MOUNTAIN-PLAINS CONSORTIUM

MPC 19-386B| M. Okok and K. Ksaibati

Assessing the Cost-Effectiveness of Wyoming's CMAQ Unpaved Road Dust Suppression Program, Year 2

A University Transportation Center sponsored by the U.S. Department of Transportation serving the Mountain-Plains Region. Consortium members:

Colorado State University North Dakota State University South Dakota State University University of Colorado Denver University of Denver University of Utah Utah State University University of Wyoming

Assessing the Cost-Effectiveness of Wyoming's CMAQ Unpaved Road Dust Suppression Program, Year 2

Mohammed Okok Khaled Ksaibati, Ph.D., P.E.

Department of Civil and Architectural Engineering University of Wyoming Laramie, WY

September 2019

Acknowledgements

The WYT²/LTAP center provided extensive resources to this research, assisted in the compilation of data, and assisted with many tasks involved in delivering a safety improvement program to the Standing Rock Sioux Tribe. Special acknowledgement goes to WYDOT, FHWA, and MPC for providing the resources to make this research possible. The Standing Rock transportation office worked diligently to coordinate meetings, respond to technical feedback, and to actively participate in the application of the methodology.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, participation in lawful offcampus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as applicable. Direct inquiries to: Vice Provost, Title IX/ADA Coordinator, Old Main 201, 701-231-7708, <u>ndsu.eoaa@ndsu.edu</u>.

ABSTRACT

This study is part of a multiple year study conducted at the University of Wyoming to assess the effectiveness of dust suppressant treatments on gravel roads. The multiple year study was conducted to assist the Wyoming Department of Transportation (WYDOT) and the Federal Highway Administration optimize the use of the congestion mitigation and air quality (CMAQ) funds. The federal CMAQ program is implemented to fund projects that contribute to air quality improvements. For a number of years, Wyoming counties have used CMAQ funds to apply chemical dust suppressant treatment to gravel roads. The state of Wyoming owns a large inventory of low-volume gravel roads that connect rural Wyoming areas. The main objectives of this study were to assess the effectiveness of the CMAQ program in Wyoming, develop long-term gravel roads performance models, and conduct a life-cycle cost analysis to compare the costs of treating and maintaining gravel roads. The study utilizes field data and exploratory and statistical analysis to assess and evaluate the performance of chemical treatment on gravel roads. The results of this study will be used in developing cost-effective maintenance strategies that will aid in optimizing the Wyoming asset management program.

TABLE OF CONTENTS

1.	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Research Objectives	2
	1.3	Expected Outcomes	
	1.4	Report Organization	
2.		ERATURE REVIEW	
	2.1	Introduction	4
	2.2	Background	
	2.3	Dust Generation	
		2.3.1 Road Dust Generation	-
		2.3.1.2 Road Material Composition	
	2.4	Dust Measurement Tools	
		2.4.1 HAZ-DUST EPAM-5000	
		2.4.2 CSU Dustometer	
	2.5	Dust Pollution	9
		2.5.1 Environmental Protection Agency (EPA)	9
		2.5.2 Particulate Matter	9
		2.5.3 Sources of Particulate Matter	10
		2.5.4 Clean Air Act	10
	2.6	Dust Treatment and Stabilization	11
		2.6.1 Types of Stabilizers	11
		2.6.2 Benefits of Stabilization	12
		2.6.3 Application Methods	13
		2.6.4 Treatment Frequency	14
	2.7	Gravel Roads Management System	14
		2.7.1 Existing International Management Systems	
		2.7.2 National Management Systems	
	2.8	Gravel Roads Maintenance and Treatments	
		2.8.1 Types of Maintenance	
	2.9		
		2.9.1 WYT ² /LTAP Modified PASER Rating	
		2.9.2 USACE Rating System	
		Dust Treatment Cost Effectiveness	
	2.11	Chapter Summary	20
3.	ME	THODOLOGY	21
	3.1	Introduction	
	3.2	Objective 1: CMAQ Program Effectiveness Study	
	3.3	Objective 2: Developing Performance Models for Gravel roads	
	3.4	Objective 3: Life-cycle Cost Benefit Analysis	
	3.5	Chapter Summary	23

4.	СМ	AQ PROGRAM EFFECTIVENESS STUDY	24
	4.1	Introduction	24
	4.2	Data Collection	24
		4.2.1 Dust Data Collection	24
		4.2.2 Traffic Data Collection	26
		4.2.3 Climate Data Collection	28
		4.2.4 Soil Aggregate and Moisture Samples	31
	4.3	Study Sections	32
	4.4	Descriptive Analysis	32
		4.4.1 Traffic Characteristics	34
		4.4.2 Soil and Aggregate Characteristics	36
		4.4.3 Weather Conditions	36
		4.4.4 Dust Emission Rates	37
	4.5	Chapter Summary	40
5.	PEI	RFORMANCE MODELS FOR CHEMICAL DUST TREATMENT	. 41
	5.1	Introduction	
	• · -	Experimental Study	
	5.2	5.2.1 Data Collection	
	5.3	Data Analysis	
	0.0	5.3.1 Exploratory Analysis	
		5.3.2 Estimate of Dust Reduction	
		5.3.3 Statistical Analysis	
	5.4	Chapter Summary	
6.		E-CYCLE COST ANALYSIS	
υ.			
	6.1	Introduction	
		Cost Data	
	6.3	Data Organization	
		Preliminary Analysis	
	0.3	Life-cycle Cost Analysis	
		6.5.1 Life-cycle Assessment Assumptions6.5.2 LCC Analysis	
	6.6	Chapter Summary	
7.	CO	NCLUSIONS AND RECOMMENDATIONS	55
	7.1	Summary	
	7.2	Conclusions	
		7.2.1 Objective 1:	
		7.2.2 Objective 2:	
		7.2.3 Objective 3:	
	7.3	Recommendations	
	7.4	Future Studies	58
RF	FER	RENCES	59

APPENDIX A: CMAQ ROADS DATA	62
APPENDIX B: SAS REGRESSION ANALYSIS CODE SCRIPT	103
APPENDIX C: JOHNSON COUNTY COST DATA	107

LIST OF FIGURES

Figure 1.1	Dust emission from a gravel road in Converse County, Wyoming	1
Figure 2.1	Wyoming counties awarded CMAQ funds in 2013/2014	5
Figure 2.2	Sources of dust on gravel roads (Barnes, 2014)	6
Figure 2.3	EPAM-5000 components	8
Figure 2.4	Size comparison for PM particles (U.S. EPA, 2016)	9
Figure 2.5	Roadway cross section	15
Figure 2.6	High shoulders on road surface causing drainage issues (FHWA, 2015)	16
Figure 2.7	Major road deterioration (FHWA, 2015)	17
Figure 2.8	Adapted gravel road-PASER rating (Wyoming Technology Transfer Center, 2014)	18
Figure 2.9	Gravel road with excellent conditions (Wyoming Technology Transfer Center, 2014)	19
Figure 3.1	Schematic diagram for research methodology	21
Figure 4.1	HAZ-DUST EPAM 5000 stationary dust measuring device	25
Figure 4.2	EDC DustComm Pro Importing Data	25
Figure 4.3	CSU-DUSTOMETER	26
Figure 4.4	Centurion traffic counter	27
Figure 4.5	Data collection equipment setup	27
Figure 4.6	WindMate wind and temperature measuring device	28
Figure 4.7	Wyoming average annual precipitations (NOAA, 2015)	29
Figure 4.8	Aggregate sampling	31
Figure 4.9	Moisture sampling	32
Figure 4.10	ADT variations	34
Figure 4.11	ADTT variations	35
Figure 4.12	Recorded dust concentrations	38
Figure 4.13	After treatment dust emissions	39
Figure 4.14	Comparing dust emissions before and after treatment	39
Figure 5.1	Wyoming counties included in the study	42
Figure 5.2	Chemical treatment performance over time	44
Figure 5.3	PASER windshield road surface condition ratings over time	45
Figure 5.4	Potential dust production and reduction after applying treatment	46
Figure 6.1	Average maintenance cost/mile for untreated roads	52

LIST OF TABLES

2013/2014 CMAQ Sponsored Projects in Certain Wyoming Counties	5
Distress Types for the USACE Rating System	19
Wyoming Counties Ranked Based on Average Precipitation	
Tested CMAQ Roads	33
ADT Descriptive Analysis	34
ADTT Descriptive Analysis	35
Traffic Speed Data Descriptive Analysis	
AASHTO Soil Classifications of Tested Roads	
Counties Included in the Research Study	
Descriptive Analysis for Tested Dust Concentrations	
Descriptive Statistics for After Treatment Dust	
Summary of Studied Roads Properties	42
Annual Dust Reduction Values Resulting from Applying Dust Treatment	46
Comparison of Dust Reduction and PASER Condition Rating After a Year	47
One Tail Paired T-Test	47
Parameter Estimation Results for Predicting Dust	48
Summary of Untreated Roads Maintenance Costs	51
Chemical Treatment Cost/Mile	51
Maintenance Cost/Mile	51
Average Annual Cost of Chemical Treatment and Maintenance Work per Mile	53
Life-cycle Cost Analysis	53
	Distress Types for the USACE Rating System

LIST OF ABBREVIATIONS

Abbreviation	Description
AASHTO	American Association of state highway and transportation officials
ADT	Average daily traffic
ADTT	Average daily truck traffic
ASTM	American society of testing and material
CMAQ EPA FHWA	Congestion mitigation and air quality Environmental Protection Agency Federal highway administration
GIS NAAQS PASER	Geographic Information System National Ambient Air Quality Standards Pavement Surface evaluation rating
PMS PM STP USACR WYDOT	Pavement Management system Particulate Matter Surface Transportation Program United States Army Corps of Engineers Wyoming Department of transportation
WYT2/LTAP	Wyoming Technology Transfer Center/Local Technical Assistance program

The following table describes the abbreviations and acronyms used in this document:

1. INTRODUCTION

1.1 Introduction

This study is part of a multiple year study conducted by the Wyoming Technology Transfer Center (WYT2) at the University of Wyoming to assess the effectiveness of chemical dust suppressant treatment on gravel roads. The federal congestion mitigation and air quality (CMAQ) program funds projects aimed at improving air quality in the United States. For a number of years, Wyoming counties have used CMAQ funds to apply chemical dust suppressant treatment on gravel roads. The state of Wyoming owns a large inventory of gravel roads spread around the state. Most of these roads serve low-traffic volumes and connects rural Wyoming areas. With the significant increase of oil and gas drilling operations in recent years, local authorities witnessed a substantial increase in traffic volumes, resulting in higher maintenance costs that are out of their reach. This has led to higher demands from counties and local jurisdictions to apply for and receive CMAQ funds. WYDOT and the Federal Highway Administration are facing a significant increase in CMAQ funding applications and are looking for more cost-effective ways to allocate these funds.

Gravel roads are considered one of the main sources of particulate matter (PM) in the atmosphere. Dust generated from gravel roads is classified as PM₁₀, particulate matter less than 10 micrometers in diameter. Figure 1.1 illustrates fugitive dust emissions generated from a gravel road in Converse County, Wyoming. Fugitive dust generated from Wyoming's gravel roads poses air pollution issues that can increase the risk of health and environmental problems.

Figure 1.1 Dust emission from a gravel road in Converse County, Wyoming

With 12,000 miles of gravel roads in Wyoming, and the influx of oil and gas drilling operations in the state, heavy truck traffic volumes have resulted in higher dust emissions and higher deterioration rates of gravel roads. Counties are left incapable of maintaining their roads due to budget constraints. Considering these issues, it is important to research and investigate more effective strategies in treating and maintaining gravel roads in Wyoming and developing cost-effective strategies to use CMAQ funds where they are most needed.

1.2 Research Objectives

The objectives of this research study are to evaluate the effectiveness of the CMAQ program in Wyoming and develop cost-effective strategies to implement with CMAQ funds. The study is looking to investigate the issues mentioned earlier by undertaking the following objectives:

- 1. Assess the effectiveness of the CMAQ program in Wyoming by assessing dust suppressant treatment efforts on gravel roads. This study aims to evaluate the efficiency of these efforts to develop a better understanding of gravel road dust emission behaviors and ultimately improve dust mitigations and air quality on gravel roads.
- 2. Develop long-term performance models to predict the service life and behavior of chemically treated gravel roads. Such models can be used in assessing the effectiveness of chemical dust suppressant treatments and help quantify the benefits of applying chemical treatment.
- 3. It has been proven that chemical dust treatment is effective in reducing dust generation and improving roadway safety and visibility. The third objective of this study is to conduct a life-cycle cost analysis to compare the cost of maintaining chemically treated roads with the cost of maintaining untreated roads. Such a comparison aims to compare the cost and benefits of each option, and will help aid agencies and decision makers in making cost effective asset management decisions.

1.3 Expected Outcomes

This study will provide valuable information to state legislatures and decision makers, such as WYDOT and the Federal Highway Administration, which will aid in practical and more efficient allocation of CMAQ funds. This study included the testing of CMAQ-funded roads before and after applying chemical treatment. The results of this testing can help evaluate current practices and recommend improvements in the future. In addition, the analysis will clearly justify the expenditures of the CMAQ program.

Another expected outcome of this study is the development of long-term performance models that predict the service life of chemical dust suppressant treatment on gravel roads. Such models can calculate the amounts of dust reductions achieved by applying chemical treatments and helping to quantify the benefits of using dust mitigation products. This will also assist in conducting cost benefit analyses to evaluate the different alternatives available to decision makers in maintaining their gravel road network asset. The ultimate goal of this study is to develop a more rigorous understanding of dust emission behaviors from gravel roads and to recommend the most efficient dust mitigation practices.

1.4 Report Organization

This report is organized into seven chapters as follows:

Chapter 1 of this report provides an introduction of the research topic and objectives, the expected outcomes of the study, and why cost-effective strategies are needed in the implementation of the CMAQ program in Wyoming.

Chapter 2 discusses the various literature pertaining to the generation of particulate matter from gravel roads, factors affecting PM generation, the maintenance and management of unsealed road networks, and different dust suppressant products available on today's market.

Chapter 3 provides a summary of the experimental methodologies developed and followed in this research study. It discusses the different data collection steps followed to conduct this experimental study. A flow chart of the overall report organization is included in this chapter.

Chapter 4 discusses the continuation of the CMAQ study initiated in summer 2014. The chapter explains the continuing data collection conducted in the following years, and illustrates the new counties and road sections included in the study. Chapter 4 also describes the analysis conducted and the results obtained from analyzing the collected data.

Chapter 5 includes detailed discussions of the methodologies and results of the long-term chemical dust treatment performance study. This includes a discussion of the road sections tested, testing procedures, and two types of data analyses conducted.

Chapter 6 discusses the life-cycle cost analysis study conducted to compare the cost of maintaining treated roads with the cost of maintaining untreated roads. This chapter describes data sources and organizations, and concludes with a discussion of data analysis, results, and conclusions.

Chapter 7 concludes this study by summarizing and highlighting the results and conclusions reached in the study. Chapter 7 also includes recommendations developed based on the findings, and provides insights for future research work to be done to better understand dust behavior on gravel roads.

2. LITERATURE REVIEW

2.1 Introduction

The state of Wyoming owns a large inventory of gravel (or unsealed or unpaved) roads spread all around the state. Gravel roads are cheaper to build and maintain than paved roads, but one of their major detriments is dust generation. The Clean Air Act amendments passed by congress in 1990 required reduction of air pollution caused by transporting vehicles. The Congestion Mitigation and Air Quality Improvement (CMAQ) program was initiated under this act to support surface transportation projects and other related efforts that contribute to air quality improvements. For a number of years, Wyoming counties have benefited from CMAQ funds to apply dust suppressants to gravel roads and help reduce dust generation and contribute to the attainment of national ambient air quality standards (NAAQS) for ozone, carbon monoxide, and particulate matter. In this chapter, a literature review is conducted to determine key topics related to the management and maintenance of gravel roads.

2.2 Background

The U.S. Environmental Protection Agency (EPA) specifies gravel rural roads as a source of pollution. When gravel roads erode, soil particles are loosened and carried away from the road by traffic, wind, water runoff, or other transport means (U.S. Environmental Protection Agency, 2016). In recent years, Wyoming has experienced an increase in oil drilling operations, which have led to heavy truck traffic on the state's rural road network. Increased traffic has deteriorating effects on road conditions which lead to more dust generation. The Wyoming Department of Transportation (WYDOT) provides around \$2 million each year for local governments to support CMAQ projects. An application must be submitted to WYDOT in order to receive the funds. WYDOT CMAQ funding provides for an 80% federal portion; and a minimum of a 20% local match is required. Typically, WYDOT receives far more requests for funding than the program allocation, and preference is given to projects in energy and industrial areas where heavy truck traffic exists. The goal of the CMAQ funds, as stated by WYDOT, is to mitigate airborne particulate matter by controlling dust generation on gravel roads. For the years 2013-2014, a number of Wyoming counties received the CMAQ funds. Table 2.1 lists Wyoming counties that sponsored CMAQ funded projects and the total amount of spending in each county. Figure 2.1 shows the awarded counties and their locations.

Project Sponsor	Total Spending		
	(Including CMAQ)		
Campbell County	\$436,000		
Carbon County	\$241,000		
City of Sheridan	\$40,000		
Converse County	\$550,000		
Crook County	\$280,000		
Johnson County	\$600,000		
Lincoln County	\$607,000		
Sheridan County	\$336,000		
Sublette County	\$250,000		
Sweetwater County	\$400,000		
Teton County	\$50,000		
Uinta County	\$50,000		
Weston County	\$160,000		
Total	\$4,000,000		

 Table 2.1
 2013/2014 CMAQ Sponsored Projects in Certain Wyoming Counties

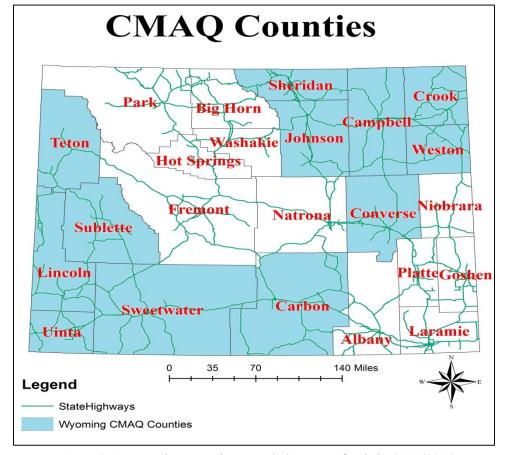


Figure 2.1 Wyoming counties awarded CMAQ funds in 2013/2014

2.3 Dust Generation

All gravel roads will generate dust under traffic. There are several variables that influence how much dust is generated. The variables that impact the amount of dust generated by a vehicle driving on gravel roads can be classified into four major factors (Thenoux, Bellolio, & Halles, 2007):

- Factors specific to the road: The amount of dust generated on a gravel road is directly proportional and related to the amount of fines contained in the wearing coarse material, the construction quality of the gravel road (compaction and homogeneity), and the physiochemical characteristics of the fine material (plasticity, liquidity, particle size, moisture content, fine percentage, etc.).
- Factors specific to the geographic area and climate
- Factors specific to the operational conditions of the vehicle
- Factors specific to the vehicle type and weight

2.3.1 Road Dust Generation

Dust generated from gravel roads is technically defined as solid particulate matter released in the atmosphere. These solid particles range from smaller to medium sized soil particles, ranging between approximately 0.5 to more than 100 μ m in particle diameter (Barnes, 2014). Dust from gravel roads can be generated from multiple sources. Mechanical breakdown of the surfacing soil and aggregate in gravel roads results in the creation of dust. As vehicles pass over the road, the shearing force created at the interface between the vehicle tires and the road surface causes dust generation. The weight of the vehicle is also a key factor in dust generation, as it will make soil particles lose cohesion and generate dust. Dust can also be generated from open space fields and gravel lots surrounding gravel roads. As airborne dust particles settling on the road will be suspended by vehicle tire pressure, dust will regenerate into the atmosphere. Another source of dust on roads (both paved and gravel) is the deposition of dust attached to vehicles when driving on dirt roads, which can then be transferred into the air to become fugitive dust (Barnes, 2014). Figure 2.2 illustrates each of these processes of road dust generation.

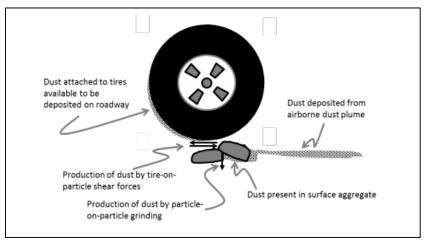


Figure 2.2 Sources of dust on gravel roads (Barnes, 2014)

Climate is also considered to have a big effect on dust generation. Areas with higher precipitation rates and wetter climates tend to have less dust particles in the air compared with dry climate areas.

2.3.1.1 Traffic Effect

Traffic is the main generator of dust on gravel roads. The heavier the vehicle the more road damage it will cause and the more dust the road will generate. In recent years, Wyoming has witnessed a boom in the oil and gas operations driven by newly discovered oil extraction technologies such as fracking. This oil industrial boom has caused truck traffic to heavily increase on some of Wyoming county gravel roads, causing them to deteriorate faster and generate extensive amounts of dust. There is a need to have an effective system in place to treat and maintain county gravel roads and ensure they remain in serviceable conditions for the public to use. A study conducted by the Wyoming Technology Transfer Center found that the cost of maintenance for a Wyoming county road affected by the oil and gas influx was approximately \$11,500/miles more per year than that of a road not affected (Stroud, Ksaibati, & Shinstine, 2015).

2.3.1.2 Road Material Composition

Gravel roads are composed of several soil materials. There are three basic types of soil materials used for building gravel roads: gravel, sand, and fines (from largest to smallest particle size) (Maine Department of Environmental Protection, 2010). Coarse materials, gravel, and sand are all visible to the naked eye. Fines, particles passing through the $75\mu m$ (#200) sieve, however, are made of small sized particles that cannot be seen by the bare eye (Bolander, 1999).

Fines (silts and clays), sand, and coarse materials each have specific properties that make it useful for different aspects of road building. Coarse materials provide strength, but have large air voids between the particles that make them prone to failure due to displacement. That is why fines are used to fill up the voids and provide interlock cohesive forces that will hold the coarse material together. Fines also provide protection to the road surface by preventing water from infiltrating into the road base (Maine Department of Environmental Protection, 2010).

2.3.1.3 Climate Effect

Climate is considered an important factor in dust generation. A study conducted by the United States Geological Survey center in collaboration with the Institute of Arctic and Alpine Research at the University of Colorado, Boulder, looked at the relationship between dust deposition and climate. The study found that climatic factors make a major contribution to dust flux. It was found that average dust concentrations increase with the increase in mean annual temperature, suggesting that higher dust concentrations exist in higher temperature areas. It was also found that dust flux reflects changes in annual precipitation, where more dust was generated during dry climates and less dust was generated during wet climates. Hydrologic conditions are considered a major factor in dust generation. Another study found that in arid United States climates, dust concentrations are higher in the atmosphere than in wetter climates (Reheis, 2006).

2.4 Dust Measurement Tools

There are different tools and devices used to measure dust concentrations in buildings, work sites, and open spaces. Each of these tools has a unique technique to measure dust concentrations. Two different devices are used in data collection for this study, each with a different measuring technique and different measuring units. These two devices are the Haz-Dust EPAM 5000, developed by Environmental Devices Corporation, and the Dustometer, developed by Colorado State University.

2.4.1 HAZ-DUST EPAM-5000

The HAZ DUST EPAM 5000 is a stationary environmental particulate air monitoring device. It is designed to measure existing levels of ambient air pollution. The main purpose of the device is to measure lung damaging airborne particles (PM₁₀ and PM_{2.5}). According to the manufacturer, "EPAM-5000 is an innovative light scattering nephelometer and filter gravimetric air sampler combined in one portable compact and lightweight design. The unique design allows the air quality investigator to collect size selective particulate matter using two proven techniques: light scattering and filter gravimetric. Size selective sampling is achieved by a single jet impactor for PM-10, PM-2.5, PM-1.0um, TSP, or 4.5 um with OSHA approved respirable cyclone" (Environmental Devices Corporation, 2014). Figure 2.3 shows the EPAM-5000 components.

Figure 2.3 EPAM-5000 components

2.4.2 CSU Dustometer

The Colorado State University Dustometer is a dust measuring device developed during a research study conducted by Colorado State University to assess the relative effectiveness of gravel road dust suppressants. The goal of developing the Dustometer was to create a device that is cheap, easy to use, and moderately accurate in measuring dust generated from gravel roads. The biggest advantage of the CSU Dustometer is its intent to measure dust generated from gravel roads. The CSU Dustometer enables the measurement of dust concentrations from a roadway section instead of a single point on the road; this results in more accurate dust concentration measurements that represent the conditions of the entire roadway section (Sanders T. G., 1997).

2.5 Dust Pollution

2.5.1 Environmental Protection Agency (EPA)

The U.S. Environmental Protection Agency (EPA) was created to serve as a governing organization that protects human health and the environment. Its main duty is to write and enforce laws and regulations to ensure all Americans are protected from significant risks to human health and the surrounding environment. Another mission of the EPA is to ensure that the public has access to accurate information regarding existing environmental conditions and other information that helps communities manage human and environmental risks (US Environmental Protection Agency, 2015). The EPA has a set of standards and regulations pertaining to particulate matter generated from fugitive dust emissions in the atmosphere. The EPA classifies gravel roads as the main source or the main generator of PM₁₀ in the environment. The EPA recommends that dust mitigation applications be implemented on gravel roads, especially on roads connecting populated areas (Environmental Protection Agency, 2003)

2.5.2 Particulate Matter

Particulate matter (PM) is defined by the EPA as "a mixture of solid particles and liquid droplets found in the air, some particles, such as dust, dirt, soot, or smoke, are large or dark enough to be seen with the naked eye. Others are so small they can only be detected using an electron microscope." (U.S. Environmental Protection Agency, 2016).

Particulate matter (PM) is classified into two:

- PM₁₀, or particulate matter less than 10 micro meters (Also referred to as inhalable particles)
- PM_{2.5}, or particulate matter less than 2.5 micro meters (Also referred to as fine inhalable particles)

Figure 2.4 shows a size scheme to help compare the size of PM particles with the size of a human hair or fine beach sand. This demonstration is included to help visualize how small particulate matter is.

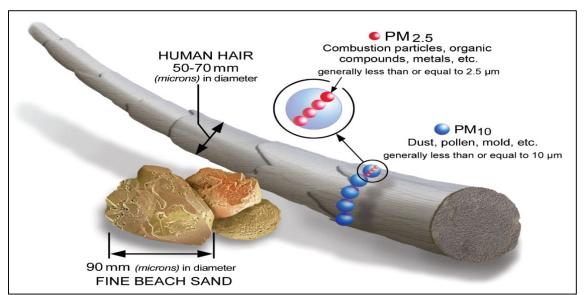


Figure 2.4 Size comparison for PM particles (U.S. Environmental Protection Agency, 2016)

2.5.3 Sources of Particulate Matter

Particulate matter particles generate from different sources. Construction sites, gravel roads, and open fields are some of the main generators of particulate matter in the atmosphere. However, PM particles can also form in the atmosphere as a result of complex chemical reactions, such as nitrogen oxides and sulfur dioxide, which are air pollutants usually generated in the atmosphere from automobiles and industrial power plants (U.S. Environmental Protection Agency, 2016).

Examples of PM particles in the air include fine solids or liquids such as smoke, fly ash, flumes, mists, aerosols, and condensing vapors that can be suspended in the air for extended periods of time. These particles can generate from a variety of stationary and mobile sources; these sources can be divided into two categories: human-caused and nature-caused. Human-caused activities include agricultural and industrial operations, construction and demolition activities, combustion of wood and fossil fuels, and the generation of dust from gravel roads. Natural sources can include non-anthropogenic or biogenic sources, which include dust generated from wildfires and windblown dust (San Joaquin Valley Air Pollution Control District, 2012).

2.5.4 Clean Air Act

The Clean Air Act was passed by the EPA to control air pollution on a national level. The Clean Air Act is a federal law considered to be one of the most influential environmental laws in the 20th century. Internationally, the Clean Air Act is considered to be one of the most comprehensive air quality laws in the world, and is followed by other countries as a model to implement.

2.5.4.1 CMAQ Program

With congressional passage of the Clean Air Act amendments in 1990, the congestion mitigation and air quality (CMAQ) program was initiated to attain national ambient air quality standards (NAAQS) and fund surface transportation projects that contribute to air quality improvements and provide traffic congestion relief (U.S. Department of Transportation, 2016). The CMAQ program provides funding to state and local government agencies to implement air transportation projects that will improve air quality for areas that do not meet the NAAQS standards for ozone, carbon monoxide (CO), and particulate matter (PM_{2.5} and PM₁₀) (Federal Register, 2014). In 2015, under the CMAQ program the Federal Highway Administration (FHWA) awarded more than \$30 billion to fund over 30,000 transportation-related environmental projects related to improving air quality to state DOTs, metropolitan planning organizations (MPOs), and other agencies throughout the United States (U.S. Department of Transportation, 2016).

2.5.4.2 CMAQ Program in Wyoming

For several years, the state of Wyoming has received and benefited from federal aid funds authorized under the CMAQ program. WYDOT has specified three main objectives to use with CMAQ funds (Wyoming Department of Transportation, 2013):

- Ensuring, maintaining, and/or bringing areas into attainment with the NAAQS for carbon monoxide, ozone, and particulate matter
- Helping local government agencies alleviate air quality problems caused by oil and gas operations, energy developments, and other heavy industrial-related activities in their vicinities.
- Supplement the Surface Transportation Program (STP) throughout the state as determined by the Wyoming Transportation Commission

WYDOT awards approximately \$2 million each year for counties and local governments to use for CMAQ-related projects. WYDOT requires local agencies seeking CMAQ funding to submit an application that clearly identifies the project boundaries and expected benefits. WYDOT also requests that project applications address existing air quality conditions and how the proposed project will improve these conditions. WYDOT also required applicants to provide plans on pre- and post-project air quality monitoring to evaluate the effectiveness of the CMAQ-funded projects (Wyoming Department of Transportation, 2013). CMAQ funding in Wyoming provides for an 80% federal portion, and a 20% local match is required. WYDOT emphasized that the applications requesting CMAQ funding far exceeds the available program allocations, and overmatch by the project sponsor is highly encouraged. Because of the high demand on CMAQ funding that far exceeds available allocations, WYDOT only awards these funds to projects in industrial and energy impacted areas. The preference is given to projects that aim to mitigate airborne particulate matter generations caused by energy or industrial-related activities (Wyoming Department of Transportation, 2013).

2.6 Dust Treatment and Stabilization

2.6.1 Types of Stabilizers

A recent study conducted in 2014 found there are nearly 200 products being sold and marketed for dust control and soil stabilization in North America. Many of these products are proprietary, and their exact mechanism is not declared (Federal Highway Administration, 2015). However, this chapter includes the best known and commonly used products that states, counties, agencies, factories, plants, farmers, and ranch owners use to treat and mitigate dust generated from gravel roads.

2.6.1.1 Chlorides

Chlorides are the most commonly used products as dust control agents in the United States and Canada. Chlorides are usually classified into three categories: magnesium chloride, calcium chloride, and sodium chloride (road salt). Magnesium chloride is often used in the liquid form; calcium chloride can be used in both dry and liquid forms. Sodium chloride is rarely used as it is the least effective. If used properly, calcium chloride and magnesium chloride can be very effective in reducing dust generation and stabilizing road soil. Magnesium and calcium chlorides are hygroscopic products in that they absorb moisture from the air and keep the road surface consistently moist. Another advantage is the simplicity and ease of application. The chlorides can be used in two ways to control dust: sprayed on the road or mixed with the gravel (Federal Highway Administration, 2015).

2.6.1.2 Resins

Resins main component is lignin sulfonate, a naturally occurring polymer found in wood. Lignin sulfonate acts like glue by holding the cellulose fibers of pulp together (Pacific Dust Control, 2016). Lignin sulfonate is a high-viscosity, naturally sticky material; it works by providing cohesion to bind soil particles together. It has the advantage of being an environmentally friendly and safe material. It is also non-corrosive and non-toxic. Lignin sulfonate treatments can be more effective than chlorides on gravel roads with higher amounts of sand (Federal Highway Administration, 2015).

2.6.1.3 Natural Clays

Some regions around North America have excellent deposits of natural clay, which is highly plastic and provide strong cohesion to soil particles when added to gravel. Clay can only be used in one way to reduce dust emissions from gravel roads and provide stabilization; it must be mixed into a portion of the gravel layer. This way it will provide some cohesion to bind soil particles together and enhance the

stability of the road (Federal Highway Administration, 2015). By binding soil particles together, less fine particles will be loosened and released into the atmosphere as fugitive dust.

2.6.1.4 Asphalts

Recycled asphalt products were once a popular option among local governments to use as a dust mitigation product. However, due to the existence of environmentally hazardous materials, such as kerosene and fuel oil in recycled asphalts, its use was banned in many places. The EPA has specific regulations regarding the use of recycled asphalt as an emulsifying agent, and a special permission is needed before use. In addition to EPA regulations, the application procedures require special equipment, which can increase the cost of using recycled asphalts (Federal Highway Administration, 2015).

2.6.1.5 Soil Cement

Portland cement can also be used as a soil stabilizer. Portland cement works by increasing the strength and stability of the soil. It is often used to stabilize base and sub-base materials underlying pavement structures. The use of Portland cement as a soil stabilizer is proven as an effective alternative for improving soil properties, strength, and stability. However, it is not an effective dust mitigation solution due to its high cost and poor performance as a dust suppressant. Using Portland cement on gravel roads also requires careful analysis and design to determine the optimal amount of cement mixture needed and what depth it must be applied to achieve the desired strength and stability (Federal Highway Administration, 2015).

2.6.1.6 Other Commercial Binders

Many commercial products exist in the U.S. market. They are marked under different names and sold by different commercial companies. Companies almost always provide detailed supplemental information on how to prepare the road surface and apply the product. Counties usually test a new product on a small section first before investing in large quantities. This ensures that the performance of the product is well examined before being applied to more miles of road (Federal Highway Administration, 2015).

2.6.2 Benefits of Stabilization

There are many benefits to applying chemical dust treatment to gravel roads. These benefits include significantly reducing dust generations, and minimizing soil aggregate loss. On high-volume roads, these benefits significantly justify the cost, and treatment can be proven as very cost effective. A major benefit of applying soil stabilizers is to reduce the loss of fines, which are an important component of the road surface structure. Fines work as a binding agent to keep the soil component held together. When fines are lost from a gravel road surface, the sand and aggregate that remain will tend to lose their interlock binding force; this will lead to distresses, such as corrugation (washboarding) and reduced skid resistance, forming on the road surface. Lost fines are also expensive to replace (Environmental Protection Agency, 2003).

Another major benefit of stabilization is the reduction of aggregate loss. When dust control products are applied and are working well, the fine materials in the soil are well bonded and will not loosen and become dust. This also means that the granular components of the soil will experience strong interlock binding forces and will not be lost or whipped off the road by moving traffic (Environmental Protection Agency, 2003). Many studies have found that as much as one ton of aggregate per mile is lost each year for each vehicle driving over a gravel road daily. This means that if a gravel road has average daily traffic (ADT) of 200 vehicles per day, more than 200 tons of aggregate can be lost per mile each year (Federal Highway Administration, 2015).

Reduction in maintenance cost is also a major benefit of applying dust treatment to gravel roads. When dust control treatment is applied correctly, its benefits can outweigh the cost. A well stabilized road surface that is firmly bonded will require less blading and maintenance over time than a poorly bonded road. Although blading and shaping are usually needed to prepare the road for dust control treatment application, chemical treatment will significantly reduce the need for such operations. This can be a great economic advantage for dust control treatment and can be result in major savings in equipment and labor cost. A county road official once commented on the benefit of dust treatment by saying, "I don't react to dust complaints. All gravel roads have dust. But I do react to high maintenance costs. When we have to re-gravel a road frequently and perform blade maintenance frequently, then it's time to look at stabilizing the surface. Reduced maintenance is what we're after. Dust control is just a bonus!" (Federal Highway Administration, 2015)

In addition, dust has many polluting side effects on nearby animals, water sources, and plants. By applying dust suppressants, dust pollution is significantly reduced and its harmful effects are minimized. Dust treatment can prevent water wells and ground water sources from getting polluted with fine dust particles generated from gravel roads. Dust treatment can also save nearby cattle and wildlife from inhaling dust particles, which can possibly result in their suffocation.

One of the major benefits of applying dust treatment and soil stabilization to gravel roads is the potential to save lives and reduce fatal crashes on gravel roads. Reducing dust generated from the road will significantly enhance visibility and reduce the risk of crashes. Finally, reducing dust generation from gravel roads will minimize human exposure to air polluted by particulate matter. As the literature review suggested, dust particles can cause serious health issues, such as asthma and lung cancer, when inhaled, and dust treatment will significantly reduce this risk. Overall, applying dust treatment to gravel roads has many advantages and benefits that justify its cost.

2.6.3 Application Methods

Each dust chemical treatment product has its own appropriate application instructions, rate, and frequency. Manufacturers usually provide agencies with comprehensive guidelines that can be used to optimize the use of the product. According to the United States Department of Agriculture Technology and Development Program, higher application rates or increased frequency is required when the following conditions are present (Bolander, 1999):

- High traffic volumes with high speeds and a larger percentage of truck traffic
- Low humidity conditions, especially when using calcium chloride
- Low fines content in road surface, typically when there is less than 10% passing through the 75 μm (No. 200) sieve
- Poorly bladed surface and/or loose wearing surface

Optimized use of chemical treatments can also be achieved by ensuring full penetration of the liquid dust suppressant into the soil. Proper penetration mitigates loss of the palliative resulting from surface wear (Langdon, Hicks, & Williamson, 1980).

Although each treatment product has its own application procedures, there are general application guidelines that can be applied to all dust suppressant products (Bolander, 1999). These tips include:

- Apply treatment in the spring, immediately after the wet season.
- If possible, apply treatment after rain so road components are wet and in good workable conditions.
- Do not apply treatment right before rain, this will cause treatment to wash away and be wasted.
- Follow manufacturer's recommendations and instructions on application rates, mixing procedures, and soil compaction, and allowing curing time before opening the road for traffic.

- Moisten road surface if it was dry, except when using recycled asphalt products.
- If a hard crust is present, break up and loosen the surface.
- Use adequate machinery to ensure uniform distribution of the dust suppressant.

2.6.4 Treatment Frequency

Chemical dust suppression treatment is not permanent. Treatment will have to be applied periodically. Depending on the product type, how long a dust palliative is effective varies. Other factors also affect how long dust treatments last; these factors include the treatment type, soil characteristics, climate, application rate, and traffic conditions (Office of Environmental Assistance, 2014).

2.7 Gravel Roads Management System

2.7.1 Existing International Management Systems

A gravel road is defined as a road made of gravel. Gravel roads are more popular in less developed nations, but are also considered a major part of a developed nation's infrastructure (Skorseth & Selim, 2000). There have been continuous efforts to better manage unsealed roads (Huntington & Ksaibati, Implementation Guide for the Management, 2011). Multiple international organizations have developed manual guides and tools to help local governments manage and maintain their gravel road assets. The World Bank developed multiple software programs related to the maintenance and management of gravel roads. These tools include the deterioration of gravel roads model (DETOUR), the Roads Economic Decisions Model, and the Highway Development and Management software (HDM-4) (World Bank, 2009).

