D’Agostino and Stephens, 1986; Jogesh Babu and Rao, 2004).  

The K-S statistics for the four best-fitting distributions for Ash and Asc are plotted for all basins in Figure 
4.1. The four best distributions for Ash are the generalized extreme value, three-parameter Weibull, four-
parameter generalized gamma, and Johnson SB (Fig. 4.1a). The Johnson SB distribution fits the 
observations of Ash best with an average K-S statistic of 0.014. Among the considered distributions, it also 
produces the lowest average K-S statistic for each classification except rectangular. Overall, these results 
suggest that the Johnson SB distribution is the best choice for representing Ash. The four best distributions 
for Asc are the generalized extreme value, PERT, four-parameter generalized gamma, and Johnson SB 
(Fig. 4.1b). On average, the Johnson SB distribution fits the observed CDFs of Asc best with an average 
K-S statistic of 0.023. The Johnson SB distribution also exhibits the best average K-S statistic for each 
classification. Overall, the results suggest that the Johnson SB distribution is also the best choice for 
representing Asc. 
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Figure 4.1  Kolmogorov-Smirnov (K-S) statistics for the four best fitting distributions for (a) Ash and (b)  
 Asc. DEN denotes dendritic, PAR denotes parallel, PIN denotes pinnate, REC denotes 
 rectangular, and TRE denotes trellis. 

 
Figure 4.2 (left side) shows the histogram of Ash values for a typical basin in each classification along 
with the fitted PDF. The Ash distributions always have positive skewness, but the degree of peakedness 
and skewness varies between the classifications. Specifically, the rectangular and trellis basins have more 
apparent peaks and skewness than the other classifications. In all cases, the Johnson SB distribution fits 
the histograms well. The Asc distributions differ substantially among the five basins (Fig. 4.2, right side). 
Notably, the Asc distribution has negative skewness for the dendritic and parallel basins. It is nearly 
symmetrical for the trellis basin and has positive skewness for the pinnate and rectangular basins. The 
Johnson SB distribution fits histograms well, but it misses local fluctuations in some of the histograms.  
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We next examine whether the parameters of the Johnson SB distribution for Ash can be estimated from the 
network classification and the hillslope size Ahmax. For each classification, Figure 4.3 plots the calibrated 
distribution parameters against Ahmax. The shape parameters h and h and the location parameter h 
appear to be independent of Ahmax and relatively constant within each classification. However, differences 
are observed in the parameter values for different classifications. The rectangular and trellis basins tend to 
have higher h and h values than the other basin types. Higher h values produce more peaked 
distributions, and higher h values produce greater skewness. Thus, these results confirm that the 
differences observed for the example basins are typical for the classifications. The scale parameter h 
depends on Ahmax (Fig. 4.3d), and this dependence appears to differ between classifications. The 
relationships can be approximated by power functions (a power function is preferable to a line because it 
always passes through the origin as expected for both Ash and Asc). Most notably, the pinnate and trellis 
basins have steeper power functions than the other types. 

 

Figure 4.2  Histograms and fitted Johnson SB distributions for shA  (left column) and scA  (right column) 
 for a typical basin in each classification. The basins are the same as those in Figure 1.1 

 
 
 



14 
 

 
Figure 2.3  Parameters of the Johnson SB distribution for Ash plotted against the maximum hillslope area 
 Ahmax. The symbols show the calibrated parameter values for each basin. The horizontal lines 
 in (a) – (c) show the average parameter value for each network type. The lines in (d) show 
 power functions fitted to the h values for each network type. 

