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ABSTRACT 
The existing online mapping systems process many user route queries simultaneously, yet solve each 
independently, using typical route guidance solutions. These route recommendations are presented as 
optimal, but often this is not truly the case, due to the effects of competition users experience over the 
resulting experienced routes, a phenomenon referred to in Game Theory as a Nash Equilibrium. 
Additionally, route plans of this nature can result in poor utilization of the road network from a system-
optimizing perspective as well. In this project, we introduce an enhanced approach for route guidance, 
motivated by the relevance of a system optimal equilibrium strategy, while also maintaining fairness to 
the individual. With this approach, the objective is to optimize global road network utilization (as 
measured by mobility, global emissions etc.) by selecting from a set of generally fair user route 
alternatives in a batch setting. 

For the first time, an approximate, anytime algorithm based on Monte Carlo Tree Search and Eppstein’s 
Top-K Shortest Paths algorithm is presented to solve this complex dual optimization problem in real-time. 
This approach attempts to identify and avoid the potentially harmful network effects of sub-optimal route 
combinations. Experiments show that mobility optimization over the real road networks of Rye and Golden, 
Colorado in a microscopic traffic simulation with a network congestion-minimizing objective can lead to 
considerable improvement in mobility for users, as observed by a shorter travel time, with an improvement 
up to 12% with some consideration of route fairness. 

As part of this research the following four objectives have been achieved as presented in the Main Body of 
the report: 

1. Introduction of a transportation network utility function that captures utilization of the network 
based on throughput-of/mobility-through of the transportation network (other network utilization 
criteria such as overall travel quality, safety, environmental impact, etc., can be studied as part of 
future work). 

2. Designed a multi-criteria route planning solution that uses the introduced utility function as the 
primary criterion, and an exemplary traveler interest (e.g., fastest route) as the secondary criterion 
to generate optimal routes for travelers in a transportation network. 

3. Developed a data-driven simulation testbed (based on realistic road network and traffic data) to 
evaluate the designed route planning solution and compare its performance versus state-of- the-art 
route planning solutions. 

4. Advanced knowledge by carrying out comparative analyses to answer the proposed research 
questions. 

  



 

iv 
 

In addition to the aforementioned research tasks, we pursued and achieved three other objectives in this 
project as follows:  

1. Advanced policy and practice with respect to transportation network utilization: Toward this end, 
in multiple occasions we presented our results a Colorado Department of Transportation (CDOT) 
and National Renewable Energy Laboratory (NREL) as well as MS2 user group.  

2. Advanced education through the training of students: To pursue this objective, numerous 
assignments and course projects were included in both undergraduate level and graduate level 
courses offered over a period of three years at the Department of Computer Science and 
Engineering, University of Colorado Denver. Sample assignments as well as sample student work 
are included in the Appendix. 

3. Built an evidence base by disseminating findings through publications and presentations: Results 
have been published from the studies in the 20th International Conference on Mobile Data 
Management (MDM 2019), which is a premier venue for presentation of data-driven 
methodologies for transportation management. 
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I.  INTRODUCTION  
Online mapping systems offer highly granular route guidance, but have also increased the problems of 
congestion, as they do not address the contributions made by each route to the emergent network 
congestion [1]. Without a strategy to negotiate those effects, these route guidance providers escalate 
competition over the vital network corridors, which results in a common result referred to in Game 
Theory as a Nash Equilibrium [2], or in the transportation literature, as a User Equilibrium (UE) [3]. 
Needless to say, it is desirable to find assignments for these route plans which could instead enable a 
System-Optimal (SO) equilibrium, where overall network congestion has been minimized. 

In particular, as more technologies are introduced into the road network, it becomes more relevant to 
consider how such plans might impact the network. Due to the proliferation of mobile devices, the 
network is now flooded with different forms of real-time communication. This has created the platform 
for Transportation Network Companies (TNC) to emerge. Stakeholders are now motivated to consider the 
impact of TNCs, and an opportunity exists to provide incentives to TNCs and delivery companies such as 
Lyft, Uber, and Grubhub to assist in the optimization of the road network utilization. Similarly, 
Connected and Autonomous Vehicles (CAV) bring the promise of great optimization opportunities to 
road networks, as they are unopinionated route-followers. Their complicit nature can help bring the road 
network traffic to a state of SO equilibrium. 

The possibility of system-level route optimization is enticing, as transportation planning studies have long 
shown the benefits of SO approaches in small, abstract problem sets [4]. However, producing a SO route 
assignment online and in real time requires solving very challenging optimization problems within a 
limited computational budget. To address this problem, in this project an approach toward the goal of 
real-time SO route guidance is introduced and solved using a promising two-phase approximation 
technique, which balances out the objectives of both the driver agent and the network. To achieve this, a 
meta-heuristic, anytime algorithm, namely, Monte Carlo Tree Search (MCTS) is employed to identify a 
set of approximately SO routes from a multiset of options, which are each generated with respect to the 
driver agent’s utility. Experimental results show a 10% improvement of average network travel time over 
selfish routing, where a meaningful majority of agents were receiving a fair assignment of an equal or 
faster route. 

This project provides a mathematical formulation of static and dynamic SO routing problems is presented 
and discussed. It also presents a novel algorithmic solution, which is described and evaluated with respect 
to synthetic populations over real-world road networks. To explore the process of this research, first, 
related work in the areas of selfish and SO route guidance is presented in Section 2. Next, the generic 
problem of SO route guidance is discussed in Section 3. An overview of the presented solution appears in 
Section 4, and then in Section 5 the proposed approach, a two-phase algorithm based on Monte Carlo 
Tree Search is explained. Thereafter, an experimental comparative analysis is shown in Section 6, 
followed by Section 7, where the paper is concluded with future directions. Section 9 includes our code 
base for core algorithms presented in this report. 
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2.  RELATED WORK  
In order to review work related to route guidance techniques, the literature is categorized into two groups. 
First, route guidance techniques which optimize individual routes are considered. Second, research which 
is broadly associated with simulating or producing SO equilibria in transportation network flow problems 
is discussed. 

2.1 User-Optimal Routing 

The classic techniques for conducting an optimal path search for a route are Dijkstra’s algorithm and the 
Bellman-Ford algorithm. Both techniques take advantage of the triangle inequality to find a minimum 
spanning tree rooted at some origin vertex. These are expanded into path search techniques by traversing 
the resulting tree back from the destination vertex. The idea is generalized to the all-pairs shortest paths 
scenario via the Floyd-Warshall algorithm, which exploits the recursive nature of shortest path trees. A* 
Search can then be used to guide the path building via a search heuristic. These techniques require no pre-
computation time, but require algorithmic operations at query time. 

Techniques which minimize query time and make the path search solvable in an online context, have the 
added costs of increased precompute time and memory requirements. The most straight-forward 
optimization of this sort is to create a lookup table of all possible route queries. This can be achieved by 
running the Floyd-Warshall algorithm, which produces a massive memory allocation. Parallel 
optimizations, such as PHAST [5], exist to address this constraint. Smaller sets of data can also be stored 
effectively on the vertices with linear performance, which nears lookup table queries, such as in Hub 
Labeling (HL) [6]. 

Some query time optimizations require a small sweep of the graph, but provide optimizations which do 
not have large tradeoffs in terms of memory footprint and pre-computation time, and are reasonably 
competitive in query times to PHAST and HL. Arc Flags [7] provides a bit-sized label identifying useful 
out-edges at each search step. Contraction Hierarchies (CH) [8] produces a hierarchy of hypergraphs, 
limiting the search space as the search ascends the hierarchy. Customizable Route Planning (CRP) [9] is 
more responsive to changes in network flows because it separates the precomputation process into a 
bootstrapping step and an updating step. 

For more details on these techniques, refer to the recent comprehensive survey as discussed by Bast et al. 
2016 [10]. 
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2.2 System-Optimal Equilibrium 

The study of road network utility comes from the field of traffic assignment [11], which estimates the 
network effects caused by the interaction of network flows. Those effects result in one of two steady state 
behaviors first identified by John Glen Wardrop in 1952 [3]: UE from selfish routing behavior, or SO as a 
result of network-optimizing behavior. Solution methods differ based on the scope of the problem, 
varying between the macroscopic, which is executed over aggregate flows (vehicles per unit time), and 
the microscopic, which is executed with respected to solving routes for individual driver agents. 
Macroscopic scale solutions, such as the Frank-Wolfe algorithm [12], only contain the expected network 
effects, while the individual route information is lost within the aggregate flow values. 