Several countries in different regions of the world have also invested in considerable efforts in order to develop effective management systems for their gravel roads network. A pilot study was conducted in South Africa's Western Cape Province to develop algorithms for routine gravel roads maintenance schedules. The study resulted in the development of a blading optimization module to supplement the gravel management system of the Western Cape Provincial Administration in South Africa (Burger, Henderson, & van Rooyen, 2007).

2.7.2 National Management Systems

The United States has few to no asset management systems in place to manage gravel road networks. This is due to the low traffic volumes on gravel roads, as well as the limited funds counties have to spend on their infrastructure. Counties usually allocate most of their budgets to roads and infrastructure with higher traffic volumes and higher usage rates. Wyoming is the least populated U.S. state, and with more than 12,000 miles of gravel roads, there is a need to implement effective processes for the management of unsealed roads in rural counties.

Several factors are associated with the management of gravel roads. In basic terms, these factors include inventory information, performance evaluations, and tracking of maintenance and costs. There are different strategies that can be implemented to address these factors. Many counties have already adapted these strategies to improve their asset management practices. The use of a GIS-based asset management and department cost tracking tool is an example of such strategies (Huntington & Ksaibati, Management of Unsealed Gravel Roads, 2011).

2.8 Gravel Roads Maintenance and Treatments

2.8.1 Types of Maintenance

Counties are often required to routinely rehabilitate and maintain gravel roads. Several types of maintenance are required to keep gravel roads in serviceable conditions. These maintenance work types are usually divided into two types: routine work and major work. The ultimate goal of maintenance work on gravel roads is to ensure three basic elements of the gravel road's cross section are met. These elements, as highlighted by the FHWA, are (Federal Highway Administration, 2015):

- Crowned driving surface
- Shoulders with slopes that lead away from the middle of the road
- Clean ditch for drainage

Figure 2.5 illustrates a basic gravel road cross section, as recommended by the FHWA.

Figure 2.5 Roadway cross section

2.8.1.1 Routine Maintenance Work

This includes work done periodically to keep and maintain gravel roads in serviceable condition. Routine work can include different types of periodic work done on gravel roads. Routine maintenance work makes sure the roadway shape and drainage are in good conditions. Routine maintenance work can include the following:

- Shaping. Shaping work is usually conducted to ensure the road's crown is well sloped. The FHWA recommends that county operators use motor graders with the angle of the moldboard fixed between 30 and 45 degrees. This will ensure the recovery of loose aggregate from the shoulder of the roadway without spilling roadway material to the edges (Federal Highway Administration, 2015).
- Fixing high shoulders. Sometimes the road surface is not compacted well enough, and a condition known as high shoulders can occur. High shoulders are also referred to as secondary ditches, as they cause water to be trapped away from draining into the designed ditch. This can cause several issues, including potholes that affect the quality of the road (Federal Highway Administration, 2015). Figure 2.6 illustrates some road issues that can be caused by high shoulders.

Figure 2.6 High Shoulders on road surface causing drainage issues (Federal Highway Administration, 2015)

Re-shaping or blading is usually required to fix the issue of high shoulders. Blading will ensure the sloped crown of the road is maintained and no drainage issues exist.

• Mowing. Depending on the climate characteristics of the region, grass and vegetation can grow quickly or slowly on the ditches and the road shoulders, causing some drainage problems. Mowing operations can have many benefits in enhancing road conditions and improving the overall safety of the road. The benefits of mowing usually offset the cost by reducing the need for other maintenance needs resulting from bad drainage (Federal Highway Administration, 2015).

2.8.1.2 Major Rehabilitation Work

Over time, any gravel road will start to deteriorate and experience distresses that require more than just routine maintenance work. Major road deterioration can also result from heavy rainstorms or heavy traffic operations. Figure 2.7 shows a road with major deteriorations due to extensive heavy traffic and wet conditions.

Figure 2.7 Major road deterioration (Federal Highway Administration, 2015)

Major road issues will require major rehabilitation work to be done to the road. This involves the following (Federal Highway Administration, 2015):

- Complete cross section re-shaping This involves the reshaping of the road surface, as well as the shoulder and the ditch areas. Motor graders are usually used to conduct this work. Compaction is also recommended, as this will enhance the strength and stability of the road.
- Re-graveling Heavy rainstorms can lead to the loss of aggregate from the road soil content. Re-graveling is needed to replace the lost surfacing aggregate. Heavy trucks might be required to haul the new surfacing aggregate to the road.

2.9 Gravel Road Condition Assessment

Gravel roads make up more than 39% of U.S. roads. A critical aspect of gravel road asset management is to periodically rate and monitor road conditions. In order to do so, a system based on experimental and scientific background is needed. There are very few rating manuals that address condition ratings of gravel roads (Huntington & Ksaibati, Implementation Guide for the Management, 2011).

Two types of road surface assessment methods exist: manual and automated. Automated systems usually consist of sensors mounted to a moving vehicle. Automated systems can lead to decreased maintenance costs, but because unsealed road conditions change quickly, the use of automated systems might not be the most practical. Manual methods are usually divided into measurement methods and visual evaluations. Visual evaluations are easier to conduct since raters usually do not need to leave their vehicles. Measurement methods are more accurate but more time consuming (Huntington & Ksaibati, Management of Unsealed Gravel Roads, 2011). Included is a discussion of few rating manuals designated to measure gravel roads conditions.

2.9.1 WYT²/LTAP Modified PASER Rating

Developed by the Wyoming Technology Transfer Center, the modified pavement surface evaluation and rating (PASER) manual is a rating guide that combines two complementary guides for visually assessing unsealed roads. The modified PASER manual rating guide combines the Ride Quality Rating Guide (RQRG), which assesses the quality of an unsealed road's ride as perceived by the traveling public, and the Gravel Roads Rating System (GRRS), which evaluates seven distresses: potholes, rutting, washboards, loose aggregate, dust, crow, and roadside drainage (Huntington & Ksaibati, Implementation Guide for the Management, 2011).

The modified PASER rating manual uses a rating scale of 1 to 10 (a rating of ≥ 9 is an excellent road; a road of ≤ 2 is a failing road). The modified PASER manual is adapted from the PASER manual produced by the Wisconsin Transportation Information Center. Figure 2.8 illustrates the adapted gravel road-PASER rating manual. The WYT2/LTAP modified PASER rating manual is intended to be used on a network-based level. Its fast, low-cost nature makes it a practical option for agencies to use for network level assessments. However, for a more detailed project level assessment, other measurement-based manuals should be used to ensure accurate assessment of existing road conditions. Figure 2.9 shows a gravel road with excellent conditions.

	Rating	Speed, mph*	Distresses** Adapted from the Gravel - PASER manual		
10	Excellent	60+			
9	Very Good	50 - 60			
8	Good	45 - 50			
7	Good	40 - 45	Dust under dry conditions; Moderate loose aggregate; Slight washboarding		
6	Fair		Moderate washboarding (1" - 2" deep) over 10% - 25% of area; Moderate dust, partial obstruction of vision; None or slight rutting (less than 1" deep); An occasional small pothole (less than 2" deep); Some loose aggregate (2" deep)		
5	Fair				
4	Poor	20 - 25	Moderate to severe washboarding (over 3" deep) over 25% of area; Moderate		
3	Poor	15 - 20	rutting (1" - 3") over 10% - 25% of area; Moderate potholes (2" - 4" deep) over 10% - 25% of area; Severe loose aggregate (over 4")		
2	Very Poor	8 - 15	Severe rutting (over 3" deep) over 25% of area; Severe potholes (over 4" deep) over 25% of area; Many areas (over 25%) with little or no aggregate		
1	Failed	0 - 8			

Figure 2.8 Adapted gravel road-PASER rating (Wyoming Technology Transfer Center, 2014)

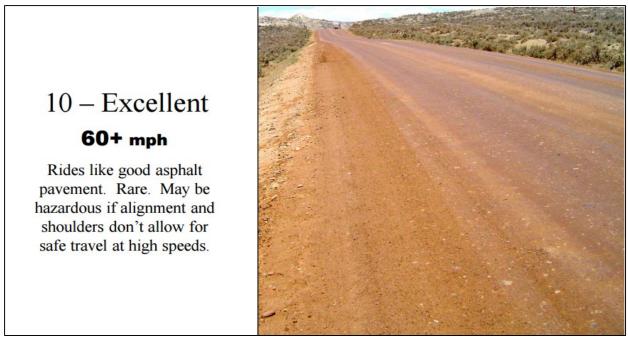


Figure 2.9 Gravel road with excellent conditions (Wyoming Technology Transfer Center, 2014)

2.9.2 USACE Rating System

A well-established gravel road assessment procedure was developed by the United States Army Corps of Engineers (USACE). The measurement-based USACE manual requires actual detailed measurements of distresses on the road (Eaton, Gened, & Dernn, 1987). These measurements are added up to generate a gravel road conditions index (GRCI). The measurement of the distresses includes measuring the extent of each distress in specific units and specifying its severity level. Dust is the only exception to this, as it is visually evaluated. Table 2.2 shows the distresses evaluated under the USACE rating system.

Table 2.2 Distres	Types for the USACE Rating System
-------------------	-----------------------------------

Distress	Units
Improper Cross Section	• Linear feet
Corrugation	• Square feet
Roadside Drainage	• Linear feet
• Dust	Visual
Potholes	• Number
• Rutting	• Square feet
Loose Aggregate	• Linear feet

The severity levels of these distresses are classified as low, medium, and high. Specified breakout values help the rater determine the severity. The USACE system assigns deduct values to each distress; the deduct values determine the overall URCI of the road on a scale of 1 to 100.

2.10 Dust Treatment Cost Effectiveness

The main goal of this study is to assess the effectiveness of chemical dust treatments on gravel roads. Cost is the main factor in determining whether chemical treatment is an effective solution to dust generated from gravel roads or whether other options need to be considered. A study was conducted by Thomas G. Sanders where treatment was applied to selected gravel road test sections to evaluate the relative effectiveness of commercially available road dust suppressants in abating fugitive dust emission and loss of fines from gravel road surfaces (Sanders T. G., 1997). The study found that the dust suppressants studied reduced fugitive dust emission from the gravel roadways by 50% to 70%. The treated test sections also retained 42% to 61% more aggregate than the untreated control test section. The study concluded that the cost savings of retaining aggregate on the treated test sections more than offset the costs of applying dust suppressants (Sanders T. G., 1997). This study is still used as a reference and as a marketing tool for companies to advertise their chemical dust treatment products to counties and local governments.

2.11 Chapter Summary

This chapter included a literature review of existing knowledge and common practices related to gravel roads. A review of dust generation on gravel roads suggested that traffic is the main generator of dust from gravel roads. Traffic impact generates loose fine particles from the road and leads to the emission of dust. Heavier vehicle types result in more dust generation than smaller vehicles. The literature also suggested that traffic speeds, road material composition, and climate play major roles in dust concentration emissions from gravel roads. In addition, this chapter also discussed different measurement tools used to measure dust emission rates.

This chapter also discussed dust pollution sources and regulations. The EPA is taking the lead in issuing and regulating air quality standards. This chapter included a review of literature related to dust suppressant products and the benefits of applying chemical dust suppressant treatment on gravel roads, as well as the different types of products on the market today. Finally, this chapter included the discussion of literature pertaining to existing gravel road management systems, on both the national and the international levels. Additionally, different gravel road condition assessment manuals were discussed. The chapter concluded with a discussion of dust treatment effectiveness in reducing dust emissions and improving overall road conditions.

3. METHODOLOGY

3.1 Introduction

This chapter summarizes the research methods and techniques used to conduct this research study. Figure 3.1 outlines the report organization. This research focused on collecting real field data and analyzing these data using different techniques. Actual field data were collected from several counties around Wyoming. Descriptive and exploratory analyses were conducted to examine trends and behaviors of gravel roads. Statistical analysis was also conducted to estimate relationships between dust emissions and other variables related to gravel roads. The goal of this research is to develop a more comprehensive understanding of gravel road performance. This study was divided into three objectives, which are organized as follows:

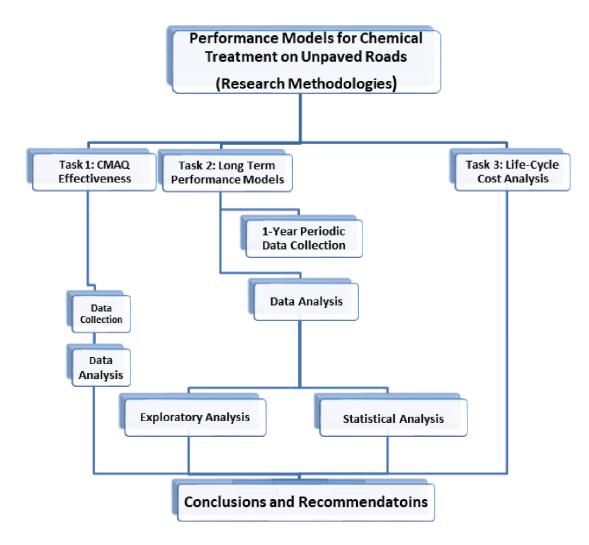


Figure 3.1 Schematic diagram for research methodology

3.2 Objective 1: CMAQ Program Effectiveness Study

Objective 1 was to continue the study conducted by the WYT2/LTAP office to assess the effectiveness of the CMAQ program implementation in Wyoming. This included the continuation of the data collection process, where gravel roads from various counties around Wyoming were tested before and after treatment using two testing methods. Testing, as described in Chapter 4, included measuring dust concentrations before and after treatment; it also included the collection of aggregate and moisture samples from the road surface, the collection of temperature and wind speeds, as well as traffic counts. A descriptive analysis was conducted to explore dust generation trends from gravel roads.

3.3 Objective 2: Developing Performance Models for Gravel roads

Objective 2 was to conduct a long-term performance study to model the performance of chemical dust treatment over a period of time. This objective's goal was to develop performance models for chemical treatment on gravel roads and evaluate the life-cycle of treatment. Another goal was to determine what factors affect treatment performance. For this objective, dust emissions were measured on each of the tested road sections. Traffic data were also obtained for each of the study sections. Aggregate and moisture samples and wind and temperature reading were collected as well. Road conditions were evaluated over the period of the study using the modified PASER gravel manual to rate the ride quality of the road and periodically assess road conditions. Data were collected from 11 recently treated county roads in Wyoming. Data were collected periodically to monitor the performance of treatment over time. Monitoring included testing the studied roads before and right after treatment, and after one month, three months, six months, and one year of treatment. Chapter 5 describes the testing procedures and equipment used for data collection. Analysis was conducted to determine what factors contribute to gravel road deterioration. Different types of analyses were conducted to carefully evaluate the performance of treatment over time. Both exploratory and statistical analyses were conducted; the goal was to model treatment behavior and to examine which variables contribute to treatment degradations. Chapter 5 includes comprehensive explanations of the analysis conducted and the results obtained.

3.4 Objective 3: Life-cycle Cost Benefit Analysis

Objective 3 was to conduct a life-cycle cost analysis to compare the cost of maintaining untreated gravel roads with the cost of maintaining treated gravel roads. This objective's goal was to quantify the benefit of applying chemical dust treatment to gravel roads and evaluate the cost effectiveness of the treatment option. Actual detailed data were obtained from Johnson County in Wyoming. The data included cost information related to maintaining untreated gravel roads, as well as cost data related to the application of chemical dust treatment and any other related maintenance work. The obtained cost data were organized and analyzed to determine which alternative is more cost effective. Chapter 6 describes the procedures followed in obtaining and organizing the data. The chapter also discusses the analysis conducted to determine the most cost-effective maintenance options for counties. Finally, based on the results obtained from the analysis conducted for each of the three objectives, conclusions were reached and recommendations were developed with lessons drawn from this study. The conclusions and recommendations developed in this study are included in Chapter 7, which also includes suggestions on what can be done in future related work.

3.5 Chapter Summary

This chapter described the organization followed throughout this report. The first objective of this study was to assess the effectiveness of the CMAQ program in Wyoming. The second objective was to develop long-term performance models to predict the service life of chemical treatment on gravel roads. The third objective examined the life-cycle costs of different gravel road maintenance alternatives.

4. CMAQ PROGRAM EFFECTIVENESS STUDY

4.1 Introduction

This chapter discusses the continuation of the Congestion Mitigation and Air Quality (CMAQ) program assessment study conducted at the University of Wyoming. This study started in the summer of 2014 and is projected to continue until July 2017. The study's main objective is to assess dust suppressant effectiveness and ensure that air quality improvement efforts funded by the CMAQ program in Wyoming are effective. The congestion mitigation and air quality program is funded by the federal government to ensure states, cities, and counties comply with federal air quality regulations. Each year Wyoming receives federal funding allocated to the CMAQ program. The state of Wyoming then awards these funds to counties in an effort to mitigate dust pollution generated from gravel roads.

Because CMAQ funds are limited, counties have to compete to receive funding for their projects. The state of Wyoming is looking to investigate the effectiveness of CMAQ funds used in Wyoming. For this reason, the state hired the Wyoming Technology Transfer Center to conduct a research study that will examine the effectiveness of Wyoming's CMAQ gravel road dust suppression program. This chapter includes a thorough discussion of the data collection and analysis conducted to assess the effectiveness of the CMAQ program in Wyoming.

4.2 Data Collection

Data collection methodologies were developed to ensure a comprehensive dataset is collected that includes all different parameters affecting dust generation on gravel roads. Data collection included the measurement of dust concentrations on gravel roads, as well as soil properties, traffic characteristics, and in-situ climate conditions for each CMAQ road included in this study.

4.2.1 Dust Data Collection

Two methods were used to collect dust concentration data from gravel roads. The first method used a stationary device placed on the side of the road. The stationary device used was the HAZ-Dust EPAM 5000, which is a boxed device that continuously monitors and measures surrounding dust concentrations. The device can be used to measure both particulate matter with diameters smaller than 2.5 micrometers ($PM_{2.5}$), and particulate matter with diameters smaller than 10 micrometers (PM_{10}). For this study, only PM_{10} concentrations were measured. The device utilizes infrared technology to sensor inhalable coarse particles in the air. According to the device user manual:

The Haz-Dust uses the principle of near-forward light scattering of an infrared radiation to immediately and continuously measure the concentration in mg/m3 of airborne dust particles. This principle utilizes an infrared light source positioned at a 90-degree angle from a photo detector. As the airborne particles enter the infrared beam, they scatter the light. The amount of light received by the photo detector is directly proportional to the aerosol concentration. A unique signal processes internally and compensates for noise and drift. This allows high resolution, low detection limits and excellent base line stability (HAZ-DUST User Guide).

The unit continuously measures air quality every second. The data are recorded in units of milligrams per meter cubed. The data are then imported to a computer using software that comes with the device. Appendix A-1 includes the imported dust concentration data from the EPAM-5000 device. Data are imported in the format of a spreadsheet. Figure 4.1 shows the HAZ-DUST EPAM 5000 stationary dust measuring device unit.

Figure 4.1 HAZ-DUST EPAM 5000 Stationary Dust Measuring Device

EDC Dust Comm Pro is software used to import dust concentration data from the EPAM unit. The software is convenient and easy to use. It imports periodically measured dust concentration data as spreadsheets, and can generate plots and basic descriptive analysis of the data. Figure 4.2 demonstrates an example of imported data.

<u> </u>	Pro - <mark>~esktop\CMAQ Da</mark> on Plot Help	ta\EPAM-500	0 CSV\2016-FIRS	T-TRIP.dcm	
- Location Informa	ation				[
	1 THUR 21-APR-16		Location Name:	Location 1	
	09:46:35		Duration:	00:32:20	
Stop Time:	10:18:55		Samples:	195	
Data Rate:	10 sec		Unit Type:	EPAM-5000	
Dataset Informat	tion			09:46:35	0.201
		:L: 0.043 mg @: 10:03:45 ple: 0.002 mg		03:46:33 09:46:45 09:46:55 09:47:05 09:47:15 09:47:25	0.201 mg/m3 0.078 mg/m3 0.042 mg/m3 0.034 mg/m3 0.036 mg/m3 0.031 mg/m3
Dataset Scale F	1.000			09:47:35 09:47:45 09:47:55 09:48:05 09:48:05 09:48:25 09:48:25	0.030 mg/m3 0.030 mg/m3 0.030 mg/m3 0.030 mg/m3 0.030 mg/m3 0.030 mg/m3 0.030 mg/m3
€ 0.500 E 0.201 E -0.098 S 09:46:35	Quick Plot	10:10:55		09:48:35 09:48:45 09:48:55 09:49:05 09:49:05 09:49:25 09:49:25 09:49:45 09:49:45 09:50:05 09:50:15 09:50:25 09:50:35	0.012 mg/m3 0.008 mg/m3 0.023 mg/m3 0.026 mg/m3 0.026 mg/m3 0.027 mg/m3 0.031 mg/m3 0.031 mg/m3 0.031 mg/m3 0.039 mg/m3 0.041 mg/m3 0.042 mg/m3 0.044 mg/m3
Location 1 Location	on 2 Location 3 Location	Full Plo	t 🚮 🗌	03.30.35	

Figure 4.2 EDC DustComm Pro importing data

The second device used to measure dust generated from gravel roads is the Colorado State University Dustometer, a moving device developed by researchers from Colorado State University (CSU). As described in Chapter 2, the CSU Dustometer is a moving device placed behind a moving vehicle. Using glass microfiber filters weighted before and after placement in the Dustometer, dust concentration is measured by taking the difference between the weight of the filters before and after being placed in the Dustometer. Dust is measured in units of grams per mile. A total of six measurements per road were

taken. Each set of measurement is done using a different sieve size (#38 and #200). The average of the three is then recorded as the dust measurement for the tested gravel road. Figure 4.3 shows the device being used to measure dust concentrations on a gravel road in Wyoming.

Figure 4.3 CSU-DUSTOMETER

4.2.2 Traffic Data Collection

Traffic is considered an important factor in dust generation. Data collection included collecting the existing characteristics of traffic on the studied gravel roads. The traffic characteristic data collected included vehicle composition, speed, and volume on the road. The study used Centurion two tube traffic counters installed on the road when data collection occurred. Figure 4.4 shows the traffic counter used in this study. A previous study conducted by the Wyoming Technology Transfer Center determined that three hours was an optimal data collection time. Traffic counters were installed on the tested road and traffic characteristics were measured for three hours. Appendix A-3 includes the imported traffic volumes. Both the traffic counter and the HAZ-DUST EPAM 5000 were installed together and left to run for the entire three-hour testing period. Figure 4.5 shows the data collection setup on a gravel road in Sweetwater County, Wyoming.

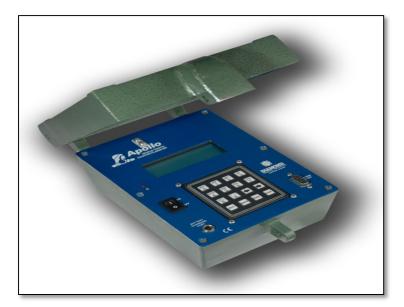
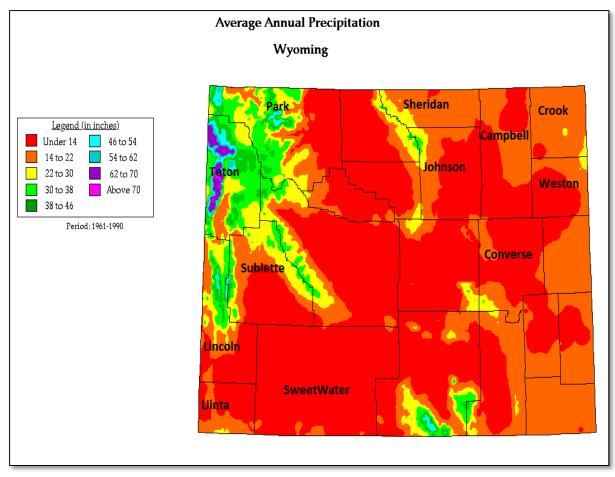


Figure 4.4 Centurion traffic counter

Figure 4.5 Data collection equipment setup


4.2.3 Climate Data Collection

The literature review suggested that climate is one of the major factors in dust generation. Dry weather and low precipitation rates can result in more dust being generated when compared with wet areas. Existing climate data were measured and monitored during the data collection process. Collected data included measuring wind speeds and temperature. Precipitation data for the different counties included in the data collection were obtained from the United States National Oceanic and Atmospheric Administration (NOAA). A WindMate handheld measuring device was used to measure wind speed and temperature during data collection. Figure 4.6 shows the device used for the measurements.

Figure 4.6 WindMate wind and temperature measuring device

Wyoming is the 10th-largest U.S. state, with a total area of almost 98 million square miles (The ipl2 Consortium, 2012). A great variation in precipitation rates can be found throughout the states. Counties included in this study each experience different weather and climate conditions. Figure 4.7 illustrates average annual precipitation in Wyoming, which has a dry, continental climate, with warm summers and cold winters. The significant variation in elevations throughout the state contributes to wide temperature ranges and varying precipitation rates (Western Regional Climate Center, 2016). To illustrate some of these variations, Teton County, in the northwest side of the state, annually receives the highest amount of rainfall (22.29 inches) compared with Big Horn County, the driest county in Wyoming with only 6.8 inches of rain annually. Table 4.1 shows Wyoming counties ranked based on annual precipitation rates.

Figure 4.7 Wyoming average annual precipitation (National Oceanic and Atmospheric Administration, 2015)

Rank	Average Precipitation ▼	County / Population
1	22.29 inches	Teton, WY / 21,294
2	18.09 inches	Crook, WY / 7,083
3	15.68 inches	Laramie, WY / 91,738
4	15.33 inches	Sheridan, WY / 29,116
5	15.26 inches	Lincoln, WY / 18,106
6	14.86 inches	Weston, WY / 7,208
7	14.60 inches	Campbell, WY / 46,133
8	14.33 inches	Goshen, WY / 13,249
9	14.21 inches	Johnson, WY / 8,569
10	14.16 inches	Platte, WY / 8,667
11	14.13 inches	Niobrara, WY / 2,484
12	12.95 inches	Converse, WY / 13,833
13	12.86 inches	Sublette, WY / 10,247
14	12.62 inches	Albany, WY / 36,299
15	11.61 inches	Hot Springs, WY / 4,812
16	11.59 inches	Natrona, WY / 75,450
17	11.15 inches	Park, WY / 28,205
18	10.55 inches	Carbon, WY / 15,885
19	10.17 inches	Uinta, WY / 21,118
20	8.67 inches	Fremont, WY / 40,123
21	8.46 inches	Sweetwater, WY / 43,806
22	7.85 inches	Washakie, WY / 8,533
23	6.84 inches	Big Horn, WY / 11,668

 Table 4.2 Wyoming Counties Ranked Based on Average Precipitation

4.2.4 Soil Aggregate and Moisture Samples

Aggregate samples were collected for all the tested roads from three spots considered most representative of the road. A bag was filled with aggregate for each road and sent to the University of Wyoming soils lab to conduct the required testing. Figure 4.8 demonstrates how aggregate samples were collected from each tested gravel road.

Figure 4.8 Aggregate sampling

Three moisture samples were also collected for each tested road before and after treatment. Moisture tins similar to the one illustrated in Figure 4.9 were used to collect three moisture content samples from three locations considered representative of the road. The three samples were taken to the University of Wyoming soils lab, weighted, and placed in an oven at 217°F, as specified by ASTM D4442, for 24 hours. Each sample was weighted and the average of three recorded as the moisture content for the tested road. Appendix A-4 includes the soil properties testing information.

Figure 4.9 Moisture sampling

4.3 Study Sections

Data were collected from 11 Wyoming counties, all of which received CMAQ funding to apply chemical dust suppressant treatment on their gravel roads. A total of 63 roads were tested before chemical treatment was applied. Of the 63 roads tested before treatment, samples of 28 roads were tested after treatment to evaluate the effectiveness of the dust suppressants. Table 4.2 summarizes the CMAQ roads tested and their properties.

4.4 Descriptive Analysis

The collected data were summarized and organized in order to explore trends and assess the different characteristics of the studied gravel roads before and after treatment. This section includes a descriptive analysis of the collected data, which include traffic characteristics, soil and aggregate properties, weather conditions, and dust emission rates before and after treatment for the gravel CMAQ roads included in this study.

Table 4.2 Tested CMAQ Roads					
County	Road	Year Tested (Precip. Rates)		Suppressant Type	
Lincoln	Muddy Creek	2014	15-20 Wet	MgCl	
	Gomer	2015	15-20 Wet	MgCl	
	Sublett-Pomeroy	2015/2016	15-20 Wet	MgCl	
	Basin				
	Lupine	2015/2016	15-20 Wet	MgCl	
	Kemmerer Landfill	2016	15-20 Wet	MgCl	
	Fontenelle-North	2015/2016	15-20 Wet	MgCl	
Converse	Jenne Trail	2014/2015	10-15 Moist	CaCl	
	Ross Road	2015	10-15 Moist	CaCl	
Crook	D-Road	2014	15-20 Wet	MgCl	
Campbell	Cosner	2014	10-15 Moist	MgCl	
•	Moore	2014	10-15 Moist	MgCl	
	Turnercrest	2015	10-15 Moist	MgCl	
	Todd	2015	10-15 Moist	MgCl	
	Christensen	2015	10-15 Moist	MgCl	
	Hayden	2015/2016	10-15 Moist	MgCl	
	Black & Yellow	2015	10-15 Moist	MgCl	
	Iberlin	2015/2016	10-15 Moist	MgCl	
Johnson	TTT Road	2015	10-15 Moist	CaCl	
oomison	Irrigary Rd	2015/2016	10-15 Moist	CaCl	
	Lower Sussex Rd	2015/2016	10-15 Moist	CaCl	
	Schoonover Rd	2015/2016	10-15 Moist	CaCl	
	Upper Powder River	2015/2016	10-15 Moist	CaCl	
Sweetwater	Wamsutter S	2015	<10 Dry	MgCl	
Sweetwater	WamsutterNorth	2015	<10 Dry	MgCl	
	Patrick Draw	2015/2016	<10 Dry	MgCl	
	Eden Ryepatch	2015	<10 Dry	MgCl	
	Eden Reservoir	2015	<10 Dry	MgCl	
	Eighteen mile Rd	2015	<10 Dry	MgCl	
	County line Rd	2015	<10 Dry	MgCl	
	Lower Farson Cut off	2015/2016	<10 Dry	MgCl	
Uinta	Piedmont Rd 173	2015/2010	<10 Dry	MgCl	
Omta	Piedmont Aspen Rd	2015	<10 Dry	MgCl	
	171	2015	vio Diy	Wiger	
Weston	Grieves	2015	10-15 Moist	CaCl	
weston	Bruce	2015	10-15 Moist	CaCl	
	Mush Creek	2015	10-15 Moist	CaCl	
Teton	Spring Gulch Rd	2015	>20 Very	MgCl	
Sheridan	Murphy Gulch	2015/2016	Wet	CaCl	
Sheritan	Waiphy Galen	2013/2010	15-20 Wet	Cuer	
	Lower Prairie Dog	2015/2016	15-20 Wet	CaCl	
	North Park Rd	2015/2016	15-20 Wet	CaCl	
	Wolf Creek Rd	2015/2016	15-20 Wet	CaCl	
	Higby Rd	2015/2016	15-20 Wet 15-20 Wet	CaCl	
	Dayton East	2015/2016	15-20 Wet	CaCl	
	Beckton Hall	2016	15-20 Wet	CaCl	
Carban	Halfway Ln	2016	15-20 Wet	CaCl MaCl	
Carbon	CR 608	2016	<10 Dry	MgCl	

4.4.1 Traffic Characteristics

In this study, an exploratory investigation was conducted to explore the traffic characteristics that exist on the studied roads. Tube traffic counters were used in the data collection, as explained earlier. The average daily traffic (ADT), average daily truck traffic (ADTT), and 85th percentile traffic speed data were obtained from the counters. The results revealed that the average daily traffic on the analyzed roads ranged from as low as 24 vehicles per day to as high as 2,574 vehicles per day. Table 4.3 shows a descriptive analysis for the collected average daily traffic data. It is apparent from this table that the average daily traffic for the studied roads was around 269 vehicles per day. This is within the range classified for gravel roads. However, the literature review suggests that gravel roads with traffic volumes more than 500 vehicles per day should be paved (Edvardsson & Magnusson, 2009). Several roads were found to have ADTs higher than 500. It is recommended that counties should consider the feasibility of paving these roads. Figure 4.10 shows the variations in ADT reported for the 63 monitored roads.

Table 4.3 ADT Descriptive Analysis				
Average Daily Traffic Des	criptive			
Analysis				
Mean	269			
Standard Error	42			
Median	184			
Mode	72			
Standard Deviation	337			
Minimum	24			
Maximum	2574			
Sum	16951			
Count	63			

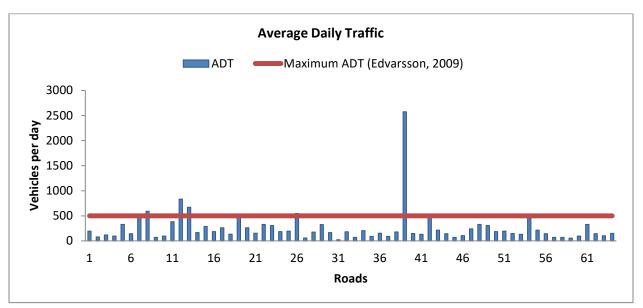


Figure 4.10 ADT variations

Truck traffic also ranged from as low as zero trucks per day on some roads to as high as 420, or 71% of the total traffic on the road. This reveals the impact of the recent oil and gas operations happening in some parts of Wyoming where most of the traffic on some roads is truck traffic. Table 4.4 shows a descriptive analysis of the truck traffic data collected. The table indicates that the ADTT on all the studied roads was around 63 trucks per day. Figure 4.11 shows the variations in the ADTT for the studied CMAQ roads.

Table 4.4 ADTT Descriptive Analysis				
ADTT Descriptive Analy	vsis			
Mean	63			
Standard Error	9			
Median	37			
Mode	0			
Standard Deviation	77			
Minimum	0			
Maximum	420			
Sum	4379			
Count	62			

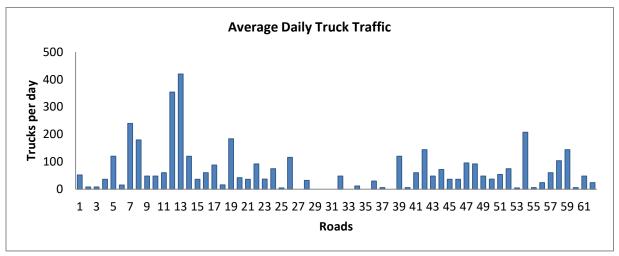


Figure 4.11 ADTT Variations

Traffic speed data were also collected and downloaded from the traffic counters. It is apparent from Table 4.5 that traffic speeds ranged from 10 mph to 74 mph. The average speed was found to be equal to 45 mph. Knowing that most gravel roads have speed limits between 30 and 40 mph, the actual driving speeds are above the speed limit, and more law enforcement might be needed on gravel roads.

Traffic Speed Descriptive	Analysis
Mean	45
Standard Error	2
Median	45
Mode	53
Standard Deviation	12
Minimum	10
Maximum	74
Count	62

 Table 4.5 Traffic Speed Data Descriptive Analysis

4.4.2 Soil and Aggregate Characteristics

Aggregate samples collected from the studied roads were tested at the University of Wyoming soils lab in accordance with AASHTO testing standards. A sieve analysis was performed in accordance with AASHTO T27 and T11 to determine the gradations of the tested soils. Atterberg limit tests were also performed in accordance with AASHTO T89 and T90 for the tested soils to determine their liquid limit, plastic limit, and plasticity index. Table 4.6 shows the results of the gradation analysis. It was found that most of the tested roads had granular materials (less than 35% of total sample passing the #200 sieve). This indicates that CMAQ-funded roads have a good mixture of granular materials and are not made up of clay or silty materials.

AASHTO Soil Classification	# of Roads			
A-1-a	21			
A-1-b	26			
A-2-4	7			
A-2-6	11			

Table 4.6 AASHTO Soil Classifications of Tested Roads

4.4.3 Weather Conditions

For this research study, an effort was made to test and include counties with varying precipitation rates and varying weather and climate characteristics. Using the annual average rainfall rates for each county, counties were ranked into four climate categories: dry, moist, wet, and very wet. Table 4.7 shows the counties studied and their corresponding precipitation. By including counties with different weather conditions, a more comprehensive dataset, with a better representation of road performance under different climate conditions in Wyoming, is collected.

	Annual Precipitation				
County	<10	10-15	15-20	>20	
	Dry	Moist	Wet	Very Wet	
Lincoln			х		
Converse		х			
Crook			Х		
Campbell		Х			
Johnson		Х			
Uinta	х				
Sweetwater	х				
Weston		Х			
Sheridan			х		
Laramie			Х		
Teton				Х	

Table 4.7 Counties Included in the Research Study

4.4.4 Dust Emission Rates

Counties with various weather, traffic, and road soil characteristics were included in the study. As illustrated in Figure 4.12, varying dust emission rates were reported. The lowest dust concentration reported from untreated roads was 0.267 mg/m3, and the highest reported dust concentration was around 5.2 mg/m3. This great variation in dust concentrations illustrates the difference in dust generation from roads with different traffic volumes, soil properties, and weather conditions.

Dust Emissions Descriptive A	nalysis (mg/m^3)
Mean	1.438
Standard Error	0.114
Median	1.263
Mode	0.914
Standard Deviation	0.918
Minimum	0.267
Maximum	5.190
Count	63

The federal ambient air quality standard for particulate matter PM_{10} concentration for a 24-hour average is 150 µg/m3 (Smith, 2015). This is equal to 0.15 mg/m3 when comparing this value to the mean dust PM_{10} recorded concentration value reported in Table 4.8 (PM_{10} concentration=1.438 mg/m3). It may be observed that before treatment, dust generation levels are high and exceed federal limits. This may also indicate that dust suppressant treatment is needed to reduce fugitive dust emission rates and abide with federal air quality standards and regulations.

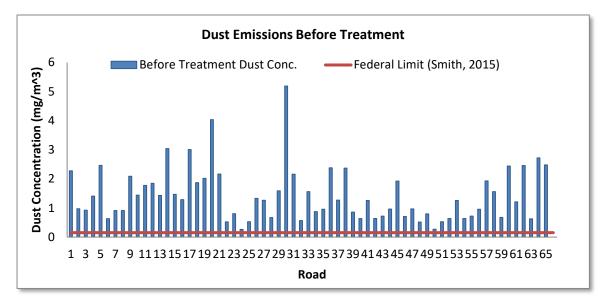


Figure 4.12 Recorded dust concentrations

Dust emission rates after treatment were collected from 25 roads. Table 4.9 highlights descriptive statistical values for recorded dust concentrations. It can be noted that the mean dust concentration value for gravel roads after treatment was found to be equal to 0.08 mg/m3. This value is below the federal limit specified for PM₁₀. It can be concluded that dust treatment is very effective in reducing dust generations from gravel roads. A mean reduction value of 1.358 mg/m3 of dust was achieved by applying chemical treatment. This is equal to almost 95% of the total dust generated from these roads before treatment. Figure 4.13 illustrates the recorded dust concentrations from tested roads after treatment. It can be noted that most roads are below or within the federal limit. Figure 4.14 compares the concentrations of dust on the roads before and after treatment. The comparison confirms the effectiveness of chemical treatment in significantly reducing dust and improving overall air quality conditions.