 
We next consider whether the parameters of the Johnson SB distribution for Asc can be estimated from the 
network type and the basin size Amax. For each classification, Figure 4.4 plots the calibrated distribution 
parameters against Amax. The shape parameters c and c and the location parameter c appear to be 
independent of Amax. c does not appear to differ between the classifications, but the skewness-related 
parameter c appears to differ. Dendritic and parallel basins have negative c values, while pinnate basins 
have positive c values (which is consistent with the example basins in Figure 4.2). The skewness also 
relates to the typical basin shape for each classification seen in Figure 1.1. For example, dendritic and 
parallel basins have an abundance of channel cells far from the basin outlet, which leads to an abundance 
of large Asc values and negative skewness. In contrast, the pinnate basin has fewer points at the greatest 
distance from the outlet, which leads to a positive skewness. The scale parameter c varies with Amax, and 
the observed relationships can be approximated with power functions. The power functions may differ 
between certain classifications. Specifically, the power function for pinnate basins is much higher in the 
graph than the power function for rectangular basins. 
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Table 4.1a provides the average values of h, h, and h for each classification (and average values for all 
basins combined). It also provides the fitted power function that estimates h from Ahmax for each 
classification (and a fitted power function for all basins combined). Table 4.1b provides equivalent 
information for c, c, c, and c. To determine whether the distribution parameters differ significantly 
between the network types, an analysis of variance (ANOVA) was employed for the parameters that are 
independent of Ahmax and Amax. Specifically, a one-way ANOVA was used for unadjusted pairwise 
comparisons between classifications (Cohen and Cohen, 2008) with a 90% confidence interval (p-value = 
0.1). Similarly, an analysis of covariance (ANCOVA) was used to determine whether the coefficients and 
exponents of the power functions are significantly different between classifications (Maxwell and 
Delaney, 2004). This analysis was performed by first taking the logarithms of the variables involved and 
examining whether the intercepts and slopes of the resulting linear relationships are different.  

 
Figure 4.4  Parameters of the Johnson SB distribution for Asc plotted against the maximum upstream area 
 Amax. The symbols show the calibrated parameter values for each basin. The horizontal lines 
 in (b) – (c) show the average parameter value for each network type. The lines in (d) show 
 power functions fitted to the c values for each network type. 
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Table 4.1  Estimated parameters for the Johnson SB distributions for (a) shA  and (b) scA  
(a) shA  

 hδ  hγ  hξ  hλ  

Dendritic 0.991 0.654 -1.8 16 0.204
maxhA  

Parallel 1.036 0.881 -3.9 76 0.081
maxhA  

Pinnate 1.069 0.711 -13.7 15 0.255
maxhA  

Rectangular 1.300 1.300 -14.0 258 0.006
maxhA  

Trellis 1.296 1.567 -11.2 14 0.256
maxhA  

All 1.138 1.023 -8.9 3 0.373
maxhA  

 
(b) scA  
 cδ  cγ  cξ  cλ  

Dendritic - -0.533 -1339 398 0.579
maxA  

Parallel - -0.288 -556 1256 0.381
maxA  

Pinnate - 0.352 -479 4579 0.244
maxA  

Rectangular - -0.011 -341 5687 0.088
maxA  

Trellis - -0.081 -533 1203 0.414
maxA  

All 0.982 -0.112 -649 668 0.504
maxA  

 
The results of the ANOVA and ANCOVA tests are summarized in Table 4.2. If a parameter is listed in 
Table 4.2, there is a 90% chance that the pair of classifications have different mean values for that 
parameter. For Ash , all 10 classification pairs have at least one parameter that is significantly different 
(Table 4.2a). Thus, the differences identified visually in Figures 4.2 and 4.3 are consistent enough 
between classifications to be significant. For Asc , eight out of 10 classification pairs have at least one 
parameter that is significantly different (Table 4.2b). Most commonly, the different parameter is c , 
which is associated with skewness. In contrast, c never differs between classifications. Fewer parameters 
are significantly different for Asc than Ash because the parameters for Asc tend to be more variable within 
classifications. Overall, these results confirm that the distributions for Ash and Asc are different between the 
five network classifications. 
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Table 4.2  Distribution parameters that exhibit significant differences between the network types based 
 on the analysis of variance (ANOVA) and analysis of covariance (ANCOVA) tests. For each 
 classification paring, the top row reports parameters for Ash , and the bottom row reports 
 parameters for Asc . For the scale parameters, “coef” indicates the power function coefficient 
 and “exp” indicates the exponent. 