In contrast to macroscopic scale solutions, a microscopic solution to traffic assignment requires running a 
playout with the interaction of the supply and demand. This extends the problem into the temporal setting, 
which is referred to as a Dynamic Traffic Assignment (DTA) problem [13]. Iterative agent-based simulators 
such as MATSim [14] and its successor BEAM [15] solve DTA with a UE objective by running successive 
“days” of simulation, modifying some or all of the agent routes in response to the effects observed be- 
tween days. Recent work has extended the MATSim platform with SO route guidance approaches to multi-
modal routing [16]. While the authors have proposed a new technique for producing SO equilibria, it is not 
presented as a solution for online route guidance. To the best of the authors’ knowledge, the technique 
proposed here presents the first solution to SO route guidance in an online and microscopic DTA setting, 
suitable for real-world route guidance applications. 
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3. PROBLEM DEFINITION 
In the following section, SO route guidance is presented. The objective is to assign routing to a set of 
agents in such a way that the aggregate effect of their experienced routes is optimal with respect to road 
network utilization. 

Let G represent a road network, as a directed, connected, finite graph with vertices V (G) and edges 
E(G) ⊆ V (G) × V (G). Each vertex v ∈ V (G) represents a location. Each edge (u, v) ∈ 
E(G) represents a  road  segment  traversing the road network, with a positively valued and 
monotonically increasing link cost function C(Fe, e), a  function  of  the link  flows  Fe  and  any  
link  attributes  stored  in  e.  Let R be a finite set of requests, where each request r ∈ R is a 
tuple (or , dr ) associated  with  the  r-th  agent.  A request captures the intent to seek point-to-point 
routing from an origin or to a destination dr where or , dr  ∈ V (G), for an agent seeking optimized 
routing. Therefore, each request be served a path of the form pr = (v0, v1, .., vn−1, vn) such that (vk , 
vk+1) ∈ E(G)∀0 ≤ v ≤ n, v0 = or , and vn = dr . The complete set of path options for agent r is 
represented by the set Pr .  
In this hypothetical setting, the desired outcome is a path assignment for each agent r ∈ R which seeks 
to optimize both agent r and the unloaded road network G. The optimization of an agent’s route is 
straightforward with a technique such as Dijkstra’s algorithm for optimal path finding. However, 
optimizing the network through path selection implies that these paths are modifiable for the full set 
R of requests. The SO algorithm must decide a path selection for each agent r ∈ R from all such 
alternatives Pr . The global measure of these path selections is viewed through the optimization 
objective C, as the intersection of path choices occurs on the set of network links E(G). 
More formally, one can conceptualize SO routing as a solution to the general optimization problem in 
(1a), which seeks to find P∗ the best paths to assign for each agent, a byproduct of decision vector 
X.  To evaluate X, the sum of edge costs is computed. Each edge cost is dependent on counting the agents 
which are routed on each edge (1b). This is computed by testing whether an edge has membership in a 
path (2) or does not (3). The optimization is constrained by solving for exactly one path per request (1c). 
Each decision variable is ensured to be exactly 0 or 1 (1d). The side effect of this optimization is the set of 
paths to assign, and the minima C∗ is the estimated cost of this assignment. 
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While this is sufficient to describe an abstract SO problem with a static set of inputs, it does not 
consider the dynamic nature of the arrival of requests. In order to consider dynamic arrival, one needs 
to modify the above minimization objective such that it routes a temporally diverse set of agents and 
maintains a picture of network effects from previous solutions. One approach to dynamic assignment is 
to allow agent route replanning, and implies that agent routes can be changed frequently. While re-
planning is not the intention of this work, it is a problem of interest for future work in SO routing, in 
particular in how it relates to CAV routing. 
 
A second formulation exists to address dynamic arrival, in which agents are considered as 
successive batches of temporally located collaborative routing problems. In this batch-based setting, 
one is concerned with a batch of agents whose departure time falls on a timeline between a 
simulation start time t0 and end time T. All requests are then associated with a departure time d(r) ∈ 
[t0, T). Each batch of duration b begins at a start time ts and ends at time t and forms a time 
window [ts, t). For each request ri, if the departure time d(r) is within the established time window, an 
optimizing assignment is attempted.  

 
In this setting, it is no longer sufficient to assume the road network is unloaded, as a solution must 
capture the effects of the current network state at time t as an effect of previous batches. Instead, 
the revised optimization problem considers both the current batch path assignments as well as the 
currently observed edge flows Fet . The final batch optimization problem is shown in 4a. It is interesting 
to note that, as b gets smaller, the problem approaches the selfish routing scenario. In fact, if one limits 
the number of agents per batch to 1 and set b = 1, then it is exactly the selfish case. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The cost function C can represent any single or multi-criteria function of link attributes. The most 
straight-forward function is the evaluation of the link cost/flow for a congestion minimization objective. It 
is simple to reason that multicriteria functions can also be used. For example, consider the scenario 
where land use data exists by which to query a link for its available services, such as the 
availability gas or charging stations. A cost function could then be introduced in which a linear 
combination of the utility of cost/flows as well as the refueling capacity is computed. As a second 
scenario, if the average fuel and emissions cost of link traversal is known, these values could be 
incorporated into an eco-routing objective. For the remainder of this report, a congestion minimizing 
objective is assumed.  As a running example, consider an unloaded road network in Figure 4.1 and six 
agents in Table 4.1. This example is concerned with a batch b = 5 where ts = 10 and t = 1 
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4. SOLUTION OVERVIEW 
In the section above, SO route guidance was presented as a multi-choice knapsack problem (MCKP) [17]. 
In a MCKP, an optimal solution is a set of choices (batch of path assignments) found within a multi-set of 
choices (agents), where one item (path) must be chosen for each agent. A typical knapsack problem 
assumes that our link cost/flow functions are independent, in that the cost/flow effects for agent one do 
not interact with the cost/flow effects of agent two. However, this is only the case when no agent paths 
overlap. As soon as two paths overlap on a single edge, the problem requires a solution which is capable 
of solving these interdependent cost/flow functions. In the case of observing two agents interacting, the 
problem becomes a quadratic knapsack problem (QKP). As the count of agents grows within a batch, the 
size of the cost/flow function space grows in O(kr ) space as the full combination of possibilities becomes 
a product of each agent’s alternate paths, denoted by k. This renders SO route guidance problems 
unsuitable for conventional linear solvers and their assumption of linear independent cost functions. 
 

Table 4.1  A Set of 6 Routing Requests 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1  Uploaded Road Network 
 
This nonlinear link interdependence caused by the intersection of paths is a challenge, but also an 
opportunity, as the discovery and reduction of this interdependence is synonymous with the minimization 
of estimated travel time congestion effects. One possible model for these relationships is that of a 
probabilistic graph, identifying estimated optimal cost instead of a fixed value. In this way, the structure 
of this search problem resembles that of a contextual bandit [18]. In contextual bandits, each choice 
(selection of paths for one agent) is modeled as a probabilistic reward function. The search explores by 
placing an artificially high reward on subspaces with zero or few observations. It balances exploration by 
eventually exploiting the more certain subspaces with high-valued rewards. These problems are solved by 
algorithms which employ a multi-armed bandit function. 
 
Novel techniques which address this essential trade-off between exploitation and exploration is what has 
led to a resurgence in the field of reinforcement learning (RL), from which contextual bandits originate. A 
relatively new technique in RL is the Monte Carlo Tree Search (MCTS) [19] algorithm. It builds a tree 
which can capture the nested bandit problems described above. Each branch in the tree attempts to find 
the expected value of its subspace. At each step, as the search continues to sample the tree, it balances out 
these running expected values with an exploration term, which represents preference to explore 
previously unexplored subtree spaces. 
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In the following solution, MCTS is employed in an attempt to learn the link interdependences, which 
occur between supply and demand in SO route guidance. In order to solve system optimal route guidance 
for an arbitrary batch size, the search for an optimal combination of paths is solved by way of a two-phase 
algorithm. In phase one, sets of Top-K alternate paths are constructed for each request, which produces a 
set of alternate paths. In phase two, a meta-heuristic search for an optimal selection finds an 
approximately optimal solution by way of MCTS. 
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5. TWO-PHASED BATCH-BASED SYSTEM OPTIMAL ROUTE 
 GUIDANCE WITH MCTS  

To solve for phase one, Eppstein’s top-k shortest paths algorithm [20] is executed. The top-k 
shortest paths for each agent is computed based on an unloaded road network; note that this can be 
computed offline. In Table 5.1, a scenario for the running example is presented, where agents 2 to 5 
each have the same set of alternate paths shown. It is not required that agents share origins or 
destinations, but it greatly simplifies the example here. Each agent has a set of k = 3 alternate 
paths which are successively minimal, and because of this, the path visiting Vertex 6 is omitted. 
Note that path 1 is the true shortest path for each agent, and equivalent to the selfish routing 
solution. 