Table 4.9 Descriptive Statistics for After Treatment Dust				
After Treatment Dust Emissions Descriptive Statistics				
Mean 0.0	8			
Standard Error 0.0	1			
Median 0.0	5			
Standard Deviation 0.0	7			
Minimum 0.0	2			
Maximum 0.2	9			
Count 2	5			

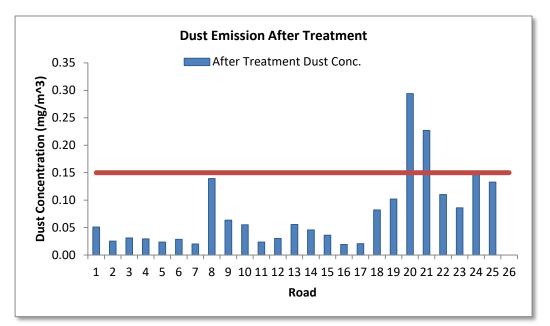


Figure 4.13 After treatment dust emissions

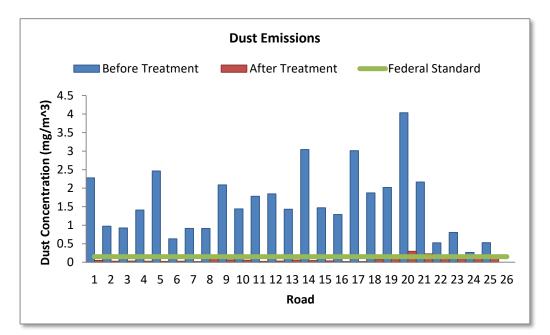


Figure 4.14 Comparing dust emissions before and after treatment

4.5 Chapter Summary

This chapter summarized data collection methods used to study and evaluate the effectiveness of the CMAQ program in Wyoming. It described the data collection process followed to collect data related to dust generation from gravel roads. This included evaluating all factors believed to contribute to dust generation and mitigation from gravel roads. These factors included traffic characteristics, soil and aggregate parameters, weather conditions, and dust concentrations. This chapter also provided exploratory and statistical analyses of the collected data. Exploratory analysis was conducted to examine trends and values of traffic characteristics, dust concentrations, soil properties, and climate and weather conditions. Traffic speeds and volumes were examined to determine their variations and effect on CMAQ-funded roads. Dust concentrations were the most important factor, as measuring dust generations before and after the applications of CMAQ-funded chemical dust suppressant treatment determined the effectiveness of the treatment. The analysis indicated that dust concentrations before treatment were in violation of EPA standards. However, dust treatment efforts paid by CMAQ funds proved to be effective in reducing dust concentrations to nearly zero values.

5. PERFORMANCE MODELS FOR CHEMICAL DUST TREATMENT

5.1 Introduction

As part of the multiple year study conducted by the Wyoming Technology Transfer Center, a secondary objective was to measure and evaluate the performance of chemical dust suppressant treatment on gravel roads. Dust emission rates were measured, and road surface condition deteriorations were assessed to develop performance models that predict performance of the chemical treatment over time. Such models can aid counties and local agencies in better understanding the life-cycle of chemical treatment on gravel roads over time, and can result in the implementation of more cost-effective treatment strategies. Another goal of the study was to quantify the benefit of applying chemical dust suppressant treatment to gravel roads. By quantifying the benefit in terms of dust reduction achieved by the application of the chemical treatment, counties can quantitatively justify the use of CMAQ and other funds to purchase and apply dust suppressant treatment to their gravel roads.

5.2 Experimental Study

Fugitive dust emissions from 11 recently treated gravel roads located in five different counties in Wyoming were measured periodically for one year. Visual survey ratings of the 11 roads were taken each time. Surfacing moisture samples were collected, and traffic speeds and volumes by class were collected using a two-tube traffic counting system. Surfacing aggregate samples were also collected, and their gradations were determined.

Figure 5.1 illustrates the location of the five counties chosen for this study. Table 5.1 highlights the county road sections tested and some of their properties. The table includes dust concentrations right after treatment, and after one month, three months, six months, and one year of treatment.

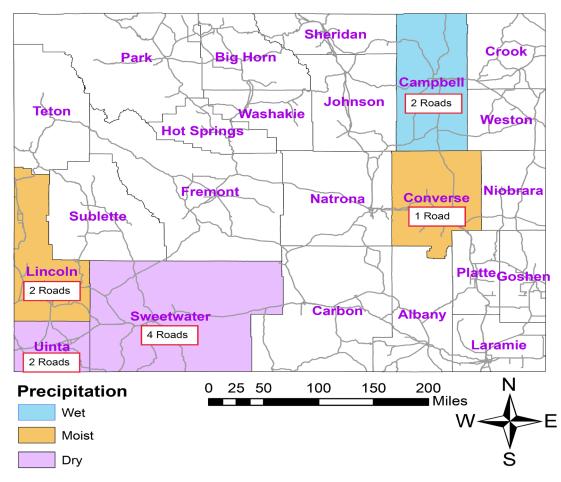


Figure 5.1 Wyoming counties included in the study

County	Road	ADT	85th Traffic speed (mph)	AASHTO	%Passing #200
	1. Wamsutter	546	48	A-2-4	10.5%
Same at a start of a st	2. Eden Ryepatch	328	39	A-1-a	8.4%
Sweetwater	3. Eden Reservoir	168	37	A-1-b	14.9%
	4. County line Rd	184	50	A-1-b	2.9%
Uinta	5. Piedmont Rd 173	204	39	A-2-6	6.0%
	6. Piedmont Aspen Rd 171	90	35	A-1-a	6.0%
Lincoln	7. Gomer	80	44	A-2-6	12.5%
	8. Sublet-Pomery	120	47	A-1-a	8.9%
Converse	9. Jenne Trail	536	43	A-1-b	14.1%
Commhall	10. Black and Yellow	504	45	A-2-6	11.1%
Campbell	11. Turner Crest	288	41	A-2-6	8.1%

Table 5.1 Summary of Studied Roads Properties

5.2.1 Data Collection

Data collection was performed on each selected road after it was treated with a suppressant. Data collection for each road consisted of setting up a stationary dust concentration measurement device and a traffic counter, and allowing these to run for three hours. During this three-hour period, aggregate and

moisture samples, wind and temperature readings, and dust concentrations from a mobile dust monitoring unit were collected. An aggregate sample was collected from three locations and considered as a representative of the overall aggregate composition of the road section. Laboratory analysis of the aggregate sample determined aggregate gradation and clay content. In order to determine the water content of the soil, three moisture samples were taken during data collection and were averaged to get a representative value for each road. Wind and temperature readings were taken throughout the data collection period to determine the in-situ weather conditions. A handheld weather gauge was used to collect these readings. Readings were taken every half hour during the three-hour data collection period. To determine traffic characteristics, an Apollo Traffic Counter/Classifier was used. The Apollo system consisted of the traffic counter box and two pneumatic tubes, which were stretched across the roadway and connected to the box. The counter collected information on vehicle type, volume, and speed. The traffic counter was set up at the beginning of data collection and allowed to run for the entire three-hour collection period.

In order to determine dust concentrations from the road, two devices were used. The first of these was the HAZ-DUST EPAM-5000, which is a stationary dust monitoring device. This unit is a high sensitivity real-time particulate air monitor. The unit operates by drawing dust particles into a sensor head and detecting particles once every second. Dust concentrations are instantaneously calculated and all data points are stored in the unit memory for later analysis (Environmental Devices Corporation, 1999). In order to determine the PM₁₀ pollution from a road, the unit was fitted with a 10µm inlet sleeve. An EPAM-5000 was placed on each side of the road being tested approximately one to two feet from the edge of the traveled way. To begin a data collection period, the device was turned on and set to run. Once a data collection period was complete, the device was turned off. The device could later be connected to a personal computer and the data collected could be downloaded. The unit was set up at the beginning of data collection and allowed to run for the entire three-hour collection period. The second device used to determine dust concentrations was the Colorado State University (CSU) Dustometer. This device is attached behind a vehicle and used while traveling. The mobility of the device, as well as the short duration of each test, means that many data points can be recorded in one day (Sanders, Ouavenortey, & Jorgensen, 2015). The Dustometer system includes a 2000W generator, a 1/3 hp high volumetric suction pump, and a fabricated steel box that holds an 8-inch x 10-inch microfiber glass filter. The setup also includes a two-inch flexible hose that connects the vacuum pump to the filter box. The filter box is attached to the vehicle via a steel plate bolted to the vehicles bumper. The generator and the suction pump are attached via a hitch mounted cargo carrier. The on/off switch for the device is located next to the driver's seat. This means the entire setup can be operated by one person.

A Chevrolet Suburban was used to perform the dust measurements. A one-mile test section was marked out before any measurements were taken. To perform a measurement, a pre-weighed filter paper was inserted into the filter box. The generator mounted on the cargo carrier was started and the device was readied for a data collection run. The vehicle was started and brought to a speed of 40 mph. At the start of the one-mile section, the suction pump was turned on. At the end of the one-mile section, the suction pump was turned on. At the end of the one-mile section, the suction pump was turned on. At the end of the one-mile section, the suction pump was turned off, and the vehicle was brought to a stop. The pre-weighed filter, which had collected dust throughout the measurement, was carefully inserted into a sealed bag to be re-weighed at the laboratory. For each test section, three replicate dust measurements were made. The average of these three measurements was used to determine the concentration of dust on the road in grams per mile before and after treatment.

The modified PASER WYT2/LTAP rating guide, which uses visual surveys to rate the road on a scale of 1 to 10, was used to assess tconditions of the tested roads. (Wyoming Technology Transfer Center, 2014). Figure 2.8 in Chapter 2 shows an overview of the modified PASER rating guide.

5.3 Data Analysis

Data were collected periodically from the studied roads. Data collection took place at several stages. These stages included before the chemical treatment was applied and right after treatment, and after one month, three months, nine months, and one year of treatment. Data collected included dust concentrations, moisture samples, road conditions, traffic characteristics, temperature, and wind speeds. Collected data were organized and analyzed. Analysis was divided into three sections. Exploratory analysis was conducted to examine trends in dust generation and road condition deterioration over time. Statistical analysis was conducted to examine factors that contribute to dust generation, mitigation, and road deterioration. Finally, a life-cycle cost analysis was conducted in Chapter 6 to compare the cost of maintaining untreated gravel roads with the cost of maintaining treated gravel roads over a two-year period. The purpose was to evaluate the economic worth of each option to help counties make economically sound capital investment decisions.

5.3.1 Exploratory Analysis

Collected periodic dust concentrations were plotted in Figure 5.2 to examine how dust generation on gravel roads performs over time. A performance curve was developed to predict dust concentration values over one year. Equation 1 presents the developed model to estimate dust concentrations as a function of time. Figure 5.2 illustrates chemical treatment performance over time with roads with the highest, lowest, and average dust production rates highlighted. Equation 2 shows a formulation developed to predict dust production rates over time.

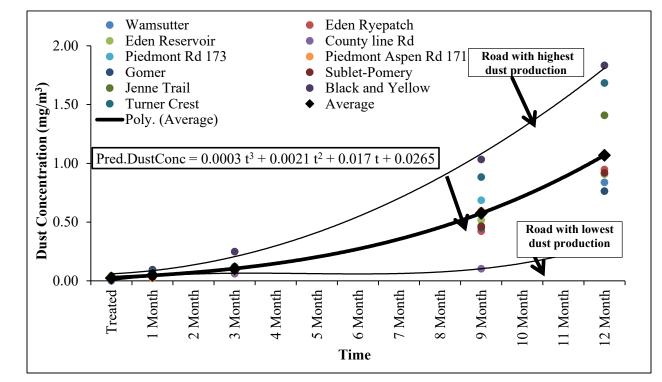


Figure 5.2 Chemical treatment performance over time

Note: For Piedmont Rd 173 and Piedmont Aspen Rd 171, after one year, data were not collected due to the road being chemically re-treated again before the proposed testing date.

Data were collected for Jenne Trail Rd in Converse County before and right after treatment and after one year of treatment.

Predicted Dust Concentration $(mg/m^3) = f(t) = 0.0003 * t^3 + 0.0021 * t^2 + 0.017 * t + 0.0265$ (1)

Dust Production Rate (mg/m³/month) =
$$\frac{d}{dt} f(t)$$

Where: t = time in months

PASER windshield road condition ratings were also plotted in Figure 5.3 to examine road condition performance over time. From the data in Figure 5.3, it is apparent that applying chemical treatment improves road conditions. Equation 3 highlights a model developed to predict the PASER condition rating of a gravel road over time.

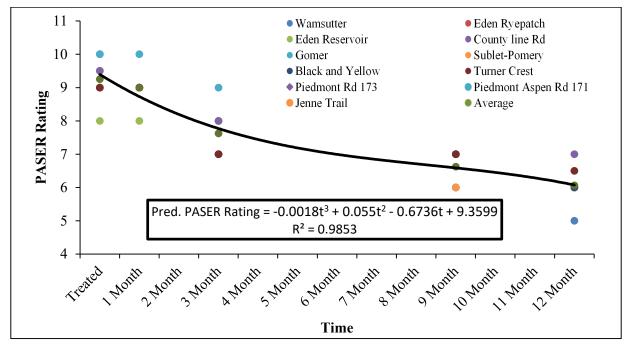
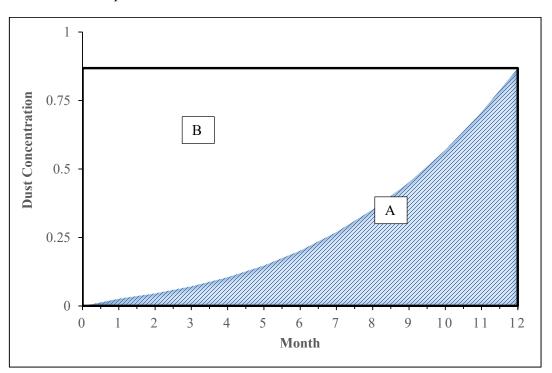


Figure 5.3 PASER windshield road surface condition ratings over time

Predicted PASER Rating = $-0.0018t^3 + 0.055t^2 - 0.6736t + 9.3599$

(3)

(2)


Where: t = time in months

5.3.2 Estimate of Dust Reduction

To quantify the benefit of dust treatment over time, annual dust reduction values were calculated. This was done by taking the difference between dust generated from the treated roads over one year and dust generated when no treatment was applied, with a conservative assumption that the same before treatment dust levels will be generated throughout the year. The reduction percentages calculated are highlighted in Table 5.2. Reduction percentage values were calculated based on equation 4 and Figure 5.4. Using this method of analysis, an average reduction value of 269 mg/m3/year, or 69%, is achieved annually by applying chemical dust suppressants on gravel roads. It is apparent that one year after treatment, dust concentrations and PASER condition ratings went back to before treatment levels, as shown in Table 5.3.

% Dust Reduction =
$$\frac{D_t * T_t - \int_{t_0}^{t_f} f(t) dt}{D_t * T_t} * 100$$
 (4)

Where: $D_t = Dust$ concentration at time *t*,

$T_t = Time period$

Note: Area A: Dust with treatment; Area B: Dust reduction; Area, (A+B): Potential dust without treatment.

Figure 5.4	Potential du	t production and	l reduction af	ter applying tr	eatment
------------	--------------	------------------	----------------	-----------------	---------

County	Road	T-Dust per year (mg/m³/year)	U-Dust per year (mg/m³/year)	Reduction %
	1. Wamsutter	132	486	73%
Same atom to a	2. Eden Ryepatch	114	236	52%
Sweetwater	3. Eden Reservoir	127	388	67%
	4. County line Rd	39	208	81%
Linto	5. Piedmont Rd 173	78	321	76%
Uinta	6. Piedmont Aspen Rd 171	65	350	81%
Lincoln	7. Gomer	111	355	69%
Lincoln	8. Sublet-Pomery	120	338	64%
Commhall	9. Black and Yellow	264	736	64%
Campbell	10. Turner Crest	220	537	59%

 Table 5.2 Annual Dust Reduction Values Resulting from Applying Dust Treatment

T-Dust: Annual amount of dust generated from treated gravel roads

U-Dust: Annual amount of dust that would have been generated if roads were not treated

14010 3.0	Dust Concentration			PASER Condition Rating		
Roads	1 Month before treatment	1 Year after treatment	Reduction after 1 Year	1 Month before treatmen t	1 Year after treatment	Reduction after 1 Year
Wamsutter	1.33	0.84	0.49	6	5	1
Eden Ryepatch	0.65	0.95	-0.30	7	6	1
Eden Reservoir	1.06	0.91	0.16	6	6	0
County line Rd	0.57	0.32	0.26	7	7	0
Gomer	0.97	0.76	0.21	8	6	2
Sublet-Pomery	0.93	0.92	0.01	8	6	2
Jenne Trail	0.91	1.41	-0.50	-		
Black and Yellow	2.02	1.83	0.18	6	6	0
Turner Crest	1.47	1.68	-0.21	6	6.5	-0.5
Average	1.10	1.07	0.03	6.75	6.06	0.69

Table 5.3 Comparison of Dust Reduction and PASER Condition Rating After a Year

5.3.3 Statistical Analysis

A paired t-test with a 95% confidence level was conducted to compare the population means of dust concentration data before treatment was applied and dust concentrations after nine months, and one year of treatment applications on each of the 11 monitored roads. As highlighted in Table 5.4, one tailed P-value was found to be significant, indicating the population means for dust concentration observations before and after nine months of treatment are different. This indicates that dust generation levels after nine months of treatment did not reach pre-treatment levels. For the paired t-test comparing dust concentration levels before treatment and after one year of treatment, the P-value was found to be not significant, indicating that dust concentration levels after one year are back to before-treatment levels. A conclusion can be drawn that matches existing knowledge where chemical dust treatments on gravel roads have a lifetime period of approximately one year.

Table 5.4 One Tab	I Paired I-Test	
	Untreated	After 1 year
Mean	1.101488438	1.06890162
Variance	0.199883151	0.23199143
Observations	9	9
Pearson Correlation	0.776422014	
Hypothesized Mean Difference	0	
df	8	
t Stat	0.313107066	
P(T<=t) one-tail	0.38110327	
t Critical one-tail	1.859548038	

 Table 5.4
 One Tail Paired T-Test

To assess what variables contribute to dust generation and reduction, a regression analysis was run to evaluate the relationships between the amount of annual dust generated from treated roads (mg/m³/year) and traffic features, soil characteristics, and climate conditions on each of the studied roads. Using the SAS statistical analysis software, a multiple regression analysis was performed with the annual amount of dust generated from treated roads as the dependent variable, and the ADT, ADTT, 85th percentile traffic speed in mph, the moisture content in the road soil before treatment, the average moisture content of the road soil after treatment, the soil plasticity index (PI), the annual rainfall in inches, and the amount of fines in the soil passing the #200 sieve as the independent variables. The SAS code script used in the analysis is attached in Appendix B.

As shown in Table 5.5, the results reveal that significant statistical evidence exists to conclude that ADT, ADTT, plasticity index, and the soil moisture content before treatment are not significant predictors of dust generated from treated roads and can thus be dropped from the model. Using the Bayesian Information Criterion (BIC) tool in SAS for model selection, it was found that the most significant prediction model is one that includes the 85th percentile traffic speed, the amount of fines in the soil passing the #200 sieve, and the average moisture content of the soil after treatment as independent variables to predict the annual dust generated from chemically treated roads. The results indicate that the model coefficient of determination is equal to 82%, indicating that 82% of the variation in annual dust levels is explained by the predictors.

Table 5.5 Talameter	Estimation Results for Fre	caleting Dust	
Variables	Parameter Estimates from OLS Model		
variables	Initial Model	Final Model	
Intercept	-222.0	-144.0	
ADT	0.00889	-	
ADTT	-0.07114	-	
Traffic Speed (mph)	11.62	8.999*	
%Fines passing #200 sieve	12.16	9.988**	
Moisture Content Before	13.91	-	
Treatment			
Average Moisture Content After	-106.7	-75.48**	
Treatment			
Soil Plasticity Index PI	-1.123	-	
Number of Observations	10	10	
	Goodness of Fit		
BIC	112.7	84.72	
R-Square	0.8736	0.8176	
Adj R-Square	0.4311	0.7264	

 Table 5.5
 Parameter Estimation Results for Predicting Dust

Note: *P<0.05, **P<0.01

Equation 5 is a linear equation developed to predict the annual amount of dust to be generated by chemically treated roads.

$$\hat{\mathbf{Y}} = -144.0 + 8.999 \, X_1 + 9.988 \, X_2 - 75.48 \, X_3 \tag{5}$$

Where:

Ŷ: Predicted annual amount of dust generated from chemically treated roads (mg/m³/year) X_1 : 85th percentile traffic speed (mph)

 X_2 : Amount of fines in the soil passing the #200 sieve (%)

 X_3 : Average moisture content of soil after treatment

Equation 5 suggests that an increase in traffic speed on a gravel road would increase the predicted annual amount of dust generated from a treated road. Another observation from equation 5 is that as the amount of fines in the soil passing the #200 sieve increases by 1%, and the traffic speed on the road increases by one mph, the predicted annual amount of dust generated would increase by 18.99 mg/m³/year when the post-treatment soil moisture content is held constant. This shows that both traffic speed and the amount fines in the road soil contribute to an increase in dust generation. A conclusion can be drawn that chemical dust treatment will have a better performance on roads with less fines in their soil content and slower traffic speeds.

5.4 Chapter Summary

This chapter discussed the methodologies, data collection, data analysis, and results of this research study's second objective. The chapter explained the methodologies and the data collection procedures conducted to evaluate the performance of chemically treated roads over time. Eleven recently treated roads were periodically monitored for one year. Monitoring included the measurement of dust emissions, traffic volumes, soil aggregate properties, soil moisture content, and road surface conditions. Collected data were then explored and analyzed, and several results were reached. A performance model was developed that predicts the amount of dust to be generated from chemically treated gravel roads over time. Another model was developed that depicts the performance of road surface conditions and predicts their deterioration over time. An exploratory analysis also helped quantify the benefits of using dust chemical treatment on gravel roads. A 70% reduction of dust generation is achieved annually by applying chemical dust suppressant treatment to gravel roads. Statistical analyses confirmed the observed results that the service life of chemical treatment on gravel roads is about one year.

In addition, the chapter described statistical regression analysis conducted on the collected data. Statistical regression analysis established relationships between annual amount of dust generated from chemically treated roads and different roadway characteristics. A linear regression model was developed to predict annual dust emission rates from chemically treated gravel roads. The results found in this chapter contribute to a growing body of literature about the behavior and performance of chemical treatment on gravel roads. Such knowledge can aid agencies and decision makers in implementing more cost-effective strategies to manage and maintain their gravel road asset network.

6. LIFE-CYCLE COST ANALYSIS

6.1 Introduction

Transportation agencies and local governments are always faced with the dilemma of making decisions to allocate limited available funding to projects. The decision-making process is always complex and involves a mixture of scientific, political, institutional, social, environmental, human, and economic factors. Engineers are tasked with making economic decisions when selecting projects, evaluating alternatives, and dealing with operational and maintenance costs (Rugani, 2016). As part of the comprehensive study conducted by the Wyoming Technology Transfer Center to assess the effectiveness of applying dust treatment on gravel roads, a life-cycle cost analysis was conducted to compare the cost of maintaining untreated gravel roads with the cost of maintaining treated gravel roads. Life-cycle cost analysis is defined as a "process for evaluating the total economic worth of a usable project segment by analysing initial costs and discounted future cost, such as maintenance, reconstruction, rehabilitation, restoring, and resurfacing costs, over the life of the project segment" (Kane, 1996). This chapter describes the methods followed to obtain the cost data and conduct the cost analysis.

Maintenance of gravel roads depends on many different road parameters. These include the road soil characteristics, traffic composition (including vehicle and truck traffic volumes), and the environment (including climate, temperature, and precipitation rates). Due to limited funding available to counties and local agencies in Wyoming, local jurisdictions are finding it challenging to provide adequate care and maintenance to their roads. The state of Wyoming only awards CMAQ funding to counties impacted by industrial and energy operations. The available CMAQ funding is very limited, and counties must submit an application and provide a 20% local match to be awarded CMAQ funds.

6.2 Cost Data

Johnson County, located in the north-central part of Wyoming, was chosen for the analysis. Detailed cost data, which included maintenance and treatment works of eight gravel roads in the county for fiscal years 2013/2014 and 2014/2015, were obtained from Johnson County. Five of these roads were annually treated using a chloride dust suppressant. The other three roads were only maintained throughout the two years with no chemical treatment applications. Appendix C includes the cost data obtained

6.3 Data Organization

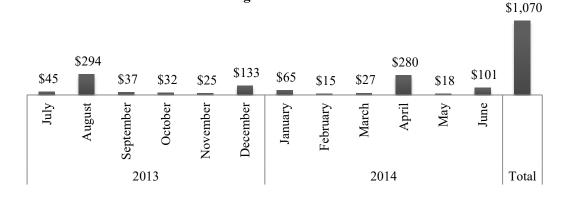
The data obtained was summarized to calculate the costs per mile for each treatment work and maintenance type. Cost data pertaining to untreated roads maintenance costs are highlighted in Table 6.1. The table shows the amount of funds Johnson County had to invest to maintain the three roads in serviceable conditions. Buffalo Sussex road cost Johnson County more than \$9,000 per mile to maintain in two consecutive years. Irrigary and Lower Sussex roads, however, cost around \$2,500 per mile to maintain in two years. This variation highlights the complexity and the differences in maintenance needs among gravel roads even when located in the same county.

Year	Road	Cost	Miles	Cost/Mile
2014	Buffalo sussex	\$18,675	28	\$667
2015		\$234,246		\$8,366
2014	Irrigary	\$4,260	16.5	\$258
2015		\$36,066		\$2,186
2014	Lower sussex	\$11,484	11.86	\$968
2015		\$22,394		\$1,888

 Table 6.1
 Summary of Untreated Roads Maintenance Costs

Table 6.2 highlights the costs per mile associated with applying chemical treatment on five gravel roads. It was found that for 2014, the average cost per mile for applying chemical dust treatment in Johnson County was around \$4,405. For 2015, the average cost was around \$4,845. The relatively similar cost per mile for the two years indicates that Johnson County used similar operations in applying chemical dust suppressant treatment to its gravel roads.

Cost per	mile of annual c	hemical treatment		
Year	Project	Avg cost/mile		
2014	Chemical	\$4,213		
2015	Treatment	\$4,650		
		Average:	\$4,431	Per Mile


Johnson County had two classifications for maintenance work done on gravel roads: general maintenance (GM) and major work. Table 6.3 shows the costs associated with the work types. Major work includes efforts like purchasing, hauling, blading and patching gravel, loading trucks, and laying gravel on the road. Table 6.3 also highlights that Johnson County spent more money on maintenance in 2015 than in 2014. The average maintenance cost per mile in 2014 was \$631. For 2015, the average cost was calculated to be around \$4,150. The significant difference highlights the high spending by Johnson County on rehabilitation projects on the studied gravel roads.

	Tab	le 6.3 Maintenance Cost/M	ile	
Cost per	r mile for maintena	nce of untreated roads		
Year	Project Type	Average cost/mile	Yearly average	
2014	GM GM	\$295 \$207	\$341	
2015 2014	Major Work	\$387 \$336	\$2,048	
2015	Major Work	\$3,759	. ,	
		Total:	\$2,389	Per Mile

6.4 Preliminary Analysis

Analyzing summarized data indicated that major work projects are done once every two years, with an average cost of \$3,760/mile/year. When no major work is done, general maintenance and minimum road work cost around \$340/mile/year on average. Figure 6.1 highlights projected spending per mile for the untreated roads for the two fiscal years of 2014 and 2015. It can be noted that major rehabilitation work was conducted in the second year, costing approximately \$7,800 per mile.

Analysis of the cost data for the chemically treated roads revealed that once treatment is applied and completed, no maintenance work is conducted for the life-cycle of the treatment. It was found that, on average, Johnson County spends \$4,665 per mile annually on applying chemical treatment to gravel roads, with the dust suppression agent costing the most. It was also found that chemical dust treatment is only applied once per year. Table 6.4 illustrates the average annual costs per mile of chemical treatment applications and maintenance work done by Johnson County for the consecutive fiscal years of 2014 and 2015.

2014 Average Maintenance Cost/Mile

2015 Average maintenance cost/mile

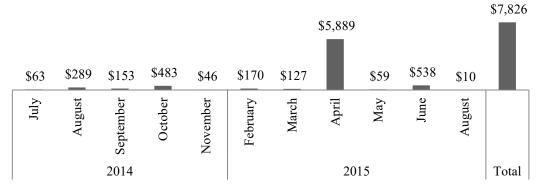


Figure 6.1 Average maintenance cost/mile for untreated roads

Year	Average Annual Cost of Treatment / mile (Std. Deviation) for Treated Roads	Average Annual Cost of Maintenance / mile (Std. Deviation) for untreated Roads
2014	\$4,845 (\$466)	General Maintenance: \$295 (\$30) Major Work: \$336 (\$261)
2015	\$4,406 (\$281)	General Maintenance: \$387 (\$194) Major Work: \$3,759 (\$2,794)

Table 6.4 Average Annual Cost of Chemical Treatment and Maintenance Work per Mile

6.5 Life-cycle Cost Analysis

6.5.1 Life-cycle Assessment Assumptions

The following assumptions were made and followed throughout the analysis process:

- For both treatment and maintenance operations, for a median traffic speed of 40 mph, assuming it will cost 28¢ per mile to operate a passenger car* at 40 mph on pavement, it will cost 39¢ per mile to operate it on a gravel road at the same speed (Kentucky Transportation Center, 2003).
 * 1984 Federal Highway Administration statistics quote an operating cost of 28¢ per mile for an intermediate size passenger car traveling on average suburban pavement.
- Costs included in the analysis are the average costs per mile.
- As found earlier, the life-cycle of chemical treatment is one year, and the life-cycle of major rehabilitation work on gravel roads is two years.
- Once a road is treated, no maintenance or work is needed for the lifetime of the treatment.
- Once major maintenance work is done to a gravel road, no maintenance is needed during the same year, but general maintenance costing \$1,070/mile is needed for the second year.
- The analyzed roads all had an ADT > 150.

6.5.2 LCC Analysis

Life-cycle cost analysis was conducted to compare the life-cycle cost of maintaining chemically treated roads with the life-cycle cost of maintaining untreated roads. The analysis is highlighted in Table 6.5, with the cost of both alternatives analyzed and compared over two years. As the data from Johnson County indicated, major maintenance work is applied to untreated gravel roads once every two years, whereas for treated roads, treatment is applied annually.

	Untreated Gravel roads	Chemically treated Gravel Roads
Capital Cost		
Initial cost	\$ 7,826	\$ 4,665
Life time	2 Years	1 Year
User cost during construction	\$ 4	-
Recurring cost	-	\$ 4,665
Operation and maintenance cost		
Cost in Year 1	-	-
Cost in Year 2	\$1,070	-
Total:	\$ 8,900	\$9,329

	Table 6.5	Life-cycle	Cost Anal	lysis
--	-----------	------------	-----------	-------

Data from Table 6.5 indicate that when evaluated over two years, maintaining chemically treated gravel roads is \$429 more expensive than maintaining untreated gravel roads. Initial examination suggests that maintenance of untreated gravel roads is more cost-effective than maintenance of chemically treated roads due to the high initial cost of applying chemical treatments. However, it is critical to include the user cost associated with air pollution caused by dust generated from untreated roads. As the literature review suggested, dust is an air pollutant harmful to nearby humans, animals, plants, and water sources and can undermine safety on gravel roads due to dust caused impaired visibility. It was difficult to come up with a monetary value to assign a cost to air pollution caused by dust particles generated from untreated gravel roads. However, knowing that a difference of only \$429 was calculated between the costs of maintaining chemically treated gravel roads and the cost of maintaining untreated roads, it may be concluded that applying chemical treatment is more cost efficient and will result in significant reductions of dust.

6.6 Chapter Summary

In this chapter, a life-cycle cost analysis was conducted to compare the cost of maintaining chemically treated roads with the cost of maintaining untreated roads. Cost data were obtained from Johnson County, Wyoming, and analyzed to compare the average cost per mile for each alternative. Obtained data included detailed two years' data of maintenance costs associated with maintaining three untreated roads in Johnson County. Data also included two years of detailed costs associated with applying chemical dust suppressant treatment on five roads located in different parts of the county. Data were summarized to enable a clear comparison of the cost per mile associated with applying chemical dust treatment on gravel roads and the cost per mile associated with maintenance work on untreated roads. A life-cycle cost analysis was conducted to compare the two alternatives. The results suggest that applying chemical dust treatment is more cost efficient when considering the air quality improvement benefits achieved by applying the dust suppressant.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

This study was part of a multiple year study conducted by the Wyoming Technology Transfer Center to assess the effectiveness of using chemical dust suppressant treatment on gravel roads. The research was divided into three objectives and included the use of field collected data and comprehensive statistical analysis to measure and evaluate chemical treatment effectiveness. The conclusions summarized in this chapter add valuable knowledge to a growing body of literature regarding the maintenance and management of low-volume gravel roads. The recommendations discussed in this chapter should help local agencies and decision makers better understand the performance of chemical treatment on gravel roads and develop cost-effective strategies to manage and maintain their gravel road networks.

Objective 1 of this study included the continuation of the CMAQ effectiveness study started in the summer of 2014. This involved including more counties and testing more CMAQ-funded roads. Testing included measuring dust emission rates, surfacing aggregate type, soil moisture content, road traffic characteristics, and weather conditions before and after chemical treatment was applied. Field data were collected from CMAQ-funded roads in Campbell, Carbon, Converse, Crook, Johnson, Lincoln, Sheridan, Sweetwater, Teton, Uinta, and Weston counties in Wyoming.

Objective 2 of this research study developed performance models for treated gravel roads to assess the effectiveness of using chemical dust treatment. This objective included periodically collecting field data from several chemically treated roads. The collected data were then analyzed to model the performance of fugitive dust generations and road surface conditions. Models were developed to predict dust emissions and road surface condition over time. The annual amount of dust reduction achieved by applying chemical dust treatment was also determined by analyzing the collected data. Statistical analysis was also utilized to determine the service life of chemical treatment on gravel roads, as well as assess the relationship between the different factors contributing to dust generation from treated gravel roads over time.

Objective 3 of this research was a life-cycle cost analysis study that looked at comparing the cost of maintaining untreated roads with the cost of maintaining treated roads. Actual field data were obtained from Johnson County and analyzed to conduct the comparison study. The data obtained included detailed monthly cost data for different work activities for three roads in Johnson County that were maintained periodically, but without the use of chemical treatment. In addition, detailed cost data for five roads in Johnson County chemically treated on a yearly basis were collected. The life-cycle cost analysis conducted compared the two options as alternatives for counties to use when deciding on their asset preservation strategies.

7.2 Conclusions

The data collected for each of the three objectives were summarized and analyzed. Analysis included the use of descriptive, comparison, and statistical analyses. Conclusions reached from the conducted analysis for each of the three objectives are addressed as the following:

7.2.1 Objective 1:

- Traffic volumes reported on CMAQ county roads ranged from 24 vehicles per day to 2,574 vehicles per day. The literature review suggests that roads with traffic volumes higher than 500 should be paved. The average traffic volume for all the roads was around 270 vehicles per day.
- Truck traffic on CMAQ roads also ranged from 0 trucks per day to 420 trucks per day, or 71% of the overall traffic on the road. The high truck traffic shows the increase of oil and gas activities in some Wyoming counties and highlights its impact on local county roads.
- Traffic speeds on CMAQ roads ranged from 10 mph to 74 mph. The average recorded speed was 45 mph, which is higher than the 30 mph posted speed limit on most county gravel roads. Traffic speed has been linked to higher dust generation and faster deterioration rates. This indicates that more law enforcement is needed on gravel roads to ensure drivers follow the speed limit.
- Almost all CMAQ-funded roads were composed of granular materials, with less than 35% of fines passing the #200 sieve. The roads tested were AASHTO classified as:
 - 21 roads classified as A-1-a
 - o 26 roads classified as A-1-b
 - 7 roads classified as A-2-4
 - 11 roads classified as A-2-6
- Most CMAQ tested roads were found to have high dust emission rates that violate the Environmental Protection Agency requirements before treatment. The reported high concentrations highlight the need for dust suppressant treatment.
- Variable dust emission rates were also recorded from the tested CMAQ roads, indicating that CMAQ roads in various Wyoming locations generate varying dust emissions.
- Chemical dust treatment significantly reduced dust emissions to values below the federal PM₁₀ concentration limits.
- Dust Mitigation efforts paid by CMAQ funds are effective in significantly reducing dust generation and improving air quality.

7.2.2 Objective 2:

This study was set out to assess the performance of chemical dust treatments on gravel roads and evaluate their effectiveness. The aim was to develop an understanding of the deterioration behavior of roads treated with dust suppressants and predict the service life of the treatment. The findings suggest the following:

- In general, the service life of chemical dust suppressant treatments on gravel roads ranges from 10-12 months before dust generation levels and road surface conditions return to before-treatment levels.
- An average of 269 mg/m3/year of dust reduction was achieved over a year by applying chemical dust treatment to gravel roads.
- This is equal to almost 70% reduction percentage of the total dust that could have been generated over one year.
- The statistical investigation also proved there is no difference between dust emission rates before treatment and after one year of treatment. This indicates that the service life of chemical treatment on gravel roads is around one year. This finding adds to a growing body of literature on dust control treatment service life and its behavior over time.
- The second major finding of the statistical analysis was that traffic speeds, the amount of fines in the soil passing the #200 sieve, and average soil moisture content after treatment are all significant factors that contribute to annual dust generation from chemically treated roads.

- These findings can indicate that gravel roads with granular soil-aggregate mixtures (35% or less of total sample passing No. 200 sieve) contribute to better annual dust reduction and more effective chemical treatment.
- The findings also indicate that slower traffic speeds on gravel roads contribute to better annual dust reduction and more effective long-term chemical treatment.

7.2.3 Objective 3:

Life-cycle cost analysis was conducted to compare the cost of maintaining treated roads with the cost of maintaining untreated roads. The main findings are highlighted as the following:

- The findings of the life-cycle cost analysis initially suggested that maintaining untreated gravel roads is slightly cheaper than maintaining treated gravel roads. This is due to the high initial cost of applying chemical dust treatment to gravel roads.
- A difference of only \$430 was calculated between the two maintenance programs.
- It is concluded that applying chemical dust treatment is more cost effective when considering the environmental and safety benefits achieved by the significant reduction in dust emission.
- On average, chemical treatments cost around \$4,450 per mile to apply on gravel roads.
- Once chemical treatment is applied, no maintenance work of the treated road is needed for almost one year.
- Untreated roads needed regular maintenance on a monthly basis.
- Average maintenance cost of untreated roads was around \$340 in 2014 and \$2,000 in 2015. The significant difference indicates that counties conduct major rehabilitation work once every two years.

7.3 Recommendations

This research has thoroughly investigated the use of chemical dust treatment as part of the CMAQ program in Wyoming. The findings conclude that chemical dust treatment is effective in reducing dust generation and improving gravel road serviceability. CMAQ dollars to fund dust treatment projects are being used efficiently. For Wyoming agencies responsible for allocating CMAQ funds, the following are recommendations based on findings of the study:

- Dust mitigation has proven to be very effective in improving air quality. It is recommended that CMAQ funds be used to finance dust mitigation projects.
- Gravel roads experiencing higher traffic volumes will generate more dust and should be prioritized when scheduling chemical treatment.
- Gravel roads in drier climate areas will generate more dust and should also be prioritized when scheduling chemical treatment.
- Performance models developed in Chapter 5 can be used to estimate future dust generations from chemically treated roads.
- The performance models developed provide useful tools for decision makers to better decide where to allocate CMAQ funds.

