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ABSTRACT 
 
Bridge inspection data is an essential step in the bridge asset management operation and the bridge 
management system. As such, a reliability-based, holistic framework was proposed to effectively collect 
reliable data and perform data fusion and information fusion of sensory data used for element-level 
inspection and conditional assessment. A comprehensive literature review was conducted to better 
understand the current state of the research of and practice in the bridge element inspection. 

To overcome the limitations of the visual inspection used in the routine bridge inspections, an unmanned 
aerial vehicle (UAV) was used to supplement the traditional visual inspection data by providing high 
quality, real-time, reliable data. Moreover, effective data fusion and information process methods were 
proposed to enhance the features extraction for sensor data for in-depth/special/damage inspections. This 
study explored the new data fusion methods based on three representative feature extraction techniques, 
while the kernel function-based support vector machine (SVM) was used to facilitate pattern recognition 
and improve identification. The effectiveness of these methods was verified even in conditions with high 
levels of noise interference.  

In addition, this study attempted to unveil and reduce the structural uncertainty experienced in in-
depth/special/damage inspection. The DBBN was herein used to extract statistical representation from 
vast amount of structural data, for probabilistically determining structural condition and health state for 
decision making.   
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EXECUTIVE SUMMARY 

The reliability-based holistic framework was proposed to effectively collect reliable data and perform 
data fusion and information fusion of sensory data used for element-level inspection and conditional 
assessment. 

A comprehensive literature review revealed that the quality bridge element inspection data and 
consistency of bridge element inspection were related to critical factors, including structural importance 
factor, material vulnerability, aging effects, and others. The study demonstrated that we could consider 
different condition rating by integrating these critical factors in the element-level inspection. 

To overcome some challenges associated with different weather and environmental conditions, the use of 
UAV as enhanced visual inspection dramatically impact data collection to avoid subjective judgement or 
reaching those inaccessible locations.  

Moreover, three representative feature extraction techniques were explored to provide effective data 
fusion and information process for in-depth/special/damage inspections. Results confirmed that these 
data-driven techniques exhibited high accuracy to allow distinguishing between undamaged and damaged 
cases, even when there are certain noise interferences as well as operational conditions. Moreover, the 
data-driven classification methods in this study could effectively address the major factors of interest, 
including effects of damage level, damage location, sensor location, and moving load.  

Furthermore, this study proposed the new deep learning methods for the enhanced structural condition 
assessment for better decision making in in-depth/special/damage inspection for structures with 
uncertainties. The new deep Bayesian belief network (DBBN) was highly accurate for structural 
diagnostics, but it can be further improved by tailoring the layers and their architecture to account for 
higher-order and highly non-linear statistical structural information, as experienced by a complex 
structure under high uncertainties and variability of interest. As such, timely information of bridge 
conditions obtained during the inspection will be used for determining needed maintenance and repairs, 
for prioritizing rehabilitations and replacements, for allocating resources, and for evaluating and 
improving the design of new bridges. 
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1. INTRODUCTION 

1.1 Background 

The over 600,000 bridges in the United States are a critical component of the transportation network for 
both economic and societal needs. Assessing bridge conditions and timely maintenance are critical for 
ensuring bridge health, as well as for enabling cost-effective decision making for preservation activities. 
Successful bridge-inspection programs nationwide are an important element of assessing bridge 
conditions and ultimately extending the service life of bridges. 
 
Bridge owners nationwide recognize the benefits of detailed condition assessments using raw inspection 
information, expanded performance measures, and bridge management system deterioration forecasting 
and evaluation, which are covered in the 2013 new American Association of State Highway and 
Transportation Officials (AASHTO) Manual for Bridge Element Inspection. 
 

 

 
 

Figure 1.1  Maps of a) bridge condition ratings (after 2013 U.S. Federal Highway Administration 
(FHWA), National Bridge Inventory) and b) implementation of element-level bridge 
inspection in the United States (after O’Donnell, 2013) 

 
The current bridge condition rating system in the United States, illustrated in Figure 1.1a, is based on the 
National Bridge Inventory (NBI) data for national highway bridges (2013). Historically, bridge owners 
and stakeholders have assessed bridge conditions and made decision based upon the NBI data. As clearly 
illustrated in Figure 1.1b, the vast majority of states have employed element-level inspections for more 
than a decade based on the Commonly Recognized Structural Elements (CoRe) guide. The new 2013 
American Association of State Highway and Transportation Officials (AASHTO) manual define 
frequency of inspections, element definitions, qualifications of inspection personnel, defeat descriptions, 
and inspection reporting, more detailed information as compared to initial CoRe guide. Accordingly, 
different states provide more complementary information to help region engineers to capture information. 
Such differences may cause inconsistencies in data collection.  Ultimately, this will affect the quality of 
the element-level data that are reported to the National Bridge Inventory (NBI) by the different states. In 
addition, as newer bridge types become more common, the demand for a new set of guidelines for 
inspection ratings is needed to improve the uniformity and consistency of inspections. 

To improve the bridge management system, it is necessary to establish a consistent scale for assessing 
bridge element conditions, which in turn will help establish accurate levels for evaluating bridges and for 
forecasting bridge deterioration. In order to do this, several challenges must be addressed scientifically 
and systematically. It is essential that the application of high-quality, element-level bridge inspections are 

a) b) 
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done nationwide using more comprehensive, reliable, and accurate levels for element conditions and 
defect types than those that are currently being used. Although the 2013 AASHTO element-level 
inspection manual for data collection provides the criteria for the bridge element condition rating and for 
the bridge defect descriptions, they are done without reliability-based calibration. The reliability-based 
calibrations adjust for factors that may affect the quality and consistency of data collection which can lead 
to high variability. Thus, reliability-based indices that account for the correlation between the levels of 
element conditions and critical factors (i.e. environmental, inspector qualification, structural importance, 
material vulnerability, defect type/location, and bridge age) are necessary. Finally, although existing 
manuals introduce material distress for condition rating, they overlook bridge element conditions that 
contribute to bridge performance and may indicate the probability of the risk of failure and actual failure 
of the bridge.  Consequently, the guidelines set forth by these manuals cannot guarantee the desired 
performance of the bridge; therefore, new guidelines should be established that address these concerns. 

To meet the requirements of the “Moving Ahead for Progress in the 21st Century Act (MAP-21)” 
legislation and to ensure the safety of the motoring public, a methodology to improve the quality of the 
element-level bridge inspection data and enhanced bridge management for assisting bridge inspectors and 
bridge owners is needed. Significant effort from practicing engineers, bridge inspectors, and inspection 
trainers, as well as local and state DOT bridge owners is required to develop the guidelines which will 
promote consistency in reliable data collection that will support bridge asset management practices. The 
proposed research will address these important technical needs by characterizing the quality of element-
level data, generating a reliability-based correlation between levels of element conditions and critical 
factors, and developing new data-driven based guidelines. 

 
1.2 Objectives 

Bridge inspection data is an essential step in the bridge asset management operation and the bridge 
management system. The main objective of this research is to develop a reliability-based, holistic 
framework that will improve the quality of element-level data collection for better bridge management 
and bridge preservation. The specific research goals of the project are as follows: 

• To identify the key factors that affect the quality and consistency of bridge element inspection 
and the corresponding bridge asset management  

• To explore the enhancement of the visual inspection in routine inspections 
• To develop a fusion process for data and information that will allow for an in-

depth/special/damage inspections  
• To unveil and reduce structural uncertainty in in-depth/special/damage inspections by extracting 

structural information and then probabilistically determine bridges with uncertain structural 
conditions. 
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1.3 Organization of the Report 

This report is organized into eight chapters. Chapters 1 and 2 include the introduction and background 
information about element-level bridge inspections nationwide and worldwide. A review of existing 
practices and new element-level inspection practices being used for bridge inspection and ratings are also 
provided in Chapter 2. The reliability-based holistic framework is proposed in Chapter 3. Chapter 4 is 
focused on understanding the critical factors affecting visual inspections in routine inspections, while 
Chapter 5 explores the enhancement of visual inspections in routine bridge inspections. Chapter 6 
discusses the enhancement of data fusion and information processing in in-depth/special/damage 
inspections. Chapter 7 unveils the process through which structural uncertainty in in-
depth/special/damage inspection can be reduced by extracting structural information, and then 
probabilistically determining the bridges that have uncertain structural conditions. Conclusions and future 
work are summarized in Chapter 8.   
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2. LITERATURE REVIEW 

2.1 Background 

Bridge inspection data is an essential step in the bridge asset management operation and the bridge 
management system. Timely information of bridge conditions obtained during inspections are used for 
determining needed maintenance and repairs, for prioritizing rehabilitations and replacements, for 
allocating resources, and for evaluating and improving designs for new bridges. The accuracy and 
consistency of the inspection, documentation, and levels-of-element conditions are vital because they not 
only impact bridge funding appropriations, but also affects public safety. 

To better understand the current state of research and practice in the bridge element inspection practices, 
the review provided below included national and international published manuals along with articles and 
reports. It will provide critical information for understanding the current state of element-level inspection 
knowledge, what the characteristics are of quality, bridge element inspection data, and how various 
factors affect the quality and consistency of element-level bridge inspections.  

2.2 Overview of Element-Level Inspection 

2.2.1  Worldwide Specification and Guidelines  

Element-level bridge inspection have been widely used as an important protocol for assessing bridge 
safety and preservation activities, and are currently accepted in bridge inspection manuals in many 
countries, including the United States, Canada, Europe, Australia, and Japan. An element-level bridge 
inspection is performed in such a way that a bridge is broken into elements, and then data are collected 
from measurable quantities and pieces of the elements. The new element-level inspection of bridges 
provides more specific and quantitative condition levels, as well as a more precise condition assessment 
of the bridges, thus leading to enhanced bridge safety and timely information for maintenance decision-
making. A comparison of the United States and international bridge inspection practices, illustrated in 
Table 2.1, shows that there are many similar concepts used by the different countries. 

Table 2.1  Nationwide and international manuals (after Oshiro et al. 2012; Atkins 2009) 
Name Frequency of 

inspection  
Inspection 

method 
Element 

descriptions 
Quantity 

calculations Condition state system 

US* Every 2 years 
(2~5 years**) 

Direct 
visual 

Element 
level 

Length, area, each 
(record individual 

state and total 
quantity) 

4 levels: 1 to 4 (good, fair, 
poor, severe) 

Canada Every 2 years 
(2~5 years**) 

4 levels: 1 to 4 (excellent, 
good, fair, poor) 

UK 1 year (6 years**) 

Length, area, each 5 levels 

Denmark 1 year (5.5 years**) 
Finland 1 year (5 years**) 
France 1 year (3~9 years**) 
Sweden 1 year (10 years**) 
German 3 years (6 years**) 
Norway 1 year (5 years**) 
Australia half year (2 years**) 

Japan Every 5 years Unit level 
Length, area, each 
(record individual 

state only) 
5 levels 

*: AASHTO Manual for Bridge Element Inspection (2013)          
**: detailed visual/instrumented inspection 
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In general, element descriptions are built upon each element from a bridge and quantified by measurable 
quantities and pieces of the elements. Japan, however, uses a more detailed unit level by dividing each 
element into additional units for element description. As such, the detailed condition and defects location 
can be identified over time for future repair and maintenance decision making. Most of the countries use 
direct visual examination the most frequently for routine inspection, yet there was great variance in the 
frequency of these inspections. The period for direct visual inspections ranged from 6 months in Australia 
to 3 years in Germany, while the detailed visual/instrumented inspection varied from 2 to 10 years 
between the different countries. The condition states for all countries for each element were defined at 4 
or 5 levels, and these data were collected over time. The major difference from country to country was in 
the damage type description for condition states. Thus, the quality of data collection is dependent upon 
the frequency of inspection, defined condition states, and the corresponding treatment actions. 

2.2.2  Specification or Guidelines used in United States 

The bridge condition rating for the United States is based on the NBI data of national highway bridges 
(2013). Before using the concept of element-level inspection, Bridge owners and stakeholders used to 
assess bridge conditions and make decision based on the NBI data, which usually included the four major 
parts of condition assessment for a bridge: superstructure, substructure, deck, and culverts. The severity of 
the condition for each component was defined by rating it on a scale from 0-9. Studies have demonstrated 
that this level of detail was not sufficient enough to identify appropriate specific information, and thus 
made it hard to use the collected data for maintenance decision-making. 

In an effort to improve the quality of the data collected for maintenance decision-making, the element-
level inspection method was developed in the 1990s by the FHWA and the Subcommittee on Bridges and 
Structures (SCOBS). Instead of referring to the four components of bridges as had been done previously, 
this inspection method breaks the bridge into the CoRe elements.  Each of these elements was assessed on 
a scale of condition states for each element ranging from 1-3 or 1-5.  Since its development, this method 
has demonstrated its advantages over conventional, inspection technologies. Data collected from the 
element level bridge conditions are reported to the FHWA for the NBI data. The vast majority of the 
states in the United States use the element-level methods and apply the CoRe elements for the 
determination of bridge conditions in their manuals; however, some states like California, Texas and 
Florida have defined some of their own elements (Agency Developed Elements, ADE) to accommodate 
their needs.  

2.2.2.1  AASHTO New Manual (2013) 

(a) Bridge elements 

The 2013 AASHTP manual lists 11 areas for its element-level inspection, but these are broken down 
further into subcategories for each element as shown in Table 2.2. 
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Table 2.2  Bridge element lists (based on Bridge Element-level inspection manual 2013) 

 

 

Element Listings 
Deck
ELEMENT
Reinforced Concrete Deck Area 12
Prestressed Concrete Deck Area 13
Steel Deck - Open Grid Area 28
Steek Deck - Concrete Filled Grid Area 29
Steel Deck / Orthotropic Area 31
Timber Deck Area 31

Top Flange
ELEMENT
Prestressed Concrete Top Flange Area 15
Reinforced Concrete Top Flange Area 16
Other Slab Area 65

Railing
ELEMENT
Metal Bridge Railing Length 330
Reinforced Concrete Bridge Length 331
Timber Bridge Railing Length 332
Other Bridge Railing Length 333
Masonry Bridge Railing Length 334

     
   
   

   
  

  
  

  

   

 
  

  
  

Unit ID      

  
  

    
     
   

 

 

   
   

 

  
  

  
  

  

Girder
ELEMENT
Steel Closed Web / Box Girder Length 102
PC Closed Web/Box Girder Length 104
RC Closed Web/Box Girder Length 105
Other Closed Web/Box Girder Length 106
Steel Open Girder/Beam Length 107
PC Open Girder/Beam Length 109
RC Open Girder/Beam Length 110
Timber Open Girder Length 111

Wearing & Protective Coating
ELEMENT
Wearing Surface Area 510
Steel Protective Coating Area 515
Reinforcing Steel Protective Area 520
Concrete Protective Coating Area 521
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Bearing
ELEMENT
Elastomeric Bearing Each 310
Moveable Bearing Each 311
Enclosed/Concealed Bearing Each 312
Fixed Bearing Each 313
Pivot Beaing Each 314
Disc Bearing Each 315
Other Bearing Each 316

Abutment
ELEMENT
Reinforced Concrete Abutment Length 215
Timber Abutment Length 216
Masonry Abutment Length 217
Other Abutment Length 218

Column
ELEMENT
Steel Column Each 202
Other Column Each 203
PC Column Each 204
RC Column Each 205
Timber Column Each 206

 

 

 

  

 
 

 
 
 

 
 

  
 

 
 

 
  

 
 

 

Pier Cap
ELEMENT
Steel Length 231
PC Length 233
RC Length 234
Timber Length 235
Other Length 236

Pier Wall
ELEMENT
RC Length 210
Other Length 211
Timber Length 212
Masonry Length 213

Pile Cap/Footing
ELEMENT
RC Pile Cap/Footing Each 220
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Depending on the state manuals that are developed, the different elements that are defined could from 
different sources in an attempt to meet the specific needs for each state.  These elements could be 
categories such as: (a) national bridge elements (NBEs); (b) bridge management elements (BMEs); and 
(c) agency developed elements (ADEs), including ADE-NBE or ADE-BME, and ADE alone. An example 
of this method’s major elements (e.g., NBEs, BMEs) are listed in Table 2.3.  

Table 2.3  Some ADE-NBE and ADE-BME element lists 

 

 

 

 
 
As such, the bridge components are, as illustrated in Figure  2.1, labeled based on the I.D. number and 
quantity (length, or area, or each) to better classify potential degradation/damage/defects experienced in 
the element in detail for bridge management.  
  

Element Unit I.D.
Parent: Steel Open Girder/Beam Length 107

Children: Steel Open Girder/Beam, Ends Length 807
Parent: Prestressed Concrete Closed Web/Box Girder Length 104

Parent: Prestressed Concrete Open Girder/Beam Length 109
Parent: Prestressed Concrete Deck Length 13

Children: Steel Tension Rods/Post-Tensioned Cables Each 8165
Parent: Concrete Reinforcing Steel Protective System Area 520

Children: Coated Reinforcing Area 8522
Children: Stainless Steel Reinforcing Area 8523
Children: Non-Metallic Reinforcing Area 8524

Parent: Wearing Surfaces Area 510
Children: AC Overlay Area 8511

Children: AC Overlay & Membrane Area 8512
Children: Thin Polymer Overlay Area 8513

Children: Concrete Overlay Area 8514
Children: Polyester Concrete Overlay Area 8515
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(a) Top flange and girder elements 

 
(b) floor beam, stringer, and girder elements 

 
(c) steel deck, steel railing, main and secondary cable element 

Figure 2.1  Typical bridge element identification and quantity: (a)-(c) 

 

32

Steel Floor Beam 

Steel Stringer

Floor Beam (LF): 
I.D.: 105
Quantity: 6*length

Stringer(LF): 
I.D.: 113
Quantity: 5*length

Girder (LF):
I.D.:  107
Quantity: 2*length
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(b) Element-level condition state rating: 

In the new element-level inspection manual, the bridge element is classified into four condition state 
rating, as shown in Figure  2.2.  

 
Figure 2.2  Four condition state rating (based on Bridge Element-level inspection manual 2013) 

As shown in Figure 2.3 and Tables 2.4-2.10, defect codes are used to identify the defect and the condition 
state assignment.  

 
Figure 2.3  RC condition state rating (Bridge Element-level inspection manual 2013) 

 



11 
 

Table 2.4  Defect I.D. and condition state for reinforced concrete 

 
 
Table 2.5  Defect I.D. and condition state for steel  

 
 
Table 2.6  Defect I.D. and condition state for prestressed concrete  

 
 
Table 2.7  Defect I.D. and condition state for timber  

 
 

I.D. Defeat CS1 CS2 CS3 CS4
1080 Delamination / Spall / Patched Area 
1090 Exposed Rebar 
1120 Efflorescence / Rust Staining 
1130 Cracking (RC) 
1190 Abrasion / Wear (PSC/RC) 
1900 Distortion 
4000 Settlement 
6000 Scour 
7000 Damage

I.D. Defeat CS1 CS2 CS3 CS4
1000 Corrosion
1010 Cracking
1020 Connection
1900 Distortion 
4000 Settlement 
6000 Scour 
7000 Damage

I.D. Defeat CS1 CS2 CS3 CS4
1080 Delamination / Spall / Patched Area 
1090 Exposed Rebar 
1110 Exposed Prestressing
1120 Efflorescence / Rust Staining 
1130 Cracking (PSC) 
1190 Abrasion / Wear (PSC/RC) 
1900 Distortion 
4000 Settlement 
6000 Scour 
7000 Damage

I.D. Defeat CS1 CS2 CS3 CS4
1020 Connection
1140 Decay/Section Loss
1150 Check/Shake
1160 Crack
1170 Split/Delamination
1180 Abrasion / Wear 
1900 Distortion 
4000 Settlement 
6000 Scour 
7000 Damage
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Table 2.8  Defect I.D. and condition state for masonry  

 
Table 2.9  Defect I.D. and condition state for bearings  

 
Table 2.10  Defect I.D. and condition state for joints  

 
 
Thus, the bridge component is labeled by element I.D. and quantity along with a detailed defect code, as 
shown in the example in Figure 2.4. 
 

