
Route Planning for
Enhanced Transportation
Network Utilization:
A System Optimization
Approach for Route
Planning in Advanced
Traveler Information
Systems

MPC 19-407 | F. Banaei-Kashani and R. Fitzgerald

Colorado State University
North Dakota State University
South Dakota State University

University of Colorado Denver
University of Denver
University of Utah

Utah State University
University of Wyoming

A University Transportation Center sponsored by the U.S. Department of Transportation serving the
Mountain-Plains Region. Consortium members:

Route Planning for Enhanced Transportation Network Utilization:
A System Optimization Approach for Route Planning

in Advanced Traveler Information Systems

Farnoush Banaei-Kashani, PhD
Assistant Professor

Robert Fitzgerald
PhD Candidate

University of Colorado Denver

Department of Computer Science and Engineering

December 2019

Acknowledgments

The authors extend their gratitude to the Mountain Plains Consortium, the U.S. Department of
Transportation for funding this research.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the
accuracy of the information presented. This document is disseminated under the sponsorship of the
Department of Transportation, University Transportation Centers Program, in the interest of information
exchange. The U.S. Government assumes no liability for the contents or use thereof.

NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, participation in lawful off-
campus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as
applicable. Direct inquiries to: Vice Provost, Title IX/ADA Coordinator, Old Main 201, 701-231-7708, ndsu.eoaa@ndsu.edu.

mailto:ndsu.eoaa@ndsu.edu

iii

ABSTRACT
The existing online mapping systems process many user route queries simultaneously, yet solve each
independently, using typical route guidance solutions. These route recommendations are presented as
optimal, but often this is not truly the case, due to the effects of competition users experience over the
resulting experienced routes, a phenomenon referred to in Game Theory as a Nash Equilibrium.
Additionally, route plans of this nature can result in poor utilization of the road network from a system-
optimizing perspective as well. In this project, we introduce an enhanced approach for route guidance,
motivated by the relevance of a system optimal equilibrium strategy, while also maintaining fairness to
the individual. With this approach, the objective is to optimize global road network utilization (as
measured by mobility, global emissions etc.) by selecting from a set of generally fair user route
alternatives in a batch setting.

For the first time, an approximate, anytime algorithm based on Monte Carlo Tree Search and Eppstein’s
Top-K Shortest Paths algorithm is presented to solve this complex dual optimization problem in real-time.
This approach attempts to identify and avoid the potentially harmful network effects of sub-optimal route
combinations. Experiments show that mobility optimization over the real road networks of Rye and Golden,
Colorado in a microscopic traffic simulation with a network congestion-minimizing objective can lead to
considerable improvement in mobility for users, as observed by a shorter travel time, with an improvement
up to 12% with some consideration of route fairness.

As part of this research the following four objectives have been achieved as presented in the Main Body of
the report:

1. Introduction of a transportation network utility function that captures utilization of the network
based on throughput-of/mobility-through of the transportation network (other network utilization
criteria such as overall travel quality, safety, environmental impact, etc., can be studied as part of
future work).

2. Designed a multi-criteria route planning solution that uses the introduced utility function as the
primary criterion, and an exemplary traveler interest (e.g., fastest route) as the secondary criterion
to generate optimal routes for travelers in a transportation network.

3. Developed a data-driven simulation testbed (based on realistic road network and traffic data) to
evaluate the designed route planning solution and compare its performance versus state-of- the-art
route planning solutions.

4. Advanced knowledge by carrying out comparative analyses to answer the proposed research
questions.

iv

In addition to the aforementioned research tasks, we pursued and achieved three other objectives in this
project as follows:

1. Advanced policy and practice with respect to transportation network utilization: Toward this end,
in multiple occasions we presented our results a Colorado Department of Transportation (CDOT)
and National Renewable Energy Laboratory (NREL) as well as MS2 user group.

2. Advanced education through the training of students: To pursue this objective, numerous
assignments and course projects were included in both undergraduate level and graduate level
courses offered over a period of three years at the Department of Computer Science and
Engineering, University of Colorado Denver. Sample assignments as well as sample student work
are included in the Appendix.

3. Built an evidence base by disseminating findings through publications and presentations: Results
have been published from the studies in the 20th International Conference on Mobile Data
Management (MDM 2019), which is a premier venue for presentation of data-driven
methodologies for transportation management.

v

TABLE OF CONTENTS

I. INTRODUCTION... 1

2. RELATED WORK ... 2

2.1 User-Optimal Routing .. 2

2.2 System-Optimal Equilibrium ... 3

3. PROBLEM DEFINITION ... 4

4. SOLUTION OVERVIEW .. 6

5. TWO-PHASED BATCH-BASED SYSTEM OPTIMAL ROUTE GUIDANCE WITH
MCTS ... 8

6. EXPERIMENTS ... 11

6.1 Experimental Methodology ... 11

6.2 Experimental Results ... 13

7. CONCLUSIONS AND FUTURE WORK .. 17

8. REFERENCES .. 18

9. CODE: CORE ALGORITHMS .. 20

APPENDIX: TEACHING MATERIALS .. 47

vi

LIST OF TABLES

Table 4.1 A Set of 6 Routing Requests .. 6

Table 5.1 Set of Alternate Paths for Agents 2, 3, 4, and 5 ... 9

Table 5.2 The Solution to the Running Example ... 9

vii

LIST OF FIGURES

Figure 4.1 Uploaded Road Network .. 6

Figure 5.1 A Monte Carlo Tree Search of 4 Requests and 3 Alternate Paths per Request 10

Figure 6.1 After Loading Assignments from Table I .. 11

Figure 6.2 Road Network Inputs .. 13

Figure 6.3 Population Size p .. 14

Figure 6.4 Batch Duration b ... 15

Figure 6.5 Route Percentage r.. 15

Figure 6.6 Alternate Path Requested k ... 16

Figure 6.7 Fairness of SO MCTS Rye vs. SO Rand Rye ... 16

1

I. INTRODUCTION
Online mapping systems offer highly granular route guidance, but have also increased the problems of
congestion, as they do not address the contributions made by each route to the emergent network
congestion [1]. Without a strategy to negotiate those effects, these route guidance providers escalate
competition over the vital network corridors, which results in a common result referred to in Game
Theory as a Nash Equilibrium [2], or in the transportation literature, as a User Equilibrium (UE) [3].
Needless to say, it is desirable to find assignments for these route plans which could instead enable a
System-Optimal (SO) equilibrium, where overall network congestion has been minimized.

In particular, as more technologies are introduced into the road network, it becomes more relevant to
consider how such plans might impact the network. Due to the proliferation of mobile devices, the
network is now flooded with different forms of real-time communication. This has created the platform
for Transportation Network Companies (TNC) to emerge. Stakeholders are now motivated to consider the
impact of TNCs, and an opportunity exists to provide incentives to TNCs and delivery companies such as
Lyft, Uber, and Grubhub to assist in the optimization of the road network utilization. Similarly,
Connected and Autonomous Vehicles (CAV) bring the promise of great optimization opportunities to
road networks, as they are unopinionated route-followers. Their complicit nature can help bring the road
network traffic to a state of SO equilibrium.

The possibility of system-level route optimization is enticing, as transportation planning studies have long
shown the benefits of SO approaches in small, abstract problem sets [4]. However, producing a SO route
assignment online and in real time requires solving very challenging optimization problems within a
limited computational budget. To address this problem, in this project an approach toward the goal of
real-time SO route guidance is introduced and solved using a promising two-phase approximation
technique, which balances out the objectives of both the driver agent and the network. To achieve this, a
meta-heuristic, anytime algorithm, namely, Monte Carlo Tree Search (MCTS) is employed to identify a
set of approximately SO routes from a multiset of options, which are each generated with respect to the
driver agent’s utility. Experimental results show a 10% improvement of average network travel time over
selfish routing, where a meaningful majority of agents were receiving a fair assignment of an equal or
faster route.

This project provides a mathematical formulation of static and dynamic SO routing problems is presented
and discussed. It also presents a novel algorithmic solution, which is described and evaluated with respect
to synthetic populations over real-world road networks. To explore the process of this research, first,
related work in the areas of selfish and SO route guidance is presented in Section 2. Next, the generic
problem of SO route guidance is discussed in Section 3. An overview of the presented solution appears in
Section 4, and then in Section 5 the proposed approach, a two-phase algorithm based on Monte Carlo
Tree Search is explained. Thereafter, an experimental comparative analysis is shown in Section 6,
followed by Section 7, where the paper is concluded with future directions. Section 9 includes our code
base for core algorithms presented in this report.

2

2. RELATED WORK
In order to review work related to route guidance techniques, the literature is categorized into two groups.
First, route guidance techniques which optimize individual routes are considered. Second, research which
is broadly associated with simulating or producing SO equilibria in transportation network flow problems
is discussed.

2.1 User-Optimal Routing

The classic techniques for conducting an optimal path search for a route are Dijkstra’s algorithm and the
Bellman-Ford algorithm. Both techniques take advantage of the triangle inequality to find a minimum
spanning tree rooted at some origin vertex. These are expanded into path search techniques by traversing
the resulting tree back from the destination vertex. The idea is generalized to the all-pairs shortest paths
scenario via the Floyd-Warshall algorithm, which exploits the recursive nature of shortest path trees. A*
Search can then be used to guide the path building via a search heuristic. These techniques require no pre-
computation time, but require algorithmic operations at query time.