7.4 Future Studies

In the course of this investigation, numerous learned lessons suggest more research is needed to better quantify and assess the long-term effectiveness of chemical treatment on gravel roads. Future research should therefore concentrate on investigating the following:

- Continue the data collection process to include more CMAQ-funded roads in the analysis.
- Measure the amount of gravel lost over time as roads deteriorate.
- Monitor the performance and cost of different unpaved road chemical treatment products and maintenance practices over several years.
- Document long-term gravel loss, road performance, and user cost to develop predicting performance models.

REFERENCES

- Barnes, D. (2014). *Managing Dust on Unpaved Roads and Airports*. Fairbanks: Alaska University Transportation Center.
- Bolander, P. (1999). *Dust Palliative*. Retrieved February 8, 2016, from United States Department of Agriculture: http://www.ecy.wa.gov/programs/air/pdfs/Dust Palliative.pdf
- Burger, A., Henderson, M., & van Rooyen, G. (2007). "Development of Scheduling Algorithms for Routine Maintenance of Unsealed Roads in Western Cape Province, South Africa." *Transportation Research Record: Journal of the Transportation Research Board, No. 1989*, 240-249.
- Eaton, R. A., Gened, S., & Dernn, R. S. (1987). "A Method for Rating Unsurfaced Roads." *Transportation Research Record*, 34-43.
- Edvardsson, K., & Magnusson, R. (2009). "Monitoring of dust emission on gravel roads: Development of a mobile methodology and examination of horizontal diffusion." *Journal of Atmospheric Environment*, 889-896.
- Environmental Devices Corporation. (1999). *HAZ-DUST Environmental Particulate Air Moniter User Guide, Model: EPAM-5000*. Retrieved from http://environmentaldevices.com/hazdust-products/epam-5000/
- Environmental Devices Corporation. (2014). *Model EPAM-5000*. Retrieved 06 27, 2016, from Environmental Devices Corporation: http://environmentaldevices.com/wp-content/themes/environmentaldevices/pdfs/epam-5000.pdf
- Environmental Protection Agency. (2003). *Dust Control and Stabilization*. Retrieved February 16, 2016, from Gravel Roads: Maintenance and Design Manual: http://www.epa.gov/sites/production/files/2015-10/documents/2003_07_24_nps_gravelroads_sec4_0.pdf
- Federal Highway Administration. (2015). *Gravel Roads Constructions and Manual Guide*. Retrieved February 18, 2016, from U.S. Department of Transportation: https://www.fhwa.dot.gov/construction/pubs/ots15002.pdf
- Federal Register. (2014). Congestion Mitigation and Air Quality Improvement Program (MAP-21). Retrieved 8 16, 2016, from The Daily Journal of the United States Government: https://www.federalregister.gov/regulations/2125-AF63/congestion-mitigation-and-air-qualityimprovement-program-map-21-
- Huntington, G., & Ksaibati, K. (2011). "Implementation Guide for the Management." *Transportation Research Record*, 189-197.
- Huntington, G., & Ksaibati, K. (2011). "Management of Unsealed Gravel Roads." *Transportation Research Record: Journal of the Transportation Research Board*, 1-9.
- Kane, A. R. (1996). *National Highway System Designation Act; Life-Cycle Cost Analysis Requirements*. Retrieved from FHWA Policy Memorandum. FHWA, U.S. Department of Transportation.
- Kentucky Transportation Center. (2003). When to Pave a Gravel Road. Retrieved July 18, 2016, from United States Environmental Protection Agency: https://www.epa.gov/sites/production/files/2015-10/documents/2003 07 24 nps gravelroads appd 0.pdf
- Koch, S., & Ksaibati, K. (2011). "Performance of Recycled Asphalt Pavement in Gravel Roads." *Transportation Research Board*, 221-229.

- Langdon, B., Hicks, G., & Williamson, R. (1980). A Guide for Selecting and Using Dust Palliatives. Corvallis: Transportation Research Institute, Civil Engineering Department, Oregon State University.
- Maine Department of Environmental Protection. (2010). *Gravel Road Maintenance Manual*. Retrieved February 5, 2016, from State of Maine: http://www.maine.gov/dep/land/watershed/camp/road/gravel road manual.pdf
- National Oceanic and Atmospheric Administration. (2015). *Climate*. Retrieved June 21, 2016, from National Oceanic and Atmospheric Administration, United States Department of Commerce: http://www.noaa.gov/climate
- Office of Environmental Assistance. (2014). *Guidelines for Selecting Dust Suppressants*. Retrieved February 23, 2016, from Michigan Department of Environmental Quality: https://www.michigan.gov/documents/deq/dnre-oppca-factsheet-dustsuppressants 310381 7.pdf
- Pacific Dust Control. (2016). *Lignin Sulfonate*. Retrieved February 18, 2016, from Pacific Dust Control, Inc.: http://www.pacificdustcontrol.com/lignin-sulfonate/
- Reheis, M. C. (2006). "A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation." *Journal of Arid Environments* 67.3, 487-520.
- Rugani, L. (2016). EPA Should Incorporate Sustainability Tools and Approaches in its Decision Making More Broadly, Collaborate With NGOs and Private Sector. Retrieved from The National Academies of Sciences, Engineering, Medicine: http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=18949
- San Joaquin Valley Air Pollution Control District. (2012). *Particulate Matter (PM) Sources*. Retrieved August 2, 2016, from Air Pollution Control District: http://www.valleyair.org/air quality plans/AQ plans PM sources.htm
- Sanders, T. G. (1997). "Relative effectiveness of road dust suppressants." *Journal of Transportation Engineering*, 393-397.
- Sanders, T. G., Quayenortey, J. A., & Jorgensen, D. (2015). "Unpaved Road Dust Control in the Piceance Creek Basin in Rio Blanco County, Colorado." *Journal of Transportation Engineering*, Vol. 141, No.2.
- Skorseth, K., & Selim, A. A. (2000). U.S. Department of Transportation. Retrieved July 6, 2016, from Illinois Department of Transportation: http://idot.illinois.gov/Assets/uploads/files/Transportation-System/Manuals-Guides-&-Handbooks/T2/L019.pdf
- Smith, C. E. (2015). Ambient Air Quality Standards (AAQS) for Particulate Matter. Retrieved from California Environmental Protection Agency, Air Resources Board: http://www.arb.ca.gov/research/aaqs/pm/pm.htm
- Stroud, N. K., Ksaibati, K., & Shinstine, D. (2015). "Modeling the Impact of Energy Traffic on Local Unpaved Roads." *Transportation Research Board*, 157-165.
- The ipl2 Consortium. (2012). *ipl2: Information You Can Trust*. Retrieved June 21, 2016, from http://www.ipl.org/div/stateknow/popchart.html
- Thenoux, G., Bellolio, J., & Halles, F. (2007). *Development of a Methodology*. Retrieved February 5, 2016, from trb.org: http://trrjournalonline.trb.org/doi/pdf/10.3141/1989-35
- U.S. Department of Transportation. (2016). Air Quality, Congestion Mitigation and Air Quality Improvement (CMAQ) Program. Retrieved 8 18, 2016, from Federal Highway Administration: http://www.fhwa.dot.gov/environment/air_quality/cmaq/

- U.S. Environmental Protection Agency. (2016). *Particulate Matter (PM) Pollution*. Retrieved August 2, 2016, from US Environmental Protection Agency: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM
- US Environmental Protection Agency. (2015). "Our Mission and What We Do." Retrieved August 2, 2016, from EPA: https://www.epa.gov/aboutepa/our-mission-and-what-we-do
- Western Regional Climate Center. (2016). *CLIMATE OF WYOMING*. Retrieved from Western Regional Climate Center: http://www.wrcc.dri.edu/narratives/WYOMING.htm
- World Bank. (2009). Road Software Tools. Retrieved 07 06, 2016, from Roads and Highways: http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTTRANSPORT/EXTROADSHIG HWAYS/0,,contentMDK:20483189~menuPK:1097394~pagePK:148956~piPK:216618~theSiteP K:338661,00.html
- Wyoming Department of Transportation. (2013). *Congestion Mitigation and Air Quality*. Retrieved 8 18, 2016, from Local Government Transportation Programs: http://www.dot.state.wy.us/home/planning_projects/transportation_programs/cmaq.html
- Wyoming Technology Transfer Center. (2014). *Ride Quality Rating Guide*. Retrieved 8 30, 2016, from University of Wyoming: http://www.uwyo.edu/wyt2/ files/gravel road/grqr/grqr into.pdf

APPENDIX A: CMAQ ROADS DATA

EPAM Data: Untre			AN 500	0
County:	Lincoln	PM ₁₀ Conc	entration (n	ng/m³)
Location Name:	Muddy Creek	Above 0.5	Average	2.277
Date:	TUE 15-JUL-14	(Threshold)	Std. Dev.	0.628
Road Condition:	Untreated	. ,		
Start:	15:59:44			
End:	17:47:04			
Data Type:	10.0 um - M			
Unit Type:	EPAM-5000			
Data Scale:	1			
County:	Lincoln	PM ₁₀ Conc	entration (n	ng/m³)
Location Name:	Gomer	Above 0.5	Average	0.973
Date:	FRI 05-JUN-15	(Threshold)	Std. Dev.	0.477
Road Condition:	Untreated			
Start:	7:08:04			
End:	10:47:54			
Data Type:	10.0 um - M			
Unit Type:	EPAM-5000			
Data Scale:	1			
County:	Lincoln			
Location Name:	Sublett-Pomeroy	PM ₁₀ Conc	entration (n	ng/m³)
Date:	FRI 05-JUN-15		Average	0.927
Road Condition:	Untreated	Above 0.5		
Start:	6:31:43	(Threshold)	Std. Dev.	0.456
End:	9:28:53			
Data Type:	10.0 um - M			
Unit Type:	EPAM-5000			
Data Scale:	1			
	_			, 2.
County:	Converse		entration (n	
Location Name:	Jenne Trail	Above 0.5	Average	2.674
Date:	WED 02-JUL-14	(Threshold)	Std. Dev.	2.962
Road Condition:	Untreated			
Start:	9:50:19			
End:	13:46:49			
Data Type:	10.0 um - M			
Unit Type: Data Scale:	EPAM-5000			

APPENDIX A-1: EPAM 5000

County:	Converse	PM ₁₀ Concentration (mg/m ³)				
Location Name:	Ross	Above 0.5	ve 0.5 Average			
Date:	MON 01-JUN-15	.5 (Threshold) Std. Dev.				
Road Condition:	Untreated					
Start:	14:52:57					
End:	17:48:37					
Data Type:	10.0 um - M					
Unit Type:	EPAM-5000					
Data Scale:	1					
Country	Creat			(³)		
County:	Crook	PM ₁₀ Concer	-	-		
Location Name:	D-Road		Average	1.779		
Date:	TUE 08-JUL-14	(Threshold) S	Std. Dev.	1.277		
Road Condition:	Untreated					
Start:	10:47:28					
End:	14:43:38					
Data Type:	10.0 um - M					
Unit Type:	EPAM-5000					
Data Scale:	1					
County:	Campbell	PM ₁₀ Concer	ntration (m	ng/m³)		
Location Name:	Cosner		Average	1.846		
Date:	MON 25-AUG-14		Std. Dev.	1.359		
Road Condition:	Untreated	, , , , , , , , , , , , , , , , , , ,				
Start:	11:50:44					
End:	15:35:14					
Data Type:	10.0 um - M					
Unit Type:	EPAM-5000					
Data Scale:	1					
County:	Campbell	PM ₁₀ Concer	ntration (m	ng/m³)		
Location Name:	Clarkelen	Above 0.5 A	Average	1.433		
Date:	WED 09-JUL-14	(Threshold)	Std. Dev.	0.898		
Road Condition:	Untreated					
	13:34:40					
Start:	13.34.40					
Start: End:	17:40:00					
End:	17:40:00					

County:	Campbell	PM ₁₀ Conc	entration (m	ng/m³)
Location Name:	Moore Road	Above 0.5	Average	3.043
Date:	WED 09-JUL-14	(Threshold)	Std. Dev.	3.481
Road Condition:	Untreated			
Start:	9:03:35			
End:	12:54:35			
Data Type:	10.0 um - M			
Unit Type:	EPAM-5000			
Data Scale:	1			
				_
County:	Campbell	PM ₁₀ Conc	entration (m	ng/m³)
Location Name:	Turnercrest	Above 0.5	Average	2.017
Date:	WED 17-JUN-15	(Threshold)	Std. Dev.	1.440
Road Condition:	Untreated			
Start:	16:19:29			
End:	19:16:39			
Data Type:	10.0 um - M			
Unit Type:	EPAM-5000			
Data Scale:	1			
	Course hall			(
County:	Campbell		entration (m	
Location Name:	Todd	Above 0.5	Average	1.287
Location Name: Date:	Todd FRI 19-JUN-15		-	
Location Name: Date: Road Condition:	Todd FRI 19-JUN-15 Untreated	Above 0.5	Average	1.287
Location Name: Date: Road Condition: Start:	Todd FRI 19-JUN-15 Untreated 6:32:48	Above 0.5	Average	1.287
Location Name: Date: Road Condition: Start: End:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18	Above 0.5	Average	1.287
Location Name: Date: Road Condition: Start: End: Data Type:	Todd FRI 19-JUN-15 Untreated 6:32:48	Above 0.5	Average	1.287
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18	Above 0.5	Average	1.287
Location Name: Date: Road Condition: Start: End: Data Type:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M	Above 0.5	Average	1.287
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1	Above 0.5 (Threshold)	Average Std. Dev.	1.287 0.862
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell	Above 0.5 (Threshold) PM ₁₀ Conc	Average Std. Dev.	1.287 0.862
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County: Location Name:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell Christensen	Above 0.5 (Threshold) PM ₁₀ Conc Above 0.5	Average Std. Dev. entration (m Average	1.287 0.862 ng/m ³) 3.010
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County: Location Name: Date:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell Christensen THUR 18-JUN-15	Above 0.5 (Threshold) PM ₁₀ Conc	Average Std. Dev.	1.287 0.862
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell Christensen THUR 18-JUN-15 Untreated	Above 0.5 (Threshold) PM ₁₀ Conc Above 0.5	Average Std. Dev. entration (m Average	1.287 0.862 ng/m ³) 3.010
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell Christensen THUR 18-JUN-15 Untreated 8:08:44	Above 0.5 (Threshold) PM ₁₀ Conc Above 0.5	Average Std. Dev. entration (m Average	1.287 0.862 ng/m ³) 3.010
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start: End:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell Christensen THUR 18-JUN-15 Untreated 8:08:44 10:57:34	Above 0.5 (Threshold) PM ₁₀ Conc Above 0.5	Average Std. Dev. entration (m Average	1.287 0.862 ng/m ³) 3.010
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start: End: Data Type:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell Christensen THUR 18-JUN-15 Untreated 8:08:44 10:57:34 10.0 um - M	Above 0.5 (Threshold) PM ₁₀ Conc Above 0.5	Average Std. Dev. entration (m Average	1.287 0.862 ng/m ³) 3.010
Location Name: Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start: End:	Todd FRI 19-JUN-15 Untreated 6:32:48 9:21:18 10.0 um - M EPAM-5000 1 Campbell Christensen THUR 18-JUN-15 Untreated 8:08:44 10:57:34	Above 0.5 (Threshold) PM ₁₀ Conc Above 0.5	Average Std. Dev. entration (m Average	1.287 0.862 ng/m ³) 3.010

County:	Campbell	PM ₁₀ Concentration (mg/m ³)			
Location Name:	Hayden	Above 0.5	Average	1.870	
Date:	TUE 02-JUN-15	(Threshold)	Std. Dev.	1.285	
Road Condition:	Untreated				
Start:	6:42:54				
End:	9:36:24				
Data Type:	10.0 um - M				
Unit Type:	EPAM-5000				
Data Scale:	1				
				_	
County:	Campbell	PM ₁₀ Conc	entration (m	ng/m³)	
Location Name:	Black & Yellow Road	Above 0.5	Average	1.471	
Date:	TUE 02-JUN-15	(Threshold)	Std. Dev.	1.227	
Road Condition:	Untreated				
Start:	9:59:55				
End:	12:52:45				
Data Type:	10.0 um - M				
Unit Type:	EPAM-5000				
Data Scale:	1				
				. 2.	
County:	Campbell	PM ₁₀ Conc	entration (m	ng/m³)	
Location Name:	Iberlin	Above 0.5	Average	4.036	
Date:	TUE 02-JUN-15	(Threshold)	Std. Dev.	3.668	
Road Condition:	Untreated				
Start:	13:11:40				
End:	16:12:10				
End: Data Type:					
End: Data Type: Unit Type:	16:12:10 10.0 um - M EPAM-5000				
End: Data Type:	16:12:10 10.0 um - M				
End: Data Type: Unit Type: Data Scale:	16:12:10 10.0 um - M EPAM-5000 1				
End: Data Type: Unit Type: Data Scale: County:	16:12:10 10.0 um - M EPAM-5000 1 Johnson		entration (m	-	
End: Data Type: Unit Type: Data Scale: County: Location Name:	16:12:10 10.0 um - M EPAM-5000 1 Johnson TTT Road	Above 0.5	Average	2.166	
End: Data Type: Unit Type: Data Scale: County: Location Name: Date:	16:12:10 10.0 um - M EPAM-5000 1 Johnson TTT Road THUR 18-JUN-15		-	-	
End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition:	16:12:10 10.0 um - M EPAM-5000 1 Johnson TTT Road THUR 18-JUN-15 Untreated	Above 0.5	Average	2.166	
End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start:	16:12:10 10.0 um - M EPAM-5000 1 Johnson TTT Road THUR 18-JUN-15 Untreated 12:35:41	Above 0.5	Average	2.166	
End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start: End:	16:12:10 10.0 um - M EPAM-5000 1 Johnson TTT Road THUR 18-JUN-15 Untreated 12:35:41 15:43:21	Above 0.5	Average	2.166	
End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start: End: Data Type:	16:12:10 10.0 um - M EPAM-5000 1 Johnson TTT Road THUR 18-JUN-15 Untreated 12:35:41 15:43:21 10.0 um - M	Above 0.5	Average	2.166	
End: Data Type: Unit Type: Data Scale: County: Location Name: Date: Road Condition: Start: End:	16:12:10 10.0 um - M EPAM-5000 1 Johnson TTT Road THUR 18-JUN-15 Untreated 12:35:41 15:43:21	Above 0.5	Average	2.166	

County:	Sweetwater	PM ₁₀ Concentration (mg/m ³)			
Location Name:	Wamsutter	Above 0.5	Average	1.330	
Date:	TUE 26-MAY-15	(Threshold)	Std. Dev.	0.837	
Road Condition:	Untreated				
Start:	13:08:40				
End:	16:09:30				
Data Type:	10.0 um - M				
Unit Type:	EPAM-5000				
Data Scale:	1				
				. 2.	
County:	Sweetwater		entration (m	-	
Location Name:	Patrick Draw	Above 0.5	Average	1.673	
Date:	THUR 28-MAY-15	(Threshold)	Std. Dev.	0.196	
Road Condition:	Untreated				
Start:	10:52:53				
End:	13:40:03				
Data Type:	10.0 um - M				
Unit Type:	EPAM-5000				
Data Scale:	1				
_				. 3.	
County:	Weston		entration (m	-	
Location Name:	Grieves	Above 0.5	Average	2.383	
Date:	WED 01-JUL-15	(Threshold)	Std. Dev.	3.450	
Road Condition:	Untreated				
Start:	10:45:00				
End:	13:58:40				
Data Type:	10.0 um - M				
Unit Type:	EPAM-5000				
Data Scale:	1				
		D1		. 3	
County:	Weston		entration (m		
Location Name:				4 770	
	Bruce	Above 0.5	Average	1.270	
Date:	WED 01-JUL-15	Above 0.5 (Threshold)	Average Std. Dev.	1.270 0.650	
	WED 01-JUL-15 Untreated		0		
Date:	WED 01-JUL-15		0		
Date: Road Condition:	WED 01-JUL-15 Untreated 7:27:08 10:16:18		0		
Date: Road Condition: Start:	WED 01-JUL-15 Untreated 7:27:08		0		
Date: Road Condition: Start: End:	WED 01-JUL-15 Untreated 7:27:08 10:16:18		0		

County:	Weston	PM ₁₀ Concentration (mg/	m³)
Location Name:	Mush Creek	Above 0.5 Average 2	.371
Date:	WED 01-JUL-15	(Threshold) Std. Dev. 2	.085
Road Condition:	Untreated		
Start:	17:32:40		
End:	19:58:20		
Data Type:	10.0 um - M		
Unit Type:	EPAM-5000		
Data Scale:	1		
EPAM Data: Treate	ed Roads		
County:	Lincoln	PM ₁₀ Concentration (mg/m ³)	
Location Name:	Muddy Creek	Above Average 0.051	
Date:	TUE 30-SEP-14	0.01 Std. Dev. 0.062	
Road Condition:	Treated		
Start:	8:37:51		
End:	9:05:48		
Data Type:	10.0 um - M		
Unit Type:	EPAM-5000		
Data Scale:	1		
		_	
Location Number:	Lincoln	PM ₁₀ Concentration (mg/m ³)	
Location Name	Gomer	A h a h a h a h a h a h a h a h a h a h	
Location Name:	Gomer	Above Average 0.023	
Date:	WED 24-JUN-15	0.01 Std. Dev. 0.039	
Date: Road Condition:	WED 24-JUN-15 Treated		
Date: Road Condition: Start:	WED 24-JUN-15		
Date: Road Condition: Start: End:	WED 24-JUN-15 Treated 10:33:55 13:39:05		
Date: Road Condition: Start: End: Data Type:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M		
Date: Road Condition: Start: End: Data Type: Unit Type:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000		
Date: Road Condition: Start: End: Data Type:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M		
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1	0.01 Std. Dev. 0.039	
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: Location Number:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1 Lincoln	0.01 Std. Dev. 0.039 PM ₁₀ Concentration (mg/m ³)	
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: Location Number: Location Name:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1 Lincoln Sublette-Pomeroy	0.01 Std. Dev. 0.039 PM ₁₀ Concentration (mg/m ³) Above Average 0.032	
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: Location Number: Location Name: Date:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1 Lincoln Sublette-Pomeroy WED 24-JUN-15	0.01 Std. Dev. 0.039 PM ₁₀ Concentration (mg/m ³)	
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1 Lincoln Sublette-Pomeroy WED 24-JUN-15 Treated	0.01 Std. Dev. 0.039 PM ₁₀ Concentration (mg/m ³) Above Average 0.032	
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition: Start:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1 Lincoln Sublette-Pomeroy WED 24-JUN-15 Treated 7:01:59	0.01 Std. Dev. 0.039 PM ₁₀ Concentration (mg/m ³) Above Average 0.032	
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition: Start: End:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1 Lincoln Sublette-Pomeroy WED 24-JUN-15 Treated 7:01:59 10:14:09	0.01 Std. Dev. 0.039 PM ₁₀ Concentration (mg/m ³) Above Average 0.032	
Date: Road Condition: Start: End: Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition: Start:	WED 24-JUN-15 Treated 10:33:55 13:39:05 10.0 um - M EPAM-5000 1 Lincoln Sublette-Pomeroy WED 24-JUN-15 Treated 7:01:59	0.01 Std. Dev. 0.039 PM ₁₀ Concentration (mg/m ³) Above Average 0.032	

Location Number:	Converse	PM ₁₀ Co	ncentration	(mg/m ³
Location Name:	Jenne Trail	Above	Average	0.029
Date:	THUR 14-AUG-14	0.01	Std. Dev.	0.018
Road Condition:	Treated			
Start:	9:41:51			
End:	12:05:31			
Data Type:	10.0 um - M			
Unit Type:	EPAM-5000			
Data Scale:	1			
				, , 3
Location Number:	-		ncentration	
Location Name:	D-Road	Above	Average	0.024
Date:	THUR 21-AUG-14	0.01	Std. Dev.	0.022
Road Condition:	Treated			
Start:	14:41:08			
End:	18:42:58			
Data Type:	10.0 um - M			
Unit Type:	EPAM-5000			
Data Scale:	1			
	Course hall			
Location Number:	•		ncentration	
Location Name:	Cosner	Above	Average	0.028
Date:	WED 24-SEP-14	0.01	Std. Dev.	0.019
Road Condition:	Treated			
Start:	13:43:53			
	17:24:23			
Data Type:	10.0 um - M			
Data Type: Unit Type:				
Data Type: Unit Type:	10.0 um - M			
Data Type: Unit Type: Data Scale:	10.0 um - M EPAM-5000 1	PM Co	ncentration	(mg/m ³
Data Type: Unit Type: Data Scale: Location Number:	10.0 um - M EPAM-5000 1 Campbell		ncentration	
Data Type: Unit Type: Data Scale: Location Number: Location Name:	10.0 um - M EPAM-5000 1 Campbell Clarkelen	Above	Average	0.020
Data Type: Unit Type: Data Scale: Location Number: Location Name: Date:	10.0 um - M EPAM-5000 1 Campbell Clarkelen FRI 22-AUG-14			
Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition:	10.0 um - M EPAM-5000 1 Campbell Clarkelen FRI 22-AUG-14 Treated	Above	Average	0.020
End: Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition: Start:	10.0 um - M EPAM-5000 1 Campbell Clarkelen FRI 22-AUG-14 Treated 9:50:24	Above	Average	0.020
Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition: Start: End:	10.0 um - M EPAM-5000 1 Campbell Clarkelen FRI 22-AUG-14 Treated 9:50:24 13:25:14	Above	Average	0.020
Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition: Start: End: Data Type:	10.0 um - M EPAM-5000 1 Campbell Clarkelen FRI 22-AUG-14 Treated 9:50:24 13:25:14 10.0 um - M	Above	Average	0.020
Data Type: Unit Type: Data Scale: Location Number: Location Name: Date: Road Condition:	10.0 um - M EPAM-5000 1 Campbell Clarkelen FRI 22-AUG-14 Treated 9:50:24 13:25:14	Above	Average	0.020

Location Number:	Campbell	Campbell PM ₁₀ Concentration (mg/					/m³)		
Location Name:	Moore Above A			Aver	age	0.1	141		
Date:	FRI 22-AUG-	0.	01	Std.	Dev	. 0.2	254		
Road Condition:	Treated								
Start:	7:45:25								
End:	9:24:05								
Data Type:	10.0 um - M								
Unit Type:	EPAM-5000								
Data Scale:	1								
Location Number:	Carbon								
Location Name:	CR 608								
Date:	TUE 24-MAY	-16		Thre	shold		0.5	mg/	′m3
Start:	8:3	8:28		Ave	rage =	(0.9674	mg/	′m3
End:	9:2	7:08		Std	Dev =	0.1	.74547	mg/	′m3
Data Type:	10.0 um - M								
Unit Type:	EPAM-5000								
Data Scale:		1							
Location Number:	Converse								
Location Name:	Bill Hall Rd								
Date:	THUR 16-JUN	I-16	Thres	hold		0.5	mg/m	3	
Start:	10:40:40		Avera	ge =	2.089	479	mg/m	3	
End:	13:53:30		Std De	ev =	2.075	779	mg/m	3	
Data Type:	10.0 um - M								
Unit Type:	EPAM-5000								
Data Scale:	1								
Location Number:	Sheridan								
Location Name:	Wolf Creek	Rd							
Date:	TUE 17-MAY	-16	Thres	hold		0.5	mg/m	3	
Start:	19:05:07		Avera	ge =	0.7	215	mg/m	3	
End:	20:45:47		Std De	ev =	0.1	.025	mg/m	3	
Data Type:	10.0 um - M								
Unit Type:	EPAM-5000								
Data Scale:	1								
Location Number:	Sheridan								
Location Name:	North Park R	d							
Date:	TUE 17-MAY	-16	Thres	hold		0.5	mg/m	3	
Start:	16:28:13		Avera	ge =	0.	641	mg/m	3	
End:	19:22:03		Std De	ev=		0	mg/m	3	
Data Type:	10.0 um - M								
Unit Type:	EPAM-5000								
Data Scale:	1								

Location Number:	Sheridan				
Location Name:	Murphy G	ulch Rd			
Date:	TUE 17-M		Threshold	0.5	mg/m3
Start:	10:01:54		Average =		mg/m3
End:	12:39:34		Std Dev =	0.097702	-
Data Type:	10.0 um -	M			
Unit Type:	EPAM-500	0			
Data Scale:	1				
Location Number:	Sheridan				
Location Name:	Lower Pra	ire			
Date:	TUE 17-M	AY-16	Threshold	0.5	mg/m3
Start:	13:37:52		Average =	0.867333	mg/m3
End:	16:39:12		Std Dev =	0.058574	<u> </u>
Data Type:	10.0 um -	M			
Unit Type:	EPAM-500	0			
Data Scale:	1				
Location Number:	Sheridan				
Location Name:	Higby Rd				
Date:	WED 18-N	/IAY-16	Threshold	0.5	mg/m3
Start:	10:54:17		Average =	1.927167	mg/m3
End:	13:42:37		Std Dev =	0.927581	mg/m3
Data Type:	10.0 um -	M			
Unit Type:	EPAM-500	0			
Data Scale:	1				
Location Number:	Sheridan				
Location Name:	Halfway L	n			
Date:	WED 18-N	/IAY-16	Threshold	0.5	mg/m3
Start:	8:04:33		Average =	0.7124	mg/m3
End:	10:52:23		Std Dev =	0.26787	mg/m3
Data Type:	10.0 um -	М			
Unit Type:	EPAM-500	0			
Data Scale:	1				
Location Number:	Sheridan				
Location Name:	East Dayto	on			
Date:	WED 18-N	/IAY-16	Threshold	0.5	mg/m3
Start:	7:08:47		Average =	0.963571	mg/m3
End:	9:54:07		Std Dev =	0.333655	mg/m3
Data Type:	10.0 um -	М			
Unit Type:	EPAM-500	0			
Data Scale:	1				

Location Number:	Lincoln				
Location Name:	Lupine Rd				
Date:	WED 25-N	/IAY-16	Threshold	0.5	mg/m3
Start:	13:44:46		Average =	1.408833	mg/m3
End:	15:56:26		Std Dev =	0.724854	mg/m3
Data Type:	10.0 um - I	М			
Unit Type:	EPAM-500	0			
Data Scale:	1				
Location Number:	Lincoln				
Location Name:	Kemmere	r Landfill			
Date:	WED 25-N	/IAY-16	Threshold	0.5	mg/m3
Start:	10:56:55		Average =	2.464	mg/m3
End:	14:00:25		Std Dev =	2.099444	mg/m3
Data Type:	10.0 um - I	М			
Unit Type:	EPAM-500	0			
Data Scale:	1				
Location Number:	Lincoln				
Location Name:	Fontenne	lle			
Date:	TUE 24-M	AY-16	Threshold	0.5	mg/m3
Start:	16:23:28		Average =	0.632333	mg/m3
End:	19:30:28		Std Dev =	0.110424	mg/m3
Data Type:	10.0 um - I	М			
Unit Type:	EPAM-500	0			
Data Scale:	1				
Location Number:	Johnson				
Location Name:	Irrigary				
Date:	THUR 21-A	PR-16	Threshold	0.5	mg/m3
Start:	9:47:47		Average =	0.523	mg/m3
End:	12:20:17		Std Dev =	0	mg/m3
Data Type:	10.0 um - I	М			
Unit Type:	EPAM-500	0			
Data Scale:	1				

APPENDIX A-2: CSU-DUSTOMETER

	tometer Data	: Untreated	<u>Roads</u>				
County:	Lincoln						
Road:	Muddy Creek						
Condition:	Untreated						
Screen Size:	#38						
Distance (mi)			Concentration (g/mi)				
1	13.6	16.05	2.45				
		Average	2.45				
County:	Lincoln						
Road:	Gomer						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/mi)	Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/m
1	14.7	16.2	1.5	1	14.6	15.6	1
1	14.6	15.5	0.9	1	14.7	15.4	0.7
1	14.7	16.4	1.7	1	14.6	16.5	1.9
		Average	1.37			Average	1.20
		std dev	0.34			std dev	0.51
Condition: Screen Size: Distance (mi) 1 1 1	Untreated #38 Weight Before (g) 14.7 14.6 15.5	Weight After (g) 17.2 15.8 16.6	Concentration (g/mi) 2.5 1.2 1.1	Screen Size: Distance (mi) 1 1 1	#200 Weight Before (g) 14.7 14.7 14.7	Weight After (g) 17.8 16.9 16.6	Concentration (g/m 3.1 2.2 1.9
		Average	1.60			Average	2.40
Country	Converse	std dev	0.64			std dev	0.51
County: Road: Condition: Screen Size:	Converse Jenne Trail Untreated #38						
		Weight After (a)	Concentration (g/mi)				
1	13.56	14.35	0.79				
1	13.61	14.35	0.79				
1 1	13.51	14.4 17.4	3.82				
		Average	1.8				
		std dev	1.428355698				

Data Untracted Deads

County:	Converse						
Road:	Ross						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/mi)	Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/mi)
1	14.7	15.1	0.4	1	14.6	15.1	0.5
1	14.6	15.3	0.7	1	14.5	15	0.5
1	14.5	15.4	0.9	1	14.5	15.4	0.9
		Average	0.67			Average	0.63
		std dev	0.21			std dev	0.19
County:	Campbell						
Road:	Cosner						
Condition:	Untreated						
Screen Size:	#38						
		Woight After (g)	Concentration (g/mi)				
			Concentration (g/mi)				
1	12.97	15.78	2.81				
1	12.88	18.02	5.14				
		Average	3.975				
		std dev	1.165				
County:	Campbell						
Road:	Turnercrest						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
		Woight After (g)	Concentration (g/mi)			Woight Aftor (g)	Concentration (g/mi)
1	14.6	15.4	0.8	1	14.6	16.3	1.7
1	14.6	15.9	1.3	1	14.7	15.8	1.1
1	14.7	15.2	0.5	1	14.7	15.4	0.7
		Average	0.87			Average	1.17
		std dev	0.33			std dev	0.41
County:	Campbell						
Road:	Todd						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
		Woight After (g)	Concentration (g/mi)			Woight Aftor (g)	Concentration (g/mi)
1	14.7	15.2	0.5	1	14.6	16.5	1.9
1	14.6	15.8	1.2	1	14.7	16.2	1.5
1	14.6	15.3	0.7	1	14.7	16.9	2.2
		Average	0.80			Average	1.87
		std dev	0.29			std dev	0.29
County:	Campbell						
Road:	Christensen						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
		Weight After (ø)	Concentration (g/mi)			Weight After (ø)	Concentration (g/mi)
1	14.6	16.9	2.3	1	14.7	16.9	2.2
1	14.6	16	1.4	1	14.6	18	3.4
1	14.0	16.2	1.4	1	14.0	16.6	5.4 1.9
			4 70				a
		Average	1.73			Average	2.50
		std dev	0.40			std dev	0.65

		Average std dev	3.98 1.03			Average std dev	2.34 0.07
1	12.7	17.16	4.46	1	13.07	15.34	2.27
1	12.67	15.21	2.54	1	13.02	15.45	2.43
1	13	17.93	4.93	1	12.97	15.29	2.32
			Concentration (g/mi)				Concentration (g/mi)
Screen Size:	#38			Screen Size:	#200		
Condition:	Untreated						
Road:	Wamsutter						
County:	Sweetwater						
		std dev	0.65			std dev	0.24
		Average	1.60			Average	1.30
1	14.7	17.2	2.3	T	14.0	10.1	1.0
1	14.7	16 17.2	1.3 2.5	1	14.6 14.5	15.6 16.1	1 1.6
1 1	14.6 14.7	15.6 16	1 1.3	1 1	14.4 14.6	15.7 15.6	1.3 1
			Concentration (g/mi)				Concentration (g/mi)
Condition: Screen Size:	Untreated #38	Maight After (.)	Concentration (-/:)	Screen Size:	#200	Moight After (.)	Concentration (-1)
Road:	тт						
County:	Johnson						
		Average std dev	0.80 0.14			Average std dev	0.57 0.19
1	14.6	15.2	0.6	1	14.7	15.4	0.7
1	14.5	15.4	0.9	1	14.7	15	0.3
1	14.5	15.4	0.9	1	14.5	15.2	0.7
		Weight After (g)	Concentration (g/mi)			Weight After (g)	Concentration (g/mi)
Screen Size:	#38			Screen Size:	#200		
Condition:	Untreated						
County: Road:	Campbell Iberlin						
		Average std dev	1.03 0.09			Average std dev	1.47 0.31
	-				-		
1	14.6	15.7	1.1	1	14.5	15.8	1.3
1	14.6	15.5	0.9	1	14.6	15.8	1.5
1	14.6	15.7	Concentration (g/mi) 1.1	Distance (mi)	14.6	16.5	Concentration (g/mi) 1.9
Screen Size:	#38	Moight After (-)	Concontration (a/mi)	Screen Size:	#200	Moight After (-)	Concontration (al:)
Condition:	Untreated						
County: Road:	Campbell Black & Yellow						
		std dev	0.29			std dev	0.08
		Average	2.20			Average	1.70
1	14.6	17.1	2.5	1	14.6	16.3	1.7
1	14.6	16.4	1.8	1	14.8	16.4	1.6
1	14.6	16.9	2.3	1	14.6	16.4	1.8
Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/mi)	Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/mi)
Screen Size:	#38			Screen Size:	#200		
Road: Condition:	Hayden Untreated						

County:	Sweetwater						
Road:	Patrick Draw						
Condition:	Untreated			a a:			
Screen Size:	#38			Screen Size:	#200		
			Concentration (g/mi)				Concentration (g/mi)
1	13	16.73	3.73	1	12.94	15.09	2.15
1	12.67	15.61	2.94	1	12.96	15.27	2.31
1	12.7	16.35	3.65	1	12.89	15.18	2.29
		Average	3.44			Average	2.25
		std dev	0.36			std dev	0.07
County:	Weston						
, Road:	Grieves						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
	Weight Before (g)	Weight After (g)	Concentration (g/mi)	Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/mi)
1	14.5	17.2	2.7	1	14.6	17.4	2.8
1	14.5	16.7	2.2	1	14.5	16.3	1.8
1	14.6	17	2.4	1	14.5	16.7	2.2
		Average	2.43			Average	2.27
		std dev	0.21			std dev	0.41
County:	Weston						
Road:	Bruce						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
• •			Concentration (g/mi)				Concentration (g/mi)
1	14.6	17.2	2.6	1	14.6	17.3	2.7
1	14.6	16.4	1.8	1	14.5	16.9	2.4
1	14.6	17.6	3	1	14.5	17	2.5
		Average	2.47			Average	2.53
		std dev	0.50			std dev	0.12
County:	Weston						
Road:	Mush Creek						
Condition:	Untreated						
Screen Size:	#38			Screen Size:	#200		
		Weight After (g)	Concentration (g/mi)			Weight After (ø)	Concentration (g/mi)
1	14.7	17.4	2.7	1	12.84	17.1	4.26
1	14.5	17.3	2.8	1	14.6	18.3	3.7
1	14.6	16.5	1.9	1	12.82	17.6	4.78
		Average	2.47			Average	4.25
		Average	2.47			Average	4.25 0.44
		std dev	0.40			std dev	0.44