 
Figre 2.4  Typical bridge element classification and quantity (after Bridge Element-level inspection 

manual 2013) 

I.D. Defeat CS1 CS2 CS3 CS4
1080 Delamination
1120 Efflorescence / Rust Staining 
1610 Mortar Breakdown
1160 Crack
1620 Split/Spall
1630 Patched Area
1640 Masonry Displacement 
1900 Distortion 
4000 Settlement 
6000 Scour 
7000 Damage

I.D. Defeat CS1 CS2 CS3 CS4
1000 Corrosion
1020 Connection
2210 Movement
2220 Alignment
2230 Mortar Breakdown
7000 Damage

I.D. Defeat CS1 CS2 CS3 CS4
1000 Corrosion
1020 Connection
2310 Seal Adhesion
2330 Seal Damage
2340 Debris Impaction
2360 Adjacent Deck or Header
2370 Metal Deterioration or Damage
7000 Damage
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2.2.2.2  Manuals Used in Various States 

Critical information about the implementation of element-level inspection methods in several 
representative states is summarized in Table 2.11. California is a key proponent of collecting element-
level bridge inspection data and has put forth great effort in helping to develop the AASHTO inspection 
manual. Their state element-level bridge inspection manual (2008) covers a relatively comprehensive set 
of Commonly Recognized Elements (CoRe) and California-specific elements to handle seismic-related 
elements. In particular, the detailed description of damage types with illustrations are valuable 
demonstrations for later AASHTO manuals. Florida, which has been inspecting bridges since 1998 with 
the CoRe elements for bridge inspections, and Texas are other key states that have put great effort into 
helping to develop the updated inspection manual. Similar to California, these states have specific 
elements that must be handled for inspection needs, such as movable bridges, high-mast light poles, 
overhead sign structures, and traffic-signal mast arms. As shown in Table 2.2, Florida and Ohio have 
updated the newest version of their inspection manual in accordance with the new 2013 AASHTO 
manual. Several states, such as Minnesota, South Dakota, and North Dakota, are updating the transition 
and training for inspectors that perform inspections using the new manual. 
 
Table 2.2  Major contents in practices and guidelines in existing national manuals 

Name Element descriptions Quantity 
calculations Condition rating Reporting process of 

data to FHWA 

FHWA 

Components: 
superstructure, 

substructure, deck 
and culverts 

- 9 to 1 (excellent, 
very good, …failed) - 

AASHTO 
(CoRe) CoRe elements  - 1 to 3, 1 to 4, or 1 to 

5 (good, fair...) - 

AASHTO 
(2013) NBE, BME, ADE - 1 to 4 

(good, fair..) - 

California 
(2008) 

CoRe elements 
ADE 

Length, 
area, each 

(record 
individual 
state and 

total 
quantity) 

1 to 3, 1 to 4, or 1 to 
5 

a) NBI data  
(transition rating) 
 
b) Element-level data* 
(data from NBE, BME, 
NBE-ADE, BME-
ADE) 

Florida 
(2014) NBE, BME, ADE 1 to 4 

Texas 
(2001) 

CoRe elements 
ADE 

1 to 3, 1 to 4, or 1 to 
5 

Ohio 
(2014) NBE, BME, ADE 1 to 4 

(summary 9-0) 
Minnesota 

(2013) CoRe elements 1 to 3, 1 to 4, or 1 to 
5 

South Dakota 
(2008) CoRe elements 1 to 3, 1 to 4, or 1 to 

5 
North Dakota 

(2013) CoRe elements 1 to 4 
(summary is 9-0) 

*: FHWA will collect data starting April 1, 2015 and year thereafter 
 

2.3 Overview of Bridge Asset Management 

2.3.1  Overview of Inspection Data for Bridge Asset Management 

With collected data in place, the goal of bridge asset management is to develop an understanding of what 
set of performance measures can serve good asset management, and to establish a format for clearly 
communicating bridge performance information to management.  The various types of performance 
measures can be categorized into the following categories: a) Safety, including load rating, load carrying 
capacity, reliability index, condition rating, sufficiency rating, appraisal rating, and health index; b) 
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Serviceability, including condition rating, excessive stressing, cracking, deformation, and vibration; c) 
Fatigue; and d) Functionality, including condition rating, sufficiency rating, bridge width, and 
vertical/horizontal clearances. As illustrated in Table 2.3, states and federal agencies sometimes use 
different performance indices to identify critical information for bridge asset management.  
 
Table 2.3  Bridge asset management and performance index 

Name Condition rating Performance index 

FHWA 9 to 0 (excellent, very 
good, …failed) 

• Appraisal ratings 
• Sufficiency rating 
• SD/FO classification* 

AASHTO 
(CoRe) 

1 to 3, 1 to 4, or 1 to 5 
(good, fair...) 

• Appraisal ratings 
• Sufficiency rating 
• SD/FO classification 
• Health Index (CalTrans) 

AASHTO 
(2013) 

1 to 4 
(good, fair..) 

• Appraisal ratings 
• Sufficiency rating 
• SD/FO classification 

California 
(2008) 1 to 3, 1 to 4, or 1 to 5 • SD/FO classification 

• Health Index (CalTrans) 
Florida 
(2014) 1 to 4 • SD/FO classification 

• Structural condition rating 
Texas 
(2001) 1 to 3, 1 to 4, or 1 to 5 • SD/FO classification 

• Structural condition rating 
Ohio 

(2014) 
1 to 4 

(summary 9-0) • Appraisal ratings 

Minnesota 
(2013) 1 to 3, 1 to 4, or 1 to 5 • Structural condition rating 

South Dakota 
(2008) 1 to 3, 1 to 4, or 1 to 5 • SD/FO classification 

North Dakota 
(2013) 

1 to 4 
(summary is 9-0) • SD/FO classification 

*: SD/FO- Structural Deficient and Functional Obsolete 
 
2.3.2  Bridge Management Software (BrM) 

A typical analytical method for analyzing bridge data is AASHTOWare™ Bridge Management software 
(BrM), formerly Pontis (AASHTO 1997), which was first developed under the National Cooperative 
Highway Research Program (NCHRP) as part of a project sponsored by the FHWA in the early 1990’s and 
transferred to AASHTO. The BrM accommodates the new element definitions and also has the capability 
to handle subsets and agency-developed elements. It utilizes element-level inspection data to predict the 
future condition of the elements in the network assuming homogeneous Markov chains (Markovian 
deterioration models) and optimizes long-term expenditures for the preservation and the improvement of 
the highway bridge network. The BrM is widely used as the primary bridge management software by 
transportation agencies across the United States. 
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2.4 Survey of Bridge Owners, infrastructural inspectors, and related field 
 engineers 

To further quantify the current state of research and practices in bridge element inspection and other 
similar counterpart monitoring practices, Dr. Lin and his group conducted a 10-question survey of 
bridge/pipeline/tunnel owners and other stakeholders. The team collected 24 surveys from different 
agencies, including Department of Transportation (DOT) engineers, monitoring and assessment 
companies, fabricators and designers, other related large-scale structural engineers, and academics It was 
anticipated that the critical information gathered from this survey would lead to a deeper understanding of 
the potential factors that may affect the quality and consistency of data collection, such as element types, 
frequency of inspection, inspection methods, qualification of inspectors, inspector training, and methods 
used for bridge asset management.  
 
The result of Q. 1 is shown in Figure 2.5.  Clearly, there is a great deal of variations amongst the different 
survey respondents, but ultrasonic sensors were the preferred tool for monitoring structural health, with 
over 18 respondents (75% of total responses) choosing it. The optical sensor was the second leading 
system, with over 54% of  users selecting it.   

 
1) What are the preferable structural health monitoring tools you would like to use for large-scale 

structural inspection (such as bridges, pipelines, tunnels)? 

 
 

 
Figure 2.5  Distribution of respondents to Q #1 
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The results of Q. 2 are shown in Figure 2.6. Over 50% of respondents indicated that they expect a long- 
lasting life with the monitoring systems they choose for assessing structures.   

 
2) What is the expected service life when you choose or design a health monitoring tools/systems 

for bridges, pipelines, tunnels? 

 

 
Figure 2.6  Distribution of respondents to Q #2 

 
The results from Q.3 are shown in Figure 2.7. Although 37% of total respondents accepted the current 
monitoring systems, a relatively significant number (21%) showed their dissatisfaction with the current 
market. This demonstrates that there is a potential to improve the current practices and technologies. 
 
3) Could the current structural health monitoring tools meet your expected service life 

requirement? 

 

 
Figure 2.7  Distribution of respondents to Q #3 
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The results for Q. 4 are shown in Figure 2.8. Clearly, respondents agree that the four factors (durability, 
ease in operation, ease in data process and low cost) are important for the monitoring tools and 
applications. The durability of the monitoring system is the most essential, which confirms the findings in 
Q. #2. 

 
4) What are the important properties when you select new structural health monitoring tools? 

  

 
Figure 2.8  Distribution of respondents to Q #4 

 
The results of Q. 5 are shown in Figure 2.9. Most respondents consider “ease of operation” a top priority, 
but not the most important, when they choose a new structural health monitoring tool, with only slightly 
more than 30% of respondents identifying it as the most important priority.  
 
  



18 
 

5) How do you rate the following properties when you choose a new structural health monitoring 
tools used in large-scale structures, such as bridges, pipelines, tunnels? 
- Ease of operation 

 

 
Figure 2.9  Distribution of respondents to Q #5 

 
The results of Q. 6 are shown in Figure 2.10. Over half of respondents selected the feature of “long 
distance” as the second most important property in choosing a new structural health monitoring.  
 
6) How do you rate the following properties when you choose a new structural health 

monitoring tools used in large-scale structures, such as bridges, pipelines, tunnels? 
- Long distance 

 

 
Figure 2.10  Distribution of respondents to Q #6 
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The results of Q. 7 are shown in Figure 2.11. The outcome indicated that most respondents selected the 
feature of “durability” as the  top priority when choosing a new structural health monitoring tool.  
 
7) How do you rate the following properties when you choose a new structural health 

monitoring tool used in large-scale structures, such as bridges, pipelines, tunnels? 
- Durability 

 

 
Figure 2.11  Distribution of respondents to Q #7 

 
The results of Q. 8 are shown in Figure 2.12. Although cost is important, most respondents do not think 
cost should be the top priority when choosing new structural health monitoring tools/systems.  
 
8) How do you rate the following properties when you choose a new structural health 

monitoring tool used in large-scale structures, such as bridges, pipelines, tunnels? 
- Low cost 

 

 
Figre 2.12  Distribution of respondents to Q #8 
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The results of Q. 9 are shown in Figure 2.13. There is no uniform standard for the inspection interval for 
most civil structures. Most respondents suggested using a 2-year period as the interval for structural 
health monitoring, although some selected 5 years or longer.  
 
9) What’s the inspection interval that applied in structures or you would like to suggest? 

 

 
Figure 2.13  Distribution of respondents to Q #9 

10) Once corrosion or corrosion-induced damage was detected, what kind of retrofitting 
method did you use for maintenance and does this change the inspection interval? Please 
specify: 
 

There was a wide range of responses for these questions; below are a sample selected to demonstrate the 
variety of comments: 

“Depending on the degree of damage of the corrosion the structural member the member should 
be repaired or replaced with some form of retrofitting method. If the damage is bad enough then it should 
be replaced. If it is a reoccurring problem the inspection interval should be shortened for that specific 
member. “ 

“Depends on extent of damage. but inspection interval will be reduced to even a year. Wireless 
sensor network-based monitoring” 

“Would increase inspection frequency until repairs are completed.” 
“High performance coating can be applied after appropriate surface preparation. Another 

efficient option is through metalizing with active metals such as zinc, aluminum, and their alloys to 
produce long-lasting protective coating.” 

“Replace or coating again. I will change the inspection interval to short time” 
“Both changing monitoring methods and revising inspection interval could work” 
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2.5 Summary 

This section provides a brief state-of-art practice of element-level bridge inspection nationwide and 
worldwide. Clearly, there is no uniform standard for the inspection in bridge community, and a high level 
of variances exist in the current inspection practice, which pose a great challenge in data collection and 
data interpretation for decision making.  
 
 
  



22 
 

3. RELIABILITY-BASED HOLISTIC FRAMEWORK: FROM VISUAL 
 INSPECTION TO IN-DEPTH INSPECTION  

3.1 Reliability-based Holistic Framework for Element-Level Inspection 

Bridge inspection data is an essential step in the bridge asset management operation and the bridge 
management system. Element-level inspection is categorized as follows: (1) routine inspection, every two 
years (as shown in Table 2.1); (2) underwater inspection, every five years; (3) in-depth inspection, 
frequency determined by program manager; and (4) initial/special/damage inspection.  

The major methods for element-level inspection (e.g., routine inspection) are based on a visual inspection 
to examine bridges, record their condition states (rating bridges using the new National Bridge Elements 
(NBEs), Bridge Management Elements (BMEs), and Agency Defined Elements (NBE-ADEs and BME-
ADEs), and documenting their conditions with notes, photos, and sketches.  

It would seem that an improvement in the consistency of data collection could be systemically achieved 
through a reliability-based holistic framework, as shown in Figure 3.1.  

 
 

 
Figure 3.1  Reliability-based holistic framework for element-level inspection 

 
This framework will focus on the following items: 

a) Developing a better understanding of the critical factors affecting visual inspections in routine 
inspections (Chapter 4);  

b) Enhancing the visual inspection in routine inspection (Chapter 5);  
c) The use of data fusion and information processing in in-depth/special/damage inspection (Chapter 

6);  
d) The unveiling and reduction of structural uncertainty in in-depth/special/damage inspection by 

extracting structural information and probabilistically determining conditions with structural 
uncertainty (Chapter 7).  

 

Enhanced Visual inspection 
 

Routine Inspection 

Critical factors for 
improvement in Chapter 4 

Using UAV technology in 
Chapter 5 

In-Depth/ Damage 
Inspection 
  
Enhanced data fusion and 
information extraction in 
Chapter 6 

Uncertainty reduction 
in Chapter 7 

In-Depth/ Damage 
Inspection 
  

High Quality Element-Level 
Inspection 
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3.2 Critical Factors Affecting Visual Inspection in Routine Inspection 
 and Improvement 

The reliability-based high-quality data, at a minimum, should be as follows: 
1) Objective and Repeatable - original data collection should be objective and repeatable in such a 

way that quality data can be stored and updated over time 
2)  Comprehensive and Informative - high quality data should be comprehensive and informative in 

such a way that it can provide enough information to support management decision-making 
3) Reliable and Timely - high quality data should be reliable and timely in such a way that it can 

eliminate deviation and uncertainty, and provide timely management decision making 
4) Accurate and Consistent - high quality data should be accurate and consistent in such way that it 

can help to establish accuracy levels for element conditions and applicable defect quantities to 
support bridge management system deterioration forecasting and evaluation.  

The critical factors affecting data collection and quality of data fusion associated with conditional 
assessment and rating will be discussed in Chapter 4. 
 

3.3 Enhancement of Reliable Field Data Collection for Visual Inspection 
 in Routine Inspection  

Visual inspection has been identified as one of the primary methods used in routine evaluations of bridges 
when the evaluation is done within a two-year period. Considering the limitation of visual inspection for 
large-scale bridges under different weather and environmental conditions, more advanced techniques have 
been utilized to provide complementary data. In recent years, the use of unmanned aerial vehicles (UAV) 
has emerged as a possible tool for bridge inspection that allows for the collection of reliable data in real 
time.  This could minimize subjective judgements as well as allow for inspections of inaccessible 
locations.  The practice of supplementing current visual inspections with the additional information and 
opportunities proved by UAVs will be explored in Chapter 5. 

3.4 Enhancement of Data Fusion and the Information Process in 
 In-depth/Special/Damage Inspection 

Effective data collection and information fusion is critical steps for element-level inspections and 
conditional assessments. To effectively capture the abnormally dynamic characteristics of long-span 
bridges while avoiding catastrophic failures, various strategies using sensors have become widely 
accepted in structural health monitoring (SHM). There are many types of sensor technologies, but using 
wireless sensor networks to detect potential damages and facilitate SHM, as well as include the favorable 
features of wireless data transmission, high reliability, and ease of operation, can overcome the limitations 
of the traditional power-wire based sensor systems (Ge et al. 2016; Herrasti et al. 2016; Huang et al. 
2015; Pan et al. 2016; Watters et al. 2002; Worden et al. 2007). Particularly, the integration of the 
wireless sensor networks with unmanned aerial systems (UAS) technology has demonstrated great 
potential for the SHM of large-scale, civil infrastructures (Ge et al. 2016; Pan et al. 2016, 2017, 2018a, 
2018b, 2018c). 

Use of these advanced sensor technologies enable engineers to capture large amounts of data, which in 
turn has led to the need to develop an effective means for analyzing and utilizing the data.  Much research 
has been conducted on a physics-based approach to data analysis for structural condition diagnostics and 
damage detection (Salawu 1997; Doebling et al. 1998; Chinchalkar 2001; Yang et al. 2004; Lee 2009; 
Wang and Chen 2013; Lin et al. 2014; Pavlopoulou et al. 2016). These methods use captured sensor data 
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to calibrate/interpret physics-based vibratory characteristics of structural systems including natural 
frequency, mode, and curvature (Salawu 1997; Chinchalkar 2001; Lee 2009; Fahim et al. 2013). Although 
these physics-based analytical models and simulation techniques are now well-established, rapidly and 
accurately interpreting large amount of data, along with pattern recognition still lag behind (Zou et al. 
2000; Magalhães et al. 2012; Kopsaftopoulos and Fassois 2013; Masciotta et al. 2014; Comanducci et al. 
2016). This is a particularly big challenge when the cable-stayed bridges are under complex operational or 
environmental interferences because the physics-based techniques may be incapable of recognizing and 
detecting abnormalities.  

Alternatively, another type of data analysis employs a data-driven approaches.  One example of this is the 
machine learning techniques that have focused attention on mining data for large-scale, civil 
infrastructure applications (Hou et al. 2000; Farrar and Worden 2013; Ko and Ni 2005; Rashedi and 
Hegazy 2015; Gerist and Maheri 2016; Jang 2016; Gui et al. 2017; Pan et al. 2017, 2018a). The data-
driven approaches tend to extract sensitive features from large data sets, which are then used for structural 
diagnosis and damage detection, regardless of the complexity of the physical systems.  This technique is 
so robust that it can extract the necessary key information from the complex and heterogeneous sensor 
data, which may not be appropriate for physics-based approach. 