Techniques which minimize query time and make the path search solvable in an online context, have the
added costs of increased precompute time and memory requirements. The most straight-forward
optimization of this sort is to create a lookup table of all possible route queries. This can be achieved by
running the Floyd-Warshall algorithm, which produces a massive memory allocation. Parallel
optimizations, such as PHAST [5], exist to address this constraint. Smaller sets of data can also be stored
effectively on the vertices with linear performance, which nears lookup table queries, such as in Hub
Labeling (HL) [6].

Some query time optimizations require a small sweep of the graph, but provide optimizations which do
not have large tradeoffs in terms of memory footprint and pre-computation time, and are reasonably
competitive in query times to PHAST and HL. Arc Flags [7] provides a bit-sized label identifying useful
out-edges at each search step. Contraction Hierarchies (CH) [8] produces a hierarchy of hypergraphs,
limiting the search space as the search ascends the hierarchy. Customizable Route Planning (CRP) [9] is
more responsive to changes in network flows because it separates the precomputation process into a
bootstrapping step and an updating step.

For more details on these techniques, refer to the recent comprehensive survey as discussed by Bast et al.
2016 [10].

3

2.2 System-Optimal Equilibrium

The study of road network utility comes from the field of traffic assignment [11], which estimates the
network effects caused by the interaction of network flows. Those effects result in one of two steady state
behaviors first identified by John Glen Wardrop in 1952 [3]: UE from selfish routing behavior, or SO as a
result of network-optimizing behavior. Solution methods differ based on the scope of the problem,
varying between the macroscopic, which is executed over aggregate flows (vehicles per unit time), and
the microscopic, which is executed with respected to solving routes for individual driver agents.
Macroscopic scale solutions, such as the Frank-Wolfe algorithm [12], only contain the expected network
effects, while the individual route information is lost within the aggregate flow values.

In contrast to macroscopic scale solutions, a microscopic solution to traffic assignment requires running a
playout with the interaction of the supply and demand. This extends the problem into the temporal setting,
which is referred to as a Dynamic Traffic Assignment (DTA) problem [13]. Iterative agent-based simulators
such as MATSim [14] and its successor BEAM [15] solve DTA with a UE objective by running successive
“days” of simulation, modifying some or all of the agent routes in response to the effects observed be-
tween days. Recent work has extended the MATSim platform with SO route guidance approaches to multi-
modal routing [16]. While the authors have proposed a new technique for producing SO equilibria, it is not
presented as a solution for online route guidance. To the best of the authors’ knowledge, the technique
proposed here presents the first solution to SO route guidance in an online and microscopic DTA setting,
suitable for real-world route guidance applications.

4

3. PROBLEM DEFINITION
In the following section, SO route guidance is presented. The objective is to assign routing to a set of
agents in such a way that the aggregate effect of their experienced routes is optimal with respect to road
network utilization.

Let G represent a road network, as a directed, connected, finite graph with vertices V (G) and edges
E(G) ⊆ V (G) × V (G). Each vertex v ∈ V (G) represents a location. Each edge (u, v) ∈
E(G) represents a road segment traversing the road network, with a positively valued and
monotonically increasing link cost function C(Fe, e), a function of the link flows Fe and any
link attributes stored in e. Let R be a finite set of requests, where each request r ∈ R is a
tuple (or , dr) associated with the r-th agent. A request captures the intent to seek point-to-point
routing from an origin or to a destination dr where or , dr ∈ V (G), for an agent seeking optimized
routing. Therefore, each request be served a path of the form pr = (v0, v1, .., vn−1, vn) such that (vk ,
vk+1) ∈ E(G)∀0 ≤ v ≤ n, v0 = or , and vn = dr . The complete set of path options for agent r is
represented by the set Pr .
In this hypothetical setting, the desired outcome is a path assignment for each agent r ∈ R which seeks
to optimize both agent r and the unloaded road network G. The optimization of an agent’s route is
straightforward with a technique such as Dijkstra’s algorithm for optimal path finding. However,
optimizing the network through path selection implies that these paths are modifiable for the full set
R of requests. The SO algorithm must decide a path selection for each agent r ∈ R from all such
alternatives Pr . The global measure of these path selections is viewed through the optimization
objective C, as the intersection of path choices occurs on the set of network links E(G).
More formally, one can conceptualize SO routing as a solution to the general optimization problem in
(1a), which seeks to find P∗ the best paths to assign for each agent, a byproduct of decision vector
X. To evaluate X, the sum of edge costs is computed. Each edge cost is dependent on counting the agents
which are routed on each edge (1b). This is computed by testing whether an edge has membership in a
path (2) or does not (3). The optimization is constrained by solving for exactly one path per request (1c).
Each decision variable is ensured to be exactly 0 or 1 (1d). The side effect of this optimization is the set of
paths to assign, and the minima C∗ is the estimated cost of this assignment.

5

While this is sufficient to describe an abstract SO problem with a static set of inputs, it does not
consider the dynamic nature of the arrival of requests. In order to consider dynamic arrival, one needs
to modify the above minimization objective such that it routes a temporally diverse set of agents and
maintains a picture of network effects from previous solutions. One approach to dynamic assignment is
to allow agent route replanning, and implies that agent routes can be changed frequently. While re-
planning is not the intention of this work, it is a problem of interest for future work in SO routing, in
particular in how it relates to CAV routing.

A second formulation exists to address dynamic arrival, in which agents are considered as
successive batches of temporally located collaborative routing problems. In this batch-based setting,
one is concerned with a batch of agents whose departure time falls on a timeline between a
simulation start time t0 and end time T. All requests are then associated with a departure time d(r) ∈
[t0, T). Each batch of duration b begins at a start time ts and ends at time t and forms a time
window [ts, t). For each request ri, if the departure time d(r) is within the established time window, an
optimizing assignment is attempted.

In this setting, it is no longer sufficient to assume the road network is unloaded, as a solution must
capture the effects of the current network state at time t as an effect of previous batches. Instead,
the revised optimization problem considers both the current batch path assignments as well as the
currently observed edge flows Fet . The final batch optimization problem is shown in 4a. It is interesting
to note that, as b gets smaller, the problem approaches the selfish routing scenario. In fact, if one limits
the number of agents per batch to 1 and set b = 1, then it is exactly the selfish case.

The cost function C can represent any single or multi-criteria function of link attributes. The most
straight-forward function is the evaluation of the link cost/flow for a congestion minimization objective. It
is simple to reason that multicriteria functions can also be used. For example, consider the scenario
where land use data exists by which to query a link for its available services, such as the
availability gas or charging stations. A cost function could then be introduced in which a linear
combination of the utility of cost/flows as well as the refueling capacity is computed. As a second
scenario, if the average fuel and emissions cost of link traversal is known, these values could be
incorporated into an eco-routing objective. For the remainder of this report, a congestion minimizing
objective is assumed. As a running example, consider an unloaded road network in Figure 4.1 and six
agents in Table 4.1. This example is concerned with a batch b = 5 where ts = 10 and t = 1

6

4. SOLUTION OVERVIEW
In the section above, SO route guidance was presented as a multi-choice knapsack problem (MCKP) [17].
In a MCKP, an optimal solution is a set of choices (batch of path assignments) found within a multi-set of
choices (agents), where one item (path) must be chosen for each agent. A typical knapsack problem
assumes that our link cost/flow functions are independent, in that the cost/flow effects for agent one do
not interact with the cost/flow effects of agent two. However, this is only the case when no agent paths
overlap. As soon as two paths overlap on a single edge, the problem requires a solution which is capable
of solving these interdependent cost/flow functions. In the case of observing two agents interacting, the
problem becomes a quadratic knapsack problem (QKP). As the count of agents grows within a batch, the
size of the cost/flow function space grows in O(kr) space as the full combination of possibilities becomes
a product of each agent’s alternate paths, denoted by k. This renders SO route guidance problems
unsuitable for conventional linear solvers and their assumption of linear independent cost functions.

Table 4.1 A Set of 6 Routing Requests

Figure 4.1 Uploaded Road Network

This nonlinear link interdependence caused by the intersection of paths is a challenge, but also an
opportunity, as the discovery and reduction of this interdependence is synonymous with the minimization
of estimated travel time congestion effects. One possible model for these relationships is that of a
probabilistic graph, identifying estimated optimal cost instead of a fixed value. In this way, the structure
of this search problem resembles that of a contextual bandit [18]. In contextual bandits, each choice
(selection of paths for one agent) is modeled as a probabilistic reward function. The search explores by
placing an artificially high reward on subspaces with zero or few observations. It balances exploration by
eventually exploiting the more certain subspaces with high-valued rewards. These problems are solved by
algorithms which employ a multi-armed bandit function.

Novel techniques which address this essential trade-off between exploitation and exploration is what has
led to a resurgence in the field of reinforcement learning (RL), from which contextual bandits originate. A
relatively new technique in RL is the Monte Carlo Tree Search (MCTS) [19] algorithm. It builds a tree
which can capture the nested bandit problems described above. Each branch in the tree attempts to find
the expected value of its subspace. At each step, as the search continues to sample the tree, it balances out
these running expected values with an exploration term, which represents preference to explore
previously unexplored subtree spaces.

7

In the following solution, MCTS is employed in an attempt to learn the link interdependences, which
occur between supply and demand in SO route guidance. In order to solve system optimal route guidance
for an arbitrary batch size, the search for an optimal combination of paths is solved by way of a two-phase
algorithm. In phase one, sets of Top-K alternate paths are constructed for each request, which produces a
set of alternate paths. In phase two, a meta-heuristic search for an optimal selection finds an
approximately optimal solution by way of MCTS.