CSU Dust	tometer Data:	: Treated Ro	ads				
County:	Lincoln						
Road:	Muddy Creek						
Condition:	Treated						
Screen Size:	#38						
		Woight After (g)	Concentration (g/mi)				
0.5	12.9	13.28	0.38				
0.5	12.92	13.17	0.25				
0.5	12.9	13.24	0.34				
			0.65				
		Average	0.65				
		Std Dev	0.11				
a .							
County:	Lincoln						
Road:	Gomer						
Condition:	Treated						
Screen Size:	#38			Screen Size:	#200		
Distance (mi)	Weight Before (g)	Weight After (g)	Concentration (g/mi)	Distance (mi)	Weight Before (g	g) Weight After (g)	Concentration (g/mi)
1	12.79	13	0.21	1	12.79	12.9	0.11
1	12.82	13.2	0.38	1	12.96	13.2	0.24
1	12.8	13	0.2	1	12.8	13	0.2
		Average	0.26			Average	0.18
		std dev	0.08			std dev	0.05
County:	Lincoln						
Road:	Sublette-Pomeroy						
Condition:	Treated						
Screen Size:	#38			Screen Size:	#200		
		Weight After (g)	Concentration (g/mi)) Weight Δfter (g)	Concentration (g/mi)
1	14.7	15.3	0.6	1	14.6	14.8	0.2
1	14.6	15.1	0.5	1	14.7	14.8	0.1
1	14.6	15.1		1			0.1
1	14.0	15	0.4	1	14.6	14.8	0.2
		Avorago	0.50			Avorago	0.17
		Average std dev	0.08			Average std dev	0.05
		studev	0.08			stutiev	0.05
Country	C						
County:	Converse						
Road:	Jenne Trail						
Condition:	Treated						
Screen Size:	#38						
			Concentration (g/mi)				
1	12.85	13.7	0.85				
1	12.82	14.22	1.4				
1	12.91	13.12	0.21				
		Average	0.82				
		std dev	0.49				
County:	Campbell						
, Road:	Cosner						
Condition:	Treated						
Screen Size:	#38						
	Weight Before (g)	Weight After (g)	Concentration (g/mi)				
1	13.6	13.62	0.02				
1	13.54	13.58	0.02				
1	13.54		0.04				
T	13.02	13.62	U				
		Average	0.02				
		Average Std Dev	0.02 0.016329932				

CSU Dustometer Data: Treated Roads

Appendix A-3: Traffic Volumes

Statio	n ID :	LIN-GOM-U						Last Con	nected Device Type Ap	ollo	
GPS La	Info Line Info Line at/Lon :								Version Number : Serial Number : Number of Lanes :	1.66 11297 2	
	DB File	: LIN-GOM-U.	DB						Posted Speed Limi 0.0		
#	Dir.	Information			Vehicle Senso	ors	Lane Configuratio	n Loop Leng	gth		
1.0 3.0 Averac	0	raffic (ADT)			Axle-Axle Axle-Axle		4.0 ft 4.0 ft				
, troiting	,o 20, .						Weekend				
		Weekday Cars :	80	100%	0		Cars :		Total ADT Cars :	80	100%
	Trucks :		0		0%		Trucks :		Trucks :	0	0%
		Total :	80				Total :		Total :	80	
Speed	Totals										
•	50 % :	39.5 mph				Speed :	40.8 mph		Average Truck Speed :		
	85 %: Avg:	40.5 mph 37.7 mph			Low 10mph Pace	/ Speed : Speed:	21.6 mph 36.5 - 46.4	90.00%	Average Car Speed :	3	37.7 mph
Deek	-				iompiri doo	opood.	00.0 10.1	00.0070			
Peak F	lour Total	S									
	AM Pea Weekda Weeker		0	(Avg 14)			AM Peak Hour (Speed) 07:30 - 08:30	(40.3 mp	h)		
		ak Hour (Volume)					PM Peak Hour (Speed)				
	Weekda	ay :									
Grand	Weeker	nd :									
Grand											
	Total Ca Total Tri Total Vo	ucks:) () () (80 ADT) 0 ADT) 80 ADT)	Average Length : Average Axles :	11.4 ft 2.00	Average Headway : Ave		756.1 sec 755.9 sec
							COLN, SUB	ETT		ov	
	FCI-	venicie Su		iai y	перы		COLN, 30BI		E-POMEN		
0 1-1 ¹ -1								Leat Co	prested Davies Type A	nelle	
Statior	ID :	LIN-SUB-U						Last Co	nnected Device Type A	pollo	
Statior	Info Line	1:						Last Co	Version Number :	1.66	
	Info Line	1:						Last Co	Version Number : Serial Number :	-	
Station GPS Lat	Info Line	1:	3					Last Co	Version Number :	1.66 11166 2	
	Info Line Info Line 2 /Lon :	1 : 2 :	3					Last Co	Version Number : Serial Number : Number of Lanes :	1.66 11166 2	
	Info Line 2 Info Line 2 /Lon : DB File :	1 : 2 :	3		Vehicle Sensors	i i	Lane Configuration Sensor Spacing	Last Co Loop Le	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0	1.66 11166 2	
GPS Lat # 1.00	Info Line 2 Info Line 2 /Lon : DB File :	1 : 2 : LIN-SUB-U.DE	3		Axle-Axle		Sensor Spacing 4.0 ft		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0	1.66 11166 2	
GPS Lat. # 1.00 3.00	Info Line 2 Info Line 2 /Lon : DB File : Dir.	1 : 2 : LIN-SUB-U.DE	3			÷	Sensor Spacing		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0	1.66 11166 2	
GPS Lat. # 1.00 3.00	Info Line Info Line /Lon : DB File : <i>Dir.</i> Daily Tra	1 : 2 : LIN-SUB-U.DE Information	3		Axle-Axle	5	Sensor Spacing 4.0 ft 4.0 ft		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0	1.66 11166 2	
GPS Lat. # 1.00 3.00	Info Line Info Line (Lon : DB File : Dir. Daily Tra	1 : 2 : LIN-SUB-U.DE	3		Axle-Axle	5	Sensor Spacing 4.0 ft		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0	1.66 11166 2	
GPS Lat. # 1.00 3.00	Info Line Info Line (Lon : DB File : Dir. Daily Tra	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday			Axle-Axle	5	Sensor Spacing 4.0 ft 4.0 ft Weekend		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0	1.66 11166 2 .0 mph	93%
GPS Lat. # 1.00 3.00	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks :	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday	112		Axle-Axle Axle-Axle	5	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars :		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars :	1.66 11166 2 .0 mph	93% 7%
GPS Lat # 1.00 3.00 Average	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks :	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars :	112 8		Axle-Axle Axle-Axle	5	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks :		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks :	1.66 11166 2 .0 mph 112 8	93% 7%
GPS Lat. # 1.00 3.00	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks :	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars :	112 8		Axle-Axle Axle-Axle 7%	Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks :		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks :	1.66 11166 2 .0 mph 112 8 120	93% 7%
GPS Lat # 1.00 3.00 Average	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : fotals 50 % : 85 % :	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph	112 8	93%	Avde-Avde Avde-Avde 7% Top S Low S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph	Loop Le	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed :	1.66 11166 2 .0 mph 112 8 120	93% 7%
GPS Lat # 1.00 3.00 Average	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : fotals 50 % : 85 % :	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph	112 8	93%	Axle-Axle Axle-Axle 7% Top S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph		Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed :	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 1.00 3.00 Average Speed T	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : fotals 50 % : 85 % :	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph	112 8	93%	Avde-Avde Avde-Avde 7% Top S Low S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph	Loop Le	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed :	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 1.00 3.00 Average Speed T	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks : 50 % : 85 % : Avg : ur Totals AM Peak Weekday	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph Hour (Volume) : 08:30 - 09:30	112 8 120	93%	Avde-Avde Avde-Avde 7% Top S Low S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph	Loop Le	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed Average Car Speed : 6	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 1.00 3.00 Average Speed T	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks : S0 % : 85 % : Avg : ur Totels AM Peak Weekeday Weekeday	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph Hour (Volume) : 08:30 - 09:30	112 8 120	93%	Avde-Avde Avde-Avde 7% Top S Low S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph 35.9 - 45.8 AM Peak Hour (Speed) 08:15 - 09:15	Loop Le 53.309	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed Average Car Speed : 6	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 1.00 3.00 Average Speed T	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks : S0 % : 85 % : Avg : ur Totals AM Peak Weekday Weekend PM Peak	1 : 2 : LIN-SUB-U.DE Information Affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph Hour (Volume) : 08:30 - 09:30 : Hour (Volume)	112 8 120	93%	Avde-Avde Avde-Avde 7% Top S Low S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph 35.9 - 45.8 AM Peak Hour (Speed)	Loop Le 53.309	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed Average Car Speed : 6	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 1.00 3.00 Average Speed T	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks : So % : 85 % : Avg : ur Totals AM Peak Weekday Weekday	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph Hour (Volume) : 08:30 - 09:30 : Hour (Volume) :	112 8 120	93%	Avde-Avde Avde-Avde 7% Top S Low S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph 35.9 - 45.8 AM Peak Hour (Speed) 08:15 - 09:15	Loop Le 53.309	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed Average Car Speed : 6	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 1.00 3.00 Average Speed T	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks : 50 % : 85 % : Avg : our Totals AM Peak Weekday Weekday Weekday	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph Hour (Volume) : 08:30 - 09:30 : Hour (Volume) :	112 8 120	93%	Avde-Avde Avde-Avde 7% Top S Low S	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph 35.9 - 45.8 AM Peak Hour (Speed) 08:15 - 09:15	Loop Le 53.309	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed Average Car Speed : 6	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 3.00 Average Speed T Peak Ho	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks : 50 % : 85 % : Avg : our Totals AM Peak Weekday Weekday Weekday	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph Hour (Volume) : 08:30 - 09:30 Hour (Volume) : 1	112 8 120	93% 93%	Avle-Avle Avle-Avle 7% Top S Low S 10mph Pace S	Speed : Speed : peed:	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph 35.9 - 45.8 AM Peak Hour (Speed) 08:15 - 09:15 PM Peak Hour (Speed)	Loop Le 53.309 (37.1 m	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed : 6	1.66 11166 2 .0 mph 112 8 120	93% 7% 15.5 mph
GPS Lat # 3.00 Average Speed T Peak Ho	Info Line : Info Line : /Lon : DB File : Dir. Daily Tra Trucks : Trucks : Trucks : So % : 85 % : Avg : ur Totals AM Peak Weekeday Weekend PM Peak	1 : 2 : LIN-SUB-U.DE Information affic (ADT) Weekday Cars : Total : 36.0 mph 38.8 mph 34.1 mph Hour (Volume) : Hour (Volume) : Hour (Volume) : Hour (Volume) : Hour (Volume) : Hour (Volume)	112 8 120	93%	Avle-Avle Avle-Avle 7% Top S Low S 10mph Pace Sp	Speed : Speed :	Sensor Spacing 4.0 ft 4.0 ft Weekend Cars : Trucks : Total : 51.1 mph 15.5 mph 35.9 - 45.8 AM Peak Hour (Speed) 08:15 - 09:15	Loop Le 53.309	Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0 ngth Total ADT Cars : Trucks : Total : Average Truck Speed : Average Car Speed :	1.66 11166 2 0.0 mph 112 8 120	93% 7% 15.5 mph 35.4 mph

Per-Vehicle Summary Report: LINCOLN, GOMER

Per-Vehicle Summary Report: CONVERSE, JENNE TRAIL

Statio	n ID :	CON-JEN-T						Last Connecte	ed Device Type		Apollo		
GPS Lat	Info Line Info Line t/Lon : DB File :	2 :	ſ.DB						S	'ersion Number : erial Number : lumber of Lanes : 'osted Speed Limit :	0.0 mph	1.51 11194 2	
#	Dir.	Information		v	ehicle S	ensors		nfiguration cir Loop Length					
1.00)			A	xle-Axle			4.0 ft					
3.00 Average		raffic (ADT)		A	xle-Axle			4.0 ft					
Avenuge	c Dully II						Weekend		-	otal ADT			
	Trucks :	Weekday Cars :	296 240	55% 45%		Trucks :	Cars :		C	otal ADI cars : rucks :		296 240	55% 45%
		Total :	536				Total :		т	otal :		536	
Speed 1	Totals 50 % : 85 % : Avg :	34.9 mph 43.5 mph 33.8 mph		1	0mph P	Top Speed : Low Speed : ace Speed:	56.0 mph 6.3 mph 34.5 - 44.4	38.80%	Δ	verage Truck Speed : verage Car Speed :			30.1 mph 36.8 mph
Peak Ho	our Total	S											
	AM Peal Weekda Weeken		00 (Av	g 33)				AM Peak Hou 11:00 - 12:00					
	PM Pea	k Hour (Volume)						PM Peak Hour	r (Speed)				
Grand T	Weekda Weeken Totals		00 (Av	g 20)				12:00 - 13:00	(33.5 mph)				
	Total Ca Total Tru Total Vo	icks :		37(30(67(296 ADT) 240 ADT) 536 ADT)	Average Ler Average Ax			verage Headway :	Average (Gap :	122.7 sec 122.0 sec
	Total VO		shiel				nort	CONI	EDEE	PASS			
		Perv	FIIICI	9 3	<i>u</i> 111	mary Re	=port:		ENJE,	N033			
•									Last Ore				
Sta	tion ID	: CON-ROS	U						Last Cor	nected Device Type	: Apolio		
GPS	Info Lat/Lon		I-ROS-U.D	в						Version Number Serial Number : Number of Lanes	1116 :	36 2	
	DB	File. COI	-RU3-U.D	Б						Posted Speed Li	mo.o mp		
#	Dir.	Information				Vehicle Sensors		Lane Confi Sensor Spacing	•	ngth			
:	1.00 3.00 rage Dai	ly Traffic (ADT)				Axle-Axle Axle-Axle		4.0 ft 4.0 ft					
	-	Weekday						Weekend		Total ADT			
		Cars :	:	376	63%			Cars :		Cars :	37	6	63%
	Truc	cks :	:	216	37%		Trucks :			Trucks :	21	6	37%
		Total :	4	592				Total :		Total :	59	2	
Spee	ed Total	s											
	50 % 85 % Avg	%: 32.3 mph %: 38.2 mph				Top Sp Low Sp 10mph Pace Spe	eed :	47.7 mph 10.7 mph 30.2 - 40.1	55.4	Average Truck S Average Car Spe 0%			6 mph 5 mph
Peal	k Hour T	otals											
	۸M	Peak Hour (Volume	`					AM Peak Hou	r (Speed)				
	Wee Wee	ekday : ekend : Peak Hour (Volume	,					PM Peak Hou	,				
		· ·	, 0 - 18:30	(^	Va 36)			16:00 - 17:00	(35.6 m	ph)			
Grar		ekend :	0 - 10:30	(A)	vg 36)			10.00 - 17:00	(35.0 M	pir)			
	Tota	al Cars : al Trucks : al Volume :			47 27 74	(2 ⁻	76 ADT) 16 ADT) 92 ADT)	Average Lengt Average Axles		Average Headwa .00	y: Average		.7 sec .1 sec

Per-Vehicle Summary Report: CAMPBELL, TURNERCREST

Statio	· •	CAM-T										nected Device Type :	Apollo	
	Info Line											Version Number :	1.66	
	Info Line	e 2 :										Serial Number :	11297	
GPS La	DB File	:	CAM-TUR-	U.DB								Number of Lanes : Posted Speed Limit :	2 0.0 mph	
												·		
#	Dir.	Informatio	on			Vehicle	Sensors			Config Spacing	uration Loop Len	gth		
1.00						Axle-Axle			4.0 ft					
3.00			-			Axle-Axle			4.0 ft					
Average	e Dally I	raffic (ADT												
		Weekday Cars :		52	87%				Weeker Cars :	hd		Total ADT Cars :	252	87%
	Trucks			5∠ 6	87% 13%			Trucks :				Trucks :	36	87% 13%
		Total :	2	88					Total :			Total :	288	
Speed [.]	Totale	i ottai i	-						, ota :				200	
Speed	50 % :	38.2 mph					Top Spee	ed :	51.6 mp	bh		Average Truck Speed	l:	35.9 mpl
	85 % :	43.6 mph					Low Spee		18.1 mp			Average Car Speed :		37.7 mp
	Avg:	37.4 mph				10mph F	Pace Spee	d:	34.9 - 4	4.8	70.80%			
Peak He	our Total	s												
		ak Hour (Vo	lume)						AM Pea	ak Hour (S	Speed)			
	Weekda Weeker	•												
	PM Pea	ak Hour (Vo	lume)						PM Pea	ak Hour (S	Speed)			
	Weekda		16:30 - 17:	30	(Avg 30)				16:15 -	17:15	(38.6 mp	bh)		
Grand 1	Weeker	nd :												
Grana					40	,	050				10.0.0			100.0
	Total Ca Total Tr				42	(252	ADT)	Average	ELENGTH :		Average Headway :		186.9 se
		diama a la			6	(36	ADT)	Average	Axles :	2.30		Average Gap :	186.6 se
		olume : Vehic	le Sui	mma	48	((epoi	288	ADT)					Average Gap :	186.6 se
	Per-		le Sui	mma	48	((?epoi	288	ADT)		ROAL	D	vice Type :	Average Gap : Apollo	186.6 se
Station	Per-	Vehic cro-d-t	le Sui	mma	48	(((((((() () () () () (() (() (() () () () (() () (() () (288	ADT)		ROAL	D Inected Det	vice Type : Version Number :		186.6 se
Station	Per- ID : 0 Info Line 1 Info Line 2	Vehic cro-d-t	le Sui	mma	48	((?epo i	288	ADT)		ROAL	D Innected De	Version Number : Serial Number :	Apollo 1.51 11194	186.6 se
Station	Per- ID: 0 Info Line 1 Info Line 2 Lon :	<i>Vehic</i> cro-d-t		mma	48	(()epoi	288	ADT)		ROAL	D Innected Der	Version Number : Serial Number : Number of Lanes :	Apollo 1.51 11194 2	186.6 se
Station	Per- ID : 0 Info Line 1 Info Line 2	<i>Vehic</i> cro-d-t	le Sui o-d-t.db	mma	48	((epo i	288	ADT)		ROAL	D Innected Der	Version Number : Serial Number :	Apollo 1.51 11194	186.6 se
Station	Der- ID: Info Line 1 Info Line 2 Lon : DB File :	Vehic cro-d-t		mma	ary R	-	288 *t: CR	ADT)	(, D-l Configu	ROAI Last Cor	D Innected Der	Version Number : Serial Number : Number of Lanes :	Apollo 1.51 11194 2	186.6 se
Station GPS Lat/L	Der- ID: Info Line 1 Info Line 2 Lon : DB File :	<i>Vehic</i> cro-d-t		mma	48 ary R Vehic	- le Sensors	288 *t: CR	ADT)	(, D -1	ROA Last Cor Last Cor	D Innected Der	Version Number : Serial Number : Number of Lanes :	Apollo 1.51 11194 2	186.6 se
Station	Der- ID: Info Line 1 Info Line 2 Lon : DB File :	Vehic cro-d-t		mma	ary R	ାe Sensors ଅଧିକ	288 *t: CR	ADT)	(, D-l Configu	ROAI Last Cor	D Innected Der	Version Number : Serial Number : Number of Lanes :	Apollo 1.51 11194 2	186.6 se
Station	Der- ID: Info Line 1 Info Line 2 Lon : DB File :	CRO-D-T		mma	48 ary R Vehic Axte-A	ାe Sensors ଅଧିକ	288 *t: CR	ADT)	(, D-l Configu	Last Cor Last Cor Loop Ler 4.0 ft	D Innected Der	Version Number : Serial Number : Number of Lanes :	Apollo 1.51 11194 2	186.6 se
Station	ID: 0 Info Line 1 Info Line 2 Lon : DB File : Dir. 1 Daily Trat	CRO-D-T : :	O-D-T.DB	mma	48 ary R Vehic Ade-A Axle-A	ାe Sensors ଅଧିକ	288 *t: CR	ADT) COOK Lane Sensor Weeke	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Total ADT	Apollo 1.51 11194 2 0.0 mph	
Station GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L	ID: 0 Info Line 1 Info Line 2 Lon : DB File : Dir. 1 Daily Trat	CRO-D-T : :		mma	48 ary R Vehic Axte-A	ାe Sensors ଅଧିକ	288 *t: CR	ADT) COOK Lane Sensor Weeke Cars :	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft	D inected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit :	Apollo 1.51 11194 2	84% 16%
Station GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L GPS Lat/L	Per- ID: () Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. I Daily Trat	CRO-D-T : :	0-D-T.DB 324	mma	48 ary R Vehic Ade-A Ade-A Ade-A	ାe Sensors ଅଧିକ	288 rt: CR	ADT) COOK Lane Sensor Weeke Cars :	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Total ADT Cars :	Apollo 1.51 11194 2 0.0 mph	84%
Station GPS Lat/L .00 .00 Average	Per- ID: () Info Line 1 Info Line 2 Lon : DB File : DB File : DB File : Daily Trat	CRO-D-T : : nformation flic (ADT) Neekday Cars :	0-D-T.DB 324 60	mma	48 ary R Vehic Ade-A Ade-A Ade-A	le Sensors থেe থেe	288 *t: CR	ADT) COCK Lane Sensor Weeke Cars : :	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Total ADT Cars : Trucks :	Apollo 1.51 11194 2 0.0 mph 324 60	84%
Station GPS Lat/L t .00 Speed To	ID: 0 Info Line 1 Info Line 2 Lon : DB File : Dir. 1 Daily Trat Trucks : Trucks :	CRO-D-T : : CR nformation ffic (ADT) Neekday Cars : Total : 52.6 mph	0-D-T.DB 324 60	mma	48 ary R Vehic Ade-A Ade-A Ade-A	le Sensors ଝାe ଝାe Top S	288 rt: CR Trucks Speed :	ADT) COCK Lane Sensor Weeke Cars : : Total : 82.1 m	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed :	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Station GPS Lat/ .00 .00 Average	Per- ID: 0 Info Line 1 1 Info Line 2 2 Lon : D DB File : 0 Dir. 1 Daily Trat 0 Trucks : 0 50 % : 5 50 % : 6	CRO-D-T : : crown c	0-D-T.DB 324 60	mma	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors ଝାe ଝାe Top S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : : Total :	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Total ADT Cars : Trucks : Total :	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Station GPS Lat/L t t	Per- ID: 0 Info Line 1 1 Info Line 2 2 Lon: 2 DB File: 2 Dir. 1 Daily Trate 0 Trucks: 1 Stals 5 S0 % : 5 Avg : 5	Vehic CRO-D-T : : cr nformation ffic (ADT) Neekday Cars : Total : 52.6 mph 32.1 mph	0-D-T.DB 324 60	mma	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors ଧe Xde Top S Low S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : Total : 82.1 m, 9.9 mp	Configu Spacing	Last Cor Last Cor Loop Len 4.0 ft 4.0 ft	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed :	Apollo 1.51 11194 2 0.0 mph 324 60	84%
Station GPS Lat/ 1.00 3.00 Average	Per- ID: () Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. () Daily Trat Daily Trat Constant So % : 5 85 % : 6 Avg : 5 So % : 5 So	Vehic CRO-D-T : : CR nformation ffic (ADT) Neekday Cars : fotal : 52.6 mph 52.1 mph 53.1 mph Hour (Volum	0-D-T.DB 324 60 384	mma	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors ଧe Xde Top S Low S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : Total : 82.1 m, 9.9 mp	Configu Spacing	ROAL Last Cor Loop Len 4.0 ft 4.0 ft 48.40%	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed : Average Car Speed :	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Speed To Speed To Speek Hou	Per- ID: 0 Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. 1 Daily Trat Daily Trat C Trucks : 50 % : 5 85 % : 6 Avg : 5 ur Totals	Vehic CRO-D-T : : ccr information ffic (ADT) Neekday Cars : Total : 52.6 mph 52.1 mph 53.1 mph Hour (Volum	0-D-T.DB 324 60 384	mma	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors ଧe Xde Top S Low S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : Total : 82.1 m, 9.9 mp	Configu Spacing	ROAL Last Cor Loop Len 4.0 ft 4.0 ft 48.40%	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed : Average Car Speed :	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Station GPS Lat/L t.00 Average	Per- ID: 0 Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. 1 Daily Trat Daily Trat 0 Trucks : 50 % : 5 50 % : 5 5	Vehic CRO-D-T : : ccr information ffic (ADT) Neekday Cars : Total : 52.6 mph 52.1 mph 53.1 mph Hour (Volum	O-D-T.DB 324 60 384 e)	mma	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors ଝାe ଝାe Top S Low S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : Total : 82.1 m, 9.9 mp	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft 4.0 ft 48.40% AM Peal	D nected Der	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Posted Speed Limit : Cars : Trucks : Trucks : Total : Average Truck Speed : Average Car Speed : eed)	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Station GPS Lat/L .00 Average	Per- ID: 0 Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. 1 Daily Trat Daily Trat C Trucks : 50 % : 5 S0 % : 5 S	Vehic CRO-D-T : crossing crossing fic (ADT) Neekday Cars : Total : 52.6 mph 53.1 mph 53.1 mph Hour (Volum : Hour (Volum : 18:	O-D-T.DB 324 60 384 e)	mma	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors vie vie Top S Low S h Pace S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : Total : 82.1 m, 9.9 mp	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft 4.0 ft 48.40% AM Peal	D inected Der igth	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed : Average Car Speed : eed)	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Speed Tc	Per- ID: 0 Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. 1 Daily Trat Daily Trat Daily Trat C Trucks : 50 % : 5 85 % : 6 85 % : 6 85 % : 6 Avg : 5 ur Totals AM Peak I Weekday Weekeay	Vehic CRO-D-T : : cR information ffic (ADT) Neekday Cars : Total : 52.6 mph 53.1 mph 53.1 mph Hour (Volum : Hour (Volum : :	O-D-T.DB 324 60 384 e)	mma	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors vie vie Top S Low S h Pace S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : Total : 82.1 m, 9.9 mp	Configu Spacing	Last Cor Last Cor Loop Ler 4.0 ft 4.0 ft 48.40% AM Peal	D Intected Def Ingth (Spectrosoft) (Spectr	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed : Average Car Speed : eed)	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Station GPS Lat/L .00 Average	Per- ID: 0 Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. 1 Daily Trat Daily Trat Daily Trat C Trucks : Trucks : So % : 5 85 % : 6 Avg : 5 So % % % % % % % % % % % % % % % % % % %	Vehic CRO-D-T : crossing crossing fic (ADT) Neekday Cars : fotal : 52.6 mph 52.1 mph 53.1 mph Hour (Volum : Hour (Volum : 18: 18:	O-D-T.DB 324 60 384 e)		48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors vde vde Low S h Pace S	288 rt: CR Trucks speed : speed : speed :	ADT) COCK Lane <i>Sensor</i> Weeke Cars : Total : 82.1 m 9.9 mpi 49.8 - 5	Configu Spacing nd	Last Cor Last Cor Loop Ler 4.0 ft 4.0 ft 48.40% AM Peal 14:15 - 1	D inected Def gth k Hour (Spa k Hour (Spa k Hour (Spa k (57.0 mp)	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed : Average Car Speed : eed) eed)	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m
Speed To Speed To	Per- ID: 0 Info Line 1 Info Line 2 Lon : DB File : DB File : Dir. 1 Daily Trat Daily Trat Daily Trat C Trucks : 50 % : 5 85 % : 6 85 % : 6 85 % : 6 Avg : 5 ur Totals AM Peak I Weekday Weekeay	Vehic CRO-D-T : : cr cr cr cr cr cr cr cr cr cr cr cr cr	O-D-T.DB 324 60 384 e)	54 10	48 ary R Vehic Axle-A Axle-A 84% 16%	le Sensors vie vie Top S Low S h Pace S	288 T: CR Trucks speed : Speed :	ADT) COCK Lane Sensor Weeke Cars : Total : 82.1 m 9.9 mp 49.8 - 5	Configu Spacing	ROAL Last Cor Last Cor Loop Ler 4.0 ft 4.0 ft 48.40% AM Peal PM Peal 14:15 - 1 18.4 ft	D inected Def gth k Hour (Spa k Hour (Spa k Hour (Spa k (57.0 mp)	Version Number : Serial Number : Number of Lanes : Posted Speed Limit : Total ADT Cars : Trucks : Total : Average Truck Speed : Average Car Speed : eed)	Apollo 1.51 11194 2 0.0 mph 324 60	84% 16% 43.6 m 54.9 m

	Per	r-Vehi	icle S	Summa	ary Re	eport:	CAM	PBE	LL, CL	ARK	ELEN	,		
Station		CAM-CL			-									
Info Lir Info Lir		Clarkele	n											
	er Type: er Version:	Apollo 1.51												
Serial #	# :	11194												
Latitud Longitu														
Lanes: Speed	Limit:	2												
LANE C	ONFIGURA	TION:												
	Lane #	Dir	Informa	aticSensors	Spacing	g Loop Le	eng Comme	nt						
	1 3			Ax-Ax Ax-Ax	4.0 ft 4.0 ft									
AVERA	GE DAILY T	RAFFIC (AD	т):											
		Weekda	iy	%			Weeke	nd	%			Total ADT	г	%
	Cars: Trucks:	252	37.5 62.5			Cars: Trucks:					Cars: Trucks:	252 420	37.5 62.5	
	Total:	672	02.5			Total:					Total:	672	02.5	
SPEED	TOTALS:													
	50 %:	39.5	mph	Top Spee	d:	60.7	mph			Avg Truck	Speed:	36.2	mph	
	85 %: Avg:	47.8 39.5	mph mph	Low Spee		7.5 32.7	mph 42.6	48.2	%	Avg Car S		44.8	mph	
			mpn	Iompirie	ace speed.	52.7	42.0	40.2						
PEEK H														
		ak Hour (Vo lay: 11:00 nd:	lume): 12:00	Avg 31			AM Pea 9:15	k Hour (S 10:15	peed): 45.5	mph				
		ak Hour (Vo lay: 13:15	lume): 14:15	Avg 52			PM Pea 12:30	k Hour (S 13:30	peed): 41.9	mph				
GRAND	TOTALS:													
	Total C	ars:	42	252	(ADT)		Average	e Length:	37.0 ft		Average	Headway:	110.4 s	ec
	Total Ti	rucks:	70 112	420 672	(ADT)		Average		3.8		Average		109.7 s	
	Total V				mmar	v Por	ort.	~~~~~	PBELL,	COS				
		Fel-	venic	le Sui	iiiiai	у кер			F DELL,	, CO3				
Info Line 1		Cosner												
Info Line 2 Counter Ty		Apollo												
Counter V		1.51												
Serial #: Latitude:		11286												
Longitude	:													
Lanes: Speed Lim	nit:	2												
		~												
LANE CON	FIGURATIO	ON:												
	Lane # 1	Dir	Informat	tic Sensors Ax-Ax	Spacing 4.0 ft	Loop Len	g Commer	t						
	3			Ax-Ax Ax-Ax	4.0 ft									
AVERAGE	DAILY TRA	FFIC (ADT)	:											
				~					04					
	Cars:	Weekday 480	57.6	%		Cars:	Weeken	u	%		Cars:	Total A 480	ADT 57.0	% 6
	Trucks:	354	42.4			Trucks:					Trucks		42.4	4
	Total:	834				Total:					Total:	834		
SPEED TOT	TALS:													
	50 %:	46.5	mph	Top Spee	d:	78.1	mph			Avg True	k Speed:	42.4	mp	h
	85 %: Avg:	54.7 45.8	mph mph	Low Spee	ed: ace Speed:	4.3 39.4	mph 49.3	46.8	%	Avg Car	Speed:	48.3	mp	h
			mpn	iompiri	ace specu.	33.4	49.5	40.0						
PEEK HOU	R TOTALS:													
	AM Peak Weekday Weekend		me):	Avg			AM Peak	Hour (S	peed):					
	PM Peak I Weekday Weekend		me): 17:15	Avg 48			PM Peak 14:45	Hour (Sp 15:45	oeed): 48.5	mph				
GRAND TO	DTALS:													
	Total Cars	:	80	480	(ADT)		Average	Length:	30.1 ft		Averag	ge Headwa	ay: 87.9	9 sec
	Total Truc	:ks:	59 139	354 834	(ADT)		Average		3.4			ge Gap:		4 sec

Per-Vehicle Summary Report: CAMPBELL, MOORE

CAM-MOO-T Moore Info Line 1: Info Line 1: Moore Info Line 2: Counter Type: Apollo Counter Version: 1.51 Serial #: 11194 Latitude: Longitude: Lanes: 2 Speed Limit:

LANE CONFIGURATION:

L	ane #	Dir	InformaticSensors	Spacing	Loop Leng Comment
1	-		Ax-Ax	4.0 ft	
3	5		Ax-Ax	4.0 ft	

AVERAGE DAILY TRAFFIC (ADT):

	Cars: Trucks: Total:	Weekday 48 120 168	28.6 71.4	%		Cars: Trucks: Total:	Weekend	ł	%		Cars: Trucks: Total:	Total AD1 48 120 168	28.6 71.4	%
SPEED TO	TALS:													
	50 %: 85 %: Avg:	32.6 37.3 32.2	mph mph mph	Top Speed: Low Speed 10mph Pace	:	39.5 9.6 30	mph mph 39.9	81	%	Avg Truck Avg Car Sp		33.1 30.1	mph mph	
PEEK HOU	UR TOTALS	:												
	AM Peak Weekday Weekend		ıme): 9:00	Avg 14			AM Peak 8:15	Hour (Sj 9:15	beed): 33.4	mph				
	PM Peak Weekday Weekend		ime):	Avg			PM Peak	Hour (Sp	beed):					
GRAND T	OTALS:													
	Total Car Total Tru		6 15		(ADT) (ADT)		Average Average		45.9 ft 4.5		Average Average	Headway: Gap:	247.3 s 246.3 s	

_		-	_	< < < < < < < < < < < < < < < < < < <			
Total Trucks:	15	120	(ADT)	Average Axles:	4.5	Average Gap:	246.3 s
Total Cars:	6	48	(ADT)	Average Length:	45.9 ft	Average Headway:	247.3 s

Per-Vehicle Summary Report: CAMPBELL, TODD

Statio	n ID :	CAM-TOD-U							Last Connected Device T	ype :	Apollo	
GPS La	Info Line Info Line t/Lon : DB File :	2:	D-U.DB							Version Number : Serial Number : Number of Lanes : Posted Speed Limit :	1.66 11166 2 0.0 mph	
#	Dir.	Information			Vehicle S	Sensors			nfiguration CLoop Length			
1.00 3.00	n Daily Tr	affic (ADT)			Axle-Axle Axle-Axle				4.0 ft 4.0 ft			
Average	Trucks :	Weekday Cars :		7% 3%			Trucks :	Weekend Cars :		Total ADT Cars : Trucks :	126 60	67% 33%
		Total :	186					Total :		Total :	186	
Speed ⁻	Totals 50 % : 85 % : Avg :	33.1 mph 43.0 mph 33.7 mph			10mph P	Top Spee Low Spe Pace Spee	ed :	100.5 mph 6.0 mph 33.0 - 42.9		Average Truck Speed Average Car Speed :	:	25.7 mph 37.5 mph
Peak He	our Totals	;										
	Weekday Weekend		A) 00:80	Avg 15)					AM Peak Hour (Speed) 09:30 - 10:30 (100.5 mph PM Peak Hour (Speed)))		
Grand 1	Weekday Weekend Fotals											
	Total Car Total Tru Total Vol	cks :	2: 11 3:	0	(126 60 186	ADT) ADT) ADT)	Average Ler Average Ax		Average Headway :	Average	294.1 sec (293.3 sec

Per-Vehicle Summary Report: CAMPBELL, CHRISTENSEN

Statio	n ID :	CAM-CHR-U							Last Connected	d Device T	ype :	Apollo	
GPS La	Info Line Info Line t/Lon : DB File :	2 :	IR-U.DB							Serial Nu Number	umber : of Lanes :	1.66 11297 2 0.0 mph	
#	Dir.	Information			Vehicle	e Sensors		Lane Config Sensor Spacing					
1.00 3.00 Averag e	e Daily Tr	affic (ADT)			Axle-Ax Axle-Ax			4.0 ft 4.0 ft					
	Trucks :	Weekday Cars :	176 88	66% 34%			Trucks :	Weekend Cars :		Total Al Cars : Trucks :		176 88	66% 34%
Speed ⁻	Totals 50 % : 85 % : Avg :	Total : 39.5 mph 46.9 mph 39.4 mph	264		10mph	Top Spe Low Spe n Pace Spee	eed :	Total : 48.5 mph 24.5 mph 37.4 - 47.3	66.70%		Truck Speed : Car Speed :	264	38.0 mph 40.1 mph
Peak He	our Totals	;											
	Weekday Weekend		09:15	(Avg 16)				AM Peak Hour (09:45 - 10:45 PM Peak Hour ((42.5 mph)				
Grand 1	Weekday Weekend Fotals												
	Total Car Total Tru Total Vol	cks :		22 11 33	((176 88 264	ADT) ADT) ADT)	Average Length Average Axles :		Average	Headway :	Average Gap :	286.0 sec 285.7 sec
	Pe	r-Vehicl	e Su	mma	ary	Repo	ort: C	AMPBE	LL, HA	YDE	N		
Stati	ion ID :	CAM-HAY-L	J						Last Connecte	d Device	Туре :	Apollo	
GPS I	Info Lii Info Lii Lat/Lon : DB Fil	ne 2 :	-HAY-U.[ЪВ							Version Number : Serial Number : Number of Lanes : Posted Speed Limit	1.66 11166 2 : 0.0 mph	
#	Dir.	Information			Ve	hicle Senso	ors		onfiguration				

1.00 Axle-Axle 4.0 ft 3.00 Axle-Axle 4.0 ft Average Daily Traffic (ADT) Weekday Weekend Total ADT Cars : 120 88% Cars : Cars 120 88% Trucks : 16 12% Trucks : Trucks : 16 12% Total : 136 Total : Total : 136 Speed Totals 50 % : 40.2 mph Top Speed : 43.2 mph Average Truck Speed : 36.3 mph 85 % : . 42.3 mph Low Speed : . 6.3 mph Average Car Speed : . 34.4 mph 34.5 - 44.4 76.50% Avg: 34.7 mph 10mph Pace Speed: Peak Hour Totals AM Peak Hour (Speed) AM Peak Hour (Volume) Weekday : 07:00 - 08:00 (Avg 12) 07:15 - 08: (40.3 mph) Weekend : PM Peak Hour (Volume) PM Peak Hour (Speed) Weekday : Weekend :

Grand Totals Total Cars : 120 ADT) Average Len 14.7 ft 551.8 sec 15 (Average Headway : 2 17 Total Trucks : ADT) Average Axl 2.40 Average (551.4 sec 16 (Total Volume : 136 ADT) (