(a) shA  
 DEN PAR PIN REC TRE 

DEN  
 hγ  

hδ ,

hξ , coefhλ ,
exphλ  

hδ ,

hγ , hξ  
hδ ,

hγ , hξ  

PAR   hξ  hδ ,

hγ , hξ  

hδ ,

hγ , hξ ,
coefhλ ,
exphλ  

PIN    hδ ,

hγ  

hδ ,

hγ , hξ ,
coefhλ ,
exphλ  

REC  
    

hξ ,
coefhλ ,
exphλ  

 
(b) scA  

 DEN PAR PIN REC TRE 

DEN  cξ  cγ , cξ

, coefcλ  
cγ , cξ

, coefcλ  cγ , cξ  

PAR  
  cγ  cγ  – 

PIN  
   cγ  cγ  

REC  
    – 

 
To evaluate the reliability of estimating the distribution parameters from the network type (as well as 
Ahmax and Amax), the K-S statistic is used once more. Figure 4.5 compares the K-S statistics for the basins 
when the distribution parameters are estimated from three different methods. In Method 1, they are 
calibrated directly from the Ash and Asc distributions for each basin (i.e. using the individual values shown 
in Figs. 4.3 and 4.4). In Method 2, they are estimated from the classification (using the results for each 
classification in Table 4.1). In Method 3, they are estimated without consideration of the classification 
(using the results for all basins combined in Table 4.1).  
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Comparing Methods 3 and 2 for shA , 44 of the 50 basins have improved accuracy (lower K-S statistics) 
when the network type is included (Fig. 4.5a). The average K-S statistic across all basins is 0.095 for 
Method 3 and 0.037 for Method 2. The improvement occurs for all classifications but is smallest for 
trellis networks. Thus, considering the network type provides much better estimates of the Ash distribution 
than neglecting the network type. Comparing Methods 2 and 1 for Ash , the K-S statistics are relatively 
similar (the average K-S statistic is 0.014 for Method 1). However, Method 1 provides much better K-S 
statistics for trellis basins (Fig. 4.5a). Thus, the network type provides adequate information for 
estimating the Ash distribution for most classifications, but explicit consideration of the individual basins 
is needed for the trellis classification. 

 
Figure 4.5  Kolmogorov- Smirnov (K-S) statistics for the Johnson SB distribution for (a) Ash and (b) Asc 
 when the distribution parameters are estimated separately for each network (Method 1), based on 
 network classification (Method 2), and neglecting network classification (Method 3). 

 
For Asc , 31 of the 50 basins have improved accuracy (lower K-S statistics) when the network type is 
included (comparing Methods 3 and 2), but the overall improvement is small (Fig. 4.5b). The average K-S 
statistic is 0.231 for Method 3 and 0.190 for Method 2. The improvement is greatest for parallel and 
pinnate basins. Using Method 2 for parallel basins, the K-S value is reduced by a third, while the value is 
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halved for pinnate basins. For dendritic basins, almost no improvement is observed. Dendritic basins are 
expected to exhibit the highest degree of variability in their network structures because they develop 
without strong topographic or lithologic constraints. The K-S statistics for Method 1 are typically much 
lower than those of Method 2 (the average K-S statistic for Method 1 is 0.023). The only case where the 
Asc distribution can be accurately estimated from the classification instead of the individual network is the 
pinnate classification (Fig. 4.5b). 

4.2  Evaluation of Model Results 

The synthetic UH method is tested by comparing the IUHs for four cases. Case 1 explicitly considers the 
individual cell slopes and the actual flow paths for each basin. This method is equivalent to an SDTT 
method and is considered the correct IUH for comparison purposes. Case 2 replaces the individual cell 
slopes with the estimates from Sh and the slope-area relationship, and it replaces the actual Ash and Asc 
distributions with the calibrated theoretical distributions. This case evaluates the assumptions required to 
construct a synthetic UH method. Case 3 estimates the parameters of the theoretical distributions based on 
the network classification. This is the classification-based synthetic UH method. Case 4 estimates the 
parameters of the theoretical distributions irrespective of the network classification. This case is 
analogous to traditional synthetic UH methods.  