8

5. TWO-PHASED BATCH-BASED SYSTEM OPTIMAL ROUTE
 GUIDANCE WITH MCTS

To solve for phase one, Eppstein’s top-k shortest paths algorithm [20] is executed. The top-k
shortest paths for each agent is computed based on an unloaded road network; note that this can be
computed offline. In Table 5.1, a scenario for the running example is presented, where agents 2 to 5
each have the same set of alternate paths shown. It is not required that agents share origins or
destinations, but it greatly simplifies the example here. Each agent has a set of k = 3 alternate
paths which are successively minimal, and because of this, the path visiting Vertex 6 is omitted.
Note that path 1 is the true shortest path for each agent, and equivalent to the selfish routing
solution.

To solve for phase two, MCTS [19] is executed. MCTS is referred to as an anytime algorithm in that
it can return a result at any iteration. As applied to combinatorial search, MCTS is transformed from
its traditional setting of a Markov Decision Process (MDP) into a meta-heuristic algorithm. This is
done by placing an empty solution at the root, partial solutions at each branch, and complete
solutions at the leaves. At each step through this tree, an alternate path is selected from the next
ordered agent. To support this traversal, each branch stores locally-observed optimal values, along
with a reward, which captures the desire to exploit this choice in future traversals. The local reward
is typically a running mean of reward values of all associated sub-trees. The initial tree is a root node
with no children and user-supplied initial mean reward (typically zero, or a higher “optimistic
value”).

MCTS is an iterative algorithm which, at each step, performs a traversal, an estimation, and a tree
update. During an iteration, first a traversal seeks to find an unexplored subspace of the tree by
way of a mutli-armed bandit selection. At each step in this traversal, a multi-armed bandit function
is used to select a child as the next agent’s alternate path to extend this partial solution. If it is
an unexplored child, an allocation is made for a new branch at this subspace; if it is explored, the
traversal continues. In the case that a new subspace has been instantiated, MCTS will then
estimate its value. The true cost is only known with a complete solution, due to the interaction of
agent paths. To estimate the cost of this subspace, choices are randomly added to this partial
solution to construct a complete solution. The cost function C is then evaluated on this solution,
producing, what is in effect, a sampling of the distribution of costs under the subspace associated with
this estimate. A back-propagation of this estimate is returned as an update to this and all parent tree
nodes, updating the local optimal values and rewards.

Traditional MCTS algorithms employ a multi-armed bandit function which is designed for a
normalized cost function. For example, the popular UCT algorithm [21] in (5) is tuned to the range of
[0, 1], where for each node n, X¯ is its running mean reward, nc is the number of observations of this
node, np is the number of observations of its parent, and Cp is a tuning parameter. The second term is
assumed to be infinite when n = 0. The second term represents the desire to explore when insufficient
information on a subspace is known.

9

Table 5.1 Set of Alternate Paths for Agents 2, 3, 4, and 5

The structure of UCT is an intuitive and elegant solution to bandit problems, but its requirement of a
normalized cost function is problematic for combinatorial optimization. In particular, the range of costs
over a set of solutions to a given SO routing problem are not known until all combinations have been
explored.

To address this problem, a multi-armed bandit function was proposed in [22] for combinatorial
optimization, as shown in (6). This function extends the structure of UCT with a pair of global values
capturing the minimum and maximum estimation observed (ẑ ∗ and ŵ ∗ respectively), which are updated
at each iteration. Each node n tracks a locally optimal estimation ẑ ∗ and locally average estimation z̄n.
Exploitation is captured in (6b) and an average-weighted exploration in (6d).

One possible solution to this problem is the set of optimal assignments P ∗ shown in Column 5 of
Table 5.2, based on the cost function C(x) = 4x, chosen for simplicity. Figure 5.1 shows the
resulting search space of the running example where the solution was found. Leaves show possible
solutions, along with their corresponding evaluations (C) below. The solution from the running
example (C∗) is shown in bold.

Table 5.2 The Solution to the Running Example

10

By solving (4a), the cost of this assignment is C∗ = 44 + 41 + 41 + 42 + 41 + 41 + 41 + 44 = 548. As a
result and side-effect of this optimization, the algorithm returns the set of paths associated with the
minimal-cost combination. The resulting assignment produces flows as shown in Figure 6.1. Note that,
as agents 1 and 6 have time values which fall outside of the time range [10-15] they were not
considered in this batch.

Figure 5.1 A Monte Carlo Tree Search of 4 Requests and 3 Alternate Paths per Request

11

6. EXPERIMENTS

To evaluate the promise of MCTS as a technique for solving SO route guidance, a simulation-based test
bed was created.

Figure 6.1 After Loading Assignment from Table 4.1

A behavioral study of this approach was performed over two real-world road networks. The following
sections describe the methodology and results of these experiments.

6.1 Experimental Methodology

A test bed application was developed for interoperation with a transportation simulator to support study
over city-sized inputs. The simulator would need to support this input data as well as allow for user
extension to its route guidance system. Based on these requirements, the MATSim [14] transportation
simulator was selected. The internal MATSim routing module is scoped to solve routes for isolated
agents, so in order to support batch routing, an integration was made directly into the queue simulator
QSim with the ability to modify routes for a batch of agents at a time. MATSim is run out-of-the-box,
with no features (intersection signals, turn costs) added.

Three route guidance algorithms were implemented to support a comparative behavioral study. A selfish
routing algorithm was provided, which finds the shortest path by way of Dijkstra’s algorithm. While
many behavior models exist for selfish routing, this implementation was chosen due to its simplicity. Two
variations of the proposed solution were implemented, namely, SO MCTS and SO Rand, which are
different in the way that they implement the technique’s second phase. In particular, SO Rand selects a
random path among top-k choices for each agent, and SO MCTS runs a search for the optimal selection
for the duration of one additional batch duration. SO Rand is a “fair” random algorithm due to selecting
from a set of near optimal alternatives, and it is used to illustrate the performance and usefulness of the
meta-heuristic technique in SO MCTS.

All algorithms were evaluated using a Dell Optiplex 790 desktop computer, with quad-core i7 processors,
16GB of RAM, a 7200rpm 500GB hard drive, and 8M L3 cache, running Ubuntu Xenial 16.04.3. The test
bed and all algorithms were implemented in Scala, leveraging the Java interoperability for programmatic
interaction with MATSim.

12

Road network data of Rye and Golden, Colorado were collected from OpenStreetMap [23], and pruned to
a single, fully connected directed graph using the JOSM MATSim plugin [24] as pictured in Figure 6.2.
These two road networks were chosen as they produce congestion effects on populations which are small
enough to run on a single desktop. OpenStreetMap data provides capacity q (veh/hr), free-speed f (km/hr),
and length l (m) values, which allowed for a realistic cost function to be adopted from the transportation
literature, namely, the Bureau of Public Roads cost function [25]. This is shown, as modified in order to
scale capacity values to the batch duration, and free-speed to meters, in (7).

Each population was generated in a uniformly random distribution over origins, destinations, and
departure times. For each trial, the same generated population file was used for each algorithm.
Experiments were run for 30 minutes of simulation time in an attempt to reduce the impact of congestion
ramp-up and ramp-down. The algorithm was expected to show useful results between some ranges of
population sizes, but the bounds on this range were unknown. A reasonable lower bound was assumed at
the point where the increase of a population size began to reflect in changes to experienced average travel
time. The upper bound was identified by a threshold on experienced average travel time. In particular,
population sizes with average speeds of 3 mph (walking speed) were treated as an upper bound on the
utility of driving, as agents would be expected to use other modes of transportation beyond this point. For
example, in the case of Rye, CO, the observed lower bound was found at 2,500 agents, and the upper
bound was found to be 10,000 agents.

Each experiment was parameterized by a population size p, a batch duration b, the adoption rate of system
optimal agents r (where 1- r percent of agents are routed using the selfish route algorithm), and the
requested number of alternate paths per agent, k. For any configuration of these inputs, fifteen trials of all
three algorithms were performed. For each trial, a population of size p was generated, with r% requesting
optimal routing. As the simulator advanced a time step, a representation of link vehicle counts was
updated. For any agents requesting any form of routing, these link vehicle counts were used and treated as
a network flow estimation model. Selfish route requests were solved using Dijkstra’s algorithm based on
the network flow snapshot. If the current time coincided with the end of a batch, the two-phase SO route
guidance algorithm was run with that batch of agents and a computing budget of b seconds. After
receiving a result from either SO MCTS or SO Rand, routes were assigned and playout continued until
the completion of all simulated agent routes. Upon completion, the experienced average travel time was
calculated for each experiment using Equation (8). Mobility was then measured by converting that value
into a metric which captured the gains from optimal routing. The gains can be captured as a ratio of
average travel time values from both an optimal routing experiment Avg(So) and selfish routing Avg(Ss).
This ratio is offset by a realistic lower bound value Avg*.

13

Figure 6.2 Road Network Inputs

To find Avg*, a Monte Carlo sampling was performed with 15,000 independent shortest path
calculations, each with a uniformly-random single-agent population. This approximated the average free-
flow travel time in each network. These values were used to compute travel time improvement I, in (9).

In order to measure the fairness of an outcome, the experienced travel times were stored for each agent as
they were simulated in both the Selfish and SO playout. A histogram was generated from the table of
experienced travel time differences.