Per-Vehicle Summary Report: CAMPBELL, BLACK & YELLOW

Station	ID :	CAM-BLA-U						Last Connected Device	Туре :	Apollo	
lı GPS Lat/L	Info Line Info Line : Lon : DB File :		-U.DB						Version Number : Serial Number : Number of Lanes : Posted Speed Limi	11166 2	
							Lane Config				
	Dir.	Information			ehicle Sensors		Sensor Spacing				
1.00 3.00					wle-Axle wle-Axle			4.0 ft 4.0 ft			
Average I	Dally Ira										
			320 63 184 37			Trucks :	Weekend Cars :		Total ADT Cars : Trucks :	320 184	63% 37%
		Total :	504				Total :		Total :	504	
Speed To	otals										
8		28.0 mph 42.9 mph 28.0 mph		1	Top Spe Low Spe Omph Pace Spee	ed :	66.7 mph 3.4 mph 23.7 - 33.6	39.10%	Average Truck Spe Average Car Speed		25.2 mpł 29.5 mpł
Peak Hou	ır Totals										
٧	AM Peak Weekday Weekend		:30 (A	/g 26)				AM Peak Hour (Speed) 10:30 - 11:30 (32.4 m	oh)		
		Hour (Volume)						PM Peak Hour (Speed)			
	Weekday Weekend tals		:00 (A	/g 24)				12:00 - 13:00 (25.0 m	oh)		
T	Total Car Total Truc Total Voli	ks :	41 23 64	(320 184 504	ADT) ADT) ADT)	Average Length Average Axles :		Average Headway	Average Gap	145.9 se : 145.1 se
	Pe	r-Vehicle	Sum	mai	ry Repo	rt: C	AMPBE	LL, IBERLI	N		
Statio	n ID :	CAM-IBE-U						Last Connected Devi	се Туре :	Apollo	
GPS La	Info Lir Info Lir It/Lon : DB File	ie 2 :	3E-U.DB						Version Number Serial Number : Number of Lanes Posted Speed Lin	11166 : 2	
#	Dir.	Information			Vehicle Senso	rs		nfiguration cir Loop Length			
1.00 3.00	o Doilur				Axle-Axle Axle-Axle			4.0 ft 4.0 ft			
Average	e Dally	Traffic (ADT)									
	Trucks	Weekday Cars : :	222 42	84% 16%		Trucl	Weekend Cars : ks :		Total ADT Cars : Trucks :	222 42	84% 16%
		Total :	264				Total :		Total :	264	
Speed ⁻	50 % : 85 % :	40.6 mph			Low	Speed : Speed :	43.9 mph 6.0 mph	47 700/	Average Truck Sp Average Car Spe		18.6 mph 31.5 mph
D	Avg:	29.5 mph			10mph Pace S	speed:	24.6 - 34.5	47.70%			
Peak He									n		
	AM Pe Weeko Weeko	•						AM Peak Hour (Spee	ed)		

Weekend : PM Peak Hour (Volume) PM Peak Hour (Speed) Weekday : 13:30 - 14:30 (Avg 20) 12:30 - 1:(33.6 mph) Weekend : Grand Totals 37 7 ADT) Average Leng 16.1 ft ADT) Average Axle 2.30 Total Cars : (222 Average Headway : Total Trucks : 42 Average (230.0 sec

230.4 sec

Per-Vehicle Summary Report: JOHNSON, TTT

Statio	n ID :	JOH-TTT-U			Last Conne	ected Device Type :	Apollo
GPS La	Info Line Info Line at/Lon : DB File	2:	В			Version Number : Serial Number : Number of Lanes : Posted Speed Limi	1.66 11297 2 t : 0.0 mph
#	Dir.	Information		Vehicle Sensors	Lane Configuration Sensor Spacing Loop Lengt	h	
1.0 3.0 Averag	0	raffic (ADT)		Axle-Axle Axle-Axle	4.0 ft 4.0 ft		
Atolug	le Duity I						
	Trucks	Weekday Cars :	120 76 36 24		Weekend Cars : s :	Total ADT Cars : Trucks :	120 76% 36 24%
		Total :	156		Total :	Total :	156
Speed	Totals 50 % : 85 % : Avg :	25.1 mph 34.4 mph 24.4 mph		Top Speed : Low Speed : 10mph Pace Speed:	36.4 mph 10.7 mph 26.9 - 36.8 48.1	Average Truck Spee Average Car Speed	
Peak H	lour Total	s					
	AM Pea Weekda Weeker				AM Peak Hour (Speed)		
		k Hour (Volume)			PM Peak Hour (Speed)		
Grand	Weekda Weeker Totals		(Avg 14	ł)	12:30 - 13:30 (31.2 mph)	
	Total Ca Total Tri Total Vo	ucks:		21 (120 ADT) 6 (36 ADT) 27 (156 ADT)	Average Length : 32.3 ft Average Axles : 3	Average Headway : .40	346.3 sec Average Gap : 345.3 sec
		Per-Vehic	le Sun	nmary Report	SWEETWATE	R, WAMSU	TTER
Stati	ion ID :	SWE-WAM-U			Last Connect	ed Device Type :	Apollo
GPS	Info Lii Info Lii Lat/Lon : DB Fil	ne 2 :	U.DB			Version Nun Serial Numb Number of L Posted Spec	er: 11297
#	Dir.	Information		Vehicle Sensors	Lane Configuration		

#	Dir.	Information		V	ehicle Sensors	Sensor Spacing	Loop Length			
1.0 3.0 Averag	00	raffic (ADT)			xle-Axle xle-Axle		4.0 ft 4.0 ft			
	Trucks :	Weekday Cars : Total :	432 114 546	79% 21%	Trucks :	Weekend Cars : Total :		Total ADT Cars : Trucks : Total :	432 114 546	79% 21%
	Totals 50 % : 85 % : Avg :	39.5 mph 45.5 mph 38.3 mph		1	Top Speed : Low Speed : 0mph Pace Speed:	55.3 mph 9.9 mph 34.6 - 44.5	60.40%	Average Truck Speed Average Car Speed :		.0 mph .0 mph
	Weekda Weeken	k Hour (Volume) y : 01:30 - 02:30 d : k Hour (Volume) y :	(A ¹	vg 39)			AM Peak Hour (Speed) 04:00 - 05:00 (40.8 m PM Peak Hour (Speed)	ph)		
	Total Ca Total Tru Total Vo	icks :		72(19(91(432 ADT) 114 ADT) 546 ADT)	Average Length : Average Axles :	: 21.4 ft 2.70	Average Headway : A	10 verage (10	8.5 sec 8.0 sec

Per-Vehicle Summary Report: SWEETWATER, PATRICK DRAW

Station ID : SWE-PAT-U Last Connected Device Type : Apollo Info Line 1 : Version Number : 1.66 Info Line 2 : Serial Number : 11166 GPS Lat/Lon : Number of Lanes : 2 DB File : SWE-PAT-U.DB Posted Speed Limit : 0.0 mph Lane Configuration # Dir. Information Vehicle Sensors Sensor Spacing Loop Length Axle-Axle 40ft 1 00 4.0 ft Axle-Axle 3.00 Average Daily Traffic (ADT) Weekday Weekend Total ADT Cars : 144 81% Cars : Cars : 144 81% Trucks : Trucks : 32 19% Trucks : 32 19% 176 Total : Total : 176 Total : Speed Totals Average Truck Speed : Average Car Speed : 50 % : 28.1 mph Top Speed : 43.2 mph 22.3 mph 85 % : 38.0 mph Low Speed : 12.2 mph 28.6 mph Avg: 27.5 mph 10mph Pace Speed: 24.6 - 34.5 47.80% Peak Hour Totals AM Peak Hour (Volume) AM Peak Hour (Speed) Weekday : 11:00 - 12:00 (Avg 6) 10:45 - 11:45 (36.8 mph) Weekend : PM Peak Hour (Volume) PM Peak Hour (Speed) Weekday : 12:15 - 13:15 (Avg 15) 12:30 - 13:30 (31.0 mph) Weekend : Grand Totals Total Cars : 19 (144 ADT) Average Length : 14.6 ft Average Headway :291.4 sec 32 ADT) 176 ADT) 2.10 Total Trucks : 4 (Average Axles : Average Gap : 291.0 sec 23 (Total Volume : Per-Vehicle Summary Report: WESTON, GRIEVES

Statio	n ID :	WES-0	GRI-U						Last Connected D	ечісе Тур	e Apollo	
GPS La	Info Line Info Line t/Lon : DB File	2:	WES-GRI-U.[ЪВ					Version Number : Serial Number : Number of Lanes : Posted Speed Lim		1.66 11166 2 0.0 mph	
#	Dir.	Informat	ion			Vehicle Senso	ors	Lane Conf				
1.0 3.0 Averag		raffic (AD	T)			Axle-Axle Axle-Axle		4.0 ft 4.0 ft				
		Weekda	у					Weekend		Total A	DT	
	Trucks :	Cars :		126 30	80% 20%		Trucks :	Cars :	Cars : Trucks :		126 30	
		Total :		156				Total :	Total :		156	i .
Speed	Totals 50 % : 85 % : Avg :	39.0 mp 45.7 mp 37.9 mp	h				Speed : v Speed : Speed:	55.9 mph 13.7 mph 35.8 - 45.7	Average Truck Sp Average Car Spee 61.50%		41.4 mpl 37.0 mpl	
Peak H	our Total	s										
	Weekda Weeken		11:00 - 12:00	(A	vg 12)			AM Peak Hou 10:45 - 11:45 PM Peak Hou	(38.4 mph)			
Grand ⁻	Weekda Weeken	y :	13:45 - 14:45	(A	vg 12)			12:15 - 13:15	,			
	Total Ca Total Tru Total Vo	icks :			21 5 26	(126 ADT) 30 ADT) 156 ADT)	Average Lengt Average Axles		Average Average		:402.3 sec 402.0 sec

Per-Vehicle Summary Report: WESTON, BRUCE

Stati	ion ID :	WES-BRU-U							Last Connecte	d Device	Гуре: Аро	llo	
GPS I	Info Line Info Line Lat/Lon : DB File	2:	DВ							Serial No Number	Number : umber : 1 of Lanes : Speed Limi 0.0	1.66 1297 2 mph	
#	Dir.	Information			Vehicle Sense	ors	Lane C Sensor S	configuration	Loop Length				
	.00				Axle-Axle			4.0 ft					
	.00 age Daily T	raffic (ADT)			Axle-Axle			4.0 ft					
	Trucks :	Weekday Cars :	84 6	93%	7%		Weekend Cars : Trucks :	1		Trucks :	Total ADT Cars :	84 6	93% 7%
		Total :	90				Total :				Total :	90	
Spee	d Totals 50 % : 85 % : Avg :	36.0 mph 41.8 mph 32.3 mph				o Speed : v Speed : Speed:	51.3 mpł 35.9 - 45	8.6 mph	60.00%	Average	Truck Speed : Car Speed :		8.6 mph 34.0 mph
Peak	Hour Total	S											
	AM Pea Weekda Weeken		(Av	g 8)				AM Peak Hour (Speed) 07:00 - 08:00	(42.8 m	ph)		
	PM Pea	k Hour (Volume)						PM Peak Hour (Speed)				
Grand	Weekda Weeken d Totals												
	Total Ca Total Tru Total Vo	icks :		14 1 15	(84 ADT) 6 ADT) 90 ADT)	Average	Length : Average Axles :	13.2 ft 2.20)	Average Head Average Gap		568.9 sec 568.5 sec

Per-Vehicle Summary Report: WESTON, MUSH CREEK

Station ID	: WES	S-MUS-U					Last Co	nnected Device Type Apo	ollo	
Info GPS Lat/Lon	D Line 1 : D Line 2 : D : D File :	WES-MUS-U	.DB					Version Number : Serial Number : Number of Lanes : Posted Speed Limi 0.0	1.66 11166 2 mph	
# Dir.	. Inform	nation		Vehicle Ser	isors	Lane Configu	Loop Le	ngth		
1.00 3.00 Average Da	ilv Traffic (#	ADT)		Axle-Axle Axle-Axle		4.0 ft 4.0 ft				
-	Week Cars : Truck	day	180 99 ⁰ 0	% 1%		Weekend Cars : Trucks :		Total ADT Cars : Trucks :	180 0	99% 1%
	Total	:	180			Total :		Total :	180	
	%: 22.1 r %: 25.7 r g: 22.9 r	nph			op Speed : ow Speed : ce Speed:	32.2 mph 11.7 mph 19.7 - 29.6	73.30%	Average Truck Speed : Average Car Speed : %	2	2.9 mph
AM We	1 Peak Hour eekday :	(Volume)				AM Peak Hour (S	speed)			
	eekend : 1 Peak Hour	(Volume)				PM Peak Hour (S	speed)			
	eekday : eekend : I s	19:30 - 20:30	(Avg 14)		17:15 - 18:15	(27.5 m	iph)		
Tot	al Cars : al Trucks : al Volume :			5 (0 (5 (180 ADT) 0 ADT) 180 ADT)	Average Length : Average Axles :	13.6 ft 2.3	Average Headway : 0 Ave	4 rage Gap 4	56.3 sec 56.0 sec

		Per	Veh	icle	Sum	mary	y Re	port	: SW	EETI	WAT	ER, I	WAM	SUT	TER	NORTH
Statior	ID :	SWE-W	/AMN-U								Last Con	nected D	evice Type	Apollo		
	Info Line	1.										Version	Numbor	1.66		
	Info Line											Serial Nu		11297		
GPS Lat		Z .											of Lanes :	2		
JF 3 Lau	DB File :		SWE-W/	MN-U.DE	2				-				Speed Lim			
	DB File .		300E-007	NIVIN-U.DE	,							F USIEU 3	speed Lim	0.0 mpn		
									Lane C	onfigu	ration					
¥	Dir.	Informatio	on			Vehicle S	ensors		Sensor S		Loop Len	qth				
1.00						Axle-Axle				4.0 ft						
3.00						Axle-Axle				4.0 ft						
Average	Daily Tra	affic (ADT)													
		Weekday							Weekend	ł			Total AD	т		
		Cars :		60	100%				Cars :				Cars :	60	100%	
	Trucks :			0		0%			Trucks :			Trucks :		0	0%	
		Total :		60					Total :				Total :	60		
		Total .		00					Total .				Total .	00		
Speed T	otals															
-	50 % :	25.0 mph					Top Spe	ed :	28.7 mpł	1		Average	Truck Spe	ed :		
	85 % :	28.7 mph					Low Spe	ed :		6.0 mph		Average	Car Speed	1:	20.4 mph	
	Avg:	20.4 mph				10mph P	ace Spee	d:	18.9 - 28	.8	72.70%					
Peak Ho	ur Totals															
	AM Peak	Hour (Vo	lume)							AM Peak	K Hour (Sp	eed)				
	Weekday		11:00 - 12	2.00	(Avg 4)					/ III / Oui	11:00 - 1		nh)			
	Weekend				(,						1	(,			
		. Hour (Vo	lume)							PM Peak	Hour (Sp	eed)				
	Weekday	, ·	12:00 - 13	3.00	(Avg 5)						12.00 - 1	(26.8 m	nh)			
	Weekend		12.00 - 1	5.00	(, wg 5)						12.00 - 1	(20.0 III				
Grand T																
e.a.iu i																
	Total Car	s:			11	(60	ADT)	Average	Length :	9.3 ft		Average	Headway	555.5 se	>
	Total True	cks:			0	(C	ADT)		Average .	2.00		Average	Gap :	555.1 se	>
	Total Vol	ume :			11	(60	ADT)								

		Per	Veh	icle	Sum	mary	y Rej	port	t: UIN	ITA,	CR 1	171			
Statior	ו ID :	UIN-17	1-U								Last Con	nected D	ечісе Туре	Apollo	
	Info Line											Version	N I	1.66	
	Info Line											Serial Nu		11166	
GPS Lat		z .							_				of Lanes :	2	
0. 0 244	DB File :		UIN-171-	J.DB									Speed Lim		
				[
									L ano C	Configu	ration				
#	Dir.	Informatio	<i>מ</i> ר			Vehicle S	ensors		Sensor S		Loop Len	ath			
							000/0		30,130,13	paoling	Loop Len	9			
1.00						Axle-Axle				4.0 ft					
3.00						Axle-Axle				4.0 ft					
Average	Daily Tra	affic (ADT)												
		Weekday	,						Weeken	d			Total AD	т	
		Cars :		90	99%				Cars :				Cars :	90	99%
	Trucks :			0		1%			Trucks :			Trucks :		0	1%
		Total :		90					Total :				Total :	90	
Speed T	otals														
	50 % :	22.9 mph	1				Top Spee	d :	39.5 mpł	า		Average	Truck Spe	ed :	
	85 % :	35.2 mph	1				Low Spee			6.3 mph		Average	Car Speed	1 :	23.2 mp
	Avg:	23.2 mph				10mph P	ace Speed	4:	31.3 - 41	.2	40.00%				
Peak Ho	our Totals														
	AM Peak	Hour (Vo	lume)							AM Peak	K Hour (Sp	eed)			
	Weekday		,									, í			
	Weekend	1:													
	PM Peak	Hour (Vo	lume)							PM Peak	(Hour (Sp	eed)			
	Weekday	1:	15:45 - 1	6:45	(Avg 12)						16:30 - 1	(39.1 m	ph)		
	Weekend	1:													
Grand T	otals														
	Total Car	s:			15	(90	ADT)	Average	Lenath :	12.9 ft		Average	Headway	574.3 se
	Total True				0	·		ADT)		Average			Average		573.8 se
	Total Vol				15			ADT)						· ·	

		Per-	Veh	icle	Sum	mary	/ Re	port		TA,	CR	173			
Statior	י חו	UIN-17	3-11								Last Cor	nected D	evice Type	Apollo	
Station		0114-17	5-0												
	Info Line	1:										Version	Number :	1.66	
	Info Line	2 :										Serial N	umber :	11297	
GPS Lat	/Lon :											Number	of Lanes :	2	
	DB File :		UIN-173-	U.DB								Posted 3	Speed Lim	0.0 mph	
									Lane C	onfiau	ration				
#	Dir.	Informatio	n			Vehicle S	ensors		Sensor S		Loop Lei	nath			
												Ĩ			
1.00						Axle-Axle			4.0 ft						
3.00						Axle-Axle			4.0 ft						
Average	Daily Tra	affic (ADT	.)												
		Weekday	,						Weekend	1		Total A	DT		
		Cars :		192	94%				Cars :			Cars :		192	94%
	Trucks :			12	!	6%			Trucks :			Trucks :		12	6%
		Total :		204					Total :			Total :		204	
Speed T	otals														
		32.8 mph					Top Spee	ed :	39.8 mph	1		Average	Truck Spe	ed :	14.0 mph
	85 % :	38.8 mph					Low Spee	ed :	11.6 mph	1			Car Speed		31.8 mph
	Avg:	30.8 mph				10mph P	ace Spee	d:	30.1 - 40	.0	70.60%				
Peak Ho	our Totals														
	AM Peak	Hour (Vo	lume)						AM Peak	Hour (Si	peed)				
	Weekday		,								, í				
	Weekend	1:													
	PM Peak	Hour (Vo	lume)						PM Peak	Hour (S	peed)				
	Weekday	:	19:15 - 2	0:15	(Avg 17)				18:15 - 1	9:15	(37.9 m	ph)			
	Weekend	1:													
Grand T	otals														
	Total Car	s:			16	(192	ADT)	Average I	enath :	14.6 ft	Average	Headway	:	195.5 se
	Total Truc				1	·		ADT)	Average /		2.40				195.1 se
	Total Volu				17	·		ADT)	g						

		Per-	Veh	icle	Sum	mary	Re	oort	: TE1	ΓΤΟΛ	I, SF	PRIN	G GL	ILCH	I RD
Station	n ID :	TET-SF	PR-U							Last Con	nected D	evice Type	e :	Apollo	
	Info Line	1 ·										Version	Number :	1.66	
	Info Line											Serial N		11297	
GPS Lat													of Lanes :		
	DB File :		TET-SPF	R-U.DB									Speed Lim		
									Lane C	onfigur	ation				
#	Dir.	Informatio	on			Vehicle Sei	nsors		Sensor S	Loop Len	gth				
1.00						Axle-Axle				4.0 ft					
3.00						Axle-Axle				4.0 ft					
Average	Daily Tra	affic (ADT)												
		Weekday	,						Weekend	1		Total Al	DT		
		Cars :		2454	95%				Cars :			Cars :		2454	95%
	Trucks :			120		5%		Trucks :				Trucks :		120	5%
		Total :		2574					Total :			Total :		2574	
Speed T	otals														
opecali		34.5 mph						Top Spe	64.2 mph	1		Average	Truck Spe	ed ·	37.2 mp
		40.4 mph							•7.8 mph				Car Speed		34.4 mp
	Avg :	34.5 mph				10mph Pa				63.90%		, tronugo	l opeo		0p
Peak Ho	our Totals														
	AM Peak		lumo)							AM Peak	Hour (St	nood)			
	Weekday		10:00 - 1	1.00	(Avg 139)					08:30 - 0					
	Weekend		10.00 - 1	1.00	(Avg 139)	/				00.30 - 0	(37.0 11	pri)			
	PM Peak		lume)							PM Peak	Hour (S	peed)			
	Weekday		12:00 - 1	3.00	(Avg 132)					12:00 - 1	(34.4 m	nh)			
	Weekend		12.00 - 1	0.00	(7.vg 132)	/				12.00 - 1	(34.4 III	P''')			
Grand T															
	Total Car			409		1	2454		Average I	10.4.8		Augreen	Headway		27.4 sec
	Total Car			409	20	(ADT) ADT)				Average	neadway		
	Total Truc Total Vol			429		(2574	,	Average /	2.10				Average	(27.1 sec

		Per-	veh	icie	Sum	mary	y Re	port	t: SW	EET	WAT	ER, I	EDEN	I RE.	SER	OIR	RD
Station	ID :	SWE-E	DE-U								Last Con	nected D	evice Type	Apollo			
	Info Line	1 ·										Version	Number :	1.66			
	Info Line											Serial N		11297			
GPS Lat/		_ .											of Lanes :	2			
	DB File :		SWE-ED	E-U DB									Speed Lim				
			0112 22	0.00										o.o.mpii			
									Lane C	onfiau	ration						
#	Dir.	Informatio	on			Vehicle S	ensors		Sensor S		Loop Len	gth					
1.00						Axle-Axle			4.0 ft								
3.00						Axle-Axle			4.0 ft								
Average	Daily Tra	affic (ADT)														
		Weekday	1						Weekend	4		Total Al	от				
		Cars :		168					Cars :			Cars :		168	100%		
	Trucks :			0		0%			Trucks :			Trucks :		0	0%		
		Total :		168					Total :			Total :		168			
Speed T	otala																
speeu i	50 % :	35.9 mph					Top Spe	ad .	39.5 mpt			A	Truck Spe				
		36.6 mph					Low Spe		14.9 mpt				Car Speed		31.9 mph		
	65 % . Avg:	31.9 mph				10mph P			35.9 - 45		71.40%	Average	Car Speed	1.	31.9 mpn		
	Avg.	51.9 mpn				Tumph P	ace spee	ia.	35.9 - 45	.0	71.40%						
Peak Ho	ur Totals																
	AM Peak	Hour (Vo	lume)						AM Peak	Hour (S	peed)						
	Weekday																
	Weekend	1:															
	PM Peak	Hour (Vo	lume)						PM Peak	Hour (S	peed)						
	Weekday	· :	16:00 - 1	7:00	(Avg 7)				15:15 - 1	6:15	(38.0 mp	h)					
	Weekend																
Grand T																	
	Total Car	s ·			7	(168	ADT)	Average	enath :	11.0 ft	Average	Headway		422.7 sec		
	Total True				0			ADT)	Average		2.60	, worage	suumay		422.5 sec		
	Total Vol			-	7			ADT)	Average		2.00		-	. worage	2.0 300		

		Per-	•Veh	icle	Sum	mary	r Re	port	: SWI	EET	WAT	ER, I	EDEA	IRY	EPA 7	ГС
												, í				
Station	ID:	SWE-E	DR-U								Last Con	nected D	evice Type	Apollo		
	Info Line	1:										Version	Number :	1.66		
	Info Line	2 :										Serial N	umber :	11297		
GPS Lat	/Lon :											Number	of Lanes :	2		
	DB File :		SWE-ED	R-U.DB								Posted	Speed Lim	0.0 mph		
									Lane C	onfigu	ration					
#	Dir.	Informatio	on			Vehicle Se	nsors		Sensor S	pacing	Loop Len	gth				
1.00						Axle-Axle			4.0 ft							
3.00						Axle-Axle			4.0 ft							
Average	Daily Tra	affic (ADT)													
		Weekday	,						Weekend	1		Total A	DT			
		Cars :		328	100%				Cars :			Cars :		328	100%	
	Trucks :			C)	0%			Trucks :			Trucks :		0	0%	
		Total :		328	3				Total :			Total :		328		
		rotar :		020	-				rotar :			rotar .		010		
Speed T	otals															
	50 % :	33.5 mph					Top Spee	ed :	46.8 mph	1		Average	Truck Spe	ed :		
	85 % :	39.1 mph					Low Spe	ed :	13.9 mph	1		Average	Car Speed	1:	32.6 mph	
	Avg:	32.6 mph				10mph Pa	ice Spee	d:	32.4 - 42	.3	56.10%					
Peak Ho	ur Totals															
	AM Peak	Hour (Vo	lume)						AM Peak	Hour /S	need)					
	Weekday		ane)						AWT Can	. 1001 (3	poeu)		-			
	Weekend															
	PM Peak		lume)						PM Peak	Hour (S	peed)					
	Weekday		18:15 - 19	0.15	(Avg 27)				17:45 - 1	8.45	(37.7 m	ab)				
	Weekend		10.10 - 1	5.15	(~vg 27)				17.40 - 1	0.43	(37.7 11	511)	-			
Grand T		•														
	Tatal C						200		A	a sa anti la	11.0.8	A	Lleadure		183.1 sec	
	Total Cars				41			ADT)	Average I		11.3 ft		Headway			
	Total Truc Total Volu				0 41			ADT) ADT)	Average /	Axies :	2.00			Average	(182.8 sec	

		Per	veh	icie	Sum	mary	/ Ке	port	: SW		WA TI	EK, I	LOW	EK F.	ARSC	N RD
Station	ID:	SWE-L	OW-U								Last Con	nected D	evice Type	Apollo		
	Info Line	1.										Version	Number :	1.66		
	Info Line											Serial Nu		11166		
GPS Lat		z .		-	-				-				of Lanes :			
OF 5 Lau	DB File :		SW/EI(DW-U.DB	-				-				Speed Lim			
	DD THC.		OWL-LC	0.00								1 OSteu e		0.0 mpn		
									l ane (Configu	ration					
#	Dir.	Informatio	מר			Vehicle S	ensors		Sensor S		Loop Len	ath				
		man					0		00.1307 0	paonig	Loop Lon	907				
1.00						Axle-Axle			4.0 ft							
3.00						Axle-Axle			4.0 ft							
Average	Daily Tra	affic (AD1	r)													
		Weekday	/						Weeken	d		Total A	т			
		Cars :		72	100%				Cars :	1		Cars :		72	100%	
	Trucks :	ouro .				0%			Trucks :			Trucks :		0		
														-		
		Total :		72					Total :			Total :		72		
										_						
Speed T																
		41.4 mph					Top Spe		43.1 mp				Truck Spe			
		41.8 mph					Low Spe		17.8 mp			Average	Car Speed	1:	35.7 mph	
	Avg:	35.7 mph	1			10mph P	ace Spee	ed:	41.4 - 51	.3	66.70%					
Peak Ho	ur Totals															
	AM Peak	Hour (Vo	lume)						AM Pea	k Hour (S	peed)					
	Weekday	<i>i</i> :	, 													
	Weekend	1:								-						
	PM Peak	Hour (Vo	lume)						PM Pea	k Hour (S	peed)					
	Weekday	, ·	17:30 - 1	18.30	(Avg 8)				17:15 - 1	8.15	(39.7 m	ab)				
	Weekend		17.30 -	18.30	(Avg 8)				17.15-	0.15	(39.7 m) 				
Grand T		1:														
Grand T	otais										-					
	Total Car	s:			9	(72	ADT)	Average	Lenath :	11.6 ft	Average	Headway		578.0 sec	
	Total True				0			ADT)	Average		2.00		,		577.8 sec	
	Total Vol				9			ADT)								

		Per	Veh	icle	Sum	<i>mar</i> y	r Re	port	: SW	EET	NA T	ER, (COU	NTY	LINE	RD
Statior	ID:	SWE-C	OU-U							Last Cor	nected D	evice Type	e Apollo			
	Info Line	1 ·									Version	Number ·	1.66			
	Info Line										Serial Nu		11166			
GPS Lat		_ .										of Lanes :				
0. 0 200	DB File :		SWE-CC	U-U DB								Speed Lim				
			0.12.00								· cotou t		o.o mpri			
									Lane C	configu	ration					
#	Dir.	Informatio	<i>מ</i> ר			Vehicle Se	ensors			Loop Ler						
									20.000.00	2000 200						
1.00						Axle-Axle			4.0 ft							
3.00						Axle-Axle			4.0 ft							
Average	Daily Tra	affic (AD1	-)													
		Weekday	/						Weekend	1	Total Al	т				
		Cars :		136	73%				Cars :		Cars :		136	73%		
	Trucks :			48	27%			Trucks :			Trucks :		48	27%		
		Total :		184					Total :		Total :		184			
Speed T	otals															
opeea .		40.6 mph	1				Top Spe	ed :	66.1 mph	1	Average	Truck Spe	ed :	40.4 mpl	n	
		50.1 mph					Low Spe		15.7 mph			Car Spee		42.9 mpl		
		42.3 mph				10mph Pa				56.50%						
Peak Ho	our Totals															
	AM Peak			0.00	(4 40)					Hour (Sp						
	Weekday		08:30 - 0	9:30	(Avg 12)				07:30 - 0	(51.2 m	on)					
	Weekend		1						DM Deel		1)					
	PM Peak	Hour (Vo	iume)						PINI Peak	(Hour (Sp	eea)					
	Weekday															
	Weekend	1:														
Grand T	otals															
	Total Car	s:			17	(136	ADT)	Average	l 16.2 ft	Average	Headway	:	320.4 se	с	
	Total Truc				6			ADT)	Average				Average	320.1 se	с	
	Total Volu	ume :			23			ADT)	J							

		Per	Veh	icle	Sum	mar	v Re	port	: SW	EET	WAT	ER, I	EIGH	TEEN	LER
								_							
	Station	ID :	SWE-E	IG-U					Last Con	nected D	evice Type	Apollo			
	Info Line	1.								Manajara	Number :	1.66			
	Info Line									Serial N		11166			
	GPS Lat/										of Lanes :	11100			
	DB File :	LOIT .	SWE-EIG								Speed Lim				
	DB File .		SWE-EIG	5-0.DB						Fosted	врееа стп	0.0 mpn			
								Lane C	onfigur	ration					
#	Dir.	Informatio	on		Vehicle S	ensors			Loop Len						
3.00					Axle-Axle			4.0 ft							
	Daily Tra	affic (ADT	F)		Aue-Aue			4.0 11							
			·												
		Weekday						Weekend	1	Total Al	от				
		Cars :	24	100%				Cars :		Cars :		24	100%		
	Trucks :			0	0%		Trucks :			Trucks :		0			
		Total :	24					Total :		Total :		24			
Speed 1	otals														
	50 % :		0.0 mph			Top Spee	ed :	29.8 mph	ı	Average	Truck Spe	ed :			
	85 % :		0.0 mph			Low Spe	ed :	29.8 mph	ı	Average	Car Speed	1:	29.8 mph	1	
	Avg:		29.8 mph		10mph P	ace Spee	d:	29.8 - 39	100.00%						
Peak Ho	our Totals														
	AM Peak	Hour (Vo	lume)					AM Peak	Hour (Sp	peed)					
	Weekday		07:30 - 08	3:30	(Avg 4)				(29.8 mp						
	Weekend	1:													
	PM Peak	Hour (Vo	lume)					PM Peak	Hour (Sp	eed)					
	Weekday	:													
	Weekend							1				1			
Grand T	otals														
	Total Car	s :		1	(24	ADT)	Average	13.5 ft	Average	Headway	:	0.0 sec		
	Total True			. 0			ADT)	Average				Average			
	Total Volu				(ADT)		2.00						

		Per-	veh	icle	Sum	mary	v Re	port	: SHL	FRID	AN,	WOL	FCF	REEK	R
Station	ID:	SHE-W	OL-U							Last Con	nected De	evice Type	Apollo		
	Info Line	1.									Version I	Number :	1.66		
	Info Line										Serial Nu		11166		
GPS Lat/		2:							-			of Lanes :	2		
GPS Lat/	DB File :		SHE-WC									Speed Lim			
	DB File :		SHE-WC	L-U.DB							Posted S	speed Lim	0.0 mpn		
									Lane C	onfigui	ration				
#	Dir.	Informatic	20			Vehicle S	ensors			Loop Len					
	2	momula				vernere e	0110010		0011001 01	2000 2011	gui				
1.00						Axle-Axle			4.0 ft						
3.00						Axle-Axle			4.0 ft						
		affic (ADT)												
	, ,		-												
		Weekday							Weekend	1	Total AD	рт			
		Cars :		168					Cars :		Cars :		168	77%	
	Trucks :			48	23%			Trucks :			Trucks :		48	23%	
		Total :		216					Total :		Total :		216		
Speed T	otals														
	50 % :	28.1 mph					Top Spee	ed :	55.7 mph	1	Average	Truck Spe	ed :	55.5 mph	
	85 % :	52.6 mph					Low Spe	ed :	17.4 mph	1	Average	Car Speed	1:	28.3 mph	
	Avg:	34.3 mph				10mph P	ace Spee	d:	20.3 - 30	55.60%					
Peak Ho	ur Totals														
	AM Peak	Hour (Vo	lume)						AM Peak	Hour (Sp	eed)				
	Weekday	/: ·	11:00 - 1	2:00	(Avg 18)				10:15 - 1	(38.6 mp	oh)				
	Weekend				,										
	PM Peak	Hour (Vo	lume)						PM Peak	Hour (Sp	eed)				
	Weekday	1:													
	Weekend	1:													
Grand T	otals														
	Total Car	s:			7	(168	ADT)	Average	11.9 ft	Average	Headway	:	114.9 sec	
	Total True				2			ADT)	Average			,		114.7 sec	
	Total Vol				9			ADT)				-			

		Per-	Veh	icle	Sum	mary	y Re	port	: SHL	FRID	AN,	NOR	RTH I	RD	
Station	ID :	SHE-N	OR-U							Last Conr	nected D	ечісе Туре	e :	Apollo	
	Info Line	1.										Version	Ni wala an i	1.66	
	Info Line											Serial Nu		11166	
GPS Lat/		Ζ:											of Lanes :		
GF3 Lai	DB File :		SHE-NO										Speed Lim	-	
	DB File .		SHE-NO	R-0.DB								F USIEU C	speed Lim	ro.o mpn	
									Lane C	onfigur	ation				
#	Dir.	Informatio	n			Vehicle S	ensors			Loop Lend					
									2000		,				
1.00						Axle-Axle				4.0 ft					
3.00						Axle-Axle				4.0 ft					
Average	Daily Tra	affic (ADT)												
		Weekday	,						Weekend	1		Total A	от		
		Cars :		360	71%				Cars :			Cars :		360	71%
	Trucks :			144	29%			Trucks :				Trucks :		144	29%
		Total :		504					Total :			Total :		504	
Speed T	otals														
	50 % :	30.1 mph					Top Spee	ed :	66.1 mph	1		Average	Truck Spe	ed :	56.2 mp
	85 % :	57.6 mph	I				Low Spe	ed :	9.9 mph			Average	Car Speed	: t	28.6 mp
	Avg:	36.5 mph				10mph P	ace Spee	d:	25.3 - 35	33.30%					
Peak Ho	ur Totals														
	AM Peak	Hour (Vo	lume)							AM Peak	Hour (Sr	leed)			
	Weekday		08:45 - 0	9.45	(Avg 36)					07:45 - 0					
	Weekend		00.10 0	0.10	(7 tig 00)					01.10 0.	(10.0 m				
		Hour (Vo	lume)							PM Peak	Hour (Sp	beed)			
	Weekday	, -													
	Weekend														
Grand T															
	Total Car	e ·			15	(360	ADT)	Average I	116 ft			Headway		98.4 sec
	Total Truc				6			ADT)	Average			, werage	loadway	Average	
	Total Volu				21			ADT)	, werage /	2.00				, werage	

		Per-	Veh	icle	Sum	mary	/ Re	port	: SHL	ERID	AN ,	LOW	ER I	PRAI	RE R
					-										
Station	ID:	SHE-L	ow-u							Last Con	nected De	evice Type	:	Apollo	
	Info Line	1 •										Version N	lumber :	1.66	
	Info Line 2											Serial Nu		11166	
GPS Lat/													of Lanes :	2	
OF O Lau	DB File :		SHE-LOV											0.0 mph	
	DD THE .		OTIE-LOV	V-0.00								i osteu e	peed Lim	lo.o mpri	
									Lane C	onfigur	ation				
#	Dir.	Informatio	on			Vehicle Se	ensors			Loop Leng					
1.00						Axle-Axle				4.0 ft					
3.00						Axle-Axle				4.0 ft					
	Daily Tra	ffic (ADT)												
		Weekdav							Weekend			Total AD	.		
		Cars :		72	54%				Cars :			Cars :		72	54%
	Trucks :	Cars .		60				Trucks :	Cars .			Trucks :		60	
	HUCKS .			00	40 /8			HUCKS .				HUCKS .		60	40 /8
		Total :		132	1				Total :			Total :		132	
Speed T	otals														
	50 % :	26.2 mph					Top Spee	ed :	60.5 mph	i		Average *	Truck Spe	ed :	39.2 mph
	85 % :	49.8 mph					Low Spe	ed :	7.9 mph			Average			28.4 mph
	Avg:	33.3 mph				10mph Pa	ace Spee	d:	26.1 - 36	36.40%					
Peak Ho	ur Totals														
	AM Peak	Hour (Vo	lume)							AM Peak	Hour (Sr	eed)			
	Weekday		05:30 - 0	6:30	(Avg 13)					04:45 - 0					
	Weekend				(2	、 = · · · = · · · ·				
	PM Peak		lume)							PM Peak	Hour (Sp	eed)			
	Weekday				-										
	Weekend														
Grand T															
	Total Cars	. :			6	(72	ADT)	Average	14.7 ft		Average	Headway		259.3 sec
	Total Truc				5			ADT)	Average			, tio.age	locatively		259.0 sec
	Total Volu				11			ADT)	, worage i	2.20				, too.age	200.0 300

		Per-	veh	icle	Sum	mar <u></u>	y Re	port	: SHE	:KID	AN,	HIGI	5 Y R	υ
.		<u></u>								Loot Con	posted D	evice Type	Apollo	
Statior	: טו ר	SHE-H	IG-U							Last Con	nected D	ewce type	Аропо	
	Info Line	1 ·									Version	Number :	1.66	
	Info Line										Serial N		11166	
GPS Lat												of Lanes :	2	
	DB File :		SHE-HIG	-U.DB							Posted \$	Speed Lim	i 0.0 mph	
												1		
									Lane C	a afia				
	Dia	1				11-1-1-0								
#	Dir.	Informatio	on			Vehicle S	sensors		Sensor S	Loop Len	gth			
1.00	1					Axle-Axle			4.0 ft					
3.00						Axle-Axle			4.0 ft					
Average	Daily Tr	affic (ADT)											
		Weekday	, 						Weekend		Total A	от		
		Cars :		72					Cars :		Cars :		72	
	Trucks :			36	34%			Trucks :			Trucks :		36	34%
		Total :		108					Total :		Total :		108	
		Total .		100					Total .		Total .		100	
Speed 1	otals													
	50 % :	27.7 mph	1				Top Spee	d:	67.8 mph		Average	Truck Spe	ed :	50.5 mp
	85 % :	36.9 mph	1				Low Spe	ed :	12.4 mph	1	Average	Car Speed	: t	26.0 mp
	Avg:	34.2 mph	1			10mph F	ace Spee	d:	22.9 - 32	55.60%				
Peak Ho	our Totals													
	AM Peak	Hour (Vo	lume)						AM Peak	Hour (Sp	eed)			
	Weekday		02:45 - 0	3:45	(Avg 18)				02:00 - 0					
	Weekend			1	((· · · · ·				
	PM Peak	Hour (Vo	lume)						PM Peak	Hour (Sp	eed)			
	Weekday	/:												
	Weekend													
Grand T	otals													
	Total Car				6			ADT)	Average I			Headway		147.0 se
	Total Tru				3			ADT)	Average /	2.00			Average	(146.8 se
	Total Vol	ume :		1	9	(108	ADT)				1		