For this comparison, most of the parameters were set to constant values for all 50 basins to reduce 
confounding effects (Table 4.3). The selected Manning’s roughness for the hillslopes nh corresponds to 
short-grass prairie (McCuen et al., 2002). The roughness for channels nc corresponds to a low-slope 
stream with weeds and stones or a mountain stream with cobbles and boulders (Chow, 1959). The fraction 
of area contributing flow r falls within the range for humid to arid climates (0.2 to 0.5) (Iacobellis and 
Fiorentino, 2000). The width-area coefficient d is a typical value (Montgomery and Gran, 2001). The b 
value varies between basins and is estimated from each basin’s slope-area plot (as determined from each 
basin’s DEM). For Cases 2 through 4, the average hillslope slope from the DEM of each basin was used 
for Sh . 

Table 2.3  Model parameters used in the development of the instantaneous unit hydrographs (IUHs). 
 Parameters that vary are determined from the digital elevation model (DEM) for each basin. 

Parameter Value Units 
Channel roughness ( cn )  0.05 s/m1/3 
Hillslope roughness ( hn )  0.15 s/m1/3 

Grid cell area ( A )  Varies m2 
Slope of hillslopes ( hS )  Varies m/m 
Slope-area factor (b )  Varies m-2θ 
Slope-area exponent (θ )  Varies - 
Width factor ( d )  0.02 m1-2e 

Width exponent ( e )  0.5 - 
Fraction of area contributing ( r )  0.3 m2/m2 
Excess rainfall ( iE )  25.4 mm/hr 

 
Figure 4.6 compares the IUHs from all four cases for the typical basin in each classification. The IUHs 
from Case 1 exhibit notable differences between the example basins from each classification. The IUH for 
the dendritic basin is negatively skewed, the IUH for the pinnate basin is positively skewed, and the IUHs 
for the other basins are nearly symmetrical. Comparing Figure 4.6 to the right column in Figure 4.2, one 
sees that the IUH shapes are almost identical to the Asc distributions for the same basins. The Asc 
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distributions play a much larger role than the Ash distributions in determining the IUHs because 80% or 
more of the total travel time occurs in the channels. 
 
When the slopes are approximated and the theoretical distribution is used (Case 2), the IUHs remain 
similar to Case 1, but the location fluctuations in the IUHs are lost (Fig. 4.6). For the pinnate and trellis 
basins, the IUHs for Case 2 also shift to the right. The travel times depend nonlinearly on slope, so using 
the average slope for a given contributing area is not equivalent to using the distribution of slopes for that 
contributing area. When the network type is used to estimate the IUH (Case 3), the IUH for the pinnate 
basin remains very close to Case 2 while the other basins deviate more. This result is consistent with the 
earlier results that showed the Asc distributions are best estimated from the classification for the pinnate 
case. Case 4, which neglects the classification, has nearly zero skew and is a poor match for the IUHs 
from Case 1 for all basins shown. 
 
Four metrics are used to quantify the difference in performance between the proposed synthetic UH 
method (Case 3) and the case that neglects classification (Case 4) for all 50 basins (Fig. 4.7). The first 
metric is the root mean squared error (RMSE) (Moriasi et al., 2007; Singh et al., 2005) where Case 1 is 
considered the observed IUH. The second metric is the Nash-Sutcliffe Coefficient of Efficiency (NSCE) 
(Nash and Sutcliffe, 1970). Because larger NSCE values indicate better performance (in contrast with the 
other metrics), Figure 4.7b instead shows 1 – NSCE so that lower values indicate better performance. The 
third metric is the absolute error in the IUH peak value, and the fourth metric is the absolute error in the 
time of the IUH peak. In Figure 4.7, the columns show the average performance for each classification, 
and black bars show the range of performance within each classification. 
 
By most measures, considering the network classification provides little improvement in the estimated 
IUH. For time to peak, however, considering the classification improves the average performance for all 
classifications and reduces the range in performance for all classifications except trellis. This 
improvement occurs because the classification helps determine the skewness of the IUH as seen earlier. 
Considering the classification also provides an improvement in performance by all measures for the 
pinnate basins. Pinnate also has the lowest errors in comparison with other classifications.  These results 
occur because the pinnate classification is an adequate substitute for the individual flow path network 
when estimating the Ash and Asc distributions. 
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Figure 4.6  Instantaneous unit hydrographs (IUHs) estimated by the four methods described in the legend 
 for an example basin in each classification.  
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Figure 4.7  Performance metrics when the instantaneous unit hydrographs (IUHs) are estimated by either 
 including or neglecting the network classification. Column heights indicate the average 
 performance and black bars indicate the range of performance for each method. 
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5.  CONCLUSIONS 