To solve for phase two, MCTS [19] is executed. MCTS is referred to as an anytime algorithm in that 
it can return a result at any iteration. As applied to combinatorial search, MCTS is transformed from 
its traditional setting of a Markov Decision Process (MDP) into a meta-heuristic algorithm. This is 
done by placing an empty solution at the root, partial solutions at each branch, and complete 
solutions at the leaves. At each step through this tree, an alternate path is selected from the next 
ordered agent. To support this traversal, each branch stores locally-observed optimal values, along 
with a reward, which captures the desire to exploit this choice in future traversals. The local reward 
is typically a running mean of reward values of all associated sub-trees. The initial tree is a root node 
with no children and user-supplied initial mean reward (typically zero, or a higher “optimistic 
value”). 

MCTS is an iterative algorithm which, at each step, performs a traversal, an estimation, and a tree 
update. During an iteration, first a traversal seeks to find an unexplored subspace of the tree by 
way of a mutli-armed bandit selection. At each step in this traversal, a multi-armed bandit function 
is used to select a child as the next agent’s alternate path to extend this partial solution. If it is 
an unexplored child, an allocation is made for a new branch at this subspace; if it is explored, the 
traversal continues. In the case that a new subspace has been instantiated, MCTS will then 
estimate its value. The true cost is only known with a complete solution, due to the interaction of 
agent paths. To estimate the cost of this subspace, choices are randomly added to this partial 
solution to construct a complete solution. The cost function C is then evaluated on this solution, 
producing, what is in effect, a sampling of the distribution of costs under the subspace associated with 
this estimate. A back-propagation of this estimate is returned as an update to this and all parent tree 
nodes, updating the local optimal values and rewards. 

Traditional MCTS algorithms employ a multi-armed bandit function which is designed for a 
normalized cost function. For example, the popular UCT algorithm [21] in (5) is tuned to the range of 
[0, 1], where for each node n, X¯ is its running mean reward, nc is the number of observations of this 
node, np is the number of observations of its parent, and Cp is a tuning parameter. The second term is 
assumed to be infinite when n = 0. The second term represents the desire to explore when insufficient 
information on a subspace is known. 
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Table 5.1  Set of Alternate Paths for Agents 2, 3, 4, and 5 

 
The structure of UCT is an intuitive and elegant solution to bandit problems, but its requirement of a 
normalized cost function is problematic for combinatorial optimization. In particular, the range of costs 
over a set of solutions to a given SO routing problem are not known until all combinations have been 
explored. 
 
To address this problem, a multi-armed bandit function was proposed in [22] for combinatorial 
optimization, as shown in (6). This function extends the structure of UCT with a pair of global values 
capturing the minimum and maximum estimation observed (ẑ ∗ and ŵ ∗ respectively), which are updated 
at each iteration. Each node n tracks a locally optimal estimation ẑ ∗ and locally average estimation z̄n. 
Exploitation is captured in (6b) and an average-weighted exploration in (6d). 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

One possible solution to this problem is the set of optimal assignments P ∗ shown in Column 5 of 
Table 5.2, based on the cost function C(x) = 4x, chosen for simplicity. Figure 5.1 shows the 
resulting search space of the running example where the solution was found. Leaves show possible 
solutions, along with their corresponding evaluations (C) below. The solution from the running 
example (C∗) is shown in bold. 

 
Table 5.2  The Solution to the Running Example 
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By solving (4a), the cost of this assignment is C∗ = 44 + 41 + 41 + 42 + 41 + 41 + 41 + 44 = 548. As a 
result and side-effect of this optimization, the algorithm returns the set of paths associated with the 
minimal-cost combination. The resulting assignment produces flows as shown in Figure 6.1. Note that, 
as agents 1 and 6 have time values which fall outside of the time range [10-15] they were not 
considered in this batch. 

Figure 5.1  A Monte Carlo Tree Search of 4 Requests and 3 Alternate Paths per Request 
 
  



 

11 
 

6. EXPERIMENTS 
 
To evaluate the promise of MCTS as a technique for solving SO route guidance, a simulation-based test 
bed was created. 

 
Figure 6.1  After Loading Assignment from Table 4.1 

 
A behavioral study of this approach was performed over two real-world road networks. The following 
sections describe the methodology and results of these experiments. 

 
6.1 Experimental Methodology 

A test bed application was developed for interoperation with a transportation simulator to support study 
over city-sized inputs. The simulator would need to support this input data as well as allow for user 
extension to its route guidance system. Based on these requirements, the MATSim [14] transportation 
simulator was selected. The internal MATSim routing module is scoped to solve routes for isolated 
agents, so in order to support batch routing, an integration was made directly into the queue simulator 
QSim with the ability to modify routes for a batch of agents at a time. MATSim is run out-of-the-box, 
with no features (intersection signals, turn costs) added. 

Three route guidance algorithms were implemented to support a comparative behavioral study. A selfish 
routing algorithm was provided, which finds the shortest path by way of Dijkstra’s algorithm. While 
many behavior models exist for selfish routing, this implementation was chosen due to its simplicity. Two 
variations of the proposed solution were implemented, namely, SO MCTS and SO Rand, which are 
different in the way that they implement the technique’s second phase. In particular, SO Rand selects a 
random path among top-k choices for each agent, and SO MCTS runs a search for the optimal selection 
for the duration of one additional batch duration. SO Rand is a “fair” random algorithm due to selecting 
from a set of near optimal alternatives, and it is used to illustrate the performance and usefulness of the 
meta-heuristic technique in SO MCTS. 

All algorithms were evaluated using a Dell Optiplex 790 desktop computer, with quad-core i7 processors, 
16GB of RAM, a 7200rpm 500GB hard drive, and 8M L3 cache, running Ubuntu Xenial 16.04.3. The test 
bed and all algorithms were implemented in Scala, leveraging the Java interoperability for programmatic 
interaction with MATSim.  
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Road network data of Rye and Golden, Colorado were collected from OpenStreetMap [23], and pruned to 
a single, fully connected directed graph using the JOSM MATSim plugin [24] as pictured in Figure 6.2. 
These two road networks were chosen as they produce congestion effects on populations which are small 
enough to run on a single desktop. OpenStreetMap data provides capacity q (veh/hr), free-speed f (km/hr), 
and length l (m) values, which allowed for a realistic cost function to be adopted from the transportation 
literature, namely, the Bureau of Public Roads cost function [25]. This is shown, as modified in order to 
scale capacity values to the batch duration, and free-speed to meters, in (7). 

 
Each population was generated in a uniformly random distribution over origins, destinations, and 
departure times. For each trial, the same generated population file was used for each algorithm. 
Experiments were run for 30 minutes of simulation time in an attempt to reduce the impact of congestion 
ramp-up and ramp-down. The algorithm was expected to show useful results between some ranges of 
population sizes, but the bounds on this range were unknown. A reasonable lower bound was assumed at 
the point where the increase of a population size began to reflect in changes to experienced average travel 
time. The upper bound was identified by a threshold on experienced average travel time. In particular, 
population sizes with average speeds of 3 mph (walking speed) were treated as an upper bound on the 
utility of driving, as agents would be expected to use other modes of transportation beyond this point. For 
example, in the case of Rye, CO, the observed lower bound was found at 2,500 agents, and the upper 
bound was found to be 10,000 agents. 

Each experiment was parameterized by a population size p, a batch duration b, the adoption rate of system 
optimal agents r (where 1- r percent of agents are routed using the selfish route algorithm), and the 
requested number of alternate paths per agent, k. For any configuration of these inputs, fifteen trials of all 
three algorithms were performed. For each trial, a population of size p was generated, with r% requesting 
optimal routing. As the simulator advanced a time step, a representation of link vehicle counts was 
updated. For any agents requesting any form of routing, these link vehicle counts were used and treated as 
a network flow estimation model. Selfish route requests were solved using Dijkstra’s algorithm based on 
the network flow snapshot. If the current time coincided with the end of a batch, the two-phase SO route 
guidance algorithm was run with that batch of agents and a computing budget of b seconds. After 
receiving a result from either SO MCTS or SO Rand, routes were assigned and playout continued until 
the completion of all simulated agent routes. Upon completion, the experienced average travel time was 
calculated for each experiment using Equation (8). Mobility was then measured by converting that value 
into a metric which captured the gains from optimal routing. The gains can be captured as a ratio of 
average travel time values from both an optimal routing experiment Avg(So) and selfish routing Avg(Ss). 
This ratio is offset by a realistic lower bound value Avg*. 
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Figure 6.2  Road Network Inputs 

 
To find Avg*, a Monte Carlo sampling was performed with 15,000 independent shortest path 
calculations, each with a uniformly-random single-agent population. This approximated the average free-
flow travel time in each network. These values were used to compute travel time improvement I, in (9). 

 

In order to measure the fairness of an outcome, the experienced travel times were stored for each agent as 
they were simulated in both the Selfish and SO playout. A histogram was generated from the table of 
experienced travel time differences. 