		Per-	Veh	icle	Sum	mar	y Re	port	: SHI	ERID	AN,	HAL	FWA	YLN	
Station	ID :	SHE-H	AL-U							Last Con	nected De	evice Type	• :	Apollo	
	Info Line	1.										Version	Numbor	1.66	
	Info Line											Serial Nu		11166	
GPS Lat		z .											of Lanes :		
GF3 Lat	DB File :		SHE-HAI										Speed Lim		
	DB File .		SHE-HAI	L-U.DB								Posted	speed Lim	ro.o mpn	
									Lane C	onfigur	ation				
#	Dir.	Informatio	20			Vehicle S	ensors			Loop Len					
									2011007 0						
1.00							Axle-Axle			4.0 ft					
3.00							Axle-Axle			4.0 ft					
Average	Daily Tra	affic (ADT)												
		Weekday	,						Weekend	t		Total A	т		
		Cars :		72	66%				Cars :			Cars :		72	66%
	Trucks :			36	34%			Trucks :				Trucks :		36	34%
		Total :		108					Total :			Total :		108	
Speed T	otals														
	50 % :	29.0 mph					Top Spee	d :	55.2 mph	1		Average	Truck Spe	ed :	54.2 mp
	85 % :	52.6 mph					Low Spe		9.9 mph				Car Speed		23.7 mp
	Avg:	33.9 mph				10mph P	ace Spee			33.30%		j			
Peak Ho	ur Totals														
	AM Peak	Hour (Vo	lume)							AM Peak	Hour (Sr	eed)			
	Weekday		00:00 - 0	1.00	(Avg 4)					00:00 - 0					
	Weekend		00.00 0		(, tig 1)					00.00 0	(01.111)	5.1.)			
		Hour (Vo	lume)							PM Peak	Hour (Sp	eed)			
	Weekday	· :	23:00 - 2	4:00	(Avg 2)					23:00 - 24	(42.6 m	ph)			
	Weekend				((.=,	,			
Grand T															
	Tatal C				-			4.0.70	A	1058		A			474 4
	Total Car				6			ADT)	Average			Average	Headway		171.4 se
	Total True				3			ADT)	Average	2.10				Average	1/1.2 se
	Total Vol	ume :			9	(108	ADT)							

		Per-	Veh	icle	Sum	mar	v Re	port	: SHL	ERID	AN,	DAY	ΤΟΝ	EAST	r R
						_									
Station	ID :	SHE-E	AS-U							Last Cor	nected D	ечісе Туре	Apollo		
	Info Line	1 ·									Version	Number :	1.66		
	Info Line										Serial Nu		11166		
GPS Lat/												of Lanes :			
OI O Lui	DB File :		SHE-EAS	S-U DB								Speed Lim			
			0.12 27.0	0.00									o.o.mpii		
									Lane C	onfigu	ration				
#	Dir.	Informatio	on 🛛			Vehicle S	ensors			Loop Len					
1.00									4.0.0						
1.00 3.00						Axle-Axle Axle-Axle			4.0 ft 4.0 ft						
					-	Axie-Axie			4.0 π						
Average	Daily Tra	amic (ADI)												
		Weekday	,						Weekend	ł	Total A	σт			
		Cars :		72	50%				Cars :		Cars :		72	50%	
	Trucks :			72	2 50%			Trucks :			Trucks :	_	72	50%	
		Total :		144	1				Total :		Total :		144		
		Total .			·				rotar .		Total .				
Speed T	otals														
	50 % :	28.8 mph					Top Spee	ed :	61.5 mph	ı	Average	Truck Spe	ed :	59.1 mph	
	85 % :	59.3 mph	1				Low Spe	ed :	18.3 mph	า	Average	Car Speed	1:	24.9 mph	
	Avg:	42.0 mph				10mph P	ace Spee	d:	56.6 - 66	50.00%					
Peak Ho	ur Totals														
	AM Peak	Hour (Vo	lume)						AM Peak	Hour (Sp	() ()				
	Weekday		ianno)						, and the odd		,000u)				
	Weekend														
	PM Peak		lume)						PM Peak	Hour (Sp	beed)				
	Weekday	1:	23:00 - 2	4:00	(Avg 12)				22:15 - 2	(48.9 m	oh)				
	Weekend	1:													
Grand T	otals														
	Total Car	e ·			3	(70	ADT)	Average	123 ft	Average	Headway		215.8 sec	
	Total Truc				3			ADT)	Average			licauway		215.8 sec 215.7 sec	
	Total Volu				6			ADT)	Average	2.00			Average	213.7 Sec	

		Per-	Veh	icle	Sum	mar	y Re	port	: LIN	COL	N, L	UPIN	IE RI	D
Station	ID :	LIN-LU	P-U							Last Con	nected De	әчісе Туре	Apollo	
	Info Line	1.									Version I	Number :	1.66	
	Info Line										Serial Nu		11166	
GPS Lat		Z .										of Lanes :	2	
GF 3 Lat	DB File :		LIN-LUP-									Speed Lim		
	DB File .		LIN-LUP-	0.06							Posted 3	speed Lim	0.0 mpn	
									Lane C	onfigui	ration			
#	Dir.	Informatio	מר			Vehicle S	ensors		Sensor S					
	- 11 .								20//30/ 3/	2000 2011	9			
1.00						Axle-Axle			4.0 ft					
3.00						Axle-Axle			4.0 ft					
Average	Daily Tra	affic (ADT	-)											
		Weekday							Weekend	4	Total AD	т		
		Cars :		60	62%				Cars :		Cars :	,	60	62%
	Trucks :	Cars .		36				Trucks :	Cars .		Trucks :		36	
	Huoko .				0070			Huoko .			Huoko .			0070
		Total :		96					Total :		Total :		96	
Speed T	otals													
-	50 % :	30.6 mph					Top Spee	d .	67.9 mph		Average	Truck Spe	ed ·	63.7 mpł
		59.8 mph					Low Spe		20.0 mph			Car Speed		27.8 mpl
	Avg :	41.3 mph				10mph P	ace Spee		27.2 - 37					
Peak Ho	ur Totals													
r cux no														
		Hour (Vo							AM Peak					
	Weekday		06:15 - 0	7:15	(Avg 16)				05:15 - 0	(46.3 mp	oh)			
	Weekend													
	PM Peak	t Hour (Vo	lume)						PM Peak	Hour (Sp	eed)			
	Weekday													
	Weekend	: t												
Grand T	otals													
	Total Car	s:			5	(60	ADT)	Average I	12.1 ft	Average	Headway		353.7 se
	Total True				3			ADT)	Average /					(353.6 se
	Total Vol				8			ADT)						

		Per-	Veh	icle	Sum	mar	v Re	port	: CO	NVERS	SE, BIL	L HA	LL F	RD
													-	
Station	ID:	CON-B	IL-U							Last Connec	ted Device Type	э:	Apollo	
	Info Line											Number :	1.66	
	Info Line :	2:									Serial N		11166	
GPS Lat/	DB File :		CON-BIL									of Lanes : Speed Lim		
	DB File :		CON-BIL	-0.DB							Posted	speea Lim	IU.U mpn	
									l ane C	onfigurati	on			
#	Dir.	Informatio	on .			Vehicle S	ensors			Loop Length	0			
										, j				
1.00						Axle-Axle				4.0 ft				
3.00						Axle-Axle				4.0 ft				
Average	Daily Tra	affic (ADT)											
		Weekdav	,						Weeken	4	Total A	т		
		Cars :		24	33%				Cars :		Cars :		24	33%
	Trucks :	ouro .		48				Trucks :			Trucks :		48	
		Total :		72					Total :		Total :		72	
Speed T	otals													
	50 % :	186.4 mp	h				Top Spe	ed :	100.5 mp	h	Average	Truck Spe	ed :	36.8 mpl
	85 % :	186.4 mp	h				Low Spe	ed :	6.3 mph		Average	Car Spee	d :	2.2 mph
	Avg:		8.6 mph			10mph P	ace Spee	d:	16.5 - 26	9.30%				
Peak Ho	our Totals													
	AM Peak	Hour (Vo	lume)							AM Peak Ho	ur (Speed)			
	Weekday	· :	05:15 - 0	6:15	(Avg 16)					04:45 - 0 (48	3.2 mph)			
	Weekend	1:												
	PM Peak	Hour (Vo	lume)							PM Peak Ho	ur (Speed)			
	Weekday	:												
	Weekend	1:												
Grand T	otals													
	Total Car	s:			35	(24	ADT)	Average	13.7 ft	Average	Headway	:	249.3 se
	Total True				8			ADT)	Average		. Wordgo	l	Average	
	Total Volu				43			ADT)	Junio				Junio	

		Per-	Veh	icle	Sum	mar	v Re	port	: CO	NVEF	RSE,	COI	ИВЅ	RD	
						_									
Statior	ID:	CON-C	OM-U							Last Conr	nected De	vice Туре	e :	Apollo	
	Info Line												Number :	1.66	
0001.1	Info Line	2:										Serial Nu		11166	
GPS Lat			001100						-				of Lanes :		
	DB File :		CON-CO	M-U.DB								Posted a	speed Lim	i0.0 mph	
									L ane C	onfigur	ation				
#	Dir.	Informatio	n			Vehicle S	ensors			Loop Leng					
	2	mane					00013		00.1307 0	2000 2011					
1.00						Axle-Axle				4.0 ft					
3.00						Axle-Axle				4.0 ft					
Average	Daily Tra	affic (ADT)												
		Weekday	,						Weeken	1		Total A	от		
		Cars :		48	50%				Cars :			Cars :		48	50%
	Trucks :			48	50%			Trucks :				Trucks :		48	50%
		Total :		96	5				Total :			Total :		96	
Speed T	otals														
opeeu .		43.2 mph					Top Spee	ed :	68.0 mph	1		Average	Truck Spe	ed ·	51.9 mp
		186.4 mp					Low Spe		7.6 mph				Car Spee		9.6 mph
	Avg:	23.7 mph				10mph P	ace Spee			16.70%		rtterage		1	0.0 mpn
Peak Ho	ur Totals														
		Hour (Vo	lumo)							AM Peak	Hour (Sp	ood)			
	Weekday		07:30 - 08	8.30	(Avg 8)					05:15 - 0					
	Weekend		000 - 00	0.00	(, vig 0)			-	-	55.15 - 0	(50.0 mp	,		-	
		Hour (Vo	lume)							PM Peak	Hour (Sp	eed)			
	Weekday	, ·												-	
	Weekend														
Grand T															
	Tatal Car					1	40		A	0.0.0		A			466.9 se
	Total Car				8			ADT)	Average			Average	Headway		
	Total True				4			ADT)	Average	2.00			-	Average	400.8 SE
	Total Vol	ume :			12		96	ADT)					1		

		Per-	Veh	icle	Sum	mar	v Re	port	: CAI	RBO	N, C	R 60	8	
.										1 1 0			A	
Station	: שו ו	CAR-6	U-80							Last Con	nected De	evice Type	Ароно	
	Info Line	1.									Version	Number :	1.66	
	Info Line										Serial Nu		11166	
GPS Lat		<u> </u>										of Lanes :	2	
0. 0 240	DB File :		CAR-608	-U.DB								Speed Lim		
									Lane C					
#	Dir.	Informatio	on			Vehicle S	ensors		Sensor Sp	Loop Len	gth			
1.00						Axle-Axle			4.0 ft					
3.00						Axle-Axle			4.0 ft					
Average	Daily Tra	affic (ADT)											
		Weekday	'						Weekend		Total AD	т		
		Cars :		144	60%				Cars :		Cars :		144	
	Trucks :			96	40%			Trucks :			Trucks :		96	40%
		Total :		240					Total :		Total :		240	
		rotar :		2.0					rotar :		rotai :			
Speed T	otals													
	50 % :	25.7 mph					Top Spee		60.3 mph			Truck Spe		46.9 mpł
	85 % :	53.9 mph					Low Spe		12.1 mph		Average	Car Speed	1:	23.5 mpł
	Avg:	32.8 mph				10mph P	ace Spee	d:	22.9 - 32	50.00%				
Peak Ho	our Totals													
	AM Peak	Hour (Vo	lume)						AM Peak	Hour (Sr	eed)			
	Weekday		00:30 - 0	1:30	(Avg 16)				00:00 - 0					
	Weekend				((
	PM Peak	Hour (Vo	lume)						PM Peak	Hour (Sp	eed)			
	Weekday													
Grand T	Weekend	1:												
Granu T														
	Total Car	s :			6	(144	ADT)	Average I	15.1 ft	Average	Headway	:	186.6 se
	Total True	cks:			4	(96	ADT)	Average /	2.30			Average (186.2 se
	Total Vol	ume :			10	(240	ADT)						

APPENDIX A-4: SOIL PROPERTIES

Aggregate Analysis

(TEST NUMBER		1		ATER	ALS TI		LABO	RATOR			Wrbor Form T Rev. 1
			_	-	DAT	E						
	SUBMITTED BY	_					1	-	A	Т		
	SAMPLE LD.		1					5	AMPLED B	Y		
	PIT DR QUARRY								PROJECT			
	QUANTITY (tots)							-	LOCATION	Ph.	3 Yellow	. 91
	FOR USE AS	_						-	COUNT	7		RC.
				EIGHT							Weight	
F	Sample			SE AGG.	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	FINE AGG.					Retained (lbs or kg)	% Retained
H	After Wash	-	15.7	28 .10	10	10.9	= (F	Second a second	1100			(A,B) X100
ŀ	Pass #200 (75pm)	_	-		650	6		- R		4.75 mm) = (A (4.75 mm)= (B	1 41 20	
ŀ	Pass A200 (75 pm), P	38	-		9.90	10				(4.75 mm)= (8 L , A + B = (8		57.14
r	Total Pass #200 (75ps	m)			680	1			IVIX	<u>, a • d = (t</u>	11 15,78	157.14
		he fé	-	% RET	0.0	% RET	% RET			COMR	INED AGGE	CONTE
	SIEVE		WT RET	KX 100	WT RET	P.x.101	Ral		5 RET	A	ASSING	COMIE
	SIZE			E		F	100		L+S		-Σ(Z)	SPEC
μ	112'	10	۴K	=L	πP	**	=S		*2	to 0.1%	b 1%	% PASSING
L	(37.5 mm)		0	171					0			
Γ	1" (25mm)		.36	2.49				1	249	975	98	100
F	3/6*		54	384	3.94	-	-			19HD		
┝	(19 earr) 1/2*			4.0	-		-		3,54	1420	94	90.100
L.	(12.5 mm)	_	1.59	10.36	11.52				1036	83,6	64	35.05
	3/8* (9.5 mm)		1.14	7.42	831				7.47	TLOH	176	4
Γ	# 4 (4.75 pm)		1.24	14.68	16:35		1	10	14.68	INE.	61	(no mi
F	88	-	W		told 3	00.0	13.16	1.7	-	010		50.78
┝	(2.36 mm) # 14	_		-		23,03		8.4	13.16	48.3	48	37-67
L	(1.18 mm)				450	15.17	8.95		0,95	39.4	39	-
	# 36 (500 µm)				392	133	7 60		7.60	31.8	32	12.18
F	# 40	-	-			10,0	110-		1100	J1+ V	201	12 20
H	425 (pm) # 50		-				-					
L	(300 µm)											
	# 109 (150 µm)				1149.1	40.03	22,51		22.40	Pag	9	-
Γ	# 200 (75 µm)				2191	7.15	437	1.1.1	427	45	5	1.10
F	Pass # 210			-	91	and	13512		101	1,0	4	4-15
⊢	(75 µm), Pan		-	Paulo de	14	24.0	1771d	10.000	14			
L	TOTAL			200	4397					WETWI	fas er høj	
L	ANGULARITY									DRYOT	(bs or kg)	1.1
L	FLAT & ELONGATE	D								WET -D	IEY = WORSTURE	
FINENESS MODULUS: see N.T.M., Secl. 622.0:									;NOISTUR	L'ARY WE WIN NOISTURE	-5	
BI	lows≈ 29	Tin Ha.	Wet+Tane AA	DRY+TARE+ BE	Tare * CC	Kolstana AA - BB 1 DD	Dry WI BB-CC = EE	x Ca		E: (COIEE) **		PLASTIC INDEX ()1 - PL1
-	LIQUO LINIT, LL		31.1	555	25.3	44	151		1,772			
-	PLASTIC LIMIT, PL		23.7	25.1	21.0	.6	3.5		1110		14.14%	

	WYOMING DEPARTMENT OF T MATERIALS TESTING LAR AGGREGATE ANAL	BORATORY	ATION		Wribûr kes a Fore 1-465 Rev. 14494
TEST NUMBER		DATE			NO. THE
SUBMITTED BY		AT			
SAMPLE I.D.		SAMPLED BY			
PIT OR QUARRY	2	PROJECT #			
QUANTITY (tons)		LOCATION	Ross	RA	
FOR USE AS		COUNTY	Cor	were	

			(ibs or k	g)				100 2	Weight		
	COARS	E AGG	FINE AGG.							% Retained	
Sample	12.8	=(E	1 35	130	* (F)				(lbs or kg)	(A,B)	
Ater Wash			295	64		R	TAINED #4 (4	1.75 men) = (A)	4.1	D X100	
Press #200 (75µm)	1			6.9			PASS #4 (4.75 mm/# (B)	7.84		
Pass #208 (76 µm), Pan				2			TOTA	. A+B=(D)		62,47 -	
Total Pass #200 (75µm)			61	4.9							
		S RET		S RET	% RET			COMBI	NED AGGRE	IGATE	
SIEVE SIZE	WT RET	KX 100	WT RET	P x 100 F	<u>Rz1</u> 100		N RET L+S		SSING 2(Z)	SPEC	
	еĶ	٩.	ъp	*R	ES .		42	to 0.1%	to 1%	7 PASSING	
1 102" (37.5 mm)							0				
1" (2Serwn)	1.42	11,05					11.05	690	89	100	
3.4* (men 81)	.64	4.18					4.98	840	64	40-100	
112* (12.5 mm)	1.28	9.961					9.96	14,0	74	65-85	
38*- (8.5 mm)	,43	3,35					3.25	70,1	-71	-	
# 4 (4.75 mm)	.94	7.32					7.32	63.3	63	50-78	
# 8 (2.36 mm)			2165	6.00	3.00		3.8	59.5	60	37-67	
# 16 (1.18 mm)			368.1	10.35			647	53.1	52	-	
# 3D (600 µm)			6789	19.05	11.9		11.9	41.2	41	13-35	
# 40 425 (um)			11				-				
# 50				-			-				
(390 pm) # 100	-			1					-		
(150 µm)			1437.0	41.74	26.07		26.07	14.7	15	. ~	
# 200 (75 jum)			197.8	5,55	3.47		3.47	11.2	11	4-15	
Pass # 200 (75 µm), Pan			9.0	17.25	10,1%		10.18			- 1 18	
TOTAL				and in the				WETWT	jbn er kgj		
ANGULARITY								DRY WT	(bs er lig)		
FLAT & ELONGATED								WET-D	RY = MOISTURE		
FINENESS MODULUS:	see W.T.M.,	Seci. 602.0	6				INCIDENT	S DRY WT sclop WOISTURE	45		
LOWS = 210	Westare AA	DRY+ TARE + DB	Tanz = OZ	Moistare A4-88= DD	Dry Wi B8+CC= EE	xC		IE: (OD/EE)*H		FLASTIC INDEX (LL - PL)	
LIQUID LIMIT, UL	622	56.91	29.3	5.3	28.6	18.624%					
PLASTIC LINIT, PL	228	214	19.6	4	2.8		14.				

TEST NUMBER SUBMITTED BY	MATERIALS TESTING LABORATORY AGGREGATE ANALYSIS	07 48 C m 1-188 v. Celde
TEST NUMBER	DATE	
SUBMITTED BY	TA .	-
SAMPLE I.D.	SAMPLED BY	
PIT OR QUARRY	PROJECT#	
QUANTITY (tons)	LOCATION P. OUGO ROAD	
FOR USE AS	COUNTY SUPPORTIONATES	
		_

	7 i		EIGHT SE AGG.			1000 C				Weight	
Sample		LUARS			FINE AG					Retained (lbs or kg)	% Retaine
After Wash	-	110	1 -1(5	263	1.87	2 *{F	ange Bi		1.00		A,B DX10
Pess #210 (75um)	_						-	Contra de la contr	4.75 mm) = (A)	4.82	L
Pass #200 (75 pm), Par				762					(4.75 mizr)» (B)	7,48	C16 0
Total Pass #260 (75µm	<u> </u>	-			1.0	_		TOTA	L , A + B = (D)	12.3	12.8
10521 Pass (4200) (75µm				1.11	3.87						
			% RET		% RET	% RET			COMBI	NED AGGR	EGATE
SIEVE		WT RET	K X 190	WT RET	7 X 100	Ral		SRET % PAS		SSING	SPEC
SIZE			E		F	100	1.1.1.1	L+S	100 -	% PASSEN	
117		eK	4	=P	۹R	#3		=2	10 0.15	to 1%	75 FRO 3618
1 1.2" (\$7.5 mm)					4						
1*	_	18	1.51	1		-		151	98.5	90	1
(25mm) 34"		- and the second			-				1011	98	100
[19 mm]		.44	3,69					13.VA	94.8	95	90-100
92° (12.5 mm)		1.5.	1259					1259	000	0,7	
(12.3 Millio) SHI*			11						Ud d	99	65-85
[8.5 mm)	_	.80	7,22	-				7.22	150	75	-
# 4 (4.75 mm)		1.84	15.45					155	5A.5.	60	50-78
# 8 (2.38 mm)				471.2	13.89	8.45		624	51.1	51	37-67
\$16			-	10113				E ul			37-67
(1.15 mm)	_		-	281.3	8.29	5,04		5.04	46.1	46	-
# 30 (600 μm)				239.2	1.05	4.29		429	41.8	42	13-35
# 40	_									. 16	12 3)
425 (µm) # 50		<u> </u>	_		1						
(300 µm)				4 · ·					1.1	1 A A	
at 100			1	14471	4214	15.94		15.94	15.8	11	-
(150 µm) # 201	1		-		1011-014	20			0.01	16	
(75 (m)				181.3	5.34	3.25		3.25	12.61	13	4-15
Pess # 200 (75 µm), Pan				11.8	22,81	13.31		13.87			
TOTAL									WEINT	This or kgj	
ANGULARITY									DRY WT	the or ingi	
FLAT & ELONGATE								-	WET - D	RY = MOISTURE	
FINENESS MODULI	JS: p	ee M.T.M.,	Sect. 602.0		<u> </u>			PICISTUR	S DRY WI Jeteo MOISTURN	= %	
	_	-	-		Molstare	Dry Wt		S DOISTIN	NOISTURE		- A
BLOWS = 27	No.	Rentaien Ak	ERY + TARE =	Tare * CC	44-98= 00	BB-CC= EE	xC	arrection Faci	N. 1	PLASTIC INDEX (UL - PL)	
LIQUID LIMIT, LL		15.1	581	27.8	6.4	30,9		119311	-	0.898%	
PLASTIC LINIT, PL	-	別店	21.1	28.9	4	23	17,200				

REWARKS

g/material/researchinet/fieldlestingmanual/forms/T166s/T-166rev.vls

TESTED BY

g*materialvesearch/newfeidtaslingmanualNorms/T156s/T-166rev.xls

REWARKS

Written see a Form T-165 Ray, 1484

g:/material/cesearchives/feidtestingmanual/forms/T166s(T-166rev.x)s

REMARKS

TESTED BY

TESTED BY

							WYC	MING I MAT	EPARTMEN ERIALS TEST AGGREGAT	ING L	ABORATO	PORT	ATIC	ON T-166 (Rev. 05-15)	S.			RIALS	S TES		OF TRANS		ATIO	ON T=166 (Rev. 05-15)
EST NUMBER	WYOMING DEPART MATERIALS 1 AGGRE		BORATO YSIS		ION	WY2007 465 F Form 1-105 Ray, 6404	PROJECT NO(8).: SUBMITTED BY: SAMPLE LD.: PIT OR QUARRY: QUANTITY (1008)				TEST NUMBER: LOCATION: AT: SAMPLED BY: COUNTY: FOR USE AS:	Higby	R) idan		PROJECT NO(S). SUBMITTED BY: SAMPLE LD. PIT OR QUARY:						TEST NUMBER: LOCATION: AT: SAMPLED BY: COUNTY:	North	Park h eridan	Pà
SUBMITTED BY			SANPL				DATE RECEIVED:	5/19/1	1	_	DATE TESTED:	5/2	7/16		QUANTITY (tons) DATE RECEIVED:	5	11/16				FOR USE AS: DATE TESTED;			
PIT OR QUARRY		-		JECT #					l T (lbs or kg)				Weight	% Retained =		1	State of the local division in which the local division in the loc	'(lbs or ks	-)		DATE TESTED:		127/16	
QUANTITY (tons)			LOC	ATION H	ayden Li	3	Sample	COARSE AG		_			Retained	A or B			E AGG.		INE AG	7G.			Weight Retained	% Retained =
FOR USE AS			co	NUNTY C	whobell		After Wash	5.6%		• (F)			(lbs or kg)	(0)	Sample	6.1	(a = (E		0.5	= (F)			(lhs or kg)	D x 196
							Pass No. 200 [75pm]		225.2		RETAINED No. 4 4.7		1.9	37.1 =(1)	After Wash			2	89.9		RETAINED No. 4	[4.75 mm] ≃ (A)	3.72	55.77 - H
	WEIGHT (lbs or kg)	000			Weight	% Retained	Pass No. 200 [75 µm], Pan		2,5		PASS No. 4 [4:	5 mm]= (B)		62.6 -0	Pass No. 200 [75µm]			_	0.6					44.23 -11
Sample	14.46 =1 3340.8	1 F)			(lbs or kg	A,B Xdon	Total Pass No. 200 [75µm]		87.5	1	IOIAL,	ATB=(U) 2	30.0		Pass No. 200 [75 µm], Pan Total Pass No. 200 [75 µm]	+	-		1.5		TOTA	1., A+B=(D)	6.67	
After Wash Pass #200 (75um)	3012.0				min (A) G.I	DATO		5 R	T= SRET= 5			-			1000 Pags No. 200 [75µm]			5	2,1					
Pass #200 (75µm) Pass #201 (75 µm), Par. Total Pass #200 (75µm)	328.2 10.7 238.9			TOTAL, A+	m)=(B) (6.62 ==(D) (4.73		SIEVE SIZE	WT RET	WT RET PLUM H		%RET- L+S	* PASSI 100 - S (ING	SPEC	SIEVE SIZE	WT RET	% RET = <u>K X 110</u> E	WT	% RET = <u>Px140</u> F	% RET <u>R x1</u> 109	% RET =	COMBINE	ING	GATE
SIEVE	WT RET KX 100 WT RET PX.11	100			WBINED AGG		2500 State	=K =	4 4	-5	=Z	0 0.1%	10.1%	% PASSING	DILL	=K	-L	=P	=R		E 3 3	100-S (% PASSING
SIZE	5 F		L	L+S	100-Σ(Z)	SPEC % PASSING	1 1/2* [37.5 mm]			100			_		1 1/2" [37.5 mm]		1				5-	to 0.1 %	to 1 %	
112	न् र २६ वि ०२	=6	-	=2 to	0.1% to 1%		I* [25mm]	0,1 1.9	7	1	1.97	98	98		1º [25mm]	0,13	1.95		-		1.95	001	Del.	
(31.5 gm) 1"	22 1.48 1.49		14	ki lan	00		3/4" [19 mm]	0.12 2.3	6		2.36	5.7	96		3.4* [19 mm]	0.24			-	-	3.6		98	
(25mm) 344°	10.0		100 m		85 99	100	1/2" [12.5 mm]	0.73 14.3	7	4			81		1/2* [12.5 mm]	0.96	19.91		_		14.41	1 1 1 1	95	
(19 mm) 1/2*	.34 2.79 2.51		1000	29 96	1.81	90-100	38" [9.5 mm]	0.37 7,1	2		7.28		79		3/8" [9.5 mm]	0.75	11.26				- N COL		80	-
(12.5 mm)	1.86 1252 17.1A			52 63		65-85	No. 4 [4.75 mm]	0.58 11.4		-	11.12 (63		No. 4 [4.75 mm]	-	29.62				11.26		61	
(R.5 mm) #4	1.14 1.67 7.14				0.076	~	No. 8 [2.36 mm]		21.1 6.8 4.	26	4.24 5		5%		No. 8 [2.36 mm]	1.01	A1.06	1151	A 4/		29.62		44	
(4.75 mm) # 8	2,54 17109 1726	1	9017		9.0 59	50-78	No. 16 [1.18 mm]		29.8 9.61 6.		6.02 5		-		No. 16 [1.18 mm]		-	82.6	_			33.4	33	
(2.36 mm)	7962 26:	13 15.48	, 18	18	3.5 43	37-67	No. 30 [600 µm]		12.7 13.77 8.	- 100	8.62		52		No. 30 [608 cm]	+	-	Cale. 2	-		8.6	1	15	
# 16 (1.18 mm)	629 20.	80 12.23 H.S		23 3		-	No. 40 435 (am)		18.7 15.17 0.	Car	0,04	15.4	99					45.6	3.39	5.92	5.92	18.9	19	
# 50 (600 μm)	511.9 169	9 9.95 9.	6 9	95 2	1.3 21	13-35	No. 50 [300 um]			-					Ng. 40 425 [pm]				_					
8 40 425 (ym)				-			No. 100 [150 µm]		111 - 1 - 1 -	-11					Nu. 59 [300 µm]		-							
# 50 (300 pm)				-			No. 200 (75 µm)	+-+-	86.5 27.89 17.	-	17.16 2	6.2	26		No. 100 [150 µm]	_		73.1	21.97	9.5	9.5	9.1	9	
# 110 (150 µm)		8 16.5 14			8 5	-	Past No. 208 [75 µm], Pan	7.1	92.8 13.8 8.		2.61	7.6	18		No. 200 [75 jum]	_			6.2	2.74	2.79	6,7	7	
# 210 (75 µm)	211.9 7.0	3 4.12 3;	71 4	12 -	1 1	1-15	TOTAL PASSING	3.18	87.5 29.21 17.1	16	1 1			11 12 21 14	Pass No. 200 [75 jun], Pan	2.95		52.1	15.3	6.77	100			
P255 # 205 (75 pm), Pan	10.7 ,36	5 21	000	21			GILSON LOSS		E - TOTAL PASSING	-					TOTAL PASSING GILSON LOSS					7	14			
TOTAL	3389	S.	94-4	10	WETW7 (bs or lig)		FRACTURED FACES %	One or more	(L · TUTAL PASSING)	n.		WEI WI (D o	-	216.2	FRACTURED FACES %	One or more	-	(E - TOT	AL PASS	SINGVE		WET WT (B		271.6
ANGULARITY					DRYWT (be or kg)		FLAT & ELONGATED %	1:5 Ratio	- 麗麗 …			DRY WT (D o		204.3	FLAT & ELONGATED %							DRV WT (B		263.4
FLAT & ELONGATED					WET - DRY = BOISTUP	æ	FINENESS MODUL	US: see M.T.M. S	et. 816.0-	-		WET - DRY =		11.9	FINENESS MOD		MOnt	01/ 0	22	-		WET-DRY	-	8.2
FINENESS MODULUS	S: see M.T.M., Sect. 602.0:	T	(1	NO STURE ORY	WT (x100 * %) XISTURE		BLOWS = Ta	Wet-Tarr Dry+Ta	1 100 1	- 1	% MOIST	COST./DRY WY)	1100	5.82%	BLOWS = TH			1	Auisture=	_		L=(MOIST) DRY WI)u109	3.117,
N 000 / 11 1	le Ret+Taxe DFF+TARE • Tane * Noltin	na Dey Wh	S.R	IOISTURE: (D	ID/EE) 400	PLASTIC INDEX	18 M	A4 88		_	(DD/EE)x100 rCm			PLASTIC INNEX (PI) +LL - PL	27 50	t Wet+Tare=	Dry + Tare= BB	1272.0		Dry We = BB · CC = EE	The second se	ISTURE Cere. Factor =		PLASTIC INDEX (FI)=LL-PL
BLOWS = LIL	o. AA EB CC DO		x Correcti	ion Factor x %	Litzoisture = EL	(L-PJ	LIQUID LIMIT (LL.)	33.9 31.1	10.3 27 10.		7/10.9)+00 +0		14	4	LIQUID LIMIT (LL)	33.5	31.9			93 1	2.1/9.3)×100 ×		13	(1)-10-10
LIQUE LIMIT, LL	63.19 585 749 440		554)	(10.	= 166431	0	PLASTIC LIMIT (PL)	31.8 30	21.7 1.8 8.	_	8/9.3) rlog .	22	-	2	PLASTIC LIMIT (PL)	31.4	29.7	_			1.7/7.7) 200		27	1
FLASTIC LINIT, PL	19.00-11:6 15.6 10.4				13.33%	<u></u>	REMARKS CAL	rection fact	or: 0.961; AASI	170 soi	il classificati		1-6(0))	REMARKS (orrection	factor				oil classifi		: A-1.	-a (a)
										_							_		_					
gimaterialiresearchin	ewfeldtestingmahuaMermal,T166a/T-166rav,	xis		TESTE	ED BY						TESTED BY A	kalai	6000	-							TESTED BY	Mildai	12	/
										CERTIF	TCATION NO.	1. Court	0.01							CED	LIFICATION NO.	Vingent	Une	
																				C.L.R.	-		_	

WYOMING DEPARTMENT OF TRANSPORTATION T-166 MATERIALS TESTING LABORATORY (Rev. 05-15) AGGREGATE ANALYSIS

X	N	IATE	RIAI		STIN GATE A	ALYSIS	BORAT			(Rev. 05-1
PROJECT NO(S).;							T NUMBER		× 1 7	-
SUBMITTED BY:		-	-			-	LOCATION	Dayton	East R	7
SAMPLE I.D.:	_		_	-		S	MPLED BY		_	
PIT OR QUARRY;						-	COUNTY	-	all	
QUANTITY (tons)		_					FOR USE AS			
DATE RECEIVED:	5/19/16		_			DA	TE TESTED	5/2	116	
	W	EIGHT	(lbs or	kg)	144				Weight	% Retained =
		SE AGG.		FINE A	GG.				Retained	(A or B)
Sample	11.5	15 -0	9	308.	7 =(F				(lbs or kg)	
After Wash	_	_		284.		RF	TAINED No. 4	[4.75 mm] = (A)	7.25	61.29 -
Pass No. 200 [75µm]				24.9			PASS No.	4 [4.75 mim)~ (B)	4.58	38.72
Pass No. 200 [75 µm], Pan			_	1	_		TOT	AL, $A + B = (D)$	11.83	
Total Pass No. 200 [75µm]		_		25.9						to and the
		% RET =		% RET -	% RET			COMBIN	ED AGGRE	GATE
SIEVE SIZE	WT RET	<u>K X 100</u> E	WT RET	Px10) F	<u>Rx1</u> 100		% RET =	% PA		SPEC
1000	-K	=L	=P	=R	-5		=7	to 6.1 %		% PASSING
1 1/2" [37.5 mm]		-		1				00 9.1 76	101%	
1º [25mm]	0.86	7.26	-				7.0/	61 7		
3/4" (19 mm)	1.01	8.51		-	-	CO. F. A	7.26	92.7	93	
1/2" [12.5 mm]	1.54	13		-			8.52	84.2	9.1	
3/8" [9.5 mm]		~	-				13	71.2	71	
No. 4 [4.75 mm]	1.21	10.21					10.21	61	61	
	2.63	12.19		L	-	ac. I	22.19	38.8	39	
No. 8 [2.36 mm]	_				12.58	- A. I.	12.58	26.2	26	
No. 16 [1.18 mm]			82.2	26.63	10.31	1.5	10.31	15.9	16	
No. 30 [680 µm]			95	14.58	5.65		5.65	10.3	10	
No. 40 425 [µm]							-		10	
No. 56 [300 µm]			_	-	-	1.1				
No. 100 [150 µm]			44.2	14.32	5.54	4.1	5.51	4.7	~	
No. 200 [75 pass]	-	-	11.8	3.82	1.48		1.48		5	
Pass No. 200 [75 pm], Pan	4.5%		15.4	4.444			1.48	3.3	3	
TOTAL PASSING	1.00		45.7	8,13	3.19	1.				
GILSON LOSS			(T. T.	OTAL PAS				_		e Prophe
FRACTURED FACES %	One or more		(E - 1)	OTAL PAS	SING/E		1	WETWT		255.8
FLAT & ELONGATED %	15 Rotio						1.1	DRY WT (250.3
FINENESS MODUL	US: con M.	M Fait	9164	2			_		Y = MOISTURE	5.5
BLOWS = The	_	-	-	Mriston =		27		T(MOIST./ DRY	WT)±100	2.2%
2) Ju LIQUID LIMIT (LL)	Wat+Tare=	Dry + Tare= BB	Tun= CC	AA-BB= DD	Dry Wt = EB - CC = EE	_	E)1100	NSTURE 11 Carr. Factor =		PLASTIC INDEX (PI) =LL - PL
	36.4	34	21.6	2.8	12.4		2.4) 200		22	NP
PLASTIC LIMIT (PL)	21,5	20.5	16	1	9.5	11/4.	5)+100	22		NT

X		W	IYOMIN M	ATERI	ALS TE	ENT OF STING I ATE AN	ABOR	ATORY			whstorr Form 1 Ray, 0
TEST NUMBER								DATE	11/	17/11	
SUBMITTED BY								AT		1.41.01	
SAMPLE I.D.						-	S	MPLED BY			
PIT OR QUARRY	_				-			PROJECT			
QUANTITY (tons)								LOCATION	-	Rood	
FOR USE AS								COUNTY			
	_				_				_ (./0	2	
			IGHT				19.94	1253		Weight	
Samole	1.12		E AGG.		FINE AG				1000	Retained	% Retained
After Wash	_	13,102	5 夜*同		19,5 9 81.4	= (?)	a line of			(lbs or kg)	A,B X100
Pass #200 (75µm)	_		_		7.6	-			175 mm) = (A) 4,75 mm)= (B)	\$\$3	
Pass #200 (75 µm), Pa	IS .				6.0				, A+B=(D)	13.10	55.50
Total Pass #200 (75pm	1)				136						
			%.RET		% RET	SRET			COMBIN	ED AGGR	EGATE
SIEVE		WT RET	KX 190 E	WT RET	P x 100	Rx1 100		% RET L+S	% PA		SPEC
SILLE		×	4	sp	*R			4Z	100 -	Σ(Z) 101%	% PASSING
1 1/2" (37.5 mm)	-				1						
1"		0		-				D	100	lea	100
(25mm) 3/4*			1.00	-						100	
(19 mm) 5/2*	_	0.16	1.22	-	-			1.22	98.8	99	90-100
(12.5 mm) 3/8°	_	1.43	10.41					10,91	87.9	88	65-85
(0.5 mm)		1.28	4.77					4.77	78.1	78	-
# 4 (4.75 mm)		2.46	22.59	0				22.59	55.5	56	50-78
# 8 (2.38 mm) ,				715	10.97	11.04		11.08	444	44	37-67
\$ 10 (1.13 mm)				118					164		21-01
# 30		-		44.5							1.0
(600 µm) # 40	_	-	-	89.0	24.76	13.74		13.74	30.7	31	13-35
425 (µm) # 54	_		-		-					1	
(300 µm)											
# 100 (150 jum)				Nit							
# 200 (75 µm)				1048	24.15	16.10		16.15	14.5	145	4-15
Pass # 200 (75 pm), Pan				-	17609			1145	115		1 13
TOTAL			1)4	92.6	19-6-1	1-1, 13		1043	NET WT (
ANGULARITY	-		m/94	72.0	-	$\left - \right $		-	DRYWT		
FLAT & ELONGAT	ED	-	-					-	-		-
	_	-	-					ACISTIC	WET-DE	EY + WORSTURE	
FINENESS MODUL	105:1	ice M.T.M.,	Sect. 602.0	2				perceller	NOSTURE		
BLOWS =	Tin No.	He-Care*	GART + TANE + 80	Tare . CC	Moltilare AA - BB = DD	Dry 税 88-00* 死	*0		RE: (COVEE) *sa lor x % Noistarr		PLASTIC NOEX [LL + PL)
LIQUID LIMIT, LL						_	_				

(.)	
24	À.
	No.