Proper selection of feature extraction methods is the key to ensuring the effectiveness of the data process 
in machine learning. The signal for the time-frequency feature extraction is within a short time domain. 
Although many time-frequency methods are available, these methods all have similar limitation in the 
short-time domain. Thus, it may be very time-consuming and unrealistic to run the analysis over an 
extended period of time. For a longer time frame, sampling using certain time intervals could overcome 
this drawback, and thus machine learning could fully capture statistical features under certain time 
intervals. Within the time interval, the time-frequency analysis could be conducted. As a result, statistical 
properties of a longer time signal could be captured, which could effectively avoid the use of averaging or 
using subjective criteria. This type of framework allows for more flexibility in choosing the criteria for 
the selection of the feature extraction methods. For instance, the wavelet transform has less sensitivity to 
noise, while the Hilbert-Huang transform and Teager-Huang transform are more sensitivity to damage. 
Thus, fusion of these methods for the structural diagnosis of large-scale, cable-stayed bridges could enrich 
the categories of feature extractions in a data-driven data process, which in turn, opens a new door for the 
development of data-driven approaches that may have widespread applications for large-scale, civil 
engineering structures. 

Some pioneering studies have been undertaken in utilizing the data-driven technique for structural 
diagnosis and damage detection in structures, including using Bayesian networks (Masri et al. 2000), 
artificial neural networks (Zang and Imregun 2001) and support vector machines (SVM) (Oh and Sohn 
2009; Farrar and Worden 2013; Gui et al. 2017). Note that the accuracy of these data-driven methods for 
structural diagnosis is associated with the proper selection of feature data. From a systematical standpoint, 
few attempts have been made to apply data-driven structural diagnosis and damage detection to cable-
stayed bridges in terms of the applicability of feature extraction techniques and data training. As a result, 
findings from these previous studies may not fully account for the data processes under various scenarios 
in a cable-stayed bridge.  Another positive aspect of employing the data-driven approach to bridge 
inspection is that it may also expand the functionality of the physics-based conventional methods that are 
defined in time-frequency series (e.g., Wavelet or short-time Fourier transforms) to be more robust and 
adaptive tools for feature extraction (Bin et al. 2012). In addition, other time-frequency techniques, 
including the Hilbert-Huang transform (Yang et al. 2004; Hsu et al. 2013) and the Teager-Huang 
transform (Li et al. 2010), have been proposed for the data collection process in aerospace and mechanical 
engineering (Kim and Melhem 2004).  
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Chapter 6 aims to develop a framework to assist in data fusion and the information gathering process for 
sensory data commonly used in the current, detailed, in-depth/special/damage inspection to improve 
element-level inspection, rapid condition assessment, and bridge management for large-scale bridges.  

3.5 Unveiling of and Reduction of Structural Uncertainty in 
 In-depth/Special/Damage Inspection 

Structural systems are often exposed to harsh environments, and these environmental factors in turn may 
degrade the system over time. The structural system’s health state and condition are key for structural 
safety control and decision-making management. Although great efforts have been made in this field to 
improve the processes and the tools used to assess these systems, the high level of variability due to noise 
and other interferences, as well as the uncertainties associated with data collection, structural 
performance, and in-service operational environments, pose great challenges in collecting and analyzing 
the proper information to assist in decision making. In recent years, the machine learning techniques have 
gained increased attention due to their merits for capturing information from a statistical representation of 
events; thus, enabling more appropriate decision making. 

Chapter 7 explores the deep learning, Bayesian belief network system (DBBN) with the purpose of 
identifying the necessary classifiers for extracting structural information and probabilistically determining 
structural conditions. Different from conventional, shallow learning systems that rely heavily on the 
quality of hand-crafted features, deep learning is an end-to-end method that encodes information and 
interprets vast amount of data with minimal or no features. A case study was conducted to address the 
methods for structure under viabilities and uncertainties due to operation, damage and noise interferences.  

3.6 Summary 

In the following chapters, detailed work, from visual inspection and improvement, to in-depth inspection 
using data fusion of sensory data and uncertainty classification and reduction, will be systematically 
investigated and discussed.  
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4. CRITICAL FACTORS AFFECTING VISUAL INSPECTION IN 
 ROUTINE INSPECTION AND IMPROVEMENT 

4.1 Background 

As summarized in Chapter 3, quality bridge inspection data should offer the following characteristics: a) 
objective and repeatable, b) comprehensive and informative, c) reliable and timely, and d) accurate and 
consistent.  This chapter aims to systematically investigate the critical factors that affect the quality and 
consistency of bridge element inspection within the context of state and national bridge program 
requirements.   These factors include element descriptions, quantity calculations, condition state 
definitions, inspection protocols, inspector qualifications, and the reporting process for bridge element 
condition data to the Federal Highway Administration. Thus, this chapter is to elucidate the critical 
factors affecting the quality of data collection and the condition ratings associated with the new element-
level inspection.  

4.2 Critical Factors Affecting the Quality of Data Collection 

4.2.1  Objective and Repeatable Data Collection 

It is clear that three critical factors may lead to subjective data results, which make it difficult to collect 
data that is repeatable: a) manual language; b) inspector qualification; and c) inspection operation and 
technologies, which are addressed below. 

(a) Manual language. The 2013 AASHTO element-level inspection manual language for data collection 
includes subjective element descriptions, condition state definitions, and defect descriptions for element-
level bridge inspection. The current language used for performance desecription is mainly qualitative and 
may not ensure identification of the exact performance. Currently, documentation in a field report still 
relies on a description written by the inspector(s), which can be subjective, although photos or sketchs 
may help supplement the written reports. In addition to the subjectiveness of each individuals perceptions 
that are reported, the bride inspection methods themselves are vague, thus making them vulnerable to 
eliciting very subjective descriptions depending on the qualifications and training of the inspectors. To 
offset this vagueness, Japan implemented using layouts of the actual bridge components during 
inspections to provide more visual and accurate descriptions (Oshiro et al. 2012) as shown in Figure 4.1. 
As such, using a physical layout of the acutal structure being inspected should generate more data that has 
better quality and more objective comments. In particular, more information, for example, information of 
age effects (new, existing, or repaired), should be recorded to assist identify the probability of failure and 
risk of failure with a frame of reliability.  

 

http://dictionary.reference.com/browse/vulnerable
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Figure 4.1  Documentation of defects on actual bridge drawing (after Oshiro et al. 2012) 

(b) Inspector qualification. Information related to the bridge inspection operation is another factor that 
may lead to subjective data. Specifically, the number of inspectors used during the field inspection, 
inspector qualifications (experience, training, and reassessment), and operations often vary during the 
different inspection activities, thus greatly impacting the quality and consistency of data collection. 
Atkins (2009) reported on results from a survey that showed that the number of inspectors used in an 
inspection ranged from 1 to over 25. This impacts the reliability of the data from inspector to inspector 
since much of the data is considered subjective rather than objective. In addition to the personal lense of 
an inspector, inspector requirements also differ amongst the different bridge consulting companies and 
bridge agencies. Most inspectors need a minimum of 6 months of experience, but over 10 percent of 
inspectors reported having no experience at all. Most training had 3−5 days in classroom, and onsite 
training ranged from 2 to 12 months. The extreme variation in training completed by the inspectors can 
affect objective data collection. More importantly, the requirements needed for inspectors to remain up-
to-date with new materials, forms of deterioration/attack, and inspection/testing techniques indicated that 
frequent re-training/reassessing was needed.  The challenge in moving to consistency within the industry 
is that the NBIS requires bridge inspectors to take refresher training, but it does not provide any specific 
requirements for the inspectors to meet.  Instead they leave it up to the states to establish the guidelines. 
This study showed that over 45 percent of inspectors did not undertake any periodic re-assessment 
(Atkins 2009). All of these variations in training, minimum experience, and ongoing training 
requirements may lead to data that has high subjectivity and low reliability; however, no information is 
available for assessing the impact of training on data quality. Therefore, the inspection qualification (IQ) 
factor is quantified based on their experience (e.g., training time) in a manner that establishes its effect on 
the quality of data collection.  

(c) Inspection operation and technologies.  The final area of critical factors that may lead to subjective 
data involves inspection methods, tools/technologies used, and inspection procedures. As shown in Table 
2.3, direct visual inspection is traditionally accepted for manually identifying structural defects and 
classifying them into the appropriate condition states. Use of the eye and simple tools can easily lead to 
subjective results, which makes it difficult for the data to be repeatable, thus making it difficult to validate 
inspection results. Other difficulties with conventional inspection operations are the use of qualitative 
instead of quantitative language and high variability in the results obtained when applying the manual 
requirements to field inspections even with experienced operators.  

Recent enhancements in technology are available that should reduce operator variability and lead to 
better, objective data collection. The application of efficient, non-destructive methods using high-quality, 
digital images, and infrared, thermography technologies for assessing the health and safety of bridges 
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during routine bridge inspections is important for bridge owners around the world. In addition, new, 
enhanced, non-destructive technologies are being used in bridge inspection, which should help eliminate 
the high variability attributed to traditional visual inspections. 

4.2.2  Comprehensive and Informative Data Collection 

The condition rating a bridge inspector assigns to an element or elements should be comprehensive and 
informative in such a way that it allows for the determination of the performance of the individual 
element or the overall bridge. Three critical factors may lead to noncomprehensive results: a) element 
types and defect types; b) inspector qualification; and c) documentation and reporting.  In addition to 
these critical factors, other factors, such as budget limits or resource constraints, may hinder bridge 
owners in developing a systematic scheme for generating comprehensive data. 

(a) Element types and defect types. The CoRe elements are the most frequently elements used for 
bridge inspections; however, the AASHTO 2013 elements are also used in a great deal of bridge 
inspections, and the two systems use highly different element descriptions. Thus, the different element 
descriptions may cause the number of elements identified and inspected to be inconsistent, which in turn 
leads to variation in the data collected.  In addition, due to subjective defect types and defect descriptions, 
the defect types may be incorrectly identified in a small number of cases.  Due to the inconsistencies 
between these elements, the variation of condition rating for extent and severity reporting can reach up to 
50% (Atkins 2009).  Incomprehensive data reporting may overlook some structural deficiency that may 
lead to relatively more widespread failure. Along with these deficiencies, limited consideration was given 
in current state manuals or the AASHTO 2013 manual for how to account for interacting defects. 

(b) Inspector qualification. It is vital that qualified inspectors identify all structural defects and rate the 
condition states, thereby reporting comprehsensive and informative data. To address this point, one 
example that was used in the literuare (Atkins 2009) is presented below. 

Case Study: De la Concorde overpass collapse, Laval, Canada. As shown in Figure 4.2, the De la 
Concorde overpass, a 40-m span reinforced concrete cast-in-place bridge, collapsed in 2006, which 
resulted in six people injured and five fatalities. The bridge was supposed to have a 70-year lifespan, but 
it only lasted for slightly more than half of that time - 36 years. Although a majority of the blame was 
placed on the design, construction, and repair, the investigation revealed that the inspection conducted by 
engineer Christian Mercier in 2004 was incomplete, and that appropriate inspection practices and 
competent staff could have provided sufficient information to pre-warn of the collapse (Atkins 2009). 
This highlights the point stated earlier that noncomprehsenvie data reporting may overlook some 
structural deficiencies that can lead to relatively more widespread failure. 

 

 
Figure 4.2  Overpass collapse (after Atkins 2009) 
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(c) Documentation and reporting. Comprehensive and informative data collection rely on accurate 
documentation and reporting. Unified document formats and requirements can improve data collection. 
For example, all quantities in condition levels of CS 3 and CS 4 must be recorded in a format of detailed 
comments, photos, and sketches for future use (the next inspector to quantify, rate structural degradation 
over time).  

4.2.3  Reliable and Timely Data Collection 

An emphasis is placed on following the critical factors that affect reliable and timely data collection: a) 
uncertainty; and b) inspection operations and technologies. 

(a) Uncertainty. Though the AASHTO 2013 manual provides a comprehensive set of elements, defect 
descriptions, and condition ratings, there is nothing provided that can account for uncertainty in the data 
collection. For example, there is no information on how the condition rating of an element changes 
between inspections (improving and degrading) if there are many combined effects, such as 
environmental factors and different inspector qualifications. Information in condition rating of a element 
cannot account for uncertainty, and thus cannot identify the probability of failure and risk of failure with a 
frame of reliability. 

(b) Inspection operations and technologies. Reliabilty of traditional visual inspection methods is 
essential in impactimg the quality data. In a previous study by Moore et al. (2001) on 49 bridges, it was 
found that eyesight, accessibility, and location affected the reliability of visual inspection, which in turn 
affect the quality of data collection. Sensitivity analysis will be carried out based on the database in the 
literature (Moore et al., 2001) to quantify the effects in data collection.  

4.2.4  Accurate and Consistent Data Collection 

The accuracy and consistency of data collection is investigated by doing the following: a) establishing 
accuracy levels for element conditions and b) establishing applicable defect descriptions and quantities. 

(a) Establishing accuracy levels for element conditions. The AASHTO 2013 manual for data collection 
provides criteria for element condition ratings and defect descriptions, but these are without reliability-
based calibration. The lack of reliability-based calibration is one of the factors that can affect the quality 
and consistence of data collection, causing high variability. In addition to this, the identification of the 
structural importance of bridge elements is necessary as well as the different actions that should be 
undertaken. Some elements require more attention than the others in terms of material vulnerability 
and/or structural significance (Tee et al. 1988; Melhem and Aturaliya 1996; Abu Dabous and Alkass 
2010; Rashidi and Gibson 2012). For example, reinforced concrete over time is more likely to sustain 
damage than steel. A main girder in girder bridges will require more urgent attention than the bridge 
drainage outlets. However, the determination of element conditions did not account for these effects. 
Therefore, reliability-based correlations between levels of element conditions and critical factors 
(including inspector quality, structural importance factor, defect type/location factor, material 
vulnerability factor, and environmental factor) are necessary. 

(b) Applicable defect descriptions and quantities. Existing manuals introduce material distress for 
condition rating, while overlook the assessment of bridge element conditions.  The current methods 
cannot account for performance, probability of failure, and risk of failure, and thus cannot guarantee the 
desirable performance in some cases. New guidelines should be developed to address these concerns. 
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4.3 Reliability Indices for Identified Critical Factors 

The critical factors, including inspector qualification factor (IQ), structural importance factor (SI), 
material vulnerability factor (MV), defect description and location factor (DDL), age factor (AF), and 
environmental factor (EF), are categorized and quantified in terms of condition rating with the 
corresponding performance measures as commentary. To maintain a consistent format as stated in the 
current manuals, condition ratings range from 1 to 4. Similar to the definition of weight factor at Eqn. (2), 
the weight factors for each condition are given: CS1=1, CS2=0.75, CS3=0.5 and CS4=0, which remains the 
same, unless otherwise noted.  

4.3.1  Inspector Qualification Factor (IQ) 

As illustrated in Figure 4.3, there are large variations in inspector qualifications, experience, training, and 
reassessment, as well as the number of inspectors involved in inspections (Atkins 2009).  During the 
consistency study, besides the specific requirements for inspector qualification, an inspector qualification 
factor, IQ, will be proposed to account for the effects of the number of inspectors used during field 
inspection, inspector experience, training, and reassessment. 

The inspector qualification factor, illustrated in Table 4.1, will be defined based on the number of 
inspectors, inspector experience, training, and refresh assessment. The condition rating will be quantified 
in accordance with performance. The biggest challenge for this task is determining how to quantify the 
subjective description, as shown in Table 4.1, as a quantitative index.  

 

Table 4.1  Inspector qualification factor, IQ 
Rating Inspector qualification factor, IQ Performance measure 

Well 
qualified 1  (CS1=1) 

• Annual Refresh/reassessment 
• Capable to identify all deficiency and documentation 
• Over one years’ experience 
• More than two inspectors during inspection 
• Enhanced non-destructive technologies  

Fair 
qualified 2  (CS2=0.75) 

• Capability to identify element types, defects and 
documentation 

• Over one years’ experience and over 6 months training 
• Two inspectors during inspection 

Poor 
qualified 3  (CS2=0.5) 

• Training less than 6 months 
• Less than one-year background of inspection 
• One inspector 

Failed 4  (CS2=0) • No on-site training experiences 
• No background of inspection 
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a) b) 

  
c) d) 

  
e) f) 

Figure 4.3  Variation of inspector qualification (Re-plot after Atkins 2009) 
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4.3.2 Structural Importance Factor (SI) 

Some elements require more attention than the others in terms of structural importance. Bridge elements 
may be quantified from their performance measures that can be categorized as follows: a) safety; b) 
serviceability, including excessive stresses, cracking, deformation, vibration; c) fatigue; and d) 
functionality. To account for the different treatments for different structural elements, a structural 
importance factor, SI, was defined in this study. 

Several studies (Tee et al. 1988; Melhem and Aturaliya 1996; Samsal and Ramanjaneyulu 2008; Abu 
Dabous and Alkass 2010; Rashidi and Gibson 2012) have been conducted to assess the importance of 
bridge elements. Tee et al. (1988) reported their findings based on a survey study of 46 bridge inspectors 
and bridge experts in an effort to quantify the structural importance factor through a comparison of 
elements at different condition ratings. Abu Dabous and Alkass (2010) reported using the structural 
importance factor by taking the element level and the safety of the overall structural using Analytical 
Hierarchy Process (AHP) could better estimate the value of that parameter. The database was built from 
structured field interviews with bridge engineers/inspectors. Table 4.2 is the SI proposed based on the 
data from Rashidi and Gibson (2012). 

Table 4.2  Structural importance factor, SI (Reshidi and Gibson 2012) 
Element Structural importance 

factor, SI Performance measure 

Barrier, curb, joints, 1  (CS1=1) • Ancillary structures whose failure may not weaken 
components. 

Bearings, deck, 
wingwall 2  (CS2=0.75) 

• Serviceability: second structural system whose failure 
may weaken other adjacent elements but still maintain 
functionality, mostly excessive stresses, cracking, 
deformation 

Abutment, stiffener, 
load-carrying wearing 3  (CS2=0.5) 

• Serviceability and functionality: major structural 
components whose failure may cause local failure and 
lose functionality 

Column, girder 
fractural critical 

components 
4  (CS2=0) 

• Serviceability and functionality: major structural 
components whose failure may cause adjacent failure 

• Safety: failure may threaten public safety 
 
4.3.3  Material Vulnerability Factor (MV) 

Another key factor that affects structural integrity is material.  This factor is defined as the material 
vulnerability (MV) factor. A few studies have been carried out to address the impacts of different 
materials on condition ratings (Austroads (2004); Valenzuela et al. (2010); and Rashidi and Gibson 
(2012)).  Rashidi and Gibson (2012) defined the material vulnerability factor with a 4-level system 
ranging from CS 1 for steel to CS 4 for prestressed concrete, where the higher value denotes the material 
with higher vulnerability. It should be noted that the materials studied in previous studies were mainly 
steel, reinforced concrete, and prestressed concrete. Table 4.3 shows the ratings for material vulnerability. 
As newer bridge types (with new materials) become more common, additions to these inspection ratings 
will be needed to improve the uniformity and consistency of inspections. The new materials should be 
quantified for accurate condition rating to accommodate this need. These materials include fiber 
reinforced concrete, high performance concrete, and fiber reinforced polymer composite.  
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Table 4.3  Material Vulnerability factor, MV 
Material Material Vulnerability 

factor, MV Performance measure 

Composite, high 
performance concrete 1  (CS1=1) • Ductile, superior corrosion resistance, high 

durability 
Steel, precast concrete, 
fiber reinforced concrete 2  (CS2=0.75) • Ductile, corrosion resistance, high durability 

Reinforced concrete, wood 3  (CS2=0.5) • Relative low ductile and low durability 
Prestressed concrete 4  (CS2=0) • Low reliability, catastrophic failure 

 
4.3.4  Age Factor (AF) and Environmental Factor (EF) 

To account for the impacts of age and environment on the element condition rating, it was necessary to 
define the age factor (AF) and environmental factor (EF). Frangopol et al. (1999) defined the bridge 
reliability index vs. age and its concept which was used in this study. Four condition rating were defined 
over time in terms of a reliability index, as shown in Table 4.4 and Figure 4.4.  