This study developed and tested a nonlinear synthetic UH method that explicitly accounts for the network 
type (dendritic, parallel, pinnate, rectangular, and trellis). Within this approach, the network structure was 
isolated in two random variables, Ash and Asc, which characterize the flow paths for the hillslopes and 
channels, respectively. Based on this analysis, the following conclusions can be made: 

1. Among the 24 theoretical distributions tested, the Johnson SB distribution best describes the 
observed distributions of Ash and Asc. For Ash, the shape and location parameters of the gamma 
distribution are independent of the hillslope size Ahmax, but the scale parameter depends on Ahmax. 
Similarly, for Asc, the shape and location parameters are independent of the basin size Amax, but the 
scale parameter depends on Amax. 

2. The distributions of Ash are significantly different between the five network classifications. Based 
on ANOVA and ANCOVA results, all 10 classification pairings have at least one distribution 
parameter that is significantly different. Because the classifications are determined from the 
channel network structure, this result suggests that the flow paths on the hillslopes (which 
determine Ash) depend on the type of channel network into which they flow.  

3. The distributions of Asc are significantly different between the five classifications. From the 
ANOVA and ANCOVA results, 8 out of 10 classification pairings have at least one distribution 
parameter that is significantly different. The parameter that usually differs between classification 
pairs controls the skewness of the Asc distribution. Dendritic and parallel basins have an 
abundance of locations that are distant from the outlet, which produces an abundance of large Asc 
values and a negative skewness. In contrast, pinnate basins have more locations that are close to 
the outlet, which produces many small Asc values and positive skewness. The other network types 
tend to have more symmetrical distributions for Asc. 

4. The Ash distributions are more accurately estimated based on the network type than the Asc 
distributions. The Ash distributions exhibit relatively small differences between classifications but 
are relatively consistent within classifications, which allows accurate estimation of the 
distribution parameters. For Asc, the differences within classifications are greater. Overall, the 
network type is most useful for estimating the Asc distribution for parallel and pinnate networks, 
especially pinnate networks. 

5. The IUHs from an SDTT method typically differ among the five network classifications. Much 
like the Asc distributions, the IUHs of dendritic are negatively skewed, the IUHs for pinnate basins 
are positively skewed, and the IUHs for the other classifications are more symmetrical. 

6. The proposed classification-based synthetic UH method, which estimates the Ash and Asc 
distributions based on the network classification, provides better estimates of the time to peak for 
the IUHs than a method that neglects classification. This improvement occurs because the time to 
peak is affected by the skewness of the Ash and Asc  istributions, which are different among the 
classifications. However, other measures of performance, such as RMSE and NSCE, show little 
improvement when classification is considered. The exception is the pinnate classification, which 
shows noteworthy improvement in all measures when the classification is considered. 
 

Overall, the results show that the five network classifications have differences in their IUHs and that 
considering network classification provides improved estimates of the IUHs. A classification-based 
synthetic UH has the potential to be used particularly for pinnate basins, but more testing is required. 
Independent validation should be performed by applying the method to basins that are not used in the 
model development. Testing on smaller basins is also needed. The results generated in this study 
considered large basins, but semi-distributed models often consider much smaller sub-basins. Further 
analyses of the interaction of channel network type and hillslope flow paths should also be performed. In 
particular, how does the role of the channel network type change as the active hillslope processes change? 
In addition, the assumption that a constant fraction of upstream area contributes flow at each time should 
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be further analyzed. For example, a relationship between this fraction and basin size or grid cell location 
in the basin could be considered. The assumption that excess rainfall is produced uniformly across the 
basin could also be changed. Specifically, the differences in behavior between channel network types may 
differ if variable source areas produce the excess rainfall. Also, the IUHs from the proposed method were 
evaluated by comparing them with those from an SDTT model that explicitly represents the slopes and 
flow paths with the basin. Future research should evaluate the performance when the method is used to 
reproduce observed hydrographs. Such comparisons would allow testing of other assumptions in the 
method (e.g., the use of kinematic wave theory). 
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