The full list of data and algorithm parameters under test, along with test ranges, are listed in table IV. 
Unless otherwise noted, experiments have default parameters p = 7500, b = 5 seconds, r = 20%, and k = 
15. 

6.2 Experimental Results 

In each the following figures, a plot of travel time improvement I is shown with respect to an 
experimental parameter. Results are distinguished by their road network, using the suffix “Rye” for Rye, 
CO and “Gld” for Golden, CO.  
 
In Figure 6.3, the effect of population size p is shown. Both SO algorithms strictly improve I for all 
population sizes. Note that SO MCTS Rye outperforms SO MCTS Gld here, achieving up to 11% 
improvement. Both SO MCTS algorithms outperform their SO Rand equivalents; in fact, this is the case 
in all figures. We reason that the problem space size of the road network explains the better performance 
of MCTS Rye, and that higher parameter values exhaust our computational resource. 
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Figure 6.3  Population Size p 

 
It is interesting to note that the SO Rand algorithms demonstrate higher improvement when compared to 
Selfish routing as population sizes exceed 6,000. In seeking an explanation, first we noted that, at these 
higher levels of congestion, the marginal cost/flow effect of additional agents is higher. We reasoned that 
the greater inconvenience due to SO Rand routing (which would usually lead to de-improvement) was 
dominated by the random allocation of alternate paths, which alone had a congestion-minimizing effect. 
From this, it is our perspective that a SO objective may no longer be useful for inputs which produce such 
a small difference in experienced travel times between SO Rand and SO MCTS. This is the case for most 
of the results related to SO MCTS Gld. 

In Figure 6.4, the batch duration b is shown to have up to 12% travel time improvement for SO MCTS 
Rye. Both SO MCTS algorithms show consistent travel time improvement here, though as the distance 
between SO MCTS and SO Rand results grows smaller, the results are less consistent. Even low b values 
show moderate gains over selfish routing. This suggests that even a small number of agents with an 
optimal objective can positively influence system performance. Improvements eventually diminish for SO 
MCTS Rye; we attribute this to the search space, which had an average size of 1514 combinations per 
batch when b = 16. In future work, we intend to explore parallelization of the MCTS-based technique to 
address this. 

The performance of SO MCTS Gld shows a similar drop at an earlier value for b, which is expected, but 
the gradual improvement beyond b = 4 for both Gld algorithms warrants further study. 
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Figure 6.4  Batch Duration b 

 
In Figure 6.5, route percentage r is shown. The plot for SO MCTS Gld is what was expected for the effect 
of increasing the adoption rate. However, SO MCTS Rye presents a consistent improvement over selfish 
routing and SO Rand Rye, with SO MCTS Rye reaching up to 9% travel time improvement. 
Our interpretation is that, as SO routing becomes the objective of the majority of agents, their playout 
becomes more consistent with the expected cost of their routes. In contrast, when in the minority, there 
are many more agents with a selfish route who might jeopardize the experienced playout of each 
SO route. 
 

 
Figure 6.5  Route Percentage r 

 
In Figure 6.6, the number of alternate paths per agent k is explored. Again, both SO MCTS algorithms 
show improvement over Selfish route guidance, with SO MCTS Rye reaching up to 11.5% improvement 
at k = 2. Given that our search space size grows in O (kn), we expected to find evidence of a threshold for 
performance with respect to k. However, all algorithms have an uncertain relationship to k. We interpret 
that k may be sensitive instead to the topology of each road network and warrants further study. 
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Figure 6.6  Alternate Path Requested k 

 
In Figure 6.7, an example of the fairness of this routing is presented as a histogram of experienced travel 
time difference in seconds, where a negative value equates to a shorter trip due to SO routing. This data 
was taken from 15 trials with default parameters over the Rye, CO map. SO MCTS Rye favors better in 
all cases in aggregate. In particular, for each bucket below 0, there were more counts for SO MCTS than 
SO Rand, indicating that more agents were provided a shorter route. However, the overall performance 
with regards to fairness leaves much to be desired, with some agents experiencing nearly an hour increase 
in travel time due to SO routing. Our interpretation is that quality of route depends largely on the set of 
alternate paths that were produced. We intend to explore improving the quality of these alternative routes 
in our future work. 
 

 
Figure 6.7  Fairness of SO MCTS Rye vs. SO Rand Rye 
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7. CONCLUSIONS AND FUTURE WORK 
A new technique for route guidance was investigated in an attempt to solve for an approximate system 
optimal plan for a batch of agents. The problem corresponded with a Multiple Choice Knapsack Problem 
with value dependencies, which made it infeasible to solve with the state-of-the-art approaches. For the 
first time, the MCTS technique was introduced as a promising solution to SO route guidance, and was 
shown to produce consistent improvement to selfish routing over a meaningful set of inputs. 
 
In the short term, some extensions to the work are immediately apparent. To address fairness, we will 
evaluate methods for producing higher-quality route alternatives, in an attempt to reduce the many unfair 
routes that were produced. Possibilities exist, such as producing a more diverse set of options or 
integrating a dynamic ranking to precomputed alternatives. Exploring objectives other than travel time as 
well as composing multi-criteria objectives are a natural extension of this work. In particular, we wish to 
explore eco-routing as an extension, as well as multi-modal trip guidance, including fleet, ride-hail and 
rideshare modes. 

One feature of MCTS is that it is natural to parallelize the search. We are exploring cluster-based 
implementations to address horizontal scaling of the search technique in order to solve route guidance for 
larger road networks.  Solving for a SO route guidance policy as a reinforcement learning problem is a 
promising alternative to the path-based solution described here.  While this work assumed that each route 
received exactly one plan, we are interested in exploring the dynamic route plan scenario, either where we 
produce route plans in stages or allow for routes to be updated after they are set. 
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9. CODE: CORE ALGORITHMS  

 
KSPLocalDijkstrasAlgorithm.scala 
 

1 package 
cse.bdlab.fitzgero.sorouting.algorithm.local.ksp 2 
3 import 
java.time.Instant 4 
5 import scala.annotation.tailrec 
6 import 
scala.collection.GenSeq 7 

8 import cse.bdlab.fitzgero.graph.algorithm.GraphRoutingAlgorithm 
9 import cse.bdlab.fitzgero.graph.config.KSPBounds 
10 import cse.bdlab.fitzgero.sorouting.common.algorithm.local.sssp.SSSPLocalDijkstrasAlgorithm 
11 import cse.bdlab.fitzgero.sorouting.common.model.roadnetwork._ 
12 import 
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.local.{LocalEdge, 
LocalGraph} 13 
14 object KSPLocalDijkstrasAlgorithm extends GraphRoutingAlgorithm { 
15 override type VertexId = SSSPLocalDijkstrasAlgorithm.VertexId 
16 override type EdgeId = SSSPLocalDijkstrasAlgorithm.EdgeId 
17 override type Graph = SSSPLocalDijkstrasAlgorithm.Graph 
18 override type Path = List[PathSegment] 
19 override type AlgorithmRequest = LocalODPair 

20 override type PathSegment = 
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.PathSegment 21 
22 type SSSPAlgorithmResult = 
SSSPLocalDijkstrasAlgorithm.AlgorithmResult 23 
24 override type AlgorithmConfig = { 
25 def k: Int 

26 def kspBounds: Option[KSPBounds] 
27 def overlapThreshold: 
Double 28 } 
29 

30 case class AlgorithmResult(od: AlgorithmRequest, paths: GenSeq[Path], 
iterations: Int) 31 
32 

33 

34 
35 implicit val simpleKSPOrdering: Ordering[Path] = 

36 Ordering.by { 
37 (odPath: Path) => 
38 odPath.map(_.cost match { 

39 case Some(seqOfCosts) => seqOfCosts.sum 
40 case None => 0D 

41 }).sum 
42 }.rever
se 43 
44 

45 

46 @param 
47 @param 
48 @param 
49 @return 

50 

51 override def runAlgorithm(inputGraph: LocalGraph, request: LocalODPair, config: Option[AlgorithmConfig] = 
Some(KSPLocalDijkstrasConfig( 52 
53 val startTime = 
Instant.now.toEpochMilli 54 
55 val k: Int = config match { 
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56 case Some(conf) => conf.k 
57 case None => 1 

58 } 

59 

60 

61 val graph: LocalGraph = 
inputGraph.edges.foldLeft(inputGraph) { 62 (g, e) => 
63  g.updateEdge(e._1, 
LocalEdge.setFlow(e._2, 0)) 64 } 
65 
66 val kspBounds: KSPBounds = config match { 
67 case Some(conf) => 
68 conf.kspBounds match { 
69 case Some(ksp) => ksp 