 
Figure 4.4  Bridge reliability index vs. age for a bridge (revised after Frangopol et al., 1999) 

Table 4.4  Age factor, AF 
Age Age factor, AF performance measure 
New constructed 1  (CS1=1) • Within Y1 
New, rehabilitation 2  (CS2=0.75) • Age ranging from Y1 to Y2,  
Old, repaired 3  (CS3=0.5) • Age ranging from Y2 to Y3 
Very old 4  (CS2=0) • Age over Y3 

 
In regard to environmental factors, the major concerns are chemical attacks, deicing salt, freeze and thaw 
cycles, chloride ingress, sulphate attack, acid attacks, and alkali-aggregate reactions (Rashidi and Lemass 
2011; Rashidi and Gibson 2012). CalTrans took into consideration the impacts of the environment on the 
element condition rating. The challenge with these performance measures is that they are highly 
dependent on a subjective description. The environment factor (EF) uses CS 1 to 4 to represent the 
aggressiveness of the operating practices or local environment of each element, as shown in Table 4.5. 

Table 4.5  Environmental factor, EF  
Level Environmental factor, 

EF performance measure 

Benign 1  (CS1=1) • No environmental effects 
Low 2  (CS2=0.75) • Little environmental effects 
Moderate 3  (CS3=0.5) • Medium environmental effects 
Severe 4  (CS2=0) • Severe F/T or chloride ingress 
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4.4 Element Condition Rating 

Without factors considered, the element condition rating is defined by (Rashidi and Gibson, 2012) 

4 4

1 1
ECR ( ) / ( )j j j

j j
q CS q

= =

= ×∑ ∑ ,                                              (4-1) 

where, CSj = the condition state j, CS1=1, CS2=0.75, CS3=0.5 and CS4=0. 

With reliability indices for critical factors in place, the unified element condition rating for at certain time 
i, is proposed by 

UECR( ) ECR CR( ) 100i i= × × ,                                              (4-2) 

where, CR denotes the product of critical factors to the inspection: 

CR( )=IQ*SI*MV*DDLI*AF*EFi ,                                      (4-3) 

As shown in Eqn. (4-2), the unified element condition rating is categorized on a 0-100 ranking system 
(from 100% in the best state to 0% in the worst state) as the performance index for an element. By 
weighting factors, the element condition rating can account for the effects of various critical factors over 
time. The element condition rating that is shown in Eqn. (4-2) also makes it possible to assess the overall 
condition of a bridge in this aggregate form for bridge management system use, as stated by Rashidi and 
Gibson (2012).  
 
4.5 Summary 

In this chapter, major factors, including structural importance, material vulnerability factor, aging effect 
factor, and others, have been discussed, as well as their effects on the structures conditional state and 
rating. Rashidi and Gibson (2012) and other researchers have attempted to propose different condition 
ratings by integrating these critical factors into the element-level inspection, which should provide more 
reliable data for the bridge conditional assessment. Additional data sets could further quantify their 
weight in the determination in future work. 

With advances in technology and sensors, implementation of these advances, including UAV, wireless 
sensor networks, or other sensors, could dramatically enhance the quality of data collection and data 
fusion which will be discussed in chapters 5 and 6.  
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5. ENHANCEMENT OF RELIABLE FIELD DATA COLLECTION FOR 
 VISUAL INSPECTION IN ROUTINE INSPECTION  

5.1 Background 

To enable UAV for bridge inspection, Dr. Na Gong, Dr. Zhibin Lin, and Dr. Jinhui Wang developed the 
NDSU UAV System Lab in 2016.  The NDSU UAV System Lab has the potential to be used in research 
to assist in civil structural health monitoring, including bridges, pipelines and other large-scale systems. 
In Figure 5.1, the PIs demonstrated the feasibility of using UAV assisted strategy for data collection for 
large-scale bridge systems.  Since beginning the project, the UAV lab has been further strengthened by 
the purchase of two of the newest UAV models, the PHANTOM 4 with the high quality imagery 
collection, and MATRIC 100 for payload development. In addition, the use of two thermal infrared 
cameras, models DJI 4K UHD and DJ1 Zenmuse XT Radiometric, have great potential for large-scale 
bridge and pipeline monitoring.  Along with the addition of equipment, Co-PIs Dr. Na Gong and Dr. 
Jinhui Wang successfully completed training and are now certificated UAV pilots.  As illustrated in 
Figure 5.1, the PIs have attempted to demonstrate the feasibility of using UAV assisted strategy for the 
data collection for large-scale bridge systems. 

 

     
Figure 5.1  UAV flight trial for demonstration in the NDSU UAV System Lab 

 
5.2 Field Inspection Exercise Using Mixed Visual Inspection 
 and UAV Flight  

To effectively implement the proposed concept to improve data collection in the field, a field inspection 
exercise was conducted at North Dakota. The field inspection exercise started at the NP bridge which 
spans the Red River in Fargo, ND.  

5.2.1  NP Bridge over the Red River, North Dakota 

5.2.1.1  Basic Information 

The bridge in Figure 5.2 is located on NP Avenue in Fargo, ND over the Red River. The information 
about the bridge was collected from City-data.com: 

o Location: NP AVE.-FARGO 
o Year Built: 1937   
o Year Reconstructed: 1987   

Images from the UAV 
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o Lanes on structure: 4   
o Lanes under structure: 2   
o Approaching Roadway Width: 14.6m (47.9ft)   
o Skew: 3 degrees   
o Material/Design: Steel   
o Design/Construction: Stringer/Multi-beam   
o Number Of Spans In Main Unit: 13   
o Length of Maximum Span: 32.6m (107.0ft)  
o Curb or Sidewalk Widths: Left: 0.0m,  Right: 1.6m (5.2ft)   
o Curb-To-Curb Width: 14.6m (47.9ft)   
o Out-to-Out Width: 16.8m (55.1ft) 
o Deck Structure Type: Concrete Cast-in-Place  
o Wearing Surface/Protective System: Wearing Surface: Monolithic Concrete  

 

 
Figure 5.2  Overview of the girder-type bridge at NP avenue, Fargo, ND 

 
5.2.1.2  Visual Inspection 

(a) Elements associated with superstructures.  Field visits were held in April as a class demonstration 
for undergraduates at NDSU. Mixed visual inspection and UAV technology were used to collect data for 
the bridge inspection. Figure 5.3 shows the condition underneath the bridge deck and of the girders. The 
deck was identified as in a good condition state; however, hairy transverse cracks (efflorescence/buildup 
white but not heavy) were observed in the deck. These buildups white typically aligned with the 
reinforcement that was parallel to the cracks. These cracks could lead to penetration by water, chlorides, 
or moisture to the deck and the reinforcement. Note that the data collected below were based on the 
observations of the researchers and the participating students, not of certified bridge inspectors, and thus 
information could be subjective based on the limited field experience of the collectors.  
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Figure 5.3  Overview of the bridge deck and girder 

  
As clearly illustrated in Figure 5.4, the bridge girders had been given a new protective coating, and thus 
they were maintained in fairly good shape.  

 
Figure 5.4  Overview of the bridge girder 

 
  

Efflorescence/build up 
white (not heavy) 

Expansion joint 
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There was, however, an issue related to leaking runoff behind the steel railing.  This runoff had caused 
erosion on the steel and concrete decking, as shown in Figure 5.5. 

 
Figure 5.5  Overview of underneath the bridge shoulder 

 
As shown in Figure 5.6, there was a pin-connected joint that had shifted slightly away from the pier bent 
support. This strategy could effectively avoid the runoff directly on top of pier, while maintaining the 
rotation necessary to release thermal or other expansion as well as to accommodate shrinkage.  

  

Steel rusting 

Affected area 
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Figure 5.6  Overview of expansion joint and pin connection near the west side of the bridge abutment 

 
  

Pin connection 
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However, as illustrated in Figure 5.7, the expansion joint was in critical condition and had deteriorated 
severely from water runoff. The runoff had leaked onto the supporting girder and cross frame members as 
well, and despite the protective coating on the girders, the girders and cross-frame members also 
exhibited a certain level of corrosion. 
 

 

 
 

Rust region 

Concrete spalling 
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Figure 5.7  Deterioration of expansion joint near the west side of the bridge abutment 

Corresponding to the expansion joint at the deck surface, shown in Figure 5.8, certain deterioration of the 
expansion joint was observed, which led to an uneven bridge surface that could be affected by a vehicle 
bumping over it, thereby potentially leading to further damage. 

 

 
Figure 5.8  Deterioration of expansion joint near the west side of the bridge abutment 

Concrete spalling 

Uneven header due 
to settlement 
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(b) Elements associated with substructures.  Reinforced concrete bridge pier walls were observed 
in this bridge to be in good condition state, as shown in Figure 5.9.  

 

 
 

 
Figure 5.9  Pier walls used as the support of girders 

There was no concrete spalling or reinforcement corrosion on the surface of the pier walls, however, a 
light level of bridge scour (about less than one foot) was observed on the major piers near the east side of 
the bank at the front of the flow direction, as shown in Figs. 5.10 and 5.11.  

The bridge abutment and bearing at east side of the bridge were illustrated in Figure 5.11. Clearly, there 
were some cracks smeared on the abutment. The metal bearing exhibited certain rusting, which may 
affect the effectiveness of the rotation. 

 

Light bridge scour 

Flow direction 

Pier walls 

Flow direction 
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Figure 5.10  Bridge scour at east side of the pier walls 

 

 
 

 
Figure 5.11  Bridge abutment and bearings  

Bridge scour 
Flow direction 

Roller bearing Abutment 

Abutment 
Concrete crack 
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Figure 5.12 displayed the wingwall with apparent deterioration, e.g., concrete spalling, rebar corrosion, 
and associated cracks. These damage-induced defects could be the result of the direct contact of the 
wingwall with the corrosive soil.   
 

 

 
 

Concrete spalling 

Delamination of 
expansion joint (or 
different 
settlement) 

Abutment 

Girder 

Deck 

Wingwall 
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Figure 5.12  Deteriorted bridge wingwall at east side of the bridge 

(c) Elements condition state. The bridge was inspected and rated by its condition state, as shown in 
Table 5.1, where the elements were first identified by their I.D. number and then estimated by their 
quantities with different quantities associated with different condition states. Clearly, there was a high 
level of variance and uncertainty associated with manual, visual inspection, even in accordance with the 
new bridge element-level inspection manual (2013). The I.D. of defects associated with the parent’s 
elements were identified as well, and shown in Table 5.1, which could better assist bridge engineers and 
managers when planning their retrofit strategies.Table 5.1 clearly demonstrated that the defects related to 
expansion joints were the major root causes for deck deterioration, girder rusting, and cross-frame beam 
corrosion.  In addition, the reinforced concrete abutment exhibited certain cracks and concrete spalls, as 
confirmed in Figure 5.14. Moreover, due to direct exposure to soil, the wingwall exhibited concrete spall, 
rebar corrosion, and cracks.  

  

Concrete spalling and corroded rebar 

Concrete spalling 
and cracks 
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Table 5.1  Summary of element condition states 
Element Element description Total 

Qty 
Units Condition State Quantity 

CS 1 CS 2 CS 3 CS 4 
12 RC Deck 5885 Sq. ft.   5774.8 110.2   

1130 Cracking 110.2 Sq. ft.     110.2   
1080 Delamination/Spall 5885 ft.   5774.8     

330 Railing 107 ft.     107   
1120 Rust Staining 107 ft.     107   

107 Steel Open Girder  107 ft. 105 2     
1120 Rust Staining 2 ft.   2     

515 Steel Protective Coating 4458.3 Sq. ft. 4375.0   83.3   
1120 Rust Staining   Sq. ft.     83.3   

313 Fixed Bearing 5 Each   5     
1000 Corrosion (rusting)   Sq. ft.   5     

314 Pivot Bearing 5 ea. 5       
300 Strip Seal Expansion Joint 55.1 ft.     55.1   

2330 Seal Damage   ft.     10   
1020 Connection   ft.     10   
2360 Adjacent Deck   ft.     10   
2370 Metal Deterioration   ft.     25.1   

215 RC Abutment 55.1 ft. 51.1 4     
1130 Cracking   ft.   2     
1080 Delamination/Spall   ft.   2     

210 RC Pier Wall 55.1 ft. 53.1 2     
6000 Scour   ft.   2     

220 Pier Footing   ea.         
321 Approach Slab 26244.41 Sq. ft. 26148.61 95.8     

1130 Cracking   Sq. ft.   95.8     
8400 Wingwall  ea.         

8903 Wingwall Deterioration   ea.         
 
5.2.2 UAV Used for Improvement of Visual Inspection 

In the spring of 2019, there was major flooding in Fargo-Moorhead region, as shown in Figure 5.13. The 
NP bridge was not accessible at most locations by traditional means, so the UAV was used to monitor the 
bridge and collect image-based data for further analysis. Some images, as illustrated in Figure 5.14 and 
5.15, were shown to demonstrate the different perspectives for visual inspection of the bridges. Clearly, 
the UAV technology had no limitations for approaching the areas of interest on the bridge and provided 
real-time data. Figure 5.15 revealed that with the enhancement of the UAV, nearly any bridge element 
could be inspected in great detail (Figure 5.15b), yet the bridge could also be observed on the system-
level scale (Figure 5.15c).  
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Figure 5.13  Most locations of the bridges on the Red River were in the water during 2019 flooding 
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Figure 5.14  A series of images from UAV for NP Ave bridge visual inspection 

 
 (a) Inspection of the inaccessible location during flooding  
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(b) Inspection of specific location in detail  
 

 
(c) Inspection of moderately large areas in system level  

Figure 5.15  Benefit of UAV-assisted visual inspection 
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5.3 Summary 

Although further data analysis for UAV images/videos could be achieved by providing bridge vibration, 
associated bridge stiffness, damping ratio, and loading rating, this study was conducted primarily to 
demonstrate the new advances in bridge and system inspections using UAV for enhanced visual 
inspection, where traditionally, manual, visual inspection could be limited. Particularly, with the 
integration of mounted sensors, we could provide full-spectrum reliable data sets for bridge inspection 
and ratings.  
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6. ENHANCEMENT OF DATA FUSION AND INFORMATION 
 PROCESS IN IN-DEPTH/SPECIAL/DAMAGE INSPECTION 

6.1 Background 

Effective data collection and fusion are critical steps in the in-depth/special/damage inspection process for 
element-level inspections and conditional assessments. This chapter aims to develop a framework to assist 
with the data fusion and information process for sensory data.  Sensory data is commonly used in the 
detailed inspection methods to improve element-level inspections, rapid condition assessments, and 
bridge management of large-scale bridges. Three representative feature extraction methods, including the 
wavelet transform, the Hilbert-Huang transform, and the Teager-Huang transform, were selected for the 
data fusion and information process. A numerical simulation was used to verify the concept and 
demonstrate the effectiveness and sensitivity of the data-driven damage detection for cable-stayed 
bridges. Moreover, a further parametric study was conducted to address the impacts of damage level, 
damage location, sensor location, and moving loading on the data classification. 

6.2 Data Fusion and Data Process Techniques 

6.2.1  Overview 

Dynamic characteristics of bridges exhibit non-stationary and nonlinear behavior (Bornn et al. 2010). 
Time-, frequency, and time-frequency analysis, including the wavelet transform, short-time Fourier 
transform, and Wigner-Ville distribution (Feng et al. 2013), are effective ways to track the change of a 
system and its nonlinear behavior (Li et al. 2010). These methods have some drawbacks in terms of data 
analysis, such as high computational time and less adaptive features. The emerging techniques, the 
Hilbert-Huang transform (HHT) and Teager-Huang transform (THT), have also demonstrated great 
potential for data-driven time-frequency analysis (Li et al. 2010; Yang et al. 2004; Hsu et al. 2013). The 
HHT and THT display a sparse feature and are not limited by the Heisenberg uncertainty principle, as 
compared to their conventional counterparts which are, but these two methods do have noise sensitivity 
limitations. A literature review showed that few attempts have been made to address the impacts of the 
various feature extraction methods on structural condition assessment and damage detection, particularly 
for large-scale, cable-stayed bridges. Thus, we selected three representative feature extraction and data 
process methods that used supervised machine learning, including the wavelet transform, the Hilbert-
Huang transform, and the Teager-Huang transform, as discussed below. 

6.2.2  Data Fusion using Wavelet Transform 

Wavelet transform is an effective tool for the excellent local zooming property, great for time-frequency 
decomposition to analyze nonstationary signals. In this study, the multi-resolution wavelet analysis was 
used to decompose the signal in time and frequency domain, while the continuous wavelet transforms of a 
continuous signal, 𝑥𝑥(𝑡𝑡), is defined by: 
 

𝑊𝑊𝑥𝑥(𝑎𝑎, 𝑏𝑏) = 𝑥𝑥 ⊗ψ𝑏𝑏 ,𝑎𝑎 (𝑡𝑡) = 1
√𝑎𝑎
∫ 𝑥𝑥(𝑡𝑡)ψ∗(𝑡𝑡−𝑏𝑏

𝑎𝑎
)𝑑𝑑𝑡𝑡+∞

−∞                                   (6-1) 
 
where 𝜓𝜓  and 𝜓𝜓∗ are the basic function and its complex conjugate; a and b are the scale and translation 
factors, respectively. Eqn. (1) is to decompose x(t) into basic function Ψ((t-b)/a), named the mother 
wavelet. The scale factor a is equal to 2. The frequency spectrum of the wavelet is stretched by a factor of 
2, and all frequency components shift up by a factor of 2. The discrete wavelet transform can be treated as 
a band-pass filter: 
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Wx(j, k) = ∫ x(t)2
j
2ψ∗(2jt − k)dt+∞

−∞                                                (6-2) 
 
Wavelet packet analysis behaves as a further generalized wavelet transform. It has different time-
frequency windows to decompose signals, which are inconvenient in the wavelet decomposition. A 
wavelet packet function can be written as: 
 

𝜓𝜓𝑗𝑗,𝑘𝑘
i (𝑡𝑡) = 2

𝑗𝑗
2𝜓𝜓𝑖𝑖�2𝑗𝑗𝑡𝑡 − 𝑘𝑘�      𝑖𝑖 = 1, 2,   . . .,                                 (6-3) 

 
where 𝑖𝑖, 𝑗𝑗, and 𝑘𝑘 are the modulation, the scale, and the translation parameter, respectively. The 𝜓𝜓𝑖𝑖 is 
obtained by using recursive relationship: 
 

𝜓𝜓2𝑖𝑖(𝑡𝑡) = √2∑ ℎ(𝑘𝑘)𝜓𝜓𝑖𝑖(2𝑡𝑡 − 𝑘𝑘)∞
𝑘𝑘=−∞                                      (6-4a) 

 
𝜓𝜓2𝑖𝑖+1(𝑡𝑡) = √2∑ 𝑔𝑔(𝑘𝑘)𝜓𝜓𝑖𝑖(2𝑡𝑡 − 𝑘𝑘)∞

𝑘𝑘=−∞                                  (6-4b) 
 

where ℎ(𝑘𝑘) and 𝑔𝑔(𝑘𝑘) are the quadrature mirror filters. It is determined by the mother wavelet ( 𝜓𝜓1 ) and 
the scaling function. The mother wavelet has some significant properties, including invariability and 
orthogonality. Wavelet packets have an adjustable time and frequency resolution with a different time and 
frequency resolution at every level. The top level has good resolution in the time domain and the bottom 
level has good resolution in the frequency domain. The frequency recursive relationships are shown in 
Figure 6.1 for a full third level wavelet packet decomposition, called the Mallat-tree decomposition.  