The full list of data and algorithm parameters under test, along with test ranges, are listed in table IV.
Unless otherwise noted, experiments have default parameters p = 7500, b = 5 seconds, r = 20%, and k =
15.

6.2 Experimental Results

In each the following figures, a plot of travel time improvement I is shown with respect to an
experimental parameter. Results are distinguished by their road network, using the suffix “Rye” for Rye,
CO and “Gld” for Golden, CO.

In Figure 6.3, the effect of population size p is shown. Both SO algorithms strictly improve I for all
population sizes. Note that SO MCTS Rye outperforms SO MCTS Gld here, achieving up to 11%
improvement. Both SO MCTS algorithms outperform their SO Rand equivalents; in fact, this is the case
in all figures. We reason that the problem space size of the road network explains the better performance
of MCTS Rye, and that higher parameter values exhaust our computational resource.

14

Figure 6.3 Population Size p

It is interesting to note that the SO Rand algorithms demonstrate higher improvement when compared to
Selfish routing as population sizes exceed 6,000. In seeking an explanation, first we noted that, at these
higher levels of congestion, the marginal cost/flow effect of additional agents is higher. We reasoned that
the greater inconvenience due to SO Rand routing (which would usually lead to de-improvement) was
dominated by the random allocation of alternate paths, which alone had a congestion-minimizing effect.
From this, it is our perspective that a SO objective may no longer be useful for inputs which produce such
a small difference in experienced travel times between SO Rand and SO MCTS. This is the case for most
of the results related to SO MCTS Gld.

In Figure 6.4, the batch duration b is shown to have up to 12% travel time improvement for SO MCTS
Rye. Both SO MCTS algorithms show consistent travel time improvement here, though as the distance
between SO MCTS and SO Rand results grows smaller, the results are less consistent. Even low b values
show moderate gains over selfish routing. This suggests that even a small number of agents with an
optimal objective can positively influence system performance. Improvements eventually diminish for SO
MCTS Rye; we attribute this to the search space, which had an average size of 1514 combinations per
batch when b = 16. In future work, we intend to explore parallelization of the MCTS-based technique to
address this.

The performance of SO MCTS Gld shows a similar drop at an earlier value for b, which is expected, but
the gradual improvement beyond b = 4 for both Gld algorithms warrants further study.

15

Figure 6.4 Batch Duration b

In Figure 6.5, route percentage r is shown. The plot for SO MCTS Gld is what was expected for the effect
of increasing the adoption rate. However, SO MCTS Rye presents a consistent improvement over selfish
routing and SO Rand Rye, with SO MCTS Rye reaching up to 9% travel time improvement.
Our interpretation is that, as SO routing becomes the objective of the majority of agents, their playout
becomes more consistent with the expected cost of their routes. In contrast, when in the minority, there
are many more agents with a selfish route who might jeopardize the experienced playout of each
SO route.

Figure 6.5 Route Percentage r

In Figure 6.6, the number of alternate paths per agent k is explored. Again, both SO MCTS algorithms
show improvement over Selfish route guidance, with SO MCTS Rye reaching up to 11.5% improvement
at k = 2. Given that our search space size grows in O (kn), we expected to find evidence of a threshold for
performance with respect to k. However, all algorithms have an uncertain relationship to k. We interpret
that k may be sensitive instead to the topology of each road network and warrants further study.

16

Figure 6.6 Alternate Path Requested k

In Figure 6.7, an example of the fairness of this routing is presented as a histogram of experienced travel
time difference in seconds, where a negative value equates to a shorter trip due to SO routing. This data
was taken from 15 trials with default parameters over the Rye, CO map. SO MCTS Rye favors better in
all cases in aggregate. In particular, for each bucket below 0, there were more counts for SO MCTS than
SO Rand, indicating that more agents were provided a shorter route. However, the overall performance
with regards to fairness leaves much to be desired, with some agents experiencing nearly an hour increase
in travel time due to SO routing. Our interpretation is that quality of route depends largely on the set of
alternate paths that were produced. We intend to explore improving the quality of these alternative routes
in our future work.

Figure 6.7 Fairness of SO MCTS Rye vs. SO Rand Rye

17

7. CONCLUSIONS AND FUTURE WORK
A new technique for route guidance was investigated in an attempt to solve for an approximate system
optimal plan for a batch of agents. The problem corresponded with a Multiple Choice Knapsack Problem
with value dependencies, which made it infeasible to solve with the state-of-the-art approaches. For the
first time, the MCTS technique was introduced as a promising solution to SO route guidance, and was
shown to produce consistent improvement to selfish routing over a meaningful set of inputs.

In the short term, some extensions to the work are immediately apparent. To address fairness, we will
evaluate methods for producing higher-quality route alternatives, in an attempt to reduce the many unfair
routes that were produced. Possibilities exist, such as producing a more diverse set of options or
integrating a dynamic ranking to precomputed alternatives. Exploring objectives other than travel time as
well as composing multi-criteria objectives are a natural extension of this work. In particular, we wish to
explore eco-routing as an extension, as well as multi-modal trip guidance, including fleet, ride-hail and
rideshare modes.

One feature of MCTS is that it is natural to parallelize the search. We are exploring cluster-based
implementations to address horizontal scaling of the search technique in order to solve route guidance for
larger road networks. Solving for a SO route guidance policy as a reinforcement learning problem is a
promising alternative to the path-based solution described here. While this work assumed that each route
received exactly one plan, we are interested in exploring the dynamic route plan scenario, either where we
produce route plans in stages or allow for routes to be updated after they are set.

18

8. REFERENCES
[1] A. C. Madrigal. (2018) The perfect selfishness of mapping apps. [Online]. Available:

https://www.theatlantic.com/technology/archive/2018/03/mappingapps-

and-the-price-of-anarchy/555551/

[2] J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54, no. 2, pp. 286–295, 1951.

[3] J. G. Wardrop, “Some theoretical aspects of road traffic research,” in Inst Civil Engineers Proc
London/UK/, 1952.

[4] M. H. S and S. Peeta, Network performance under system optimal and user equilibrium dynamic
assignments: implications for ATIS. Transportation Research Board, 1993.

[5] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck, “Phast: Hardware-accelerated shortest
path trees,” Journal of Parallel and Distributed Computing, vol. 73, no. 7, pp. 940–952, 2013.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and distance queries via 2-hop labels,”
SIAM Journal on Computing, vol. 32, no. 5, pp. 1338–1355, 2003.

[7] M. Hilger, E. Kohler, R. H. Mohring, and H. Schilling, “Fast point-to-point shortest path
computations with arc-flags,” The Shortest Path Problem: Ninth DIMACS Implementation
Challenge, vol. 74, pp. 41–72, 2009.

[8] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact routing in large road networks using
contraction hierarchies,” Transportation Science, vol. 46, no. 3, pp. 388–404, 2012.

[9] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customizable route planning,” in
International Symposium on Experimental Algorithms. Springer, 2011, pp. 376–387.

[10] H. Bast, D. Delling, A. Goldberg, M. M¨uller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and R.
F. Werneck, “Route planning in transportation networks,” in Algorithm engineering. Springer, 2016,
pp. 19–80.

[11] J. de Dios Ort´uzar and L. G. Willumsen, Modelling transport, 4th ed. John Wiley & Sons, 2011.

[12] M. Fukushima, “A modified Frank-Wolfe algorithm for solving the traffic assignment problem,”
Transportation Research Part B: Methodological, vol. 18, no. 2, pp. 169–177, 1984.

[13] S. Peeta and A. K. Ziliaskopoulos, “Foundations of dynamic traffic assignment: The past, the present
and the future,” Networks and spatial economics, vol. 1, no. 3-4, pp. 233–265, 2001.

[14] A. Horni, K. Nagel, and K. W. Axhausen, The multi-agent transport simulation MATSim. Ubiquity
Press London: 2016.

[15] BEAM Developers. Beam. [Online]. Available: http://beam.lbl.gov/

[16] C. Samal, L. Zheng, F. Sun, L. J. Ratliff, and A. Dubey, “Towards a socially optimal multi-modal
routing platform,” arXiv preprint arXiv:1802.10140, 2018.

http://beam.lbl.gov/

19

[17] C. Wilbaut, S. Hanafi, and S. Salhi, “A survey of effective heuristics and their application to a
variety of knapsack problems,” IMA Journal of Management Mathematics, vol. 19, no. 3, pp. 227–
244, 2008.

[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[19] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree search methods,” IEEE
Transactions on Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.

[20] D. Eppstein, “Finding the k shortest paths,” SIAM Journal on computing, vol. 28, no. 2, pp. 652–
673, 1998.

[21] L. Kocsis and C. Szepesv´ari, “Bandit based monte-carlo planning,” in European conference on
machine learning. Springer, 2006, pp. 282–293.

[22] J. P. Pedroso and R. Rei, “Tree search and simulation,” in Applied Simulation and Optimization.
Springer, 2015, pp. 109–131.

[23] OpenStreetMap contributors, “Planet dump retrieved from https://planet.osm.org”
https://www.openstreetmap.org , 2018.

[24] N. K¨uhnel and M. Zilske, “JOSM Editor MATSim Plugin,” https://github.com/matsim-org/josm-
matsim-plugin, 2018.

[25] “Traffic assignment manual,” U.S. Department of Commerce, Washington, DC, 1964.