70 case None => KSPBounds.Iteration(1) 
71 } 

72 case None => 
KSPBounds.Iteration(1) 73 } 
74 
75 val overlapThreshold: Double = config match { 

76 case Some(conf) => conf.overlapThreshold 
77 case None => 1.0D 

78 } 

79 

80 SSSPLocalDijkstrasAlgorithm.runAlgorithm(graph, request) match { 
81 case None => 

82 println(s"[KSP-ALG] #${request.id} could not find an initial shortest path. Halting 
KSP with None") 83 
84 None 
85 case 
Some(trueShortestPath) => 86 
87 

88 val solution = scala.collection.mutable.PriorityQueue[Path]() 
89 solution.enqueue(trueShortestPath.path) 
90 val reversedPath: Path = 
trueShortestPath.path.reverse 91 
92 

93 @tailrec 
96 def kShortestPaths(walkback: Path, previousGraph: Graph, iteration: Int = 1): Option[AlgorithmResult] = {val 

failedBoundsTest: Boolean = 
97 kspBounds match { 

98 case KSPBounds.Iteration(i) => iteration >= i 
99 case KSPBounds.PathsFound(p) => solution.size > p 
100 case KSPBounds.Time(t) => Instant.now.toEpochMilli - startTime > t 
101 case KSPBounds.IterationOrTime(i, t) => iteration >= i || Instant.now.toEpochMilli - startTime > t 
102 } 

103 

104 

105 if (failedBoundsTest || walkback.isEmpty) { 
106 if 
(solution.isEmpty) { 107 
108 None 
109 } else { 

110 val paths: Seq[Path] = solution.dequeueAll.take(k) 
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111 Some(AlgorithmResult(request, paths, iteration)) 
112 } 
113 } else { 

114 

115 

116 

117 val thisEdgeId: EdgeId = 
walkback.head.edgeId 118 
119 graph.edgeById(thisEdgeId) match { 
120 case Some(edge) => 

121 val spurSourceVertex: VertexId = edge.src 
122 val spurPrefix: Path = if (walkback.tail.nonEmpty) walkback.tail.reverse else Nil 
123 val blockedGraph: Graph = previousGraph.removeEdge(thisEdgeId) 
124 val spurAlternatives = blockedGraph.outEdges(spurSourceVertex) 
125 if (spurAlternatives.isEmpty) { 
126 kShortestPaths(walkback.tail, blockedGraph, iteration + 1) 
127 } else { 

128 SSSPLocalDijkstrasAlgorithm.runAlgorithm(blockedGraph, LocalODPair(request.id, spurSourceVertex, 
request.dst)) match { 

129 case None => 

130 kShortestPaths(walkback.tail, blockedGraph, iteration + 1) 
131 case 
Some(pathSpur) => 132 
133 

134 val alternativePath: Path = spurPrefix ++ 
pathSpur.path 135 
136 
137 val reasonablyDissimilar = true 

138 

139 

140 val (graphToRecurse, nextWalkback) = if (reasonablyDissimilar) { 
141 solution.enqueue(alternativePath) 
142 (blockedGraph, walkback.tail) 
143 } else { 

144 

145 if (pathSpur.path.nonEmpty) 
146 (blockedGraph.removeEdge(pathSpur.path.head.edgeId), walkback) 
147 else 
148 (blockedGraph, walkback) 
149 } 

150 kShortestPaths(nextWalkback, graphToRecurse, iteration + 1) 

151 } 

152 } 
153 case None => 

154 println(s"[KSP-ALG] #${request.id} spur edge not found in graph: $thisEdgeId") 
155 kShortestPaths(walkback.tail, previousGraph, iteration + 1) 
156 } 

157 } 

158 } 

159 try { 
160 kShortestPaths(reversedPath, graph) 
161 } catch { 
162 case e: Throwable => 
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163 println(s"[KSP-ALG] #${request.id} error thrown") 
164 println(e) 
165 None 
166 } 

167 } 

168 } 

169  } 
170 
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SSSPLocalDijkstrasAlgorithm.scala 
 

1 package 
cse.bdlab.fitzgero.sorouting.common.algorithm.local.ss
sp 2 
3 import 
scala.annotation.tailrec 4 
5 import cse.bdlab.fitzgero.graph.algorithm.GraphRoutingAlgorithm 
6 import cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.{LocalODPair, PathSegment} 
7 import 
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.l
ocal._ 8 
9 object SSSPLocalDijkstrasAlgorithm extends GraphRoutingAlgorithm { 
10 type VertexId = String 
11 type EdgeId = String 
12 type Graph = LocalGraph 

13 override type PathSegment = cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.PathSegment 
14 override type AlgorithmRequest = LocalODPair 
15 override type AlgorithmConfig = Nothing 

16 case class AlgorithmResult(od: AlgorithmRequest, path: 
List[PathSegment]) 17 
18 

19 @param 
20 @param 
21 @param 
22 @return 

23 

24 override def runAlgorithm(graph: Graph, odPair: AlgorithmRequest, config: Option[Nothing] = None): 
Option[AlgorithmResult] = { 
25 val requestName = s"REQ-${odPair.src}#${odPair.dst}" 
26 if (odPair.src == odPair.dst) { 
27 println(s"[SSSP] $requestName src equals dst, returning None for path") 
28 None 
29 } else { 

30 for { 
31 spanningTree <- minSpanningDijkstras(graph, odPair.src, Some(odPair.dst)) 
32 path <- backPropagate(graph, spanningTree, odPair.dst) 
33 } 
yield { 34 

35 AlgorithmResult(odPair, path) 

36 } 

37 } 

38 } 

39 

40 

41 

42 @param 
43 @param 

44 

45 case class SearchData(edge: LocalEdge, cost: 
Double = 0D) 46 
47 

48 

49 @param 
50 @param 

51 
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52 case class BackPropagateData(π: 
Option[EdgeId], d: Double) 53 
54 

55 

56 @param 
57 @param 
58 @param 
59 @return 

60 

61 def minSpanningDijkstras (graph: Graph, origin: VertexId, destination: Option[VertexId] = None): 
Option[Map[VertexId, BackPropagateData 62 
63 

64 val frontierOrdering: Ordering[SearchData] = Ordering.by (_.cost) 
65 val frontier: collection.mutable.PriorityQueue[SearchData] = 

collection.mutable.PriorityQueue()(frontierOrdering.reverse) 
66 graph 
67 .outEdges(origin) 
68 .flatMap(graph.edgeById) 
69 .foreach(e => { 
70 val cost = e.attribute.linkCostFlow match { 

71 case Some(linkCost) => linkCost 
72 case None => Double.MaxValue 
73 } 

74 frontier.enqueue(SearchData(e, cost)) 

75 }) 

76 

77 

78 @tailrec def _dijkstras ( 
79 solution: Map[VertexId, BackPropagateData] = Map.empty[VertexId, BackPropagateData], 
80 enqueued: Set[EdgeId] = Set.empty[EdgeId] 
81 ): Option[Map[VertexId, BackPropagateData]] = { 
82 if (frontier.isEmpty) { 
83 if (destination.isDefined) { 
84 None 
85 } 

86 else { 
87 Some(solution) 
88 } 

89 } 

90 else { 
91 val (edge, cost) = { 
92 val shortestFrontier: SearchData = frontier.dequeue 
93 (shortestFrontier.edge, shortestFrontier.cost) 
94 }96 

97 val solutionUpdate: Map[VertexId, BackPropagateData] = 
98 if (!solution.isDefinedAt(edge.dst)) { 
99 solution.updated(edge.dst, BackPropagateData(Some(edge.id), cost)) 
100 } else solution 
101 

102 if (destination.isDefined && edge.dst == destination.get) { 
103 Some(solutionUpdate) 
104 } else { 
105 

106 
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107 val addToEnqueued = for { 

108 e: String <- graph.outEdges(edge.dst).filter{!enqueued(_)}.toSet 
109 localEdge <- graph.edgeById(e) 
110 linkCost <- localEdge.attribute.linkCostFlow 
111 } yield { 

112 val sourceCost: Double = solutionUpdate(localEdge.src).d 
113 frontier.enqueue(SearchData(localEdge, linkCost + sourceCost)) 
114 e 
115 } 

116 

117 val enqueuedUpdate = enqueued ++ addToEnqueued 
118 _dijkstras(solutionUpdate, enqueuedUpdate) 
119 } 

120 } 

121 } 

122 if (frontier.isEmpty) { 
123 println("[DIJ] dijkstras initial state with empty frontier, returning None for solution") 
124 None 
125 } else { 
126 

127 _dijkstras(solution = Map(origin -> BackPropagateData(None, 0D))) 

128 } 

129
 
} 130 
131 

132 

133 @param 
134 @param 
135 @param 
136 @return 

137 

138 def backPropagate(g: Graph, spanningTree: Map[VertexId, BackPropagateData], destination: VertexId): 
Option[List[PathSegment]] = { 