 

 
Figure 6.1  3rd level wavelet transform and wavelet packet transform 

As illustrated in Figure 6.1, the blue box and the pink box indicate the wavelet transform and wavelet 
packet transform of the signal, where H means high-pass filtering, and L means low-pass filtering.  A and 
D denote the approximation coefficients and detail coefficients, respectively. The recursive relationships 
between the jth and the (j+ 1)th level are by the form: 

 
𝑥𝑥𝐽𝐽𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑗𝑗+12𝑖𝑖−1(𝑡𝑡) + 𝑥𝑥𝑗𝑗+12𝑖𝑖 (𝑡𝑡)                                     (6-5a) 
𝑥𝑥𝑗𝑗+12𝑖𝑖−1(𝑡𝑡) = (𝑥𝑥𝐽𝐽𝑖𝑖(𝑡𝑡) ∗ ℎ)   ↓ 2                                     (6-5b) 
𝑥𝑥𝑗𝑗+12𝑖𝑖 (𝑡𝑡) = (𝑥𝑥𝐽𝐽𝑖𝑖(𝑡𝑡) ∗ 𝑔𝑔)   ↓ 2                                      (6-5c) 
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By using the inverse Fourier transform, Eqn. (6-2) is converted into the time domain as 
 

𝑊𝑊𝑥𝑥(𝑎𝑎, 𝑡𝑡) = ℱ−1{𝑊𝑊𝑥𝑥(𝑎𝑎,𝑓𝑓)}                                                    (6-5d) 
 
where ℱ−1{⋅} denotes the inverse Fourier transform. The variation of the scale factor, a, could yield 
different resolutions in different domains. A relatively small-scale factor could provide a high resolution 
in the time domain, while another one could have a better resolution in the frequency domain with the 
increase of the scale factor. As a result, the continuous wavelet transform is more capable of generating 
adjustable time and frequency resolutions at any scale than the other two methods. Note that the 
continuous wavelet transform will be later abbreviated as the wavelet transform for simplicity, unless 
otherwise noted. 

 
6.2.3  Data Fusion using Hilbert-Huang Transform (HHT) 

Hilbert-Huang transformation is a novel technique of signal decomposition that has many interesting 
properties. The HHT consists of empirical mode decomposition and Hilbert spectral analysis (Huang and 
Wu 2008). In this section, we will discuss the generation of intrinsic mode function (IMF) using the 
empirical mode decomposition (EMD) and the HHT time-frequency description of time series for the 
obtained IMFs. 

The EMD is effective to decompose signals into IMFs, and more importantly, since this method does not 
project data into a predefined function space (harmonic, wavelet), it is a useful tool to decompose 
nonlinear and non-stationary signals (Mandic et al. 2013). In the EMD, it is assumed that every signal 
includes different intrinsic mode oscillation. By using the data from the time dominant field, the intrinsic 
oscillatory modes can be identified progressively. The intrinsic model is characterized by the time lapse 
between the successive extremes. 

The IMF must satisfy the following conditions: (1) The number of zero-crossing and the number of 
extrema must be equal or differ by one, and (2) The local maxima and minima envelope should have zero 
means. The process of EMD to decompose the simple imbedded oscillatory mode from any signal 𝑥𝑥(𝑡𝑡) 
can be illustrated as follows (Huang et al. 1998): 

Step 1: Calculate all the local extrema, and then use two cubic splines to envelope all the local 
maxima and minima.  
 
Step 2: The mean of the upper and lower envelopes is defined as 𝑚𝑚1, and if the decomposition is 
ideal, the first component ℎ1 is an IMF yield: 
 

ℎ1 = 𝑥𝑥(𝑡𝑡) −𝑚𝑚1                                                     (6-6) 
 

Step 3: If the h1 is not an IMF, then repeat Step 1 and 2 until ℎ1k becomes an IMF,  
 

ℎ1𝑘𝑘 = ℎ1(𝑘𝑘−1) −𝑚𝑚1𝑘𝑘                                              (6-7) 
 

Step 4: Subtract the first IMF from the original signal as： 
 

𝑟𝑟1 = 𝑥𝑥(𝑡𝑡) − ℎ1𝑘𝑘                                                   (6-8) 
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Step 5: Treat 𝑟𝑟1 as the original data, and repeat steps 1 to 4 n times to get n-IMFs decomposed signal 
from 𝑥𝑥(𝑡𝑡). 
 

𝑟𝑟2 = 𝑟𝑟1 − ℎ1𝑘𝑘
⋮

𝑟𝑟𝑛𝑛 = 𝑟𝑟𝑛𝑛−1 − ℎ(𝑛𝑛−1)𝑘𝑘

                                                     (6-9) 

 
The acceptance criteria is based on the 𝑟𝑟𝑛𝑛, for which no more IMFs can be extracted. So, 
the whole decomposition results can be defined as: 
 

x(t) = ∑ ℎ𝑗𝑗𝑘𝑘 + 𝑟𝑟𝑛𝑛𝑛𝑛
𝑗𝑗=1                                                      (6-10) 

 
The EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions 
(Flandrin et al. 2004). The frequency bands range from high to low as the increase of the IMFs. The 
residue 𝑟𝑟𝑛𝑛 represents the central tendency of signal 𝑥𝑥(𝑡𝑡) (Yu et al. 2005). By using this algorithm, the 
beginning ℎ1k(𝑡𝑡) will contain the highest frequency. With the obtained IMF ℎik(𝑡𝑡) through Steps 1 to 5 
above, the Hilbert transform is used to describe the IMFs: 
 

𝐻𝐻[ℎik(𝑡𝑡)] = 1
𝜋𝜋 ∫

ℎ𝑖𝑖𝑖𝑖(𝜏𝜏)
𝑡𝑡−𝜏𝜏

+∞
−∞ 𝑑𝑑𝑑𝑑                                                (6-11) 

 
With this definition ℎik(𝑡𝑡) and 𝐻𝐻[ℎik(𝑡𝑡)] in Eqn. (11), the complex data is 

 
zi(𝑡𝑡) = ℎ𝑖𝑖𝑘𝑘 + 𝑗𝑗𝐻𝐻[ℎ𝑖𝑖𝑘𝑘(𝑡𝑡)] = 𝑎𝑎𝑖𝑖(𝑡𝑡)𝑒𝑒𝑗𝑗Φi(𝑡𝑡)                            (6-12) 

 
in which 
 

𝑎𝑎𝑖𝑖(𝑡𝑡) = �ℎ𝑖𝑖𝑘𝑘2 (𝑡𝑡) + 𝐻𝐻2[ℎ𝑖𝑖𝑘𝑘(𝑡𝑡)]                                            (6-13a) 

 
𝛷𝛷𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑟𝑟𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝐻𝐻[ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)]

ℎ𝑖𝑖𝑖𝑖(𝑡𝑡)
                                                       (6-13b) 

 
From Eqn. (12), we can have the instantaneous frequency as 
 

𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑑𝑑𝛷𝛷𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

                                                                     (6-14) 
 

After using the Hilbert transform to each IMF, the signal 𝑥𝑥(𝑡𝑡) can be defined as follows: 
 

𝑥𝑥(𝑡𝑡) = 𝑅𝑅𝑒𝑒∑ 𝑎𝑎𝑖𝑖(𝑡𝑡)𝑒𝑒𝑗𝑗 ∫𝜔𝜔𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡𝑛𝑛
𝑖𝑖=1                                         (6-15) 

 
where Re stands for ‘real part’, 𝜔𝜔𝑗𝑗(𝑡𝑡) = 2𝜋𝜋𝑓𝑓𝑗𝑗(𝑡𝑡) and 𝑗𝑗 = √−1. The Hilbert-Huang time-frequency 
spectrum 𝐻𝐻(ω, t) can be expressed as follows: 
 

𝐻𝐻(ω, t) = 𝑅𝑅𝑒𝑒∑ 𝑎𝑎𝑖𝑖(𝑡𝑡)𝑒𝑒𝑗𝑗 ∫𝜔𝜔𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡𝑛𝑛
𝑖𝑖=1                                     (6-16) 
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6.2.4  Data Fusion using Teager-Huang transform (THT) 

TH transform was introduced by Cexus and Boudraa in 2006 (Cexus and Boudraa 2006), and it has been 
used in the fields of aerospace and mechanical engineering (Cexus et al. 2010; Junsheng et al. 2007; Li et 
al. 2009). This method combines the EMD and Teager energy operator. The EMD is not a time-frequency 
representation like the wavelet transform, but instead the EMD decomposes the signal 𝑥𝑥(𝑡𝑡) into a 
multicomponent AM-FM signal in a band-pass filter way (Flandrin et al. 2004). The whole process of the 
THT is illustrated in Figure 6.2. Each intrinsic mode function (IMFs) includes a reduced number of 
oscillatory modes. The IMFs are demodulated into instantaneous frequency (IF) and instantaneous 
amplitude (IA) signals. The Teager-Kaiser energy operator (TKEO) was selected as an energy 
demodulation method to simultaneously track these IF and IA components. The TKEO relies on no prior 
choice on the number of AM-FM components of the analyzed signal. Furthermore, it is built on an 
adaptive basis and thus is not constrained by the uncertainty principle (Bouchikhi et al. 2014). 
Additionally, the TKEO has high time resolution and ease in operation, while maintaining the meaningful 
quantity frequency and amplitude of each IMFs. Using the TKEO will generate the intrinsic frequency 
series, which is used to identify the embedded oscillation property in the data. The total information will 
be accurately captured by collecting all the spectra from each IMF and easily visualized using a two-
dimensional plot. 

 

 
Figure 6.2  Flowchart of the THT (Li et al. 2009) 

The signal 𝑥𝑥(𝑡𝑡) can be express as the following form using the THT: 
 

𝑥𝑥(𝑡𝑡) = 𝑅𝑅𝑒𝑒∑ 𝑎𝑎𝑖𝑖(𝑡𝑡)𝑒𝑒𝑗𝑗 ∫𝜔𝜔𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡𝑛𝑛
𝑖𝑖=1 + 𝑟𝑟𝑛𝑛(𝑡𝑡)                                  (6-17) 

 
This equation can be written as a tree-dimensional figure (𝑡𝑡,𝑓𝑓𝑖𝑖(𝑡𝑡),𝑎𝑎𝑖𝑖(𝑡𝑡)). The Teager-Kaiser spectrum 
(TKS), can be defined as follows: 
 

𝑇𝑇𝑇𝑇(𝑡𝑡,𝑓𝑓) = �

𝑎𝑎1(𝑡𝑡) 𝑓𝑓1(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑡𝑡 𝑓𝑓𝑓𝑓𝑟𝑟 𝐼𝐼𝐼𝐼𝐼𝐼1
𝑎𝑎2(𝑡𝑡) 𝑓𝑓2(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑡𝑡 𝑓𝑓𝑓𝑓𝑟𝑟 𝐼𝐼𝐼𝐼𝐼𝐼2

⋮
𝑎𝑎𝑛𝑛(𝑡𝑡) 𝑓𝑓𝑛𝑛(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑡𝑡 𝑓𝑓𝑓𝑓𝑟𝑟 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎

                             (6-18) 

 
Teager-Kaiser spectrum can be rewritten as 
 

𝑇𝑇𝑇𝑇(𝑡𝑡,𝑓𝑓) = ∑ 𝑎𝑎𝑗𝑗(𝑡𝑡)𝛿𝛿(𝑓𝑓 − 𝑓𝑓𝑗𝑗(𝑡𝑡))𝑛𝑛
𝑗𝑗=1                                           (6-19) 

 
The advantage of TKS analysis is it circumvents the limitation of Bedrosian’s theorem (Bouchikhi et al. 
2014). The time-frequency spectrum of TKS is a sparse matrix. The dimension of the TKEO for each 
IMFs is 𝑁𝑁𝑓𝑓 if the dimension of signal 𝑥𝑥(𝑡𝑡) is T. The layer of IMF is relatively smaller than T and Eqn. (6-
19) shows that the time-frequency distribution just has K 1D trajectories to be non-zero. Thus, the number 
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of points is KT dimensions, which are concentrated in some trajectories and are smaller than other time-
frequency spectrums, such as the wavelet transform. 

The signal is the dynamic response of a bridge, and it is inevitable that it will be contaminated by noise 
interference. Figure 6.3 shows the dynamic vibration of the original cable-stayed bridge without any 
damage. It shows that the IMFs has some local turbulence, the frequency will have a high variation, and 
the amplitude will have some abnormal points. There are two abnormal points in the amplitude in Figure 
6.3. The mean value of each layer IMFs has been calculated as 𝜇𝜇, while the standard deviation, 𝜎𝜎, and 
𝜇𝜇 + 3𝜎𝜎 are selected as the upper limitation. 

 
Figure 6.3  Truncation of data in instantaneous frequency: a) original data and b) truncated data 

6.2.5 Information Fusion and Process using Support Vector Machine 

Support vector machine (SVM) is one of the effective techniques used in data classification. In this 
method, a hyperplane is used to separate the two different classes of samples based on the SVM training 
algorithm (training data) and by maximizing the ‘‘margin,’’ which is the distance from the hyperplane to 
the closest data points in either class. By defining the Kernel function as the inner product, the data can be 
mapped into a higher dimensional feature space; thus, the SVM can be applied for nonlinear classification 
problems. For this purpose, various Kernel functions can be used such as linear, polynomial, or Gaussian 
radial basis function.  

Since it is not always possible to separate the acquired data, it is reasonable to ignore the outlier data 
points and use a soft margin SVM that includes slack variable 𝜉𝜉𝑖𝑖 and the error penalty 𝑎𝑎. Thus, the margin 
is defined as:  

Margin= 2
‖𝑤𝑤‖2

,                                                         (6-20) 
 
Therefore, the optimization problem is defined as: 
 

min (1
2
‖𝑤𝑤‖2 + 𝑎𝑎 ∑ 𝜉𝜉𝑖𝑖𝑁𝑁

𝑖𝑖=1 ),                                           (6-21a) 
 

Subject to  𝑦𝑦𝑖𝑖(〈𝑤𝑤, 𝑥𝑥𝑖𝑖〉  + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 ,     𝜉𝜉𝑖𝑖 ≥ 0            (6-21b) 

a) 

b) 
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where w and b are the vector and scalar that define the position of the hyperplane, 𝜉𝜉𝑖𝑖 is a measure of how 
much an  observation fails to satisfy the target margin. Therefore, the nonlinear decision function can be 
defined using Lagrange multipliers algorithm and by solving the dual optimization problem as: 
 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑎𝑎(∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑇𝑇(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏)𝑁𝑁
𝑖𝑖=1                                           (6-22) 

 
6.3 Case Study of a Cable-Stayed Bridge 

6.3.1  Overview 

Manavgat cable-stayed bridge, located in Turkey, was selected for numerical analysis. The layout and the 
cross-sections of the structural members of the bridge are shown in Figure 6.4. The bridge is 202 m long 
with equal spans of 101 m, and a total of 28 steel cables connect the 13.7 m wide deck to the λ-shape steel 
tower. The tower is approximately 42 m high with a hollow hexagonal cross section, and it is placed on a 
concrete footing. The deck has a composite cross-section, which consists of 25 cm of concrete, 10 cm of 
pavement, and two continuous steel girders that are laterally restrained by I-beams at approximately every 
three meters. 

The distance of the nearest cable to the center of the pylon is 19.6 m, and the distance between the cables 
is 12 m. The last cables are connected to the deck in 9.4 m away from the abutments. Cables A1 to A7 
include 14, 16, 19, 19, 22, 19, and 24 strands, respectively. Each strand has a cross section area of 150 
mm2, elastic modulus of 197 GPa, and ultimate strength of 1860 MPa. The elastic modulus for the 
concrete and steel materials have been defined as 34 GPa and 200 GPa, respectively. 

 
Figure 6.4  Manavgat cable-stayed bridge layout and the cross-section of the structural members 

6.3.2  Data Acquisition from Sensory Data by Simulation 

Nonlinear time-history analyses were carried out using the commercially available SAP2000® software 
(2014). The following assumptions were made to idealize the finite element modeling: (a) the deck was 
continuous; (b) the cables carried only axial forces; and (c) the soil-structure interaction and the effects of 
nonstructural components were negligible. To calibrate the model, the modal analyses revealed that the 
first six periods of the bridge predicted by this study, ranging from 0.309s to 0.825s, matched well with 
those in the literature (Atmaca et al. 2015; Atmaca et al. 2014). The representative mode shapes are 
shown in Figure 6.5. 
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Since the damping ratio is considerably high, and the natural frequencies of the bridge are very close to 
each other, instead of impact load, a chirp excitation with time-dependent amplitude and frequency 
(sweeping frequency) was applied to the deck at the midpoint of the left span. The acceleration of all 28 
joints (end of cables) was captured using accelerometer sensors. The excitation had a sweeping signal 
from 0 to 5 Hz. The sampling rate of this model was 100 Hz. 

A total of 15 test cases were defined to verify the effectiveness and accuracy of the proposed approaches, 
as listed in Table 6.1. The dynamic responses at the location of A4 in Figure 6.4 were selected to 
demonstrate the proposed concept, unless stated elsewhere. State #1 was used as the baseline condition 
without any damages, while States #2-4 were designed to simulate the bridge under fully loaded with 
vehicles at both astatic load and the AASHTO HL-93 moving design truck for the consideration of the 
operational influence. States #5-15 were designed for various damage scenarios. Among them, States #3-
9 were designed to simulate the defects using reduction of cable stiffness, under five different damage 
levels in stay cables (from 10% to 50% of cable area at location of A4). States #10-13 were used to 
determine the effects of damage locations on data classification, where States #11 represents the location 
of a quarter span and States #10 is at location of three-quarter span. The last two cases were designed to 
account for the combined effects of a moving loading, as well as the reduction of cable area, in which two 
speeds of the design truck are 10 m/s and 20 m/s, respectively, in accordance with the operational 
conditions at State #3 and #4.  