20

9. CODE: CORE ALGORITHMS

KSPLocalDijkstrasAlgorithm.scala

1 package
cse.bdlab.fitzgero.sorouting.algorithm.local.ksp 2
3 import
java.time.Instant 4
5 import scala.annotation.tailrec
6 import
scala.collection.GenSeq 7

8 import cse.bdlab.fitzgero.graph.algorithm.GraphRoutingAlgorithm
9 import cse.bdlab.fitzgero.graph.config.KSPBounds
10 import cse.bdlab.fitzgero.sorouting.common.algorithm.local.sssp.SSSPLocalDijkstrasAlgorithm
11 import cse.bdlab.fitzgero.sorouting.common.model.roadnetwork._
12 import
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.local.{LocalEdge,
LocalGraph} 13
14 object KSPLocalDijkstrasAlgorithm extends GraphRoutingAlgorithm {
15 override type VertexId = SSSPLocalDijkstrasAlgorithm.VertexId
16 override type EdgeId = SSSPLocalDijkstrasAlgorithm.EdgeId
17 override type Graph = SSSPLocalDijkstrasAlgorithm.Graph
18 override type Path = List[PathSegment]
19 override type AlgorithmRequest = LocalODPair

20 override type PathSegment =
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.PathSegment 21
22 type SSSPAlgorithmResult =
SSSPLocalDijkstrasAlgorithm.AlgorithmResult 23
24 override type AlgorithmConfig = {
25 def k: Int

26 def kspBounds: Option[KSPBounds]
27 def overlapThreshold:
Double 28 }
29

30 case class AlgorithmResult(od: AlgorithmRequest, paths: GenSeq[Path],
iterations: Int) 31
32

33

34
35 implicit val simpleKSPOrdering: Ordering[Path] =

36 Ordering.by {
37 (odPath: Path) =>
38 odPath.map(_.cost match {

39 case Some(seqOfCosts) => seqOfCosts.sum
40 case None => 0D

41 }).sum
42 }.rever
se 43
44

45

46 @param
47 @param
48 @param
49 @return

50

51 override def runAlgorithm(inputGraph: LocalGraph, request: LocalODPair, config: Option[AlgorithmConfig] =
Some(KSPLocalDijkstrasConfig(52
53 val startTime =
Instant.now.toEpochMilli 54
55 val k: Int = config match {

21

56 case Some(conf) => conf.k
57 case None => 1

58 }

59

60

61 val graph: LocalGraph =
inputGraph.edges.foldLeft(inputGraph) { 62 (g, e) =>
63 g.updateEdge(e._1,
LocalEdge.setFlow(e._2, 0)) 64 }
65
66 val kspBounds: KSPBounds = config match {
67 case Some(conf) =>
68 conf.kspBounds match {
69 case Some(ksp) => ksp

70 case None => KSPBounds.Iteration(1)
71 }

72 case None =>
KSPBounds.Iteration(1) 73 }
74
75 val overlapThreshold: Double = config match {

76 case Some(conf) => conf.overlapThreshold
77 case None => 1.0D

78 }

79

80 SSSPLocalDijkstrasAlgorithm.runAlgorithm(graph, request) match {
81 case None =>

82 println(s"[KSP-ALG] #${request.id} could not find an initial shortest path. Halting
KSP with None") 83
84 None
85 case
Some(trueShortestPath) => 86
87

88 val solution = scala.collection.mutable.PriorityQueue[Path]()
89 solution.enqueue(trueShortestPath.path)
90 val reversedPath: Path =
trueShortestPath.path.reverse 91
92

93 @tailrec
96 def kShortestPaths(walkback: Path, previousGraph: Graph, iteration: Int = 1): Option[AlgorithmResult] = {val

failedBoundsTest: Boolean =
97 kspBounds match {

98 case KSPBounds.Iteration(i) => iteration >= i
99 case KSPBounds.PathsFound(p) => solution.size > p
100 case KSPBounds.Time(t) => Instant.now.toEpochMilli - startTime > t
101 case KSPBounds.IterationOrTime(i, t) => iteration >= i || Instant.now.toEpochMilli - startTime > t
102 }

103

104

105 if (failedBoundsTest || walkback.isEmpty) {
106 if
(solution.isEmpty) { 107
108 None
109 } else {

110 val paths: Seq[Path] = solution.dequeueAll.take(k)

22

111 Some(AlgorithmResult(request, paths, iteration))
112 }
113 } else {

114

115

116

117 val thisEdgeId: EdgeId =
walkback.head.edgeId 118
119 graph.edgeById(thisEdgeId) match {
120 case Some(edge) =>

121 val spurSourceVertex: VertexId = edge.src
122 val spurPrefix: Path = if (walkback.tail.nonEmpty) walkback.tail.reverse else Nil
123 val blockedGraph: Graph = previousGraph.removeEdge(thisEdgeId)
124 val spurAlternatives = blockedGraph.outEdges(spurSourceVertex)
125 if (spurAlternatives.isEmpty) {
126 kShortestPaths(walkback.tail, blockedGraph, iteration + 1)
127 } else {

128 SSSPLocalDijkstrasAlgorithm.runAlgorithm(blockedGraph, LocalODPair(request.id, spurSourceVertex,
request.dst)) match {

129 case None =>

130 kShortestPaths(walkback.tail, blockedGraph, iteration + 1)
131 case
Some(pathSpur) => 132
133

134 val alternativePath: Path = spurPrefix ++
pathSpur.path 135
136
137 val reasonablyDissimilar = true

138

139

140 val (graphToRecurse, nextWalkback) = if (reasonablyDissimilar) {
141 solution.enqueue(alternativePath)
142 (blockedGraph, walkback.tail)
143 } else {

144

145 if (pathSpur.path.nonEmpty)
146 (blockedGraph.removeEdge(pathSpur.path.head.edgeId), walkback)
147 else
148 (blockedGraph, walkback)
149 }

150 kShortestPaths(nextWalkback, graphToRecurse, iteration + 1)

151 }

152 }
153 case None =>

154 println(s"[KSP-ALG] #${request.id} spur edge not found in graph: $thisEdgeId")
155 kShortestPaths(walkback.tail, previousGraph, iteration + 1)
156 }

157 }

158 }

159 try {
160 kShortestPaths(reversedPath, graph)
161 } catch {
162 case e: Throwable =>

23

163 println(s"[KSP-ALG] #${request.id} error thrown")
164 println(e)
165 None
166 }

167 }

168 }

169 }
170

24

SSSPLocalDijkstrasAlgorithm.scala

1 package
cse.bdlab.fitzgero.sorouting.common.algorithm.local.ss
sp 2
3 import
scala.annotation.tailrec 4
5 import cse.bdlab.fitzgero.graph.algorithm.GraphRoutingAlgorithm
6 import cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.{LocalODPair, PathSegment}
7 import
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.l
ocal._ 8
9 object SSSPLocalDijkstrasAlgorithm extends GraphRoutingAlgorithm {
10 type VertexId = String
11 type EdgeId = String
12 type Graph = LocalGraph

13 override type PathSegment = cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.PathSegment
14 override type AlgorithmRequest = LocalODPair
15 override type AlgorithmConfig = Nothing

16 case class AlgorithmResult(od: AlgorithmRequest, path:
List[PathSegment]) 17
18

19 @param
20 @param
21 @param
22 @return

23

24 override def runAlgorithm(graph: Graph, odPair: AlgorithmRequest, config: Option[Nothing] = None):
Option[AlgorithmResult] = {
25 val requestName = s"REQ-${odPair.src}#${odPair.dst}"
26 if (odPair.src == odPair.dst) {
27 println(s"[SSSP] $requestName src equals dst, returning None for path")
28 None
29 } else {

30 for {
31 spanningTree <- minSpanningDijkstras(graph, odPair.src, Some(odPair.dst))
32 path <- backPropagate(graph, spanningTree, odPair.dst)
33 }
yield { 34

35 AlgorithmResult(odPair, path)

36 }

37 }

38 }

39

40

41

42 @param
43 @param

44

45 case class SearchData(edge: LocalEdge, cost:
Double = 0D) 46
47

48

49 @param
50 @param

51

25

52 case class BackPropagateData(π:
Option[EdgeId], d: Double) 53
54

55

56 @param
57 @param
58 @param
59 @return

60

61 def minSpanningDijkstras (graph: Graph, origin: VertexId, destination: Option[VertexId] = None):
Option[Map[VertexId, BackPropagateData 62
63

64 val frontierOrdering: Ordering[SearchData] = Ordering.by (_.cost)
65 val frontier: collection.mutable.PriorityQueue[SearchData] =

collection.mutable.PriorityQueue()(frontierOrdering.reverse)
66 graph
67 .outEdges(origin)
68 .flatMap(graph.edgeById)
69 .foreach(e => {
70 val cost = e.attribute.linkCostFlow match {

71 case Some(linkCost) => linkCost
72 case None => Double.MaxValue
73 }

74 frontier.enqueue(SearchData(e, cost))

75 })

76

77

78 @tailrec def _dijkstras (
79 solution: Map[VertexId, BackPropagateData] = Map.empty[VertexId, BackPropagateData],
80 enqueued: Set[EdgeId] = Set.empty[EdgeId]
81): Option[Map[VertexId, BackPropagateData]] = {
82 if (frontier.isEmpty) {
83 if (destination.isDefined) {
84 None
85 }

86 else {
87 Some(solution)
88 }

89 }

90 else {
91 val (edge, cost) = {
92 val shortestFrontier: SearchData = frontier.dequeue
93 (shortestFrontier.edge, shortestFrontier.cost)
94 }96