139 @tailrec def _backPropagate ( 
140 currentVertex: VertexId, 
141 result: List[PathSegment] = List() 
142 ): Option[List[PathSegment]] = { 
143 if (spanningTree.isDefinedAt(currentVertex)) { 
144 val currentNode: BackPropagateData = spanningTree(currentVertex) 
145 currentNode.π match { 
146 case None => 

147 Some(result.reverse) 
148 case Some(edgeId) => 

149 val edge = g.edgeById(edgeId).get 
150 val cost = edge.attribute.linkCostFlow.get 
151 _backPropagate(edge.src, result :+ PathSegment(edge.id, Some(Seq(cost)))) 
152 } 
153 } else None 

154 } 

155 _backPropagate(destination) 

156 } 

157  } 
158 
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MonteCarloTreeSearch.scala 
 
1 package cse.bdlab.fitzgero.mcts 
2 
3 import java.time.Instant 
4 
5 import scala.annotation.tailrec 
6 import scala.collection.GenSeq 
7 

8 import cse.bdlab.fitzgero.mcts.core._ 
9 import cse.bdlab.fitzgero.mcts.core.terminationcriterion.TerminationCriterion 
10 import 
cse.bdlab.fitzgero.mcts.tree._ 11 

12 trait 
MonteCarloTreeSearch[S,A] { 13 
14 

15 

16 

17 

18 

19 @param 
20 @param 
21 @param 
22 @return 

23 

24 def updateMetaData(simulationResult: Update, node: Tree, leafState: S): 
Coefficients 25 
26 

27 

28 @param 
29 @return 

30 

31 def getSearchCoefficients(tree: Tree): 
Coefficients 32 
33 

34 

35 @param 
36 @return 

37 

38 def getDecisionCoefficients(tree: Tree): 
Coefficients 39 
40 

41 

42 @param 
43 @param 
44 @return 

45 

46 def createNewNode(state: S, action: 
Option[A]): Tree 47 
48 

49 

50 @param 
51 @return 

52 
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53 def generatePossibleActions(state: S): 
Seq[A] 54 
55 

56 

57 @param 
58 @param 
59 @return 

60 

61 def applyAction(state: S, action: 
A): S 62 
63 

64 

65 @param 
66 @return 

67 

68 def evaluateTerminal(state: S): 
Update 69 
70 

71 

72 @param 
73 @return 

74 

75 def stateIsNonTerminal(state: S): 
Boolean 76 
77 

78 

79 @param 
80 @return 

81 

82 def selectAction(actions: Seq[A]): 
Option[A] 83 
84 

85 
86 @return 

87 

88 def startState: 
S 89 
90 

91 

92 @param 
93 @return 

94 
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95 def startNode(state: S): 
Tree 96 
97 

98 

99 

100 
101 protected val terminationCriterion: TerminationCriterion[S,A,Tree] 
102 protected def actionSelection: ActionSelection[S,A] 
103 protected def random: RandomGenerator 
104 

105 

106 

107 

108 type 
Coefficients 109 
110 

111 

112 

113 

114 type Tree <: 
MonteCarloTree[S,A,Reward,Update,Coefficients,Tree] 115 
116 

117 

118 
119 type Reward 
120 

121 

122 

123 
124 type Update 
125 

126 

127 
128 @return 

129 

130 def rewardOrdering: 
Ordering[Reward] 131 
132 

133 

134 

135 

136 @param 
137 @param 
138 @return 

139 

140 protected def treePolicy(node: Tree, coefficients: Coefficients)(implicit ordering: 
Ordering[Reward]): Tree 141 
142 

143 
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144 

145 @param 
146 @return 

147 
148 protected def defaultPolicy(node: Tree): (Update, S) 
149 

150 

151 

152 @param 
153 @param 
154 @return 

155 

156 protected def backup(node: Tree, coefficients: Coefficients, delta: 
Update): Tree 157 
158 

159 

160 @param 
161 @return 

162 
163 protected def expand(node: Tree): Option[Tree] 
164 

165 

166 

167 @param 
168 @param 
169 @return 

170 

171 protected def bestChild(node: Tree, coefficients: Coefficients)(implicit ordering: 
Ordering[Reward]): Option[Tree] 172 
173 

174 

175 

176 

177 def evaluateBranch(tree: Tree, coefficients: Coefficients): Reward = 
tree.reward(coefficients) 178 
179 

180 
181 @return 

182 

183 final def run(root: Tree = startNode(startState)): Tree = { 
184 terminationCriterion.init() 
185 while (terminationCriterion.withinComputationalBudget(root)) { 
186 val v_t = treePolicy(root,getSearchCoefficients(root))(rewardOrdering) 
187 val (delta,leaf) = defaultPolicy(v_t) 
188 val c = updateMetaData(delta,v_t,leaf) 
189 backup(v_t,c,delta) 

190 } 

191 root 

192 } 
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193 

194 

195 

196 

197 @param 
198 @param 
199 @return 

200 

201 final private def _hasUnexploredActions(generatePossibleActions: (S) => Seq[A])(node: Tree): Boolean 
= { 

202 val explored: GenSeq[A] = node.children match { 
203 case None => Seq[A]() 

204 case Some(c) => c.keys.toSeq 
205 } 

206 generatePossibleActions(node.state).diff(explored).nonEmpty 

207
 
} 208 
209 

210 
211 @return 

212 

213 final protected def hasUnexploredActions: (Tree) => Boolean = 
_hasUnexploredActions(generatePossibleActions) 214 
215 

216 

217 @param 
218 @return 

219 
220 final def bestGame(root: Tree): Seq[A] = 

221 if (root.hasNoChildren) Seq() 
222 else { 
223 @tailrec 
224 def _bestGame(node: Tree, solution: Seq[A] = Seq.empty[A]): Seq[A] = { 
225 if (node.hasNoChildren) solution 
226 else { 
227 bestChild(node, getDecisionCoefficients(root))(rewardOrdering) match { 
228 case None => solution 
229 case Some(child) => 
230 child.action match { 
231 case None => solution 
232 case Some(action) => 

233 _bestGame(child, solution :+ action) 
234 } 

235 } 

236 } 

237 } 

238 _bestGame(root) 

239 } 

240 

241 

242 
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243 @param 
244 @param 
245 @return 

246 

247 final def bestMove(decisionCoefficients: Coefficients, root: Tree): Option[A] = 
248 for { 
249 child <- bestChild(root, decisionCoefficients)(rewardOrdering) 
250 action <- child.action 
251 } yield action 
252 

253 } 
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PedrosoReiMCTS.scala 
 
1 package 
cse.bdlab.fitzgero.mcts.variant 2 
3 import  cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 
4 import  cse.bdlab.fitzgero.mcts.algorithm.backup.StandardBackup 
5 import  cse.bdlab.fitzgero.mcts.algorithm.bestchild.StandardBestChild 
6 import  cse.bdlab.fitzgero.mcts.algorithm.defaultpolicy.StandardDefaultPolicy 
7 import  cse.bdlab.fitzgero.mcts.algorithm.expand.StandardExpand 
8 import  cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.banditfunction.UCT_PedrosoRei.Objective 
9 import  cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar.UCTScalarPedrosoReiReward 
10 import  cse.bdlab.fitzgero.mcts.algorithm.treepolicy.StandardTreePolicy 
11 import cse.bdlab.fitzgero.mcts.tree._ 
12 
13 trait PedrosoReiMCTS[S,A] extends MonteCarloTreeSearch[S,A] 

14 with StandardBestChild[S,A] 
15 with StandardTreePolicy[S,A] 
16 with StandardDefaultPolicy[S,A] 
17 with StandardBackup[S,A] 

18 with 
StandardExpand[S,A] { 19 
20 def objective: Objective 
21 
22 final override type Reward = Double 
23 final override type Update = BigDecimal 
24 final override type Coefficients = UCTScalarPedrosoReiReward.Coefficients 
25 

26 
27 
28 var globalBestSimulation: Update 
29 var globalWorstSimulation: Update 
30 
31 
32 
33 
34 var bestSolution: S 
35 
36 
37 
38 
39 var nodesCreated: Long = 0 
40 
41 final override def rewardOrdering: Ordering[Reward] = scala.math.Ordering.Double 
42 
43 final override type Tree = MCTreePedrosoReiReward[S,A] 
44 