 

   
Mode 1: T = 0.825 s Mode 2: T = 0.536 s Mode 3: T = 0.452 s 

   
Mode 4: T = 0.435 s Mode 5: T = 0.309 s Mode 6: T = 0.309 s 

 
Figure 6.5  Mode shapes and periods of the cable-stayed bridge 
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Table 6.1  Test cases used in the data analysis 
Label Condition Description 
Undamaged states (# 1 to 4) 
State#1 Undamaged Baseline condition 
State#2 Undamaged Added 8% additional mass uniformly on the bridge deck (static) 
State#3 Undamaged AASHTO HL-93 Design truck moving through the span (dynamic, 

v=10 m/s) 
State#4 Undamaged AASHTO HL-93 Design truck moving through the span (dynamic, 

v=20 m/s) 
Damaged states (# 5 to 15) 
State#5 Damaged 10% reduction of cable area at the A4 (one side) 
State#6 Damaged 20% reduction of cable area at the A4 (one side) 
State#7 Damaged 30% reduction of cable area at the A4 (one side) 
State#8 Damaged 40% reduction of cable area at the A4 (one side) 
State#9 Damaged 50% reduction of cable area at the A4 (one side) 
State#10 Damaged 20% reduction of cable area at the A2 (one side) 
State#11 Damaged 20% reduction of cable area at the A6 (one side) 
State#12 Damaged 40% reduction of cable area at the A2 (one side) 
State#13 Damaged 40% reduction of cable area at the A6 (one side) 
State#14 Damaged 40% reduction of cable area at the A4 (one side) + moving load (10 

m/s) 
State#15 Damaged 40% reduction of cable area at the A4 (one side) + moving load (20 

m/s) 
 
6.3.3  Uncertainty in Data Acquisition 

Noise is a challenge for damage detection (Simonovski and Bolte 2003; Pakrashi et al. 2007); therefore, 
in this study, noise was added to the response of the bridge signals. Different noise levels were selected as 
the representative sensor data for the support vector machine (SVM) learning to check the sensitivity of 
the damage feature. The training data for SVM was simulated by adding different noises based on the 
signal to noise ratio (SNR) that represents the ratio of the signal strength to the background noise strength 
(Simonovski and Bolte 2003; Pakrashi et al. 2007). The SNR is usually described in dB scale as: 

𝑆𝑆𝑁𝑁𝑅𝑅𝑑𝑑𝑑𝑑 = 10 log10( 𝑃𝑃signal
𝑃𝑃noise

)                                          (6-23) 
 
where 𝑃𝑃signal and 𝑃𝑃noise are the average power of signal and noise, respectively. Five different levels of 
the SNRs were used in this study: 5dB, 10dB, 20dB, 40dB, and 50dB (see Figure 6.6). In addition, for 
each SNR level, 100 samples were selected to train the SVM model (4 cases×5 SNRs×100 
samples=20000 signals in total). The final samples were separated randomly into two equal parts as 
training data and testing data. To prevent overfitting of the problem, the cross-validation procedure was 
used to get the effective estimation of the models, and the testing data was used to evaluate the 
performance of the machine learning algorithm. For simplicity, each group of samples was named in 
accordance with the feature extraction method and the level of the SNR. For example, 20-SNR-Wavelet 
denotes the data predicted by the wavelet with a value of SNR of 20dB, while 50-SNR-THT represents 
the data predicted by the THT method with a SNF of 50dB. 
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Figure 6.6  Framework of data-driven data mining process for SHM and damage detection 

6.4 Data Analysis and Discussion 

6.4.1  Features and Sensitivity 

The sampling frequency of this model is 100Hz. A sweeping signal from 0 to 5 Hz is excited at the 
midpoint of the left span. The time-frequency representation of wavelet transform, Hilbert-Huang 
transform, and Teager-Huang transform under the sweeping signal are plotted in Figs. 6.7 (a)-(c). Clearly, 
for a regular signal, the THT, due to the high time resolution, has the highest concentration and has the 
fewest boundary effects as compared to other two methods. Although the Hilbert-Huang transform has 
similar sparse characteristics as that of the THT, the HHT still displays certain boundary effects under 
regular signals, as shown in Figure 6.7 (b). Apparently the wavelet has the highest boundary effects with a 
wide band. Further comparison of the time-frequency distribution predicted by the HHT and THT 
demonstrates that the THT is more sensitive to the change of the signal.  



61 
 

 
Figure 6.7  Input sweeping excitation forces under three different methods: (a)-(c) 

The time-frequency plane is capable of providing more key information than that of the time-domain or 
frequency domain field. It is also more effective to track some sensitive features from this plane. The two-
dimensional box is used to separate the damage sensitive features, as shown in Figure 6.8. 

A feature selection process, the time-frequency box, was used to choose the best sensitive feature (Lin 
and Qu 2000). The concept of the feature selection process is based on counting the maximum number of 
the outline samples that exceed the 5% and 95% of the feature value at the baseline condition. This 
feature is also relevant to the main frequency and main time domain point, as reported in the literature 
(Lin and Qu 2000). The mean value of each box contained time-frequency representation point is used to 
eliminate the influence of noise in the signal as: 

𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡𝐹𝐹𝑟𝑟𝑒𝑒𝑖𝑖 = ∑ 𝑇𝑇𝑇𝑇𝑅𝑅𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

                                               (6-24) 
 
where the N is representing the number of time-frequency representation point. 𝑇𝑇𝐼𝐼𝑅𝑅𝑖𝑖 is the time 
representation point in the time-frequency Figures 6.8 (a)-(c). The wavelet function is used in the wavelet 
transform. Different boxes through the whole time-frequency domain are used to select the damage 
features, as shown in Figure 6.8 (a). The box information represents all of the dynamic information of the 
response of the signal, and thus there will be eleven boxes covering all of the main frequency field. For 
the HHT and THT features in Figures 6.8 (b) and 6.8 (c), the selected box has some differences from the 
wavelet, and a total of thirteen parallelogram boxes have been selected. The average time-frequency 
representation point is greater than zero in the box and thus has been chosen as the damage feature as: 

a)                                                                            b) 

c)  
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𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡𝐹𝐹𝑟𝑟𝑒𝑒𝑖𝑖 = ∑ (𝑇𝑇𝑇𝑇𝑅𝑅𝑖𝑖>0)𝑁𝑁
𝑖𝑖=1

𝑁𝑁
                                              (6-25) 

 

 

 
Figure 6.8  Feature extraction from time-frequency distribution planes: (a)-(c) 

6.4.2  Effectiveness of Various Data Fusion Methods 

To demonstrate the cost-effectiveness of each feature extraction in computation, the consumed time is 
determined under the identical situation using MATLAB software. Clearly, the wavelet has a computation 
time of 6.996 s, way longer than those of the HHT or THT by 0.775 s or 0.7201 s, respectively. As 
discussed previously in Section 2, the HHT and THT algorithms have great potential for data-driven time-
frequency analysis, particularly in terms of a sparse feature and no limitation by Heisenberg uncertainty 
principle, and thus they perform approximately ten times faster than the wavelet algorithm. Note that such 
a comparison is only for the demonstration of time consumption by their nature under current identical 
computation capacity, and other resources could compensate for their computation capacity. 

To better understand the performance of the machine learning techniques, the selection of effective and 
sensitive damage features is essential. A perfect damage sensitive feature is theoretically sensitive and 
robust to all kind of damages even under high variations and other interference. The data identification 
was demonstrated using a 3D scatter plot as shown in Figure 6.9, where red circles and blue stars denote 
individual specimens under damage and undamaged states, respectively. Note that the main feature of 
each feature extraction method should be constant when estimated based on the data obtained from the 
numerical model. However, the influence of the different ratio of noise and the presence of operational 
conditions as well as damage could make the data separate. As clearly illustrated in Figures 6.9 (a) 

a)                                                                            b) 

c)  
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through 6.9(i), all nine plots exhibit the significant difference in data trends that to allow for the clear 
identification of undamaged or damaged cases. The feature is expected to have different cluster 
accordingly. For example, for the case of 20-SNR-Wavelet shown in Figure 6.9, there exist four clusters, 
and each cluster is totally separated. Clearly when the SNR is under a certain level, three different feature 
extraction methods would help maintain a high sensitivity to the presence of damage.  The cluster 
appeared for the wavelet method, as the SNR increased from 5 to 20 dB. In contrast, the clusters of the 
HHT and THT started as the SNR varies from 20 to 50 dB. That is, the wavelet has a lower divergent than 
the HHT and THT when the SNR is equal to the level of 20 dB.  

The feature vectors were split in the test and training matrices. The training matrix was composed of 
different features from 50 out of 100 simulated signals, which had different noise levels of the SNR. 
Thus, for each SNR scenario, the training matrix with a dimension of [𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡𝐹𝐹𝑟𝑟𝑒𝑒 𝑎𝑎𝐹𝐹𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟] × [𝐶𝐶𝑎𝑎𝑠𝑠𝑒𝑒𝑠𝑠 ×
50] was used for the SVM to discover the underlying distribution and dependency of all the damaged and 
undamaged states. During the testing process, the SVM was expected to detect the defects (reduction of 
cable stiffness herein) from the original conditions when the features are under Cases 5-13, even in the 
presence of operation effects. 

 
 

 

(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

 

 

(i)  

Figure 6.9  Scatter plots of three main features: (a)-(i) 
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To further verify the accuracy of the data-driven SVM method herein, the receiver operating 
characteristic (ROC) curve and the area under the curve (AUC) were used (Gui et al. 2017). Both 
methods also help to determine how accurate the proposed damage identification is for distinguishing 
between undamaged and damaged cases. The ROC curves of testing groups were plotted for all eleven 
cases, as shown in Figures 6.10 (a)-(c). Qualitatively, the wavelet-feature based curves go through the 
left-upper corner, suggesting that it has the best accuracy in damage classification when the SNR is larger 
than 20 dB, as shown in Figure 6.10 (a). The ROC curves demonstrated that the wavelet has better 
accuracy for distinguishing the damaged cases from undamaged data than those of the HHT and THT 
when the noise of signal is assigned as 20 dB. Figure 6.10 (c) shows that all of the damage features have 
greater accuracy when the SNR reaches up to 40 dB or larger. The plots also demonstrate that the wavelet 
feature extraction is less impacted by noise, and, moreover, performs better than THT with an SNR of 40 
dB, even when the SNR in the wavelet method is equal to 10 dB.  

 

 
Figure 6.10  ROC curves for various SNR signals using different feature extraction method 

 
  

a)                                                                      b) 

c)          
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Using the levels of the AUC as acceptance criteria has been widely accepted in clinical studies (Fan et al. 
2006). The AUC values for each case are listed in Table 6.2, where the value of the AUC equal to one 
denotes a one hundred percent precise prediction and the predicted results will be unacceptable when the 
ROC curve has an AUC ≤ 0.75. As clearly illustrated in Figure 6.10 (c), the data predicted by the THT 
with a value of SNR of 20 dB will not be acceptable since it has a low value of AUC = 0.7344, which is 
smaller than the threshold of 0.75. It is highlighted in red in Table 6.2. 
 
Table 6.2  AUC values of different methods and various levels of the SNR 

Signal to Noise Ratio 
(SNR/dB) 

Algorithm 
Wavelet HHT THT 

5 0.9688 / / 
10 0.9792 / / 
20 0.9900 0.8912 0.7344 
40 1.0000 0.9889 0.9134 
50 1.0000 0.9899 0.99 

 
6.4.3  Various Uncertainties for Data Fusion 

From an engineering standpoint, engineers may be concerned about the effectiveness of the damage 
identification, at what levels the damages/defects are at, and the sensitivity of the techniques with regards 
to where the sensor should be placed. Therefore, a more parametric study was conducted herein and the 
discussions below are characterized by the major factors of interest, including the effects of damage level, 
damage location, sensor location, and moving load. 

6.4.3.1 Effects of Damage Level on Data Fusion 

As initially designed in Table 6.1, the introduction of stiffness degradation in stay cables was done by 
reducing the cross-sectional area of a cable from 10% to 50% to simulate various damage levels. The 
damage index (DI) is defined as the values from the feature vectors as follows:  

𝐷𝐷𝐼𝐼𝑖𝑖 = ∑ 𝛼𝛼𝑖𝑖 ∗ 𝐿𝐿𝑎𝑎𝑏𝑏𝑒𝑒𝐿𝐿𝑖𝑖 ∗ 𝑇𝑇𝑒𝑒𝑟𝑟𝑎𝑎𝑒𝑒𝐿𝐿(𝐼𝐼𝑒𝑒𝑎𝑎𝑖𝑖,𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡𝐹𝐹𝑟𝑟𝑒𝑒𝑖𝑖) + 𝑏𝑏)𝑁𝑁
𝑖𝑖=1                              (6-26) 

 
where 𝐿𝐿𝑎𝑎𝑏𝑏𝑒𝑒𝐿𝐿𝑖𝑖, 𝛼𝛼𝑖𝑖, b, 𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡𝐹𝐹𝑟𝑟𝑒𝑒𝑖𝑖 are derived and selected as the support vector points from the training 
process.. 𝐼𝐼𝑒𝑒𝑎𝑎𝑖𝑖 is the feature from the input data while 𝐼𝐼𝑒𝑒𝑎𝑎𝑡𝑡𝐹𝐹𝑟𝑟𝑒𝑒𝑖𝑖 is the resulting feature, as predicted by 
Eqn. (6-25). This index helps to assess the performance of the classifiers of the SVM with enhanced 
feature extraction methods. Figures 6.11 (a)- 6.11 (f) plot the DIs of different damage scenarios along 
with a threshold based on the 95% cut off of the baseline condition.  

As shown in Figures 6.11 (a)-8(f), a threshold at 95% of the undamaged state in red dashed line is used 
for discrimination of the damage and undamaged states. Each slot represents a state as labeled in Figures 
6.11 (a)- 6.11 (f) and defined in Table 1, while damaged states are plotted in red dots and undamaged 
ones in blue dots. Clearly, all the scenarios show a great classification performance, regardless of the 
different feature extraction methods. Specifically, the results in the THT and HHT methods exhibit clear 
discrimination between each damaged state and have apparently separable relationship between damaged 
and undamaged states, even under operational and environmental variability. As discussed early, the data 
classification could be a challenge with the increase of noise level, and as illustrated in Figure 6.11 (b), 
data points show much higher scatter due to the higher level of noise. Note that since the machine 
learning herein is a binary algorithm, the physical insights of each data cannot fully account for the levels 
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of the damage. A further study is required in advanced machine learning to build up a stronger correlation 
of data with the physical characteristics of a structure system. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6.11  DIs from feature vectors under different damage levels: (a)-(f) 
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The performance of data-driven classification and the effects of damage levels on their effectiveness 
could be assessed by defining Type I and Type II errors (Figueiredo et al. 2011). Type I is defined as the 
false-positive classification while the Type II is defined as a false-negative one. From a system level, 
engineers could use the Type I more than the Type II. Table 3 summarizes the number of Type I and Type 
II errors for each algorithm. In an overall analysis, different feature extraction methods and SNR show a 
trade-off between Type I and Type II errors, with the THT-based algorithms having better performance 
for detecting damage (0.29% and 0.0%), and the HHT-based algorithms have a better performance for 
avoiding Type II error (0.0% and 0.0%). 
 
6.4.3.2  Effects of Damage Location on Data Fusion 

To demonstrate the damage distribution over span, six States #6, 8, and 10-13 were designed and 
organized to address the effects of damage locations under two different damage levels on data 
classification. The first set, States #6, 10 and 11, represents three damage locations at a quarter-span, mid-
span, and three-quarter span, respectively, while the second set, States #8, 12 and 13, had a higher 
damage level of 40% cable stiffness reduction at the identical locations of the first set.  

The result of the DIs of these scenarios are plotted in Figures 6.12 (a)-(f). Theoretically, the damaged 
location can lead to a change in frequency response. As a result, data exhibits a slightly higher variation 
due to different locations, particularly when exposed to different damage levels. A comparison of the 
three different damage locations revealed that the data at the quarter span exhibited a sparser scatter 
distribution than other two cases. In general, the selected chirp excitation includes a wide frequency band, 
hence being capable of capturing the response of different states easily by using the support vector 
machine learning. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 6.12  DIs from feature vectors under different damage locations: (a)-(f) 

6.4.3.3  Effects of Sensor Location on Data Fusion 

Another critical concern for the bridge engineering community is the sensor distribution. Logically, the 
closer the sensors are placed to the actual spots with damages/defects, the more sensitive the data should 
be for data identification. For a large-scale, cable-stayed bridge, it is impossible to spatially distribute a 
large amount of sensor nodes to each location. As a result, the reduction in the density of the sensor nodes 
could lead to missed readings of some of the damage-sensitive locations. Thus, the large-scale structure 
requires that the data captured from other locations will still be capable of ensuring an effective data 
classification. 

To demonstrate the effectiveness of the proposed data-driven methods and address the effects of the 
different sensor locations, three different locations were selected from quarter span, mid span and three-
quarter span, respectively, when subjected to the damage condition as discussed in States #5-9. Figures 
6.13 (a)-(c) plot the DIs of the results from the three different sensor locations. Clearly, all of the cases 
exhibit separable relation for the damage cases from the undamaged ones, regardless of the different 
locations, thereby suggesting that the data classifiers could still maintain a higher prediction even at a 
location away from the damage spot. The reason behind this phenomenon is mainly because of the feature 
selection process. In this study, a feature selection method was used before the machine learning data 
process, while the trained features for all the cases were the highest separable data. Consider that the 
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actual data in the field could be easily contaminated by complex operational conditions, where some 
dynamic information may disappear due to other localized interferences. 

  
(a) (b) 

 

 

(c)  

Figure 6.13  DIs from feature vectors under different sensor locations: (a)-(f) 

6.4.3.4  Effects of Moving Vehicle Load on Data Fusion 

Moving vehicles have been identified as excitation in the system identification and damage detection for 
bridges (Zhang et al. 2012; Zhu and Law 2015). The load of a moving vehicle may excite structural 
vibrations with large amplitudes and high signal-to-noise ratios (Zhang et al. 2012; Zhu and Law 2015). 
To discuss the effects of the moving vehicle on the data identification, States #14-15 were designed using 
the AASHTO HL-93 design truck with two speeds as compared to the baselines at States #3 and #4. For 
simplicity, only the results using machine learning with the wavelet transform are presented here. It can 
be envisioned that the major trends of the effectiveness by other two methods will be identical to the early 
observation in the previous sections. 

Bridge responses, including dynamic displacement, velocity, and acceleration at the mid span of the first 
span, are plotted in Figure 6.14. Clearly, dynamic characteristics of the cable-stayed bridge under two 
speeds have no high variation. In addition, from the point-of-view of the dynamic response caused by 
moving vehicle, there is no clear separable relation between damaged and undamaged cases, as reported 
in the literature (Zhang et al. 2017). It is partially because the reduction of single cable stiffness may not 
be sensitive to the dynamic response of the whole, large-scale bridge.  
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Interestingly, the DIs of the results using the support vector machine learning, illustrated in Figures 
6.15(a) and 6.15(b), revealed that the classifiers still have a high ability to ensure the identification of 
damaged and undamaged cases, even under the noise level of 20 dB. 
 

 
Figure 6.14  DIs from feature vectors under different sensor locations: (a)-(f) 

 

  
(a) (b) 

Figure 6.15  DIs for the cases of the wavelet transform under moving loads: (a)-(b) 
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6.5 Summary 

This chapter aimed to present a time-frequency based data fusion and information process for sensory 
data that are often collected in detailed inspection. Three representative, feature extraction techniques 
were selected to enhance the features extraction for sensor data, while the kernel function based SVM was 
used to facilitate pattern recognition and improve the identification of damaged and undamaged cases. 
The time-frequency analysis revealed that different data-driven algorithms demonstrated advantages in 
different aspects. The strategies developed were finally illustrated through a case study. The ROC curves 
and AUC values were used as tools to quantify the accuracy of the optimization based SVMs. A further 
parametric study was conducted to address some major concerns for practical applications in cable-stayed 
bridges. In summary, conclusions can be drawn as follows: 

a) The data-driven damage detection techniques exhibit high accuracy for distinguishing between 
undamaged and damaged cases, even when there are certain noise interferences, as well as 
operational conditions.  

b) The time-frequency analysis is effective for damage detection in that the time-frequency analysis 
is more sensitive to damage, when its dynamics change from different state. In addition, the 
change of the dynamic characteristic of the bridges has an influence on the time-frequency plane, 
which provides more key information than just the time or frequency domains. Accordingly, 
using data-driven machine learning can lead to a high classification accuracy in time series. 

c) Results have demonstrated the importance of the selection of damage features techniques for 
damage detection. Clearly, the wavelet transform has significantly higher accuracy in noise 
interference than that of the HTH and THT. The THT is the best algorithm for the data analysis of 
regular signals, but for irregular signals, it has a poor performance, as it has higher sensitivity to 
local fluctuation. Furthermore, the ROC curves and value of the AUC confirm that the wavelet 
transform behaves as a filter in the lower frequency part, and thus leads to more reliable data 
identification as compared to other two techniques. 

d) The computation time is key for the data process, and this study shows that the THT and HHT are 
almost ten times faster than the wavelet transform, which will be extremely important for 
processing the massive amounts of data captured from large-scale, cable-stayed bridges in 
practice.  

e) An extensive parametric study reveals that the data-driven classification could effectively address 
the major factors of interest, including effects of damage level, damage location, sensor location, 
and moving load. The results in the THT and HHT methods exhibit clear discrimination between 
each damaged state, even under operational and environmental variability. The damage indexes 
of the results under moving vehicle revealed that the classifiers still perform at a high level and 
ensure the identification of damaged and undamaged cases, even under the noise level of 20 dB. 
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7. UNVEILING AND REDUCTION OF STRUCTURAL UNCERTAINTY 
 IN IN-DEPTH/SPECIAL/DAMAGE INSPECTION 

7.1 Background 

In this chapter, the deep Bayesian belief network (DBBN) learning was used to extract structural 
information and probabilistically determine structural conditions. Different from conventional shallow 
learning that highly relies on the quality of the hand-crafted features, the deep learning is an end-to-end 
method to encode the information and interpret vast amount of data with minimal or no features. A case 
study was conducted to address the methods for structure under viabilities and uncertainties due to 
operation, damage and noise interferences.  