97 val solutionUpdate: Map[VertexId, BackPropagateData] =
98 if (!solution.isDefinedAt(edge.dst)) {
99 solution.updated(edge.dst, BackPropagateData(Some(edge.id), cost))
100 } else solution
101

102 if (destination.isDefined && edge.dst == destination.get) {
103 Some(solutionUpdate)
104 } else {
105

106

26

107 val addToEnqueued = for {

108 e: String <- graph.outEdges(edge.dst).filter{!enqueued(_)}.toSet
109 localEdge <- graph.edgeById(e)
110 linkCost <- localEdge.attribute.linkCostFlow
111 } yield {

112 val sourceCost: Double = solutionUpdate(localEdge.src).d
113 frontier.enqueue(SearchData(localEdge, linkCost + sourceCost))
114 e
115 }

116

117 val enqueuedUpdate = enqueued ++ addToEnqueued
118 _dijkstras(solutionUpdate, enqueuedUpdate)
119 }

120 }

121 }

122 if (frontier.isEmpty) {
123 println("[DIJ] dijkstras initial state with empty frontier, returning None for solution")
124 None
125 } else {
126

127 _dijkstras(solution = Map(origin -> BackPropagateData(None, 0D)))

128 }

129

} 130
131

132

133 @param
134 @param
135 @param
136 @return

137

138 def backPropagate(g: Graph, spanningTree: Map[VertexId, BackPropagateData], destination: VertexId):
Option[List[PathSegment]] = {

139 @tailrec def _backPropagate (
140 currentVertex: VertexId,
141 result: List[PathSegment] = List()
142): Option[List[PathSegment]] = {
143 if (spanningTree.isDefinedAt(currentVertex)) {
144 val currentNode: BackPropagateData = spanningTree(currentVertex)
145 currentNode.π match {
146 case None =>

147 Some(result.reverse)
148 case Some(edgeId) =>

149 val edge = g.edgeById(edgeId).get
150 val cost = edge.attribute.linkCostFlow.get
151 _backPropagate(edge.src, result :+ PathSegment(edge.id, Some(Seq(cost))))
152 }
153 } else None

154 }

155 _backPropagate(destination)

156 }

157 }
158

27

MonteCarloTreeSearch.scala

1 package cse.bdlab.fitzgero.mcts
2
3 import java.time.Instant
4
5 import scala.annotation.tailrec
6 import scala.collection.GenSeq
7

8 import cse.bdlab.fitzgero.mcts.core._
9 import cse.bdlab.fitzgero.mcts.core.terminationcriterion.TerminationCriterion
10 import
cse.bdlab.fitzgero.mcts.tree._ 11

12 trait
MonteCarloTreeSearch[S,A] { 13
14

15

16

17

18

19 @param
20 @param
21 @param
22 @return

23

24 def updateMetaData(simulationResult: Update, node: Tree, leafState: S):
Coefficients 25
26

27

28 @param
29 @return

30

31 def getSearchCoefficients(tree: Tree):
Coefficients 32
33

34

35 @param
36 @return

37

38 def getDecisionCoefficients(tree: Tree):
Coefficients 39
40

41

42 @param
43 @param
44 @return

45

46 def createNewNode(state: S, action:
Option[A]): Tree 47
48

49

50 @param
51 @return

52

28

53 def generatePossibleActions(state: S):
Seq[A] 54
55

56

57 @param
58 @param
59 @return

60

61 def applyAction(state: S, action:
A): S 62
63

64

65 @param
66 @return

67

68 def evaluateTerminal(state: S):
Update 69
70

71

72 @param
73 @return

74

75 def stateIsNonTerminal(state: S):
Boolean 76
77

78

79 @param
80 @return

81

82 def selectAction(actions: Seq[A]):
Option[A] 83
84

85
86 @return

87

88 def startState:
S 89
90

91

92 @param
93 @return

94

29

95 def startNode(state: S):
Tree 96
97

98

99

100
101 protected val terminationCriterion: TerminationCriterion[S,A,Tree]
102 protected def actionSelection: ActionSelection[S,A]
103 protected def random: RandomGenerator
104

105

106

107

108 type
Coefficients 109
110

111

112

113

114 type Tree <:
MonteCarloTree[S,A,Reward,Update,Coefficients,Tree] 115
116

117

118
119 type Reward
120

121

122

123
124 type Update
125

126

127
128 @return

129

130 def rewardOrdering:
Ordering[Reward] 131
132

133

134

135

136 @param
137 @param
138 @return

139

140 protected def treePolicy(node: Tree, coefficients: Coefficients)(implicit ordering:
Ordering[Reward]): Tree 141
142

143

30

144

145 @param
146 @return

147
148 protected def defaultPolicy(node: Tree): (Update, S)
149

150

151

152 @param
153 @param
154 @return

155

156 protected def backup(node: Tree, coefficients: Coefficients, delta:
Update): Tree 157
158

159

160 @param
161 @return

162
163 protected def expand(node: Tree): Option[Tree]
164

165

166

167 @param
168 @param
169 @return

170

171 protected def bestChild(node: Tree, coefficients: Coefficients)(implicit ordering:
Ordering[Reward]): Option[Tree] 172
173

174

175

176

177 def evaluateBranch(tree: Tree, coefficients: Coefficients): Reward =
tree.reward(coefficients) 178
179

180
181 @return

182

183 final def run(root: Tree = startNode(startState)): Tree = {
184 terminationCriterion.init()
185 while (terminationCriterion.withinComputationalBudget(root)) {
186 val v_t = treePolicy(root,getSearchCoefficients(root))(rewardOrdering)
187 val (delta,leaf) = defaultPolicy(v_t)
188 val c = updateMetaData(delta,v_t,leaf)
189 backup(v_t,c,delta)

190 }

191 root

192 }

31

193

194

195

196

197 @param
198 @param
199 @return

200

201 final private def _hasUnexploredActions(generatePossibleActions: (S) => Seq[A])(node: Tree): Boolean
= {

202 val explored: GenSeq[A] = node.children match {
203 case None => Seq[A]()

204 case Some(c) => c.keys.toSeq
205 }

206 generatePossibleActions(node.state).diff(explored).nonEmpty

207

} 208
209

210
211 @return

212

213 final protected def hasUnexploredActions: (Tree) => Boolean =
_hasUnexploredActions(generatePossibleActions) 214
215

216

217 @param
218 @return

219
220 final def bestGame(root: Tree): Seq[A] =

221 if (root.hasNoChildren) Seq()
222 else {
223 @tailrec
224 def _bestGame(node: Tree, solution: Seq[A] = Seq.empty[A]): Seq[A] = {
225 if (node.hasNoChildren) solution
226 else {
227 bestChild(node, getDecisionCoefficients(root))(rewardOrdering) match {
228 case None => solution
229 case Some(child) =>
230 child.action match {
231 case None => solution
232 case Some(action) =>

233 _bestGame(child, solution :+ action)
234 }

235 }

236 }

237 }

238 _bestGame(root)

239 }

240

241

242

32

243 @param
244 @param
245 @return

246

247 final def bestMove(decisionCoefficients: Coefficients, root: Tree): Option[A] =
248 for {
249 child <- bestChild(root, decisionCoefficients)(rewardOrdering)
250 action <- child.action
251 } yield action
252

253 }

33

PedrosoReiMCTS.scala

1 package
cse.bdlab.fitzgero.mcts.variant 2
3 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch
4 import cse.bdlab.fitzgero.mcts.algorithm.backup.StandardBackup
5 import cse.bdlab.fitzgero.mcts.algorithm.bestchild.StandardBestChild
6 import cse.bdlab.fitzgero.mcts.algorithm.defaultpolicy.StandardDefaultPolicy
7 import cse.bdlab.fitzgero.mcts.algorithm.expand.StandardExpand
8 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.banditfunction.UCT_PedrosoRei.Objective
9 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar.UCTScalarPedrosoReiReward
10 import cse.bdlab.fitzgero.mcts.algorithm.treepolicy.StandardTreePolicy
11 import cse.bdlab.fitzgero.mcts.tree._
12
13 trait PedrosoReiMCTS[S,A] extends MonteCarloTreeSearch[S,A]

14 with StandardBestChild[S,A]
15 with StandardTreePolicy[S,A]
16 with StandardDefaultPolicy[S,A]
17 with StandardBackup[S,A]

18 with
StandardExpand[S,A] { 19
20 def objective: Objective
21
22 final override type Reward = Double
23 final override type Update = BigDecimal
24 final override type Coefficients = UCTScalarPedrosoReiReward.Coefficients
25

26
27
28 var globalBestSimulation: Update
29 var globalWorstSimulation: Update
30
31
32
33
34 var bestSolution: S
35
36
37
38
39 var nodesCreated: Long = 0
40
41 final override def rewardOrdering: Ordering[Reward] = scala.math.Ordering.Double
42
43 final override type Tree = MCTreePedrosoReiReward[S,A]
44

45 final override def startNode(s: S): MCTreePedrosoReiReward[S, A] = MCTreePedrosoReiReward(s, None,
objective = objective) 46
47 final override def createNewNode(state: S, action: Option[A]): MCTreePedrosoReiReward[S, A] = {
48 nodesCreated += 1
49 MCTreePedrosoReiReward(state, action, objective)
50 }
51
52
53 final override def updateMetaData(simulationResult: Update, node: Tree, leafState: S): Coefficients = {
54 if (objective.isWorseThan(simulationResult, globalWorstSimulation)) globalWorstSimulation = simulationResult
55 if (objective.isBetterThanOrEqualTo(simulationResult, globalBestSimulation)) {
56 bestSolution = leafState
57 globalBestSimulation = simulationResult
58 }
59 UCTScalarPedrosoReiReward.Coefficients(getSearchCoefficients(node).Cp, globalBestSimulation, globalWorstSimulation)
60 }
61 }
62
63