45 final override def startNode(s: S): MCTreePedrosoReiReward[S, A] = MCTreePedrosoReiReward(s, None, 
objective = objective) 46 
47 final override def createNewNode(state: S, action: Option[A]): MCTreePedrosoReiReward[S, A] = { 
48 nodesCreated += 1 
49 MCTreePedrosoReiReward(state, action, objective) 
50 } 
51 
52 
53 final override def updateMetaData(simulationResult: Update, node: Tree, leafState: S): Coefficients = { 
54 if (objective.isWorseThan(simulationResult, globalWorstSimulation)) globalWorstSimulation = simulationResult 
55 if (objective.isBetterThanOrEqualTo(simulationResult, globalBestSimulation)) { 
56 bestSolution = leafState 
57 globalBestSimulation = simulationResult 
58 } 
59  UCTScalarPedrosoReiReward.Coefficients(getSearchCoefficients(node).Cp,  globalBestSimulation,  globalWorstSimulation) 
60 } 
61 } 
62 
63 
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PedrosoReiMCTSLightImpl.scala 
 
1 package 
cse.bdlab.fitzgero.sorouting.common.mcts.light.pedrosoreimcts 2 
3 import scalaz.effect.IO 
4 

5 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.banditfunction.UCT_PedrosoRei.{Minimize, Objective} 
6 import cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar.UCTScalarPedrosoReiReward.{Coefficients, 

SearchCoefficient} 
7 import cse.bdlab.fitzgero.mcts.core.terminationcriterion.{TerminationCriterion, TimeTermination} 
8 import cse.bdlab.fitzgero.mcts.tree.MCTreePedrosoReiReward 
9 import cse.bdlab.fitzgero.sorouting.common.mcts.light.Tag 
10 import cse.bdlab.fitzgero.sorouting.common.model.population.light.RequestMCTS 
11 import cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.light.fixednetworktable.FixedNetworkTable 
12 import 
cse.bdlab.fitzgero.sorouting.common.model.roadnetwork.light.snapshottable.Snapshot
Table 13 

14 class 
PedrosoReiMCTSLightImplIO( 
15 
16 val iOFixedNetworkTable : FixedNetworkTable[IO], 
17 val iOSnapshotTable : SnapshotTable[IO], 
18 val request : RequestMCTS, 
19 val seed : Long = 0L, 
20 val Cp : Double, 

21 override val terminationCriterion : TerminationCriterion[Array[Tag], Tag, MCTreePedrosoReiReward[Array[Tag], 
Tag]] = TimeTermination(50 

22 val startState : Array[Tag] = Array(), 
23 val costFunction : (FixedNetworkTable[IO], SnapshotTable[IO], Map[Int, Float]) => 
IO[BigDecimal] 24 
25 ) extends PedrosoReiMCTSLight { 
26 
27 override val objective: Objective = Minimize() 

28 override var globalBestSimulation: BigDecimal = objective.defaultBest 
29 override var globalWorstSimulation: BigDecimal = objective.defaultWorst 
30 override var bestSolution: Array[Tag] = Array() 
31 

32 override def getSearchCoefficients(tree: Tree): Coefficients = Coefficients(Cp, globalBestSimulation, 
globalWorstSimulation) 33 
34 override def getDecisionCoefficients(tree: Tree): Coefficients = Coefficients(SearchCoefficient, globalBestSimulation, 
globalWorstSimul 35 
36  override def evaluateTerminal(state: Array[Tag]): BigDecimal = 
PedrosoReiMCTSLightImpl.evaluateCostFlowDelta(iOFixedNetworkTable, iOSna 37 } 
38 

39 object 
PedrosoReiMCTSLightImpl { 40 
41 def apply( 

42 fnt : FixedNetworkTable[IO], 
43 sn  : SnapshotTable[IO], 
44 req : RequestMCTS, 
45 seed: Long, 
46 Cp : Double, 
47 term: TerminationCriterion[Array[Tag], Tag, MCTreePedrosoReiReward[Array[Tag], Tag]], 
48 start: Array[Tag], 
49 f: (FixedNetworkTable[IO], SnapshotTable[IO], Map[Int, Float]) => IO[BigDecimal] 
50 ): PedrosoReiMCTSLightImplIO = new PedrosoReiMCTSLightImplIO(fnt, sn, req, 
seed, Cp, term, start, f) 51 
52 def evaluateCostFlowDelta( 
53 iOFixedNetworkTable: FixedNetworkTable[IO], 
54 iOSnapshotTable : SnapshotTable[IO], 
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55 request : RequestMCTS, 
56 state : Array[Tag], 
57 costFunction : (FixedNetworkTable[IO], SnapshotTable[IO], Map[Int, Float]) => IO[BigDecimal] 
58 ): IO[BigDecimal] = { 
59 val flows = Tag.tagsToGroupedFlows(state, request) 
60 costFunction(iOFixedNetworkTable, 
iOSnapshotTable, flows) 61 } 

62 } 
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UCTScalarPedrosoReiReward.scala 
 
1 package  
cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar 2 
3 import  cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 
4 import   cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.banditfunction.UCT_PedrosoRei 
5 
6 
7 trait UCTScalarPedrosoReiReward[S,A] extends MonteCarloTreeSearch[S,A] { 
8 self: { 
9 type Reward = Double 

10 type Coefficients = 
UCTScalarPedrosoReiReward.Coefficients 11 } => 
12 
13 } 
14 
15 object UCTScalarPedrosoReiReward { 
16 
17 
18 
19 @param 
20 @param 
21 @param 
22 
23 case class Coefficients (Cp: Double, globalBestSimulation: BigDecimal, globalWorstSimulation: BigDecimal) extends Serializable 
24 
25 val ExplorationCoefficient: Double = 1D/0.707D 
26 val SearchCoefficient: Double = 0D 
27 } 
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UCT_PedrosoRei.scala 
 
1 package 
cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.ban
ditfunction 2 
3 

4 

5 

6 
7 object 
UCT_Pedroso
Rei { 8 

9 

10 

11 
12 sealed trait Objective { 

13 def defaultBest: BigDecimal 
14 def defaultWorst: BigDecimal 
15 def defaultSimulation: BigDecimal 
16 def isBetterThanOrEqualTo(a: BigDecimal, b: BigDecimal): Boolean 
17 def isWorseThan(a: BigDecimal, 
b: BigDecimal): Boolean 18 } 
19 case class Minimize(lowerBounds: BigDecimal = BigDecimal.decimal(0), upperBounds: BigDecimal = 
BigDecimal("9" * 50)) extends Objective 
20 override def defaultBest: BigDecimal = upperBounds 
21 override def defaultWorst: BigDecimal = lowerBounds 
22 override def defaultSimulation: BigDecimal = upperBounds 

23 override def isBetterThanOrEqualTo(a: BigDecimal, b: BigDecimal): Boolean = a <= b 
24 def isWorseThan(a: BigDecimal, b: 
BigDecimal): Boolean = a > b 25 } 
26 case class Maximize(lowerBounds: BigDecimal = BigDecimal.decimal(0), upperBounds: BigDecimal = 
BigDecimal("9" * 50)) extends Objective 
27 override def defaultBest: BigDecimal = lowerBounds 
28 override def defaultWorst: BigDecimal = upperBounds 
29 override def defaultSimulation: BigDecimal = lowerBounds 

30 override def isBetterThanOrEqualTo(a: BigDecimal, b: BigDecimal): Boolean = a >= b 
31 def isWorseThan(a: BigDecimal, b: 
BigDecimal): Boolean = a < b 32 } 

33 

34 

35 

36 @param 
37 @param 
38 @param 
39 @param 
40 @param 
41 @param 
42 @param 
43 @return 

44 

45 def apply(globalBestSimulation: BigDecimal, 
46 globalWorstSimulation: BigDecimal, 
47 childBestSimulation: BigDecimal, 
48 childAverageSimulation: BigDecimal, 
49 childVisits: Long, 
50 parentVisits: Long, 
51 Cp: 
Double): Double = 
{ 52 
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53 val X = pedrosoReiExploitationTerm(globalBestSimulation, globalWorstSimulation, 
childBestSimulation) 
54 val E = pedrosoReiExplorationTerm(globalBestSimulation, globalWorstSimulation, 

childAverageSimulation, Cp, parentVisits, childVisits) 
55 X 
+ 
E 
5
6 

57 } 

58 

59 

60 

61 

62 @param 
63 @param 
64 @param 
65 @return 

66 

67 def pedrosoReiExploitationTerm(globalBestSimulation: BigDecimal, globalWorstSimulation: 
BigDecimal, childBestSimulation: BigDecimal): D 
68 if (globalWorstSimulation == globalBestSimulation) 0D 
69 else { 
70 pedrosoReiXTerm(globalBestSimulation,globalWorst
Simulation,childBestSimulation) 71 } 

72 } 

73 

74 def pedrosoReiXTerm(globalBestSimulation: BigDecimal, globalWorstSimulation: BigDecimal, 
localSimulation: BigDecimal): Double = { 
75 val a: Double = ((globalWorstSimulation - localSimulation) / (globalWorstSimulation - 

globalBestSimulation)).toDouble 
76 val numer: Double = math.pow(math.E, a) - 1D 
77 val denom: Double = math.E - 1D 
78 if (denom != 0) 
numer / denom else 0D 
79 } 