 
7.2 Structural Uncertainty 

7.2.1  Nonlinear System for Bridges 

Bridges are dynamic complex systems that are designed to withstand different types of loads, but they are 
usually vulnerable to damage and degradation over time (Lin et al. 2012; Lin et al. 2013; Lin et al. 2014). 
The structural health monitoring (SHM) is often framed using various sensors to collect performance data 
for health assessment and decision-making (Sohn et al. 2001; Worden et al. 2007; Farrar and Worden 
2007; Kaveh et al. 2015). For a linear or linearized dynamic system, the linear dynamic response could be 
derived from the continuous stochastic state-space model by a linear form, 

�̇�𝒒(𝑡𝑡) = 𝑨𝑨𝒒𝒒(𝑡𝑡) + 𝑩𝑩𝐹𝐹(𝑡𝑡),                                                 (7-1) 
 
where, A and B are related to mass and stiffness matrix of the system. As such, system identification or 
other physics-based methods could be used to inversely determine structural health state. However, such 
data interpretation will be not straightforward, as the structural systems are inherently nonlinear under 
various uncertainties, while the general state space in Eqn. (7-1) should be revised as: 
 

�̇�𝒒(𝑡𝑡) = 𝑓𝑓(𝒒𝒒(𝑡𝑡), 𝑡𝑡) + 𝑔𝑔(𝑡𝑡)𝐹𝐹(𝑡𝑡),                                          (7-2) 
 
where 𝑓𝑓(∙) and 𝑔𝑔(⋅) represent nonlinear functions. Clearly, nonlinearities post great challenges to find 
any close-form analytical solutions or difficulty even in numerical simulation due to the high level of 
variability in noise and other interferences, and high uncertainties associated with unclear excitation, 
boundary, and operational conditions. 

The machine learning techniques (Ko and Ni 2005; Rashedi and Hegazy 2015; Gerist and Maheri 2016; 
Jang 2016; Gui et al. 2017; Pan et al. 2017) in recent years have been gaining increasing attentions due to 
their merits as data analytics to overcome conventional physics-based methods by extracting statistical 
information from data with less prior physics inputs. This is particularly important for those complex 
structures under high uncertainties of interest. The machine learning in general can be categorized as 
shallow learning, deep learning, and reinforcement learning. 

The shallow learning techniques include random forest, decision trees, kernel-based support vector 
machine (SVM) (Oh and Sohn 2009; Farrar and Worden 2013; Gui et al. 2017; Pan et al., 2017), and 
Navie Bayes. The shallow learning is widely used as effective tools for structural engineering, particularly 
in data classification for damage detection (Farrar and Worden 2013; Gui et al., 2017; Pan et al., 2016 and 
2017) or optimization analysis (Bennett and Demiriz, 199; Shawe-Taylor and Sun, 2011). From the point-
of-view of learning architecture, the shallow learning, such as the SVM or conventional artificial neural 
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network, uses one or zero hidden layers for a shallow linear pattern separation, while the deep learning 
algorithms are framed by a deep architecture using multiple hidden layers to extract more complex 
nonlinear representation (Deng and Yu 2014). The shallow learning relies heavily on the quality of the 
hand-crafted features, suitable for well-constrained cases (Deng and Yu 2014; Pan et al. 2016a; Zhao et 
al. 2015). The deep learning, however, is an end-to-end method to interpret vast amounts of raw data with 
little or no predetermined feature extraction and to decode the high-order information. As such, the deep 
learning is more flexible for handling complex representations from big datasets collected from real-
world applications. The deep learning algorithms currently include deep neural networks (Vesely et al. 
2013), deep belief network (Hinton et al. 2006 and 2012) and Convolutional neural networks (Zeiler 
2014), each of which differs in its applicability. 

From the probabilistic standpoint, the Bayesian network models are effective graphic models for 
representing a set of random variables and discriminating their conditional dependencies (Masri et al. 
2000).  The Bayesian-based deep learning developed as probabilistic generative learning for diverse 
applications in civil engineering, including traffic control and damage detection (Hinton et al. 2006; 
Hinton et al. 2012; Zhao et al. 2015). There are few documents about these methods in structural 
conditional assessment and structural diagnostics, particularly about how to effectively design the 
learning architecture with risk-based applications to engineering structures under uncertainties. 

This chapter aims to use the deep Bayesian belief network (DBBN) learning as probabilistic learning for 
determining structural conditions, thus enabling timely decision making for civil engineering structures 
under uncertainties. Learning architecture and layers as key information were further discussed. A case 
study was selected and modified to demonstrate the effectiveness of the methods for civil engineering 
structure under viabilities and uncertainties due to operation, damage, and noise interferences. 
 
7.2.2  Data-Driven Structural Conditional Assessment 

Effective damage detection of structures and the correlation of damage with structural conditions are 
difficult. This is because civil, mechanical, and aerospace engineering structures under in-serve stages are 
inherently nonlinear with high uncertainty. The sensory data associated with structural response are 
usually collected by assessing the structural state in the SHM. As illustrated in Figures 7.1(a) and 7.1(b), 
the shallow and deep learning algorithms (Zhao et al. 2015), as branches of the machine learning, have 
effective classifiers able to handle and analyze the sensory data.  Clearly, prior to data training and 
testing, shallow learning requires feature extraction (hand-crafted features) and/or feature selection in the 
learning process, as shown in Figure 7.1(a). The schematics of deep learning, presented in Figure 7.1(b), 
show that the deep learning architecture is constructed by stacking multiple layers for raw data mining. 
More formally, deep learning contains implicit feature extraction and/or automatic feature selection 
through the layers. Note that the training of such deep learning architecture still demands considerable 
and wise design (Deng and Yu 2014). Some comprehensive reviews have been reported (Hinton et al. 
2006; Zhao et al. 2015), and the interested readers are referred to the review paper by Zhao et al. (2015), 
where there is a great demonstration of the difference between shallow learning and deep learning. The 
review below is mainly focused on the typical shallow learning, SVM, and the deep belief network.  
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Figure 7.1  Schematics of (a) shallow and (b) deep learning (modified from Zhao et al. 2015) 

7.2.2.1  Support Vector Machine (SVM) with a Shallow Architecture 

Many of the data classification algorithms are shallow architecture. Among them, the SVM is the most 
successful method used for damage detection and fault diagnosis in civil, mechanical, and aerospace 
engineering (Ko and Ni 2005; Farrar and Worden 2013; Rashedi and Hegazy 2015; Gerist and Maheri 
2016; Jang 2016; Gui et al. 2017; Pan et al. 2017). The SVM is one of the linear classifiers in a wide 
variety of damage detection applications, and it attempts to discriminate the datasets by mapping them in 
a new, high-dimensional kernel space with a maximal margin on a decision function by the form:  

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑔𝑔𝑎𝑎(∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑇𝑇(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏)𝑁𝑁
𝑖𝑖=1                     (7-3) 

 
where the 𝑇𝑇(𝑥𝑥, 𝑥𝑥i) is the kernel function, and the three commonly used types are listed below (Santos et 
al. 2016): 
 
a) the Gaussian radial basis function (RBF): 
 

𝑇𝑇(𝑥𝑥, 𝑥𝑥i) = exp(−γ‖𝑥𝑥𝑖𝑖 − 𝑥𝑥 ‖2),    𝛾𝛾 > 0                  (7-4a) 
 
b) the polynomial function: 
 

𝑇𝑇(𝑥𝑥, 𝑥𝑥𝑖𝑖) = (⟨𝑥𝑥, 𝑥𝑥𝑖𝑖⟩ + 1)𝑝𝑝                                             (7-4b) 
 
c) the sigmoid function: 
 

𝑇𝑇(𝑥𝑥, 𝑥𝑥𝒊𝒊) = tanh(⟨𝑥𝑥, 𝑥𝑥𝑖𝑖⟩ + 1)                                         (7-4c) 
 

In general, these three kernel functions, shown in equations (7-4a) to ( 7-4c), tend to construct a higher 
dimensional feature space and allow data projection for this hyperplane(s) to achieve being linearly 
separable (Hofmann 2006). These different kernel functions have their own applicability, including 
computation costs and parameter tuning. As a result, the toughest challenges in the SVM (or other kernel-
based shallow learning) lie in the selection of kernel functions and the determination or tuning of the 
kernel parameters (Santos et al. 2016). The model performance could depend on the datasets and lie in the 
complexity of the targeted structures. For example, a wide variability of kernel parameters (e.g., sigma 
and epsilon) in the RBF could significantly alter the performance (Gui et al., 2017), while the polynomial 
kernel may require multiple computation efforts in a trial-and-error manner.  

  

a)        

b)          
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7.2.2.2  Deep Learning, and Deep Bayesian Belief Network 

Deep learning, as a branch of machine learning, stems originally from the artificial neural networks with 
one shallow, hidden layer architecture (Zhao et al. 2015). The deep learnings are constructed by stacking 
multiple layers in hierarchical architectures (Mohamed et al. 2012), as illustrated in Figure 1(b). The deep 
architectures (Hinton et al. 2006; Hinton et al. 2012; Zhao et al. 2015) exhibit their merits over their 
counterparts (e.g., shallow learning), as they attempt to find statistical representations based on end-to-
end decoding without applying any preprocessing (predetermined features) nor applying any post-
processing (feature extraction and/or feature selection). Deep learning has been successfully adopted in 
diverse fields, including image processing, speech recognition, audio recognition, and bioinformatics. On 
the other hand, the Bayesian belief network (BBN) is used to determine the state probabilities of each 
variable from the predetermined conditions or prior probabilities. The belief in node A is given by 
propagating the influence of the evidence at E through the network, and the mixing weight used in 
integrating the results for each value of A. The conditional probability can be described by using Bayes’ 
rule (Krieg 2001; Chaturvedi et al. 2016): 
 

𝑃𝑃(𝑎𝑎|𝑒𝑒) = 𝑃𝑃(𝑒𝑒|𝑎𝑎)𝑃𝑃(a)                                                (5a) 
 
and the learning architecture of stochastic binary variables between layers v and h through the energy-
based method using Boltzmann machine (Hinton et al. 2006; Hinton et al. 2012): 
 

𝐸𝐸(𝒗𝒗,𝒉𝒉) = −∑𝑎𝑎𝑖𝑖𝑣𝑣𝑖𝑖 − ∑𝑏𝑏𝑗𝑗ℎ𝑗𝑗 − ∑ℎ′𝑗𝑗𝑊𝑊𝑣𝑣𝑖𝑖 − ∑𝑣𝑣′𝑖𝑖𝑈𝑈𝑣𝑣𝑖𝑖 − ∑ℎ′𝑗𝑗𝑉𝑉ℎ𝑗𝑗             (5b) 
 
where a and b are the biases of the stochastic variables v and h, respectively; W, U, V are the weights of 
each connection; and the joint states of v’ and v (or h’ and h) denote the adjacent connection of the 
variables within a layer. As illustrated in Figure 7.2, the deep Bayesian belief network (Zhao et al. 2015; 
Chaturvedi et al. 2016) is a multiple layer, neural network. This model is effective in performing top-
down as well as bottom-up generative weights, which enables back propagation for fine-tuning for 
optimized discrimination/regression.  
 
To sum up, when considering an engineering structure with high uncertainties due to various operational 
and environmental factors, noise, and other interferences, the SVM algorithms may not be enough to 
extract proper information. The SVM is a binary algorithm which cannot directly provide the 
probabilistically conditional classifications that engineers mostly pay attention to, though there are some 
attempts at using the multi-class SVM. In addition, noisy datasets could post significant challenges in the 
quality of the data classification in both training and testing. Moreover, similar to other shallow learning 
algorithms as schematically demonstrated in Figure 1(a), the SVM requires the construction of hand-
crafted features, even though these hand-crafted features may not guarantee their quality for better data 
classification in all cases. Different from the shallow learning, the merits of the DBBN include flexible 
modeling using the neural network, multiple non-linear hidden layers, and pre-training using lower layers 
as input (Hinton et al. 2012). Thus, in this study, we selected the DBBN for data classification and merits 
for probabilistically conditional assessment. For a comparison, the SVM with the Gaussian kernel in Eqn. 
(4a) was used as the kernel function to demonstrate differences to deep-based learning. 

7.3 Deep Bayesian Belief Network for Probabilistically Conditional 
 Assessment 

The DBBN are constructed using multiple, restricted Boltzmann machines (RBMs) (Hinton et al. 2006; 
Hinton et al. 2012; Zhao et al., 2015). As schematically illustrated in Figure 7.2, the architecture of the 
DBBN consists of undirected multiple levels of the RBMs, where the hierarchical architecture should 
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allow for the automation of feature extraction from lower to upper layers, and the final layer could be 
constructed using a different activation function for either classification or logistic regression of interest. 

                        
 
 
 

Figure 7.2 Architecture of the DBBN 

7.3.1  Concept of the RBM and Its Architectures 

To avoid the complexity and difficulty in determining parameters in Boltzmann machine, as shown in 
Eqn. (5b), the RBM was developed by an undirected graphical machine without visible-visible or hidden-
hidden connections (Mohamed et al. 2012). Take one unit of the RBM (e.g., RBM1 in Figure 7.2) as an 
example, the visible variable, vi, and the hidden variable, hj, are connected and assigned by a weight, wij. 
The probability of the joint states to the visible and hidden vector is defined by the energy-based function 
(Hinton et al. 2006; Hinton et al. 2012) 

𝑝𝑝(𝒗𝒗,𝒉𝒉) = 𝑒𝑒−𝐸𝐸(𝒗𝒗,𝒉𝒉)

∑ ∑ 𝑒𝑒−𝐸𝐸(𝒗𝒗,𝒉𝒉)𝐻𝐻
𝑗𝑗=1

𝑉𝑉
𝑖𝑖=1

                                                    (7-6) 

 
where ∑ is the summation over all visible and hidden variables and the 𝐸𝐸() is the energy-based function, 
as typically defined in Eqns. (7-7a)-( 7-7c). Considering that the structural data of interest could be binary 
data, such as black or white color in image recognition, or be more complex sensory information, three 
different data types (either in visible or hidden layer) were defined as follows (Hinton et al. 2010): 
 

a) Binary data unit at both visible and hidden layers 
 

There were no visible-visible or hidden-hidden connections (adjacent connection within a layer). Thus, 
the learning architecture over the joint states of the visible and hidden units, v and h (𝒗𝒗,𝒉𝒉 ∈ {0, 1}), can be 
reduced from Eqn. (7-5b) to the form: 

 
𝐸𝐸(𝒗𝒗,𝒉𝒉) = −∑ ∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑣𝑣𝑖𝑖ℎ𝑗𝑗𝐻𝐻

𝑗𝑗=1 − ∑ 𝑎𝑎𝑣𝑣𝑖𝑖𝑉𝑉
𝑖𝑖=1 − ∑ 𝑏𝑏𝑗𝑗ℎ𝑗𝑗𝐻𝐻

𝑗𝑗=1
𝑉𝑉
𝑖𝑖=1                        (7-7a) 

 
b) Gaussian data at visible layers and binary data unit at hidden layers 

 
Considering the data in input visible units have the Gaussian distribution and stochastic binary values at 
the hidden units, Eqn. (7-7a) could be rewritten with the standard deviation, 𝜎𝜎:  

 

𝐸𝐸(𝒗𝒗,𝒉𝒉) = −∑ ∑ 𝑣𝑣𝑖𝑖
𝜎𝜎𝑖𝑖
𝑤𝑤𝑖𝑖𝑗𝑗ℎ𝑗𝑗𝐻𝐻

𝑗𝑗=1 − ∑ (𝑣𝑣𝑖𝑖−𝑎𝑎𝑖𝑖)2

2𝜎𝜎𝑖𝑖
2

𝑉𝑉
𝑖𝑖=1 − ∑ 𝑏𝑏𝑗𝑗ℎ𝑗𝑗𝐻𝐻

𝑗𝑗=1
𝑉𝑉
𝑖𝑖=1                     (7-7b) 

Input 
data 

Output data 

Classification/Regression Inherent feature extraction in a hierarchical manner 

RBM1 RBM2 RBMn 

i 

j 

wij 
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c) Gaussian data at both visible and hidden layers 
 
When both visible and hidden units satisfy the Gaussian distribution which are more common in 

the sensory data collected from structural systems, Eqn. (7-7a) can be further revised by: 
 

𝐸𝐸(𝒗𝒗,𝒉𝒉) = −∑ ∑ 𝑣𝑣𝑖𝑖
𝜎𝜎𝑖𝑖
𝑤𝑤𝑖𝑖𝑗𝑗ℎ𝑗𝑗𝐻𝐻

𝑗𝑗=1 − ∑ (𝑣𝑣𝑖𝑖−𝑎𝑎𝑖𝑖)2

2𝜎𝜎𝑖𝑖
2

𝑉𝑉
𝑖𝑖=1 − ∑ �ℎ𝑗𝑗−𝑏𝑏𝑗𝑗�

2

2𝜎𝜎𝑗𝑗
2

𝐻𝐻
𝑗𝑗=1

𝑉𝑉
𝑖𝑖=1                     (7-7c) 

 
where V and H denote the numbers of visible and hidden variables, respectively;  𝑤𝑤𝑖𝑖𝑗𝑗 denotes the weight 
between visible unit 𝑖𝑖 and hidden unit 𝑗𝑗, respectively; the variables, 𝑏𝑏𝑖𝑖 and 𝑎𝑎𝑗𝑗, denote the bias terms, 
respectively. Thus, the learning process is achieved by minimizing the energy in Eqn. (7-7) by a log-
likelihood gradient (Hinton et al. 2010; Zhang and Zhao 2017):  
 

∆𝑤𝑤𝑖𝑖𝑗𝑗 =  𝑣𝑣𝑖𝑖
𝜎𝜎𝑖𝑖

ℎ𝑗𝑗
𝜎𝜎𝑗𝑗 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

− 𝑣𝑣𝑖𝑖
𝜎𝜎𝑖𝑖

ℎ𝑗𝑗
𝜎𝜎𝑗𝑗 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑟𝑟𝑛𝑛

                        (7-8a) 

 
and the updating of the biases during the learning is: 
 

∆𝑎𝑎𝑖𝑖 =  𝑣𝑣𝑖𝑖
𝜎𝜎𝑖𝑖 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎

− 𝑣𝑣𝑖𝑖
𝜎𝜎𝑖𝑖 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑟𝑟𝑛𝑛

                                   (7-8b) 

 
∆𝑏𝑏𝑖𝑖 =  ℎ𝑗𝑗

𝜎𝜎𝑗𝑗 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎
− ℎ𝑗𝑗

𝜎𝜎𝑗𝑗 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑟𝑟𝑛𝑛
                                   (7-8c) 

 
The conditional distribution, 𝑝𝑝(ℎ|𝒗𝒗) and 𝑝𝑝(𝑣𝑣|𝒉𝒉), are derived using Gibbs sampling associated with no 
hidden-hidden connections and no visible-visible connections, respectively. An RBM can be achieved by 
obtaining the weights from learning, which can be used in the input layer for the next module in the same 
manner. Note that the conventional concept of the maximum likelihood learning is used as the criterion in 
this study, but there are other criteria, such as maximum entropy (Lin et al. 2016), which have been 
proposed.  