34

PedrosoReiMCTSLightImpl.scala

1 package
cse.bdlab.fitzgero.sorouting.common.mcts.light.pedrosoreimcts 2
3 import scalaz.effect.IO
4

5 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.banditfunction.UCT_PedrosoRei.{Minimize, Objective}
6 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar.UCTScalarPedrosoReiReward.{Coefficients,

SearchCoefficient}
7 import cse.bdlab.fitzgero.mcts.core.terminationcriterion.{TerminationCriterion, TimeTermination}
8 import cse.bdlab.fitzgero.mcts.tree.MCTreePedrosoReiReward
9 import cse.bdlab.fitzgero.sorouting.common.mcts.light.Tag
10 import cse.bdlab.fitzgero.sorouting.common.model.population.light.RequestMCTS
11 import cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.light.fixednetworktable.FixedNetworkTable
12 import
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.light.snapshottable.Snapshot
Table 13

14 class
PedrosoReiMCTSLightImplIO(
15
16 val iOFixedNetworkTable : FixedNetworkTable[IO],
17 val iOSnapshotTable : SnapshotTable[IO],
18 val request : RequestMCTS,
19 val seed : Long = 0L,
20 val Cp : Double,

21 override val terminationCriterion : TerminationCriterion[Array[Tag], Tag, MCTreePedrosoReiReward[Array[Tag],
Tag]] = TimeTermination(50

22 val startState : Array[Tag] = Array(),
23 val costFunction : (FixedNetworkTable[IO], SnapshotTable[IO], Map[Int, Float]) =>
IO[BigDecimal] 24
25) extends PedrosoReiMCTSLight {
26
27 override val objective: Objective = Minimize()

28 override var globalBestSimulation: BigDecimal = objective.defaultBest
29 override var globalWorstSimulation: BigDecimal = objective.defaultWorst
30 override var bestSolution: Array[Tag] = Array()
31

32 override def getSearchCoefficients(tree: Tree): Coefficients = Coefficients(Cp, globalBestSimulation,
globalWorstSimulation) 33
34 override def getDecisionCoefficients(tree: Tree): Coefficients = Coefficients(SearchCoefficient, globalBestSimulation,
globalWorstSimul 35
36 override def evaluateTerminal(state: Array[Tag]): BigDecimal =
PedrosoReiMCTSLightImpl.evaluateCostFlowDelta(iOFixedNetworkTable, iOSna 37 }
38

39 object
PedrosoReiMCTSLightImpl { 40
41 def apply(

42 fnt : FixedNetworkTable[IO],
43 sn : SnapshotTable[IO],
44 req : RequestMCTS,
45 seed: Long,
46 Cp : Double,
47 term: TerminationCriterion[Array[Tag], Tag, MCTreePedrosoReiReward[Array[Tag], Tag]],
48 start: Array[Tag],
49 f: (FixedNetworkTable[IO], SnapshotTable[IO], Map[Int, Float]) => IO[BigDecimal]
50): PedrosoReiMCTSLightImplIO = new PedrosoReiMCTSLightImplIO(fnt, sn, req,
seed, Cp, term, start, f) 51
52 def evaluateCostFlowDelta(
53 iOFixedNetworkTable: FixedNetworkTable[IO],
54 iOSnapshotTable : SnapshotTable[IO],

35

55 request : RequestMCTS,
56 state : Array[Tag],
57 costFunction : (FixedNetworkTable[IO], SnapshotTable[IO], Map[Int, Float]) => IO[BigDecimal]
58): IO[BigDecimal] = {
59 val flows = Tag.tagsToGroupedFlows(state, request)
60 costFunction(iOFixedNetworkTable,
iOSnapshotTable, flows) 61 }

62 }

36

UCTScalarPedrosoReiReward.scala

1 package
cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar 2
3 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch
4 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.banditfunction.UCT_PedrosoRei
5
6
7 trait UCTScalarPedrosoReiReward[S,A] extends MonteCarloTreeSearch[S,A] {
8 self: {
9 type Reward = Double

10 type Coefficients =
UCTScalarPedrosoReiReward.Coefficients 11 } =>
12
13 }
14
15 object UCTScalarPedrosoReiReward {
16
17
18
19 @param
20 @param
21 @param
22
23 case class Coefficients (Cp: Double, globalBestSimulation: BigDecimal, globalWorstSimulation: BigDecimal) extends Serializable
24
25 val ExplorationCoefficient: Double = 1D/0.707D
26 val SearchCoefficient: Double = 0D
27 }

37

UCT_PedrosoRei.scala

1 package
cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.ban
ditfunction 2
3

4

5

6
7 object
UCT_Pedroso
Rei { 8

9

10

11
12 sealed trait Objective {

13 def defaultBest: BigDecimal
14 def defaultWorst: BigDecimal
15 def defaultSimulation: BigDecimal
16 def isBetterThanOrEqualTo(a: BigDecimal, b: BigDecimal): Boolean
17 def isWorseThan(a: BigDecimal,
b: BigDecimal): Boolean 18 }
19 case class Minimize(lowerBounds: BigDecimal = BigDecimal.decimal(0), upperBounds: BigDecimal =
BigDecimal("9" * 50)) extends Objective
20 override def defaultBest: BigDecimal = upperBounds
21 override def defaultWorst: BigDecimal = lowerBounds
22 override def defaultSimulation: BigDecimal = upperBounds

23 override def isBetterThanOrEqualTo(a: BigDecimal, b: BigDecimal): Boolean = a <= b
24 def isWorseThan(a: BigDecimal, b:
BigDecimal): Boolean = a > b 25 }
26 case class Maximize(lowerBounds: BigDecimal = BigDecimal.decimal(0), upperBounds: BigDecimal =
BigDecimal("9" * 50)) extends Objective
27 override def defaultBest: BigDecimal = lowerBounds
28 override def defaultWorst: BigDecimal = upperBounds
29 override def defaultSimulation: BigDecimal = lowerBounds

30 override def isBetterThanOrEqualTo(a: BigDecimal, b: BigDecimal): Boolean = a >= b
31 def isWorseThan(a: BigDecimal, b:
BigDecimal): Boolean = a < b 32 }

33

34

35

36 @param
37 @param
38 @param
39 @param
40 @param
41 @param
42 @param
43 @return

44

45 def apply(globalBestSimulation: BigDecimal,
46 globalWorstSimulation: BigDecimal,
47 childBestSimulation: BigDecimal,
48 childAverageSimulation: BigDecimal,
49 childVisits: Long,
50 parentVisits: Long,
51 Cp:
Double): Double =
{ 52

38

53 val X = pedrosoReiExploitationTerm(globalBestSimulation, globalWorstSimulation,
childBestSimulation)
54 val E = pedrosoReiExplorationTerm(globalBestSimulation, globalWorstSimulation,

childAverageSimulation, Cp, parentVisits, childVisits)
55 X
+
E
5
6

57 }

58

59

60

61

62 @param
63 @param
64 @param
65 @return

66

67 def pedrosoReiExploitationTerm(globalBestSimulation: BigDecimal, globalWorstSimulation:
BigDecimal, childBestSimulation: BigDecimal): D
68 if (globalWorstSimulation == globalBestSimulation) 0D
69 else {
70 pedrosoReiXTerm(globalBestSimulation,globalWorst
Simulation,childBestSimulation) 71 }

72 }

73

74 def pedrosoReiXTerm(globalBestSimulation: BigDecimal, globalWorstSimulation: BigDecimal,
localSimulation: BigDecimal): Double = {
75 val a: Double = ((globalWorstSimulation - localSimulation) / (globalWorstSimulation -

globalBestSimulation)).toDouble
76 val numer: Double = math.pow(math.E, a) - 1D
77 val denom: Double = math.E - 1D
78 if (denom != 0)
numer / denom else 0D
79 }

80

81

82

83 @param
84 @param
85 @param
86 @return

87

88 def pedrosoReiExplorationTerm(globalBestSimulation: BigDecimal, globalWorstSimulation:
BigDecimal, childAverageSimulation: BigDecimal, 89 if (Cp == 0) 0D
90 else if (globalWorstSimulation == globalBestSimulation) Double.PositiveInfinity
91 else {
92 val XBar = pedrosoReiXTerm(globalBestSimulation, globalWorstSimulation,

childAverageSimulation)
93 val E = uctExploration(Cp, parentVisits, childVisits)
94 XBar * E

95 }

96 }

39

97

98 def uctExploration(Cp: Double, parentVisits: Long, childVisits: Long): Double = {
99 if (parentVisits == 0L)
100 0D
101 else if (childVisits == 0L)

102 Double.PositiveInfinity
103 else
104 Cp * math.sqrt(math.log(parentVisits) / childVisits)

105 }

106 }
107

40

ActionSelection.scala

1 package cse.bdlab.fitzgero.mcts.core
2
3 trait ActionSelection[S,A] {

4 def selectAction(actions: Seq[A]): Option[A] 5
 }
6
7 class RandomSelection[S,A](

8 random: RandomGenerator,
9 generatePossibleActions: (S) => Seq[A]
10) extends ActionSelection[S,A] {