80 

81 

82 

83 @param 
84 @param 
85 @param 
86 @return 

87 

88 def pedrosoReiExplorationTerm(globalBestSimulation: BigDecimal, globalWorstSimulation: 
BigDecimal, childAverageSimulation: BigDecimal, 89  if (Cp == 0) 0D 
90 else if (globalWorstSimulation == globalBestSimulation) Double.PositiveInfinity 
91 else { 
92 val XBar = pedrosoReiXTerm(globalBestSimulation, globalWorstSimulation, 

childAverageSimulation) 
93 val E = uctExploration(Cp, parentVisits, childVisits) 
94 XBar * E 

95 } 

96 } 
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97 

98 def uctExploration(Cp: Double, parentVisits: Long, childVisits: Long): Double = { 
99 if (parentVisits == 0L) 
100 0D 
101 else if (childVisits == 0L) 

102 Double.PositiveInfinity 
103 else 
104 Cp * math.sqrt(math.log(parentVisits) / childVisits) 

105 } 

106  } 
107 
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ActionSelection.scala 
 
1 package cse.bdlab.fitzgero.mcts.core 
2 
3 trait ActionSelection[S,A] { 

4 def selectAction(actions: Seq[A]): Option[A] 5
 } 
6 
7 class RandomSelection[S,A]( 

8 random: RandomGenerator, 
9 generatePossibleActions: (S) => Seq[A] 
10 ) extends ActionSelection[S,A] { 

11 def selectAction(actions: Seq[A]): Option[A] = { 
12 actions match { 
13 case Nil => None 

14 case xs => Some(actions(random.nextInt(actions.size))) 
15 } 
16 } 
17 } 
18 
19 object RandomSelection { 

20 def apply[S,A](random: RandomGenerator, generatePossibleActions: (S) => Seq[A]): 
RandomSelection[S,A] = 

21 new RandomSelection(random, generatePossibleActions) 22
 } 
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StandardBackup.scala 
 
1 package cse.bdlab.fitzgero.mcts.algorithm.backup 2 
3 import scala.annotation.tailrec 
4 
5 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 
6 
7 trait StandardBackup[S,A] extends MonteCarloTreeSearch[S,A] { 
8 @tailrec 
9 override protected final def backup(node: Tree, coefficients: Coefficients, delta: Update): Tree = { 
10 node.parent() match { 
11 case None => 
12 node.update(delta, coefficients) 
13 node 
14 case Some(parent) => 
15 
16 node.update(delta, coefficients) 
17 backup(parent, coefficients, delta) 18
 } 
19 } 
20 } 
21 
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StandardBestChild.scala 
 

1 package 
cse.bdlab.fitzgero.mcts.algorithm.bestchild 2 
3 import 
cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 4 
5 trait StandardBestChild[S,A] extends MonteCarloTreeSearch[S,A] { 
6 override protected final def bestChild(node: Tree, coefficients: Coefficients)(implicit ordering: Ordering[Reward]): Option[Tree] = { 

7 if (node.hasNoChildren) { None } 
8 else { 
9 val children = node.childrenNodes.values map { 
10 tree: Tree => (tree.reward(coefficients), 
tree) 11 } 
12 val bestChild = children.maxBy{_._1}._2 
13 Some(bestChild) 
14 } 

15 } 

16 } 

17 
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StandardDefaultPolicy.scala 
 
1 package 
cse.bdlab.fitzgero.mcts.algorithm.defaultpolicy 2 
3 import 
scala.annotation.tailrec 4 
5 import 
cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 6 
7 trait StandardDefaultPolicy[S,A] extends 
MonteCarloTreeSearch[S,A] { 8 
9 override protected final def defaultPolicy(monteCarloTree: Tree): (Update, S)= { 

10 if 
(stateIsNonTerminal(monteCarloTree.state)) { 11 

12 

13 @tailrec 
14 def _defaultPolicy(state: S): (Update, S) = { 
15 if (stateIsNonTerminal(state)) { 
16 selectAction(generatePossibleActions(state)) map { applyAction(state,_) } match { 
17 case None => 

18 

19 throw new IllegalStateException(s"Applying action to state $state but it produced an empty state. your 
applyAction and gene 
20 case Some(nextState) => 

21 _defaultPolicy(nextState) 
22 } 
23 } else { 

24 (evaluateTerminal(state), state) 
25 } 

26 } 

27 

28 _defaultPolicy(monteCarloTree.state) 
29 } else { 

30 (evaluateTerminal(monteCarloTree.state), 
monteCarloTree.state) 31 } 

32 } 

33 } 

34 
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StandardExpand.scala 
 

1 package cse.bdlab.fitzgero.mcts.algorithm.expand 2 
3 import  cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 
4 
5 trait StandardExpand[S,A] extends MonteCarloTreeSearch[S,A] { 
6 override protected final def expand(node: Tree): Option[Tree] = { 
7 for { 
8 action <- actionSelection.selectAction(generatePossibleActions(node.state)) 
9 } yield { 
10 val newState = applyAction(node.state, action) 
11 val newNode = createNewNode(newState, Some(action)) 
12 node.addChild(newNode) 
13 newNode 
14 } 
15 } 
16 } 
17 
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StandardMCTS.scala 
 
1 package 
cse.bdlab.fitzgero.mcts.variant 2 
3 import cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 
4 import cse.bdlab.fitzgero.mcts.algorithm.backup.StandardBackup 
5 import cse.bdlab.fitzgero.mcts.algorithm.bestchild.StandardBestChild 
6 import    cse.bdlab.fitzgero.mcts.algorithm.defaultpolicy.StandardDefaultPolicy 
7 import cse.bdlab.fitzgero.mcts.algorithm.expand.StandardExpand 
8 import    cse.bdlab.fitzgero.mcts.algorithm.samplingpolicy.scalar.UCTScalarStandardReward 
9 import cse.bdlab.fitzgero.mcts.algorithm.treepolicy.StandardTreePolicy 
10 import cse.bdlab.fitzgero.mcts.tree._ 
11 
12 trait StandardMCTS[S,A] extends MonteCarloTreeSearch[S,A] 

13 with StandardBestChild[S,A] 
14 with StandardTreePolicy[S,A] 
15 with StandardDefaultPolicy[S,A] 
16 with StandardBackup[S,A] 

17 with 
StandardExpand[S,A] { 18 
19 final override type Reward = Double 
20 final override type Update = Double 
21 final override type Coefficients = UCTScalarStandardReward.Coefficients 
22 
23 final override def rewardOrdering: Ordering[Double] = scala.math.Ordering.Double 
24 
25 final override type Tree = MCTreeStandardReward[S,A] 
26 
27 final override def startNode(s: S): MCTreeStandardReward[S, A] = MCTreeStandardReward(s) 
28 
29 final override def createNewNode(state: S, action: Option[A]): MCTreeStandardReward[S, A] = 

30 MCTreeStandardReward(stat
e, action) 31 
32  override def updateMetaData(simulationResult: Double, node: Tree, state: S): Coefficients = getSearchCoefficients(node) 
33 } 
34 
35 
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StandardTreePolicy.scala 
 
1 package  cse.bdlab.fitzgero.mcts.algorithm.treepolicy 
2 
3 import scala.annotation.tailrec 
4 
5 import  cse.bdlab.fitzgero.mcts.MonteCarloTreeSearch 
6 
7 trait StandardTreePolicy[S,A] extends MonteCarloTreeSearch[S,A] { 
8 

9 @tailrec 
10 override protected final def treePolicy(node: Tree, coefficients: Coefficients)(implicit ordering: Ordering[Reward]): Tree = { 

11 if (stateIsNonTerminal(node.state)) { 
12 if (hasUnexploredActions(node)) { 
13 expand(node) match { 
14 case None => node 

15 case Some(newChild) => newChild 
16 } 
17 } else { 

18 bestChild(node, coefficients) match { 
19 case None => node 
20 case Some(bestChild) => 

21 treePolicy(bestChild,  coefficients) 
22 } 
23 } 
24 } else { 

25 node 
26 } 
27 } 
28 } 
29 
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APPENDIX: TEACHING MATERIALS  
This following first shows the two course projects from CSCI 4951/5951 Big Data Systems, followed by 
an example of student work. 
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I.A  CSCI 4951/5951 BIG DATA SYSTEMS COURSE PROJECT: SAMPLE #1 
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I.B  CSCI 4951/5951 BIG DATA SYSTEMS COURSE PROJECT: SAMPLE #2 
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I.C  SAMPLE STUDENT COURSE PROJECT 
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