7.3.2  Concept of the DBBN and Its Architectures 

As illustrated in Figure 7.2, the DBBN is constructed by a stack of multiple RBMs. Let one visible unit 
and the N hidden units, and the probability to the joint states is expanded from Eqn. (7-5a). 

𝑝𝑝�𝒗𝒗,𝒉𝒉𝟏𝟏,𝒉𝒉𝟐𝟐, … ,𝒉𝒉𝑵𝑵� = 𝑝𝑝�𝒗𝒗�𝒉𝒉𝟏𝟏�𝑝𝑝�𝒉𝒉𝟏𝟏�𝒉𝒉𝟐𝟐�⋯𝑝𝑝�𝒉𝒉𝑵𝑵−𝟐𝟐�𝒉𝒉𝑵𝑵−𝟏𝟏� 𝑝𝑝�𝒉𝒉𝑵𝑵−𝟏𝟏�𝒉𝒉𝑵𝑵�           (7-9) 
 
where 𝒉𝒉𝒊𝒊 denote the ith hidden variables. The learning process of the DBBN, illustrated in Figure 7.2 or 
Eqn. (7-9), is to maintain the first 𝑝𝑝�𝒗𝒗�𝒉𝒉𝟏𝟏� at the first RBM layer, and train the learning network using 
the next level RBM. As such, the flowchart of the DBBN is summarized in Figure 7.3. Clearly, the 
DBBN is to be achieved using pre-training layer by layer in the sequence (also see Figure 7.4a) in such 
way that the higher-layer RBM is trained using the lower-layer learned RBM with the values of its hidden 
units as its input vectors (Jiang et al. 2016). The higher-layer output will then be used as the input for the 
next higher layers. Thus, the concept of the DBBN tends to capture statistical information from each level 
of the RBM (Hilton 2006). With the pre-training steps shown in Figure 7.4(a), the back-propagation (BP) 
technique (Wang et al. 2016), illustrated in Figure 7.4(b), was utilized as a classifier to finely tune the 
weights and biases until full optimization, as detailed elsewhere (Hilton 2006 and Hilton et al. 2010).  
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Figure 7.3  Flowchart of the training and testing in the DBBN 

 
7.3.3 DBBN-Based Data Classification and Probabilistically Conditional Assessment 

The key purpose of the components in SHM for a structural system are to detect damage and classify the 
severity of the damage. By choosing different deep architectures, the DBBN-based framework can 
accomplish these tasks, being particularly effective in assessing the complex structural conditions with 
high uncertainties that usually challenge the conventional, shallow learning.  
 

a) DBBN-based data classification 
 

Figure 7.2 illustrates the frame of the DBBN. The features automatically extracted from the stack of the 
multiple deep layers will be classified by the softmax function (Hilton 2010), S(h), in the final layer that 
discriminates the data in a binary state:   

 

𝑆𝑆(𝒉𝒉) = �
0      𝑖𝑖𝑓𝑓 ℎ𝑗𝑗 ≠ 1
1     𝑖𝑖𝑓𝑓 ℎ𝑗𝑗 = 1                                                (7-10a) 

 
b) DBBN-based probabilistically conditional assessment 
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The probabilistic framework of the DBBN is to set up its multiple, higher layers to graphically correlate 
the hidden structural information of the data that are collected from engineering structures under 
uncertainties to probabilistically assess structural health and conditions. As such, the softmax function S() 
(∈ {0, 1}) is defined by the logistic sigmoid function (Hilton 2010):  

 
𝑆𝑆(𝒉𝒉) = 1

1+exp (−ℎ𝑗𝑗)
                                                  (7-10b) 

 
Some researchers (Larochelle and Bengio 2008; Lin et al. 2016) argue that the depth of the deep learning 
may not guarantee the statistical representation needed from higher layers [e.g., over-trained status or 
issues related to supervised BP learning tasks from upper layer(s)], and thus the design of the layers in the 
DBBN will be discussed later in the discussion section. The impacts of structural uncertainties due to the 
high level of variability in noise and other interferences, and high uncertainties associated with unclear 
boundary and operational conditions will be addressed in detail through the case study.   

 

 
(a) Pre-training (b) fine-tuning for data 

classification 
(c) fine-tuning for probabilistically 
conditional assessment 

Figure 7.4  Pre-training and fine-tuning of learning architecture of the DBBN 

7.4 Case Study 

7.4.1  Prototype Structures 

A well-designed, three-story frame structure, illustrated Figure 7.5(a), was utilized as the case study for 
the method demonstration. Note that this was for demonstration and the ways that the uncertainty 
classification and reduction could be for bridges and other structures. The bolted structure had a 
dimension of 53.1 cm by 30.5 cm by 30.5 cm, and consisted of four columns and slab plates, as detailed 
in the literature (Figueiredo et al. 2009). One additional column was mounted at the top floor to form an 
adjustable gap with a bumper at the second floor, as seen zoomed in on, in Figure 7.5(b). During the 
structural vibration, the bumper and the column generated impact-induced waves to simulate the damage 
(e.g., crack opening and closing or loose bolt connection), while the different damage levels were 
achieved using different gap distances between the column and the bumper (see Figure 7.5(b)). An 

Back-propagation for fine-tuning 
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electro-dynamic shaker at the base excited the whole structure, while the dynamic response was recorded 
by four mounted accelerators, as labelled by sensors # 1 through 4 as shown in Figure 7.5(a).  

 

           
       (a) Overview             (b) Detailed bumper and column 

Figure 7.5  Prototype structure (Pan et al. 2017; Figueiredo et al. 2009) 

7.4.2  Design of Test Cases and Inclusion of Noise Interference 

In the initial work by Figueiredo et al. (2009), 17 cases were designed to address data classification, in 
which each scenario included ten times identically repeated tests, and the four sensors recorded the 
response data. Based on this work, modification were made in this study to incorporate a total of 33 
different scenarios, as listed in Table 7.1. As illustrated in Table 1, the scenarios were classified into five 
categories: a) Controlling case - the first undamaged state was the control test for the baseline; b) 
Variability and uncertainties associated with operational conditions - States # 2-9 were designed for mass 
or stiffness changes, which accounted for variability and uncertainties due to operational conditions, such 
as temperature impacts; c) Variability and uncertainties associated with operational conditions and noise 
interference - States # 10-17 were designed for mass or stiffness changes as well as different noise levels, 
which accounted for the interaction of operational conditions; c) Uncertainties associated with damages - 
States # 18-25 were designed for impact-induced damage, which accounted for uncertainties associated 
with damages; and d) Uncertainties associated with damages and inclusion of noise interference - States # 
26-33 were designed for the inclusion of noise interference at different noise levels.  

Response data from the sensors can easily be contaminated by noise (Prendergast et al. 2016; Pan et al. 
2017), so noise was added to the collected signals based on the signal to noise ratio (SNR) that 
represented the ratio of the signal strength to the background noise strength as: 

𝑆𝑆𝑁𝑁𝑅𝑅𝑑𝑑𝑑𝑑 = 10 log10( 𝑃𝑃signal
𝑃𝑃noise

)                                          (7-11) 
 
where 𝑃𝑃signal and 𝑃𝑃noise are the average power of signal and noise by dB scale, respectively. Seven 
different noise levels - 5dB, 10dB, 15dB, 20dB, 30dB, 40dB, and 50dB - were selected to States # 10-17 
and 26-33 so machine learning could check for the sensitivity of the uncertainty due to noise.  
 
7.4.3  Performance of Data Classification and Structural Conditional Assessment 

The 33 well-defined cases shown in Table 7.1 will be used to demonstrate the DBBN-based framework in 
Eqns. (7-6)-(7-9) for data classification (in Eqn. (10a)) and structural conditional assessment (in Eqn. 
(10b)). Note that rather than being in a binary state, the experimental sensory data in Table 7.1 will train 
the weights and biases using Eqn. (7-7c) with a Gaussian distribution. Data covering structural 
uncertainties, including operational conditions, damage noise, and other interferences defined in Table 
7.1, will quantify the design of the learning architecture and layer.   

a)                                         b) 

Sensor 1 

Sensor 2 

Sensor 3 

Sensor 4 
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Table 7.1  Test matrix of the case study (revised from Gui et al., 2017) 
Case design Label State 

Condition 
Description 

 Undamaged states (# 1 to 17) 
Controlling State#1 Undamaged Baseline condition 
Variability & 
uncertainties 
associated 

with 
operational 
conditions 

State#2 Undamaged Added mass (1.2 kg) at the base 
State#3 Undamaged Added mass (1.2 kg) on the 1st floor 
State#4 Undamaged States 4–9: 87.5% stiffness reduction at various 

positions to simulate temperature impact (more in 
detail by Figueiredo et al., 2009) 

State#5 Undamaged 
State#6 Undamaged 
State#7 Undamaged 
State#8 Undamaged 
State#9 Undamaged 

Variability & 
uncertainties 
associated 

with 
operational 
conditions + 

noise 
interference 

State#10 Undamaged Added mass (1.2 kg) at the base + noise level of 
5dB~50dB 

State#11 Undamaged Added mass (1.2 kg) on the 1st floor + noise level of 
5dB~50dB 

State#12 Undamaged States 4–9: 87.5% stiffness reduction at various 
positions to simulate temperature impact (more in 
detail by Figueiredo et al., 2009) + noise level of 
5dB~50dB 

State#13 Undamaged 
State#14 Undamaged 
State#15 Undamaged 
State#16 Undamaged 
State#17 Undamaged 

 Damaged states (# 18 to 33) 
Uncertainties 

associated 
with damages 

State#18 Damaged Gap (0.20 mm) 
State#19 Damaged Gap (0.15 mm) 
State#20 Damaged Gap (0.13 mm) 
State#21 Damaged Gap (0.10 mm) 
State#22 Damaged Gap (0.05 mm) 
State#23 Damaged Gap (0.20 mm) and mass (1.2 kg) at the base 
State#24 Damaged Gap (0.20 mm) and mass (1.2 kg) on the 1st floor 
State#25 Damaged Gap (0.10 mm) and mass (1.2 kg) on the 1st floor 

Uncertainties 
associated 

with damages 
+ noise 

interference 

State#26 Damaged Gap (0.20 mm) + noise level of 5dB~50dB 
State#27 Damaged Gap (0.15 mm) + noise level of 5dB~50dB 
State#28 Damaged Gap (0.13 mm) + noise level of 5dB~50dB 
State#29 Damaged Gap (0.10 mm) + noise level of 5dB~50dB 
State#30 Damaged Gap (0.05 mm) + noise level of 5dB~50dB 
State#31 Damaged Gap (0.20 mm) and mass (1.2 kg) at the base + noise 

level of 5dB~50dB 
State#32 Damaged Gap (0.20 mm) and mass (1.2 kg) at 1st floor + noise 

level of 5dB~50dB 
State#33 Damaged Gap (0.10 mm) and mass (1.2 kg) at 1st floor + noise 

level of 5dB~50dB 
 
7.5 Results and Discussion 

7.5.1  Effectiveness of the DBBN for Structural Uncertainties due to Noise Interferences 

Noise interferences commonly contaminate the sensory data from a structure, and thus lead to a high 
degree of variability for data analysis. To calibrate the influence of noise levels to the DBBN, we selected 
seven noise levels, with the values of the SNR from 5 to 50dB. The noise was added to the originally 
vibration data in States # 10-17 and 26-33, as listed in Table 7.1.  
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Further calibration of the effectiveness of the DBBN was carried out, and the results were plotted in 
Figure 7.6, where the results predicted by the SVM were also displayed for a comparison. Clearly, the 
noise has high adverse impacts on the effectiveness of both methods. The SVM has an error of 7.5%, 
which then increased to 31%, when the noise level increased from 5 to 50 dB.  Although the DBBN 
exhibits higher effectiveness even with the noise, the classification errors with the DBBN still reach up to 
18%, when the noise level increased to SNR=5dB.  

 

 
Figure 7.6  Classification errors of the DBBN and SVM under different noise levels (dB) 

 
7.5.2  Structural Health Condition through Damage Level using the DBBN 

The shallow learning is usually a binary algorithm, and the value of each data representation cannot fully 
account for the levels of the damage. In this section, the DBBN-based condition assessment using damage 
level was investigated. The damage levels were intentionally defined based on the gap in Figure 7.5(b), as 
listed in Table 7.2. For example, the severe impact-induced damage was associated with the small gap of 
0.05 mm, and the damage level was defined as 50% of the full strength/capacity. In general, an attempt 
was made to demonstrate the concept. Note that such definition is certainly subjective, and actual damage 
severity should rely on the full analysis of the structure, using the finite element simulation to predict the 
remaining life or export recommendations as an indicator.  

 
Table 7.2  Definition of damage severity level 

Description Physical and level definition 
Gap (mm) in Table 1 0.2 0.15 0.13 0.1 0.05 

Damage severity 10% 20% 30% 40% 50% 
 

A total number of 170 test samples were used for testing/predicting the accuracy of the trained model. 
The damage severity of the structure was predicted by the DBBN and then was compared to the real 
values as initial targets, as plotted in Figure 7.7, where the black solid lines are the origin data and the 
dashed lines are the values predicted by the DBBN. The comparison demonstrates that the DBBN is 
capable of predicting the structural condition by detecting damage levels with a high accuracy, about 10% 
errors, even with the structures that had high uncertainties due to damages that were interacted with by 
operational and environmental effects. This prediction was based on the four-layer architecture in the 
DBBN, but higher accuracy could be achieved by using ten layers. 
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With further inclusion of noise interferences, the impacts of the noise on the effectiveness of the DBBN 
were also plotted in Figure 7.7 (in dashed lines with circle markers). Although there are certain scatter 
points in prediction, the DBBN still exhibited high accuracy of prediction, even under the high noise 
level. 

 
Figure 7.7  Comparison of results predicted by DBBN to the actual cases (four-layer learning) 

7.6 Summary 

This chapter addressed the enhanced structural condition assessment using the deep learning for better 
decision making in in-depth/special/damage inspection for structures with uncertainties. The DBBN was 
used to extract statistical representations from vast amounts of structural data to probabilistically 
determining structural condition and health state for decision making, with specific conclusions as shown 
below: 

a) When compared to the conventional shallow learning SVM, the DBBN, one of the deep learning 
methods, is more capable of accurately capturing structural information;   

b) The DBBN can achieve high accuracy in structural diagnostics, but it can be further improved by 
tailoring the layers and their architecture to account for the higher-order and highly non-linear 
statistical structural information, as experienced by a complex structure under high uncertainties 
and variability of interest;  

c) It should be noted that the noise interference could contaminate the data representation, and in 
turn, increase the risk of the data mining, although the deep learning can reduce the impacts as 
compared to conventional shallow learning techniques. 
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8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

Bridge inspection data is an essential part of the entire bridge asset management operation and the bridge 
management system. As such, a reliability-based holistic framework was proposed to effectively collect 
reliable data and perform data fusion and information fusion of sensory data used for element-level 
inspection and conditional assessment. 

Timely information of bridge conditions obtained during the inspections will be used for determining 
needed maintenance and repairs, for prioritizing rehabilitations and replacements, for allocating resources, 
and for evaluating and improving the design for new bridges. The accuracy and consistency of the 
inspection, documentation, and levels of element conditions are vital because it not only impacts bridge 
funding appropriations, but also affects public safety.  

8.1.1  Critical Factors Affecting Visual Inspection in Routine Inspection 

A comprehensive literature review was conducted to better understand the current state of the research 
and practices in bridge element inspection. The current state of knowledge about the quality of  bridge 
element inspection data and the consistency of bridge element inspection led to identifying the critical 
factors affecting the visual inspection in routine inspections, including structural importance factor, 
material vulnerability, aging effects, and others. The study confirmed that different condition ratings 
should be considered that will integrate these critical factors into the element-level inspection, which will 
provide more reliable data for bridge condition assessment, while more practices and datasets could 
further quantify their weight in the determination of future work. 

8.1.2  Enhancement of Reliable Field Data Collection for Visual Inspection in Routine 
 Inspection  

Visual inspection is often dominant in routine inspection, yet it still faces challenges due to  weather, 
environmental, and location conditions. The UAV has been identified as an emerging technology for 
bridge inspection that will allow for the collection of reliable, real time data, while minimizing subjective 
judgement, and allowing access to previously inaccessible locations, where traditional manual visual 
inspection could be limited.  

8.1.3  Enhancement of Data Fusion and Information Process in In-Depth/Special/Damage 
 Inspection 

Effective data fusion and information process are crucial for in-depth/special/damage inspections. This 
study explored the new data fusion methods based on three representative feature extraction techniques 
used to enhance the features extraction for sensor data, while the kernel function based SVM was used to 
facilitate pattern recognition and improve identification. Results confirmed that these data-driven 
techniques exhibited high accuracy for distinguishing between undamaged and damaged cases, even 
when there are certain noise interferences as well as operational conditions. Moreover, the data-driven 
classification methods in this study could effectively address the major factors of interest, including the 
effects of damage level, damage location, sensor location, and moving load. The results in the THT and 
HHT methods exhibit clear discrimination between each damaged state, even under operational and 
environmental variability. The damage indexes of the results under moving vehicle effects revealed that 
the classifiers still have perform highly in the identification of damaged and undamaged cases, even under 
the noise level of 20 dB. 
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8.1.4 Unveiling and Reduction of Structural Uncertainty in In-depth/Special/Damage 
 Inspection 

This chapter addressed the enhanced structural condition assessment using deep learning for better 
decision making in in-depth/special/damage inspection for structures with uncertainties. The DBBN was 
used to extract statistical representations from vast amounts of structural data.  This data was then used to 
probabilistically determine structural condition and health state for decision making. The new DBBN 
achieved high accuracy in structural diagnostics and can be further improved by tailoring the layers and 
their architecture to account for higher-order and highly non-linear statistical structural information, as 
experienced by a complex structure under high uncertainties and variability of interest. 
 
8.2 Future Work 

This study attempted to provide a new, reliabilty-based holistic framework to address the challenges 
associated with the new, element-level inspection. Despite the efforts in this study and other researchers, 
there are still several challenge the element-level inspection is faced with: 

• Incomplete data, qualification of inspectors, and other human-made measurement errors could 
present great challenges for data collection and data fusion.  

• The mix of different data types and formats could also pose challenges for data fusion and 
particularly slow down information fusion in inspection and condition rating. 

• There are high levels of variances experienced in data collection including uncertainty assocated 
with noise interferences, leading to difficulty in information extraction for element-level 
inspection and conditional assessment. 
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