11 def selectAction(actions: Seq[A]): Option[A] = {
12 actions match {
13 case Nil => None

14 case xs => Some(actions(random.nextInt(actions.size)))
15 }
16 }
17 }
18
19 object RandomSelection {

20 def apply[S,A](random: RandomGenerator, generatePossibleActions: (S) => Seq[A]):
RandomSelection[S,A] =

21 new RandomSelection(random, generatePossibleActions) 22
 }

41

StandardBackup.scala

1 package cse.bdlab.fitzgero.mcts.algorithm.backup 2
3 import scala.annotation.tailrec
4
5 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch
6
7 trait StandardBackup[S,A] extends MonteCarloTreeSearch[S,A] {
8 @tailrec
9 override protected final def backup(node: Tree, coefficients: Coefficients, delta: Update): Tree = {
10 node.parent() match {
11 case None =>
12 node.update(delta, coefficients)
13 node
14 case Some(parent) =>
15
16 node.update(delta, coefficients)
17 backup(parent, coefficients, delta) 18
 }
19 }
20 }
21

42

StandardBestChild.scala

1 package
cse.bdlab.fitzgero.mcts.algorithm.bestchild 2
3 import
cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 4
5 trait StandardBestChild[S,A] extends MonteCarloTreeSearch[S,A] {
6 override protected final def bestChild(node: Tree, coefficients: Coefficients)(implicit ordering: Ordering[Reward]): Option[Tree] = {

7 if (node.hasNoChildren) { None }
8 else {
9 val children = node.childrenNodes.values map {
10 tree: Tree => (tree.reward(coefficients),
tree) 11 }
12 val bestChild = children.maxBy{_._1}._2
13 Some(bestChild)
14 }

15 }

16 }

17

43

StandardDefaultPolicy.scala

1 package
cse.bdlab.fitzgero.mcts.algorithm.defaultpolicy 2
3 import
scala.annotation.tailrec 4
5 import
cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 6
7 trait StandardDefaultPolicy[S,A] extends
MonteCarloTreeSearch[S,A] { 8
9 override protected final def defaultPolicy(monteCarloTree: Tree): (Update, S)= {

10 if
(stateIsNonTerminal(monteCarloTree.state)) { 11

12

13 @tailrec
14 def _defaultPolicy(state: S): (Update, S) = {
15 if (stateIsNonTerminal(state)) {
16 selectAction(generatePossibleActions(state)) map { applyAction(state,_) } match {
17 case None =>

18

19 throw new IllegalStateException(s"Applying action to state $state but it produced an empty state. your
applyAction and gene
20 case Some(nextState) =>

21 _defaultPolicy(nextState)
22 }
23 } else {

24 (evaluateTerminal(state), state)
25 }

26 }

27

28 _defaultPolicy(monteCarloTree.state)
29 } else {

30 (evaluateTerminal(monteCarloTree.state),
monteCarloTree.state) 31 }

32 }

33 }

34

44

StandardExpand.scala

1 package cse.bdlab.fitzgero.mcts.algorithm.expand 2
3 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch
4
5 trait StandardExpand[S,A] extends MonteCarloTreeSearch[S,A] {
6 override protected final def expand(node: Tree): Option[Tree] = {
7 for {
8 action <- actionSelection.selectAction(generatePossibleActions(node.state))
9 } yield {
10 val newState = applyAction(node.state, action)
11 val newNode = createNewNode(newState, Some(action))
12 node.addChild(newNode)
13 newNode
14 }
15 }
16 }
17

45

StandardMCTS.scala

1 package
cse.bdlab.fitzgero.mcts.variant 2
3 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch
4 import cse.bdlab.fitzgero.mcts.algorithm.backup.StandardBackup
5 import cse.bdlab.fitzgero.mcts.algorithm.bestchild.StandardBestChild
6 import cse.bdlab.fitzgero.mcts.algorithm.defaultpolicy.StandardDefaultPolicy
7 import cse.bdlab.fitzgero.mcts.algorithm.expand.StandardExpand
8 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar.UCTScalarStandardReward
9 import cse.bdlab.fitzgero.mcts.algorithm.treepolicy.StandardTreePolicy
10 import cse.bdlab.fitzgero.mcts.tree._
11
12 trait StandardMCTS[S,A] extends MonteCarloTreeSearch[S,A]

13 with StandardBestChild[S,A]
14 with StandardTreePolicy[S,A]
15 with StandardDefaultPolicy[S,A]
16 with StandardBackup[S,A]

17 with
StandardExpand[S,A] { 18
19 final override type Reward = Double
20 final override type Update = Double
21 final override type Coefficients = UCTScalarStandardReward.Coefficients
22
23 final override def rewardOrdering: Ordering[Double] = scala.math.Ordering.Double
24
25 final override type Tree = MCTreeStandardReward[S,A]
26
27 final override def startNode(s: S): MCTreeStandardReward[S, A] = MCTreeStandardReward(s)
28
29 final override def createNewNode(state: S, action: Option[A]): MCTreeStandardReward[S, A] =

30 MCTreeStandardReward(stat
e, action) 31
32 override def updateMetaData(simulationResult: Double, node: Tree, state: S): Coefficients = getSearchCoefficients(node)
33 }
34
35

46

StandardTreePolicy.scala

1 package cse.bdlab.fitzgero.mcts.algorithm.treepolicy
2
3 import scala.annotation.tailrec
4
5 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch
6
7 trait StandardTreePolicy[S,A] extends MonteCarloTreeSearch[S,A] {
8

9 @tailrec
10 override protected final def treePolicy(node: Tree, coefficients: Coefficients)(implicit ordering: Ordering[Reward]): Tree = {

11 if (stateIsNonTerminal(node.state)) {
12 if (hasUnexploredActions(node)) {
13 expand(node) match {
14 case None => node

15 case Some(newChild) => newChild
16 }
17 } else {

18 bestChild(node, coefficients) match {
19 case None => node
20 case Some(bestChild) =>

21 treePolicy(bestChild, coefficients)
22 }
23 }
24 } else {

25 node
26 }
27 }
28 }
29

47

APPENDIX: TEACHING MATERIALS
This following first shows the two course projects from CSCI 4951/5951 Big Data Systems, followed by
an example of student work.

48

I.A CSCI 4951/5951 BIG DATA SYSTEMS COURSE PROJECT: SAMPLE #1

49

50

51

I.B CSCI 4951/5951 BIG DATA SYSTEMS COURSE PROJECT: SAMPLE #2

52

53

54

I.C SAMPLE STUDENT COURSE PROJECT

55

56

57

58

59

60

61

62

63

64

65

66

67

68

	Technical Report Documentation Page
	KSPLocalDijkstrasAlgorithm.scala
	46 @param
	147 else
	159 try {

	SSSPLocalDijkstrasAlgorithm.scala
	19 @param
	30 for {
	42 @param
	49 @param
	56 @param
	86 else {
	90 else {
	133 @param

	MonteCarloTreeSearch.scala
	19 @param
	28 @param
	35 @param
	42 @param
	50 @param
	57 @param
	65 @param
	72 @param
	79 @param
	92 @param
	136 @param
	145 @param
	152 @param
	160 @param
	167 @param
	197 @param
	217 @param
	222 else {
	226 else {
	243 @param
	248 for {

	PedrosoReiMCTS.scala
	1 package cse.bdlab.fitzgero.mcts.variant 2
	14 with StandardBestChild[S,A]
	18 with StandardExpand[S,A] { 19
	26
	45 final override def startNode(s: S): MCTreePedrosoReiReward[S, A] = MCTreePedrosoReiReward(s, None, objective = objective) 46

	PedrosoReiMCTSLightImpl.scala
	UCTScalarPedrosoReiReward.scala
	1 package cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar 2
	10 type Coefficients = UCTScalarPedrosoReiReward.Coefficients 11 } =>

	UCT_PedrosoRei.scala
	36 @param
	62 @param
	69 else {
	83 @param
	91 else {
	103 else

	ActionSelection.scala
	4 def selectAction(actions: Seq[A]): Option[A] 5 }
	8 random: RandomGenerator,
	11 def selectAction(actions: Seq[A]): Option[A] = {
	14 case xs => Some(actions(random.nextInt(actions.size))) 15 }
	20 def apply[S,A](random: RandomGenerator, generatePossibleActions: (S) => Seq[A]): RandomSelection[S,A] =

	StandardBackup.scala
	1 package cse.bdlab.fitzgero.mcts.algorithm.backup 2
	8 @tailrec
	12 node.update(delta, coefficients)
	16 node.update(delta, coefficients)
	StandardBestChild.scala
	8 else {

	StandardDefaultPolicy.scala
	StandardExpand.scala
	1 package cse.bdlab.fitzgero.mcts.algorithm.expand 2
	8 action <- actionSelection.selectAction(generatePossibleActions(node.state))
	10 val newState = applyAction(node.state, action)
	StandardMCTS.scala
	1 package cse.bdlab.fitzgero.mcts.variant 2
	13 with StandardBestChild[S,A]
	17 with StandardExpand[S,A] { 18
	30 MCTreeStandardReward(state, action) 31

	StandardTreePolicy.scala
	9 @tailrec
	11 if (stateIsNonTerminal(node.state)) {
	15 case Some(newChild) => newChild
	18 bestChild(node, coefficients) match {
	21 treePolicy(bestChild, coefficients) 22 }
	25 node