WYOMING DEPARTMENT OF TRANSPORTATION T-166 MATERIALS TESTING LABORATORY (Rev. 65-15) MATERIALS TESTING LABORATORY AGGREGATE ANALYSIS

							TE	ST NUMBER				
PROJECT NO(S) .:								LOCATION		11 01		_
SUBMITTED BY:	-		_	-		-		AT	1111 1	all RT		
SAMPLE I.D.:		-		-		-	s	AMPLED BY		_		_
PIT OR QUARRY:		_	-			-	0	COUNTY	-			_
QUANTITY (tons)		-	-			-		FOR USE AS	CUMAR	rie		-
DATE RECEIVED:	and in case of the local division of the loc	17/16	-		_	_		TE TESTED		116		
		EIGHI	(lbs or							Weight	% Retain	ed =
Samole		E AGG.	-	FINE A	GG.				S Martin	Retained	(A or B)	
After Wash	7.8	S =(E	1	520.3	=	1				(lbs or kg)		x 100
			6	146.5	-		R	ETAINED No.	[4.75 mm] = (A)	4.32	59.9%	= (H
Pass No. 209 [75µm]				73.8			_	PASS No.	4 [4.75 rtm]= (B)	3.51	15.01	= (I
Pass No. 210 [75 pm], Pas				1.3				TOT	AL, A+B=(D)	7.8%	10.001	
Total Pass No. 200 [75µ38]				75.								
SIEVE	WT RET	% RET =	WT	% RET -						ED AGGRE	GATE	
SIZE		E	RET	Px100 F	RxI IM			% RET = L+S	% PAS 180 - 5		SPEC	
	*K	"L	-P	⇒R	-5			=Z	to 0.1 %	ta 1%	% PASSI	NG
1 1/2" [37.5 mm]]				-		-
1* [25mm]	0,12	1.53				1		1.53	98.5	99		
3/4" [19 mm]	0.58	7.39				3.0		7.59	91.1	11		-
1/2" [12.5 mm]	1.49	18.98	1		-			18.97	72.1	72		
3/3* [9.5 mm]	0.79	10.06			-	-		10.06	62	102		-
No. 4 [4.75 mm]	1.31	17.07						17.07	15	45		
Na. 8 [2.36 mm]			18.8	15.24	6.86			6.96	38.1	34		-
No. 16 [1.18 mm]			34.5	10.77	1,85			1.45	33.3	33		-
No. 30 [600 µm]			31.5	9.83	1.43			4.43	28.8	29		-
No. 40 425 [am]				-						~ 1		-
Nn. 50 [300 pm]												-
No. 100 [150 jum]			88.1	27.51	12.39			12.39	16.4	16		-
No. 200 [75 µm]			43.1	13.46	6.06	and a second		6.06	10.4	10		-
Pass No. 200 [75 jane], Pan	3.54		751	23,15	10,56			*1: 1.7	.0.1	1 11		- 17
TOTAL PASSING								264	100)=1.021	/	3.3 (100)= 0	0.51)
GILSON LOSS	One or merie		(E - T)	OTAL PAS	SING)/E				#3 WET WT @	1 1 .	230.3	-
ALCOLU A	15 Ratio	_							DRYW7 (I	b or kg)	2.28.8	-
CERT & ELONGATED /										Y = MOISTURE	1.5	-
- TINENESS MODULU	-	.M., Sect.	816.0;	-				出了 % MOIS	E=(MOIST./DRY V	NT)#100	0.667.	
BLOWS = Th 22 Na	Wet+Tare=	Dey + Taren Bit	Tare= CC	Maisture = AA - BB = DD	0ry Wt× B8 • CC = RE	-	10/2	_	ISTURE		PLASTIC INDE (7D =EL - PL	
LIQUID LIMIT (LL)	30.29	28.	15.9.	2.2	12.1	_	-	1	Carr. Yamar =	10		_
PLASTIC LIMIT (PL)	30.9.	296	21.7	1.3	7.9	(1.3	17	9) \$100	1105	18	2	
REMARKS CON	ection	facto	r: 0	985;	AASHT	11.0	1	7 .7	1 3 - 1245 (na. 1	A-1-0		_
			_	_			_			<u>a 1 ~</u>		_
		-					-		1.1.1.	1		_
									Nikolai	Oseef		_
					0	D'rer	CH	TION NO				-

CERTIFICATION NO.

TESTED BY Nikolai Giver

CERTIFICATION NO.

sarchi/newfieldlestingmanuall/forms\T166s\T-166rev.xds

TESTED BY

WYO	MINO	G DE	PAF	RTM	ENT	OF 7	FRAN	SPOR	TATIO	DN T-166
				S TE	STIN		BORAT			(Rev. 05-15)
PROJECT NO(S).:							ST NUMBER			
SUBMITTED BY:	_				_	-		Wolf	Creek f	id
SAMPLE I.D.:		-	-	-	_		AT MPLED BY		-	
PIT OR QUARRY:	_						COUNTY		retidat	
QUANTITY (tous)	_		-	-		-	FOR USE AS		eridad	
DATE RECEIVED:	5/1	9/16				DA	TE TESTED	5/	27/16	
		IGHT	(lbs or	kg)					Weight	% Retained =
	1 1 1 1 1 1 1	E AGG.		FINE A	GG.				Retained	AorB
Sample	8.	15 =(E		12.1	- ()				(lbs or kg)	D x100
After Wath				11,1		RE		[4.75 mm] = (A)		43,08 =(H)
Pass No. 200 [75µm]			1	01.3			PASS No.	4 [4.75 mmz]= (B)	4,81	56.92 -0
Pass No. 200 [75 µm], Pan			-	1.4			707.	AL, A+B=(D)	8.15	
Total Pass No. 203 [75µm]			1	02.7						
	WT RET	% RET =	WT	% RET -	% RET			COMBIN	ED AGGRE	GATE
SIEVE SIZE	WIKEI	<u>KX 100</u> E	RET	<u>Px100</u> F	<u>R x I</u> 100		% RET = L+8		SSING S(Z)	SPEC
	×K	=1,	-?	=R	=5		=7.	10 0.1 %	te 1%	% PASSING
1 1/2" [37.5 mn]						184				
1* (25mm)	0.01	0.47					0.17	99.5	100	
3/4" [19 mm]	0.11	1.3					1.3	98.2	94	
1/2* 12.5 mm]	0,88	10.11					10,41	87.8	81	
38° [9.5 mm]	0.91	9.94					9,94	77.9	74	
Na. 4 [4.75 mm]	1,77	20,95					20.95	56.9	57	
No. 8 [1.36 mm]			49.7	12.67	7.21		7.21	49,7	50	
No. 16 [1.18 mm]			63	<u> </u>			9,14	40.6	41	
No. 30 [600 µm]			59.3	15.11	8.6		8.6	32	32	
No. 40 425 [p.m]			-					12	Va.	
No. 50 [300 µm]			-	-	-		-	-	-	
No. 100 [150 µm]			45.2	21,71	12.36		12.36	19,6	20	
No. 200 [75 µm]				8,33	-	in all a	4.74	14.9	15	
Pass No. 200 [75 µm], Pan	4,81		102.7		14.99			101		0
TOTAL PASSING					11-1	11				1. 18.
GILSON LOSS		_	(T. T)	OTAR DAG	ALC: NO.			_		

(E - TOTAL PASSING)/E

26.9 29.8 16.2 1.6 8.6 (1.6/8.6)400 19

REMARKS correction factor: 0.995; AASHTO cal classification: A-1-6(0)

36 33.7 22 2.3 11.7 (2.3/11.7)×100 ×0.995 20

FRACTURED FACES %

BLOWS 74

LEQUID LEMIT (LL)

PLASTIC LIMIT (PL)

FLAT & ELONGATED % 15 Ratio

FINENESS MODULUS: see M.T.M., Sect. 816.0:

1iz

Wet+Tare= Dry+Tare= Tarc= AA BS CC

	М	ATE	RIAI		STIN GATE A	NALYSIS	BORA'	TORY		(Rev. 05-15)
PROJECT NO(S) .:							LOCATIO		- Land	Fill RD
SUBMITTED BY: SAMPLE LD.:	_	_	_				A		0-(147.7	110 62
PIT OR QUARRY:						- SJ	MPLED BY			
QUANTITY (tons)				_			COUNTY FOR USE AS	(_/h	cola	
DATE RECEIVED:	51	27/16				-	TE TESTEI		h/	
	THE OWNER WATER OF TAXABLE PARTY.	IGHT	-	ka)	1840a.C.	-		Q/3		
		E AGG.	(IDS OF	FINE A	CC	-			Weight Retained	% Retained =
Sample	5.7			345.2					(lbs or kg)	A or B D x 100
After Wash		-	1	262.0		RE	TAINED No.	4 [4.75 mm] = (A)	2.88	49.66 -(H)
Pass No. 209 [75µm]		-	1	82.9	1	-		4 [4.75 mm]= (B)	2.92	50,39 = (1)
Pass No. 200 [75 µm], Pan		-	-	1.3		-	_	AL. $A + B = (D)$	5.8	
Total Pass No. 200 [75µm]			-	83.7	-					
SIEVE	WT RET	% RET -	WT	% RET *	% RET			COMBINI	ED AGGRE	GATE
SIZE		<u>K X 160</u> E	RET	P x 100 F	<u>Rx1</u> 100		% RET = L+S	% PAS 100 - 5		SPEC
	-K	=L	=P	=R	-\$		=Z	60 8.1 %	10 1 %	% PASSING
1 1/2" [37.5 mm]										
1" [25mm]	-								_	
3/4" [19 mm]	0.03	0.52					0.52	99.5	100	
1/2* [12.5 mm]	0.87	15.03	-	-		2 10	15.03	84.5	45	
3'8" [9.5 mm]	0.61	10.54	-	-	-		10.54	73.9	74	
No. 4 [4.75 mm]	1.37	13.14	-		+		23.1db	50.3		
No. 8 [2.36 mm]		5.0.90	1.90	20.21	10.17	5			50	
No. 16 [1.38 mm]	-			13.29			10.17	10,1		
No. 39 [690 µm]		-		-	6.69		6.109	33.4	33	
No. 41 425 [um]		-	27.6	7.99	4.02		4.02	29.9	30	
	+	_	-							
No. 50 [300 µm]						÷				
No. 140 [150 µm]			78.5	22,73	11.44		11.94	17.9	18	
No. 200 [75 µm]			39.7	11.5	5.79		5.79	12.1	12	
Pass No. 249 [75 µm], Pan	2.92		83.7	29.29	12.2					1977 - 19
TOTAL PASSING	7			-	12.3	÷.				A 41
GILSON LOSS			(E - T)	OTAL PAS	SING)/F.			WET WT (b or kg)	226.9
FRACTURED FACES %	One or more							DRY WT (I		216 4
FLAT & ELONGATED %	1.5 Ratio		P.					WET - DR	Y = MOISTURE	10
FINENESS MODUL	LUS: see M.T	M., Sect.	816.0:				N MOI	ST. MORET / DRV 1	ATT)x100	4.62%
BLOWS = Tin 2 Nn.	Wet+Tarz=	Dry + Tary= B8	Tirt= CC	Malstare = AA - BE + BD	Dry Wt = BB - CC = EE	(DD/E	-	DISTURE		PLASTIC INDEX (PI) =UL-PL
LIQUID LIMIT (LL)	36.1	35.6	21.5	2.5	12.1	(2.5/12		x Corr. Factor =	20	anj-to-rt
PLASTIC LIMIT (PL)	30,1	28.7	22	1.4	6.7	1.4	1)x100	21	r0	N.P.

	М	ATE		S TES	
PROJECT NO(S).:					
SUBMITTED BY:					-
SAMPLE I.D.:		-	-	_	-
PIT OR QUARRY:			-		
QUANTITY (tons)		-	-	-	-
DATE RECEIVED:	5/2	7/110	-		
	in the second second	IGHT	(Ibs or	(त)	
1		E AGG.	1	FINE AG	v
Sample	6.0		-	52.1	NC.
After Wash	0.0	10	1	12 1	
Pass No. 200 [75pm]	-	_		89.6	-
Pass No. 200 [75 µm], Pan		-	-	1.6	
Total Pass No. 200 [75pm]	-	-	-	91.2	_
SIEVE SIZE	WT RET	% RET = <u>K X 100</u> E	WT RET	% RET = <u>Px100</u> F	
1193508.00.00	=K	-L	=P	=R	t
1 1/2" [37.5 mm]				_	Ť
1" [25mm]	0.19	3.14	-		t
3/4" [19 mm]	0.06	0.99	-	-	ŀ
1/2" [12.5 mm]	0.62	10.23	-	-	ŀ
3/8" [9.5 mm]	0.5	8.25	-		-
No. 4 [4.75 mm]	0.99	15.51			F
No. 8 [2.36 mm]			48.9	13.85	-
No. 16 [1.18 mm]	-	-	40,9	1).61	
		-		11,01	-

WYOMING DEPARTMENT OF TRANSPORTATION T-166 MATERIALS TESTING LABORATORY (Rev. 05-15) AGGREGATE ANALYSIS

TEST NUMBER: LOCATION: Lupine Ln

AT:

SAMPLED BY: COUNTY: Lincoln FOR USE AS: -DATE TESTED: 6/3/ -% Retained = Weight Retained AorB D x10 (lbs or kg) RETAINED No. 4 [4.75 mm] = (A) 2.41 39.19 = PASS No. 4 [4.75 mm]=(B) 3.74 60.81 TUTAL, A+B=(D) 6,15 _ % RET COMBINED AGGREGATE RxI % RET = L+S % PASSING SPEC 100 100-S(Z) % PASSING -8 =Z to 0.1 % to 1 % 3.14 96.9 97 0.99 95.9 96 10.23 85.6 86 8.25 77.4 77 _ 15.51 61.9 62 8,42 8.42 53.5 59 7.06 7.06 46.4 46 No. 30 [600 µm] 31.5 8.94 5.44 5.19 41 41 No. 40 425 [um] No. 50 [300 µm] Ne. 100 [150 µm] 89.5 25.4 15.15 5.15 25.5 24 No. 200 [75 µm] 8.75 16.8 17 50.7 14.39 8.75 Pass No. 200 [75 µm], Pan 3.74 91.2 25.88 15.74 TOTAL PASSING GILSON LOSS (E - TOTAL PASSING)/E WET WT (B or kg) 242. 6 FRACTURED FACES % DRY WY (Ib or lg) 236.4 FLAT & ELONGATED % WET - DRY - MOISTURE 5.8 FINENESS MODULUS: see M.T.M., Sect. 816.0: % MOIST.-(MOIST./ DRY WT)r140 2.45% BLOWS= Meisture = Dry Wr = BB - CC = EE % MOISTURE WateTaree Dry+Taree Taree AA BB CC PLASTIC INDEX (FI)=LL-PL (DD/EE)x300 xCorr. Factor-36.1 33.8 22.1 2.6 11.7 (2.6/11.7)×100 ×0.979 22 LIQUID LIMIT (LL) PLASTIC LIMIT (PL) 30.3 28.9 22.1 1.4 6.8 (1.1/6.8) >100 21 REMARKS COrrection factor: 0,979; AASHTO Gol class frontion: A-1-b (0)

TESTED BY Nikola Greer

CERTIFICATION NO.

TESTED BY Nikoln' Grogs

HET WT (Bork) 228

DRYWT (Berles 22).5

WET-DRY-MOISTURE 6.5

PLASTIC INDEX (PI)=LL - PL

\$ MOIST .- (MOIST / DRY WT)=100 2.93%

CERTIFICATION NO.

% MOISTURE

(00/22) x 100 x Cerr, Factor =

101

CERTIFICATION NO.

TESTED BY Nikolai Greet

×"	10	MINU	ATE	RIAL	S TE	ENT STIN GATE AN	G LAF	BORA	SPOR'	TATI(ON T-166 (Rev. 05-15)	W	-
							TE	ST NUMBER	N.				
PROJECT NO(S).	4							LOCATION		10/			
SUBMITTED BY		_					-	AT	CIUD	00		PROJECT NO(S	.:
SAMPLE LD. PIT OR QUARRY			_	_	_		8	MPLED BY	-	-		SUBMITTED BY	ť:
QUANTITY (tens	_			_			_	COUNTY		rban		SAMPLE LD	
DATE RECEIVED	-		5/27/	17.		_		FOR USE AS TE TESTEI				PIT OR QUARRY QUANTITY (ton	
	-	Later over 1977		and the second division of the second divisio			1	TP LEVISI	: <u>6/3/</u>	16		DATE RECEIVED	
A			EIGH1 EAGG.	(lbs or					A Miles	Weight	% Retained =		-
Sample	-	7.76		1	FINE A	Toronto and the second				Retained (lbs or kg)	D x100		
After Wash	-	1 5.10	-10	-	237.		-				(5)	Sample	-
Pass No. 200 [75µ	n			-	79.		K2		4 [4.75 mm] = (Λ)	1.29	16.56 =(B)	After Wash	
Pass No. 200 [75 pas]	_	+	_	-	2.5	6	-		4 [4.75 mm]= (B) AL, A+B=(D)	6.19	85.51 =1)	Pass No. 200 [75]	
Total Pass No. 200 [7.	5µm)		_		81.7			101	AL, A+B=(D)	<u>t.15</u>		Pass No. 200 [75 µm	į, 1
			% RET -		% RET -	% RET			COMBIN	ED AGGRE	GATE	Total Pass No. 200	15
SIEVE		WT RET	K X 100	WT	Px100	Bal		N.RET -	% PA				
SIZE			E	intra i	F	100		Lis	100-1		SPEC	SIEVE	
All And	ANT IS	⊐K	=1	-?	«R.	=8		=7.	0.15	to 1 %	% PASSING	SIZE	
1 1/2" (37.5 mm)										-			15
1" [25mm]		0.13	1.68					1.68	98.3	98		1 1/2" [37.5 and	1
34° [19 mm]		6.14	1.8			-		1.9	96.5	97		1" [25mm]	-
1/2" [12,5 mm]		0.35	4,51	-	-	-	CX IIII	4.51	92	92		3/4" [19 mm]	_
3.8° [9.5 mm]		0.19	2,45		-			2.15	89%	90		1/2" [12.5 mm]	
No. 4 [4.75 mai]		0.48	6.19			1 -	14	6.19	93.9	85		3/8" [9.5 mm]	
No. 8 [2.36 mm]				18.8	5.93	4,94		4.94	78.4	7%		No. 4 [4.75 mm]	-
No. 16 [1.18 mm]				192	6.06	5.05		5.05	73.4	73		No. 8 [2.36 mm]	-
No. 30 (600 pm)			-		6.56	5.17		5.47	67.9	68		No. 16 [1.18 mm	_
No. 40 425 [um]				-	-	-	1		0.11	00		No. 40 425 [sm]	
No. 59 [310 µm]	_		-		-	-	China State						
No. 100 [150 µm]	_		-	1185	37 39	31.15	ā.	31.15	36,8	37		No. 50 [300 µm]	
No. 201 [75 µm]	-			58	18.3	15.25		15.25	20,8	22		No. 100 [150 µm] No. 200 [75 µm]	_
Pass No. 200 [75 gan].	Pan	6.44	-		25.78	10.00	1. A.	13.05	1,2	P.d.		Pass No. 200 [75 jum]	
TOTAL PASSE	NG			0111	Joirg	12.1		1.7				TOTAL PASS	_
GILSON LOSS			-	(E - T)	DTAL PAS	SINGVE			WET WT	h er bri	258.2	GILSON LOS	-
FRACTURED FACE	\$ %	One or pare				1			DRY WT (-	255.3	FRACTURED FAC	_
FLAT & ELONGATZ	ED %	15 Rutio	-							Y=MOSTURE	2.9	FLAT & ELONGAT	-
FINENESS M	IODUL	US: see M.J	M., Sect.	816.0:		_	1.1	5 MOR	ST.#(MOUST/DRY	_	1,14%	FINENESS M	_
BLOWS =	Tis	Wet-Tares	Day+Taxe	Tare .	Nuistare=	Dry Wi.+		-	DISTURE		PLASTIC INDEX	BLOWS =	T
18	NE.	AA	88	CC	.4.4 - 113 = DD	BB - CC = EE	(00/)	_	t Corr. Facigr +	_	PLASTIC INDEX (PL)+UL-PL	26	
LIQUID LIBHT (LL)		36.9	34.1	10.3	2.5	14.1	(2.5/1	0012(1.1	×0.961	17	110	LIQUID LIMIT (LL	ł
PLASTIC LIMIT (PL)											N.P.	PLASTIC LIMIT (PL)	ĺ
REMARKS for the plast		rection if fect	HA-SI	110	961; al de	Venble	to i	oll a - 2-91	12" three	h on H	ne list try	REMARKS	-

WYOMING DEPARTMENT OF TRANSPORTATION T-166 SSO MATERIALS TESTING LABORATORY (Rev. 05-15)

AGGREGATE ANALYSIS

TEST NUMBER:

LOCATION: Halfway Long

AT: SAMPLED BY: COUNTY: FOR USE AS: Sheridan

DATE RECEIVED:	-	51	19/16	-				TE TESTED		26/16	
		WE	IGHT	(lhs or l	(9)	Ling.			1		% Retained =
			E AGG.		FINE AG	7 6.				Weight Retained	(A or B)
Sample		7.0	5 = (E	7	515.6	= (F	1			(lbs or kg)	D x 10
After Wash					292.9		RE	TAINED No. 4	[4.75 mm] = (A)	4.32	61,19 -0
Pass No. 200 [75µm	L				22.7			PASS No.	[4.75 mm]= (B)	2.74	38.81 -
Pass No. 200 [75 µm],]	Pan				1.3			TOT	L, A + B = (D)	7.06	NA TRANC
Total Pass No. 200 (75)	(m)				21						
			% RET =		% RET =	% RET	1		COMBINE	D AGGRE	GATE
SIEVE SIZE		WT RET	<u>K X 100</u> E	WT RET	P x 100 F	<u>RxI</u> 100		% RET = L+S	% PAS 100 - 5		SPEC
	A	=K	=L	-P	~R	-8		=7	40 0.1 %	to 1 %	% PASSING
1 1/2" [37.5 ann]							1				
1" [25mm]		0.18	2.55		-			2.55	97.5	94	
3/4" [19 mm]		0.27	3,83					3.83	93.6	94	
1/2" [12.5 mm]		0.99	14.04	-				14.04	79.6	80	-
3/8" [9.5 mm]		0.91	12.91		-			12.91	66.7	67	
No. 4 [4.75 mm]		1.97	27.94			-		27.94	38.7	39	
No. 8 [2.36 mm]		-		119.1	37.74	14.65		19.65	29.1	24	
No. 16 [1.18 mm]		-		40.6	25.59	9.91		9.91	14.2	14	-
No. 30 [600 µm]				44.2	14.01	5.44	100	5.14	8.7	9	
No. 40 425 [sum]	-				10.57						
No. 50 [300 µm]					-	-				-	
No. 100 [150 µm]				37.9	12.01	4.66	1.1	4.66	4.1	4	
No. 200 [75 jam]				10	3.17	1.23		1,23	2.81	.3	
Pass No. 200 [75 pm], P	an	2.71		24	7.6	2.95.				<u> </u>	14 T 1 1
TOTAL PASSIN	G				110	al viller		127			
GILSON LOSS				(E - T)	DTAL PAS	SING)/E			WET WT (berlig)	258.7
FRACTURED FACES		One or more							DRY WT (b or leg)	259.6
LAT & ELONGATE	D %	1:5 Ratio			10.00				WET - DR	Y = MOISTURE	4./
FINENESS MO	DULU	US: see M.T	.M., Sect.	816.0:	_			% MOI	T(MOIST./DRY	VT)s100	1.61%
BLOWS = 26	Tin No.	Wottane= AA	Dry + Tare= BB	Jare * CC	Meistare = AA - BB = DD	Dry Wt = BB - CC = EE	(00/)		NSTURE		PLASTIC INDEX (PI)=LL-PL
LIQUID LEMIT (LL)		39.7	32.3	21.9	2.9	10.1	(2.1/	0.1)×100		23	110
PLASTIC LIMIT (PL)		26.7	25.8	21.9	0.9	3.9		5.9) ×100	23		NP
REMARKS	corr	rection	factor	: 1.0	05;1	4ASH1	0 501	(lass	ilication	= A-1-	a (o)

TESTED BY Nilon Giver

TESTED BY Nikolai Greet

CERTIFICATION NO.

CERTIFICATION NO.

APPENDIX B: SAS REGRESSION ANALYSIS CODE SCRIPT

```
* reg2.sas - Task 2 Regression Analsyis (Okak) 09/04/16;
options nocenter;
data dat;
      * [Report, p 147];
input dusta adt adtt speed fines umoist amoist pi rain; datalines;
131.5868 546 116 48 10.5 3.18 3.1590 7.17 6.94
114.1887 328 0 39 8.4 6.40 3.0833 12.00 9.66
127.0873 168 0 37 14.9 2.85 2.6965 0.00 8.56
38.7090 184 48 50 2.9 5.60 3.9140 0.00 9.11
78.2859 204 12 39 6.0 2.07 1.9400 17.19 12.13
65.0319 90 0 35 6.0 2.21 2.0675 5.94 12.13
111.0800 80 8 44
                    12.5 2.83 3.1392 18.76 11.00
120.5311 120 8 47 8.9 1.41 3.4370 4.52 11.00
263.9503 504 184 45
                    11.1 1.91 1.8282 14.06 13.60
220.1124 288 36 41 8.1 1.49 1.3116 17.20 13.60
;
proc print data=dat; run;
* Model Selection;
            * AIC = [n*log(SSE/n)+2p] + n+2;
proc glmselect data=dat;
     * selection by aic, bic, adjrsq;
  *model dusta = adt adtt speed fines umoist amoist pi / selection=none
stats=(adjrsq aic bic sbc);
  *model dusta = adt fines / selection=none stats=(adjrsq aic bic sbc);
 model dusta = adt adtt speed fines umoist amoist pi / selection=stepwise
choose=bic;
run;
proc reg data=dat;
      * p-values;
   *model dusta = adt adtt speed fines umoist amoist pi / selection=adjrsg
sbc bic ;
  *model dusta = adt adtt speed fines umoist amoist pi / selection=backward
sle=0.4 sls=0.1 aic bic;
  *model dusta = adt adtt speed fines umoist amoist pi / selection=adjrsq
aic bic;
 * model dusta = adt fines rain;
final reduced model ?;
 * output out=resid p = pred r = rresid student=rstudent;
*model dusta =adt adtt speed fines umoist amoist pi;
model dusta = speed fines amoist;
run:
* Diagnostics;
goptions reset=global ftitle=swissb ftext=swiss htitle=2 htext=3 hsize=8
vsize=6;
symbol1 value=dot height=4;
proc univariate data=resid normal plot;
```

```
var rstudent;
qqplot rstudent / normal(mu=est sigma=est);
run;
```

*** time.sas - Evaluation of Concentration over Time 09/06/16; * objective 2;

options nocenter;

						Ş;	datalines;
1.33028 0.02755	0.0	1.30273	-1	W O			
0.02733		1.29910	9.0	0 1	wam		
0.06812		1.26216	8.0	3	wam wam		
0.59450		0.73578	6 0	9			
0.83900		0.49128			wam		
	0.0		-1		denry		
0.02741	0.0	0.62009					
0.03124		0.61626		1			
0.07560		0.57190		3			
0.42378		0.22372		9			
0.94800	-	-0.30050	6.0		edenry		
1.06400	0.0				denre		
0.04380		1.02020		0	edenre		
0.05552		1.00848	8.0	1			
0.07890		0.98510					
0.51879		0.54521		9	edenre		
0.90800		0.15600	6.0	12	edenre		
0.5700	0.0	7.0	-1	С	ounty		
0.00000		0.57000	9.5	0	county		
0.04577		0.52423		1	county		
0.06123		0.50877	8.0	3	county		
0.10429		0.46571		9	county		
0.31500		0.25500	7.0		county		
0.87807	0.0		-1	р	ied173		
0.02129		0.85677		0	-		
0.05092		0.82714		1			
0.11581		0.76226		3	-		
0.68642		0.19165		9	pied173		
0.95933	0.0		-1		ied171		
0.01425		0.94508	9.0	0	-		
0.02392		0.93541		1	pied171		
0.08388		0.87545		3	-		
0.59640	0 0	0.36293		9	pied171		
0.97335	0.0		-1	-			
0.01994		0.95341		0	2		
0.03594		0.93741		1	gomer		
0.08951		0.88384			gomer		
0.45193		0.52142	7.0	9	gomer		
0.76383	0 0	0.20952	6.0	12	gomer ublet		
0.92659	0.0	8.0 0.89487			ublet sublet		
0.03172 0.03473		0.89487	9.0 9.0	0	sublet		
0.03473		0.83640	9.0	1 3	sublet sublet		
0.46540		0.46119	6.0	9	sublet		
0.40340		0.40119	0.0	9	Subrec		

0.91950		0.00709	6.0	12	sublet
0.91366	0.0	7.0	-1	j	enne
0.02924		10.0	0	j	enne
1.40928		7.0	12	j	enne
2.01675	0.0	6.0	-1	b	l-yell
0.03095		1.98580	9.0	0	bl-yell
0.09584		1.92091	9.0	1	bl-yell
0.24980		1.76695	7.0	3	bl-yell
1.03350		0.98325	7.0	9	bl-yell
1.83350		0.18325	6.0	12	bl-yell
1.47127	0.0	6.0	-1	t	urner
0.03144		1.43983	9.0	0	turner
0.07837		1.39290	9.0	1	turner
0.12145		1.34982	7.0	3	turner
0.88400		0.58727	7.0	9	turner
1.68400	-	-0.21273	6.5	12	turner
;					

proc print data=dat; run;

```
* polynomial trends;
                                                             * individual
proc glm data=dat;
road;
 where t>-1 & road='bl-yell';
 model conc = t t*t t*t*t;
run;
proc sort data=dat; by t; run;
                                                       * average of roads;
proc means data=dat noprint;
 by t; var conc paser;
output out=mdat mean=mconc mpaser;
proc print data=mdat;
run;
proc glm data=mdat;
 where t>-1;
 * model mconc = t t*t t*t*t;
 model mpaser = t t*t t*t*t;
run;
symbol value=dot height=2;
proc gplot data=dat;
 plot conc*t = road;
run;
* paired t-tests;
data dat2; set dat; where t=-1 | t=9; keep conc road;
                                                       * 1 year;
proc sort data=dat2; by road;
data mdat2; array yy(2) y1-y2;
do t=1 to 2;
 set dat2; by road;
  yy(t)=conc; drop conc;
  if last.road then return; end;
```

run;

```
proc print data=mdat2;
run;
proc ttest data=mdat2 side=u;
paired y1*y2;
```

APPENDIX C: JOHNSON COUNTY COST DATA

2014 Johsnon County

Road Name	Project	Cost	Total Cost	Miles	CaCl cost/Mile	Cost/Mile
135 / Streeter	000 / Travel Time	\$871	\$53,924	12.2	\$3,548	\$4,420
Gravel	001 / Transport Equipment	\$695				
	015 / Dust Supression	\$43,284				
	201 / Dust Control - Prepare Surface	\$1,178				
	202 / Dust Control - Prewater	\$7,200				
	205 / Dust Control- other unspecified Objectives	\$696				
195 / Upper	000 / Travel Time	\$1,490	\$124,186	29	\$3,393	\$4,282
Powder River	001 / Transport Equipment	\$1,338				
Gravel	015 / Dust Supression	\$98,399				
	201 / Dust Control - Prepare Surface	\$9,006				
	202 / Dust Control - Prewater	\$12,356				
	205 / Dust Control- other unspecified	\$1,596				
	Objectives					
14 / Crazy	000 / Travel Time	\$367	\$19,279	4	\$3,883	\$4,820
Woman Canyon	001 / Transport Equipment	\$507				
Gravel	015 / Dust Supression	\$15,532				
	201 / Dust Control - Prepare Surface	\$834				
	202 / Dust Control - Prewater	\$1,699				
	205 / Dust Control- other unspecified Objectives	\$17,115				
204B /	000 / Travel Time	\$886	\$97,229	24.5	\$3,295	\$3,969
Schoonover	015 / Dust Supression	\$80,723			•	
Gravel	201 / Dust Control - Prepare Surface	\$3,475				
	202 / Dust Control - Prewater	\$10,685				
	205 / Dust Control- other unspecified	\$1,459				
	Objectives					
8 / Stockyard	015 / Dust Supression	\$5,709	\$7,262	1.6	\$3,568	\$4,538
Gravel	201 / Dust Control - Prepare Surface	\$653				
	202 / Dust Control - Prewater	\$633				
	205 / Dust Control- other unspecified	\$266				

Road Name	Project	Cost	Total Cost	Miles	CaCl cost/mi le	Co	ost/Mile
135 / Streeter	000 / Travel Time	\$1,069	\$60,651	12.2	\$3,934	\$	4,97
Gravel	001 / Transport Equipment	\$136	. ,		. ,	•	,
	014 / Contracted Water Truck	\$2,860					
	201 / Dust Control - Prepare Surface	\$2,860					
	202 / Dust Control - Prewater	\$5,552					
	204 / Dust Control-Apply Calcium Chloride	\$47,994					
	205 / Dust Control- other unspecified Objectives	\$180					
195 / Upper	000 / Travel Time	\$950	\$135,424	30	\$3,672	\$	4,51
Powder River Gravel	014 / Contracted Water Truck	\$4,565					
Glaver	201 / Dust Control - Prepare Surface	\$5,964					
	202 / Dust Control - Prewater	\$11,294					
	204 / Dust Control-Apply Calcium Chloride	\$110,164					
	205 / Dust Control- other unspecified Objectives 401 / Equipment Repair & Maint	\$2,200 \$287					
44/ Стоти			¢00.005		¢ 4 070	•	
14 / Crazy Woman Canyon	000 / Travel Time	\$956 \$200	\$22,625	4	\$4,279	\$	5,65
Gravel	001 / Transport Equipment 014 / Contracted Water Truck	\$390 \$660					
	201 / Dust Control - Prepare Surface	\$622					
	202 / Dust Control - Prevater	\$022 \$2,670					
	202 / Dust Control-Apply Calcium Chloride	\$2,070 \$17,115					
	401 / Equipment Repair & Maint	\$212					
204B /	000 / Travel Time	\$560	¢105 272	24 5	¢2 /12	¢	1 20
Schoonover	001 / Transport Equipment	\$300 \$462	\$105,373	24.5	\$3,413	\$	4,30
Gravel	014 / Contracted Water Truck	\$4,345					
	020 / Construction oversight/Administration	\$1,857					
	201 / Dust Control - Prepare Surface	\$5,590					
	202 / Dust Control - Prewater	\$8,298					
	204 / Dust Control-Apply Calcium Chloride	\$83,618					
	401 / Equipment Repair & Maint	\$644					
8 / Stockyard	201 / Dust Control - Prepare Surface	\$526	\$7,650	1.6	\$4,004	\$	4,78
Gravel	202 / Dust Control - Prewater	\$143	Ψ1,000	1.0	Ψ - ,00 -	Ψ	-+,70
	204 / Dust Control-Apply Calcium Chloride	\$6,406					
	205 / Dust Control- other unspecified Objectives	\$574					

Year	Month	Project name	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
2013	July	GM	14.5		\$413.10		\$996.02
	August	GM	4.5	\$128.75	\$89.73	\$63.27	\$281.75
	September	GM	15	\$482.70	\$282.08	\$156.91	\$921.69
2013	October	GM	6	\$193.08	\$201.52	\$44.71	\$439.31
	November	GM	7.5	\$241.35	\$113.33	\$49.59	\$404.27
	December	GM	26	\$861.34	\$503.92	\$199.36	\$1,564.62
	March	GM	11	\$353.98	\$165.52	\$160.46	\$679.96
2014	April	GM	22	\$707.96	\$332.42	\$241.74	\$1,282.12
2014	May	GM	2	\$64.36	\$30.22	\$0.00	\$94.58
	June	GM	27.5	\$884.95	\$484.81	\$291.21	\$1,660.98
	Total		136	\$4,385.08	\$2,616.64	\$1,323.57	\$8,325.29
Year	Month	Project name	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
	August	86 / Lay Gravel Buffalo- Sussex Cutoff Gravel	148	\$4,708.69	\$3,601.94	\$1,412.32	\$9,722.94
2013	August	86-19 / Lay Gravel Buffalo- Sussex Cutoff Gravel	6.00	\$ 139.17	\$ 96.99	\$ 22.72	\$ 258.88
	October	Segment 19	4	\$ 141.70	\$ 64.66	\$-	\$ 206.36
2014	Мау	86-22 / Lay Gravel Buffalo- Sussex Cutoff Gravel Segment 22	2.50	\$80.45	\$80.83	\$-	\$161.28
	Total		158	\$5,070.01	\$3,844.41	\$1,435.04	\$10,349.45

2014 Buffalo sussex maintainenace cost/mile

2015 Buffalo sussex maintainenace cost/mile

Year	Month	Project name	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
	July	GM	2.5	\$80.45	\$37.78	\$33.68	\$151.91
2014	September	GM	12.5	\$393.44	\$280.65	\$85.06	\$759.14
2014	October	GM	60.5	\$1,938.18	\$1,628.71	\$435.70	\$4,002.59
	November	GM	8	\$196.16	\$342.95	\$0.00	\$539.11
	February	GM	9	\$314.83	\$395.20	\$47.94	\$757.97
	March	GM	38	\$1,047.48	\$1,195.06	\$281.99	\$2,524.52
2015	April	GM	88.5	\$2,486.09	\$2,857.48	\$843.19	\$6,186.75
	May	GM	32.5	\$863.46	\$884.60	\$310.66	\$2,058.72
	June	GM	22.5	\$721.07	\$538.78	\$172.21	\$1,432.06
			274	\$8,041.14	\$8,161.20	\$2,210.43	\$18,412.76

Year		Project name	Labor hr	Labor cost	Equipment c	Material Cost	Total Cost
	October	804 / Haul Gravel	12.00	\$452	\$727	\$1,332	\$2,511
	september	809 / Pulling Shoulders/Ditchwork	27.00	\$945	\$2,047	\$425	\$3,417
	september	86 / Buffalo-Sussex Cutoff Gravel	5.00	\$203	\$11	\$0	\$214
	October	86-00 / Buffalo-Sussex Cutoff Grave	6.00	\$192	\$135	\$0	\$327
	October	804 / Haul Gravel	5.50	\$199	\$502	\$599	\$1,301
2014	july	86-08 / Buffalo-Sussex Cutoff Grave	6.00	\$181	\$202	\$66	\$449
	October	86-22 / Buffalo-Sussex Cutoff Grave	6.00	\$216	\$190	\$166	\$572
	October	86-23 / Buffalo-Sussex Cutoff Grave	16.00	\$554	\$406	\$285	\$1,245
	October	806 / Lay Gravel	2.00	\$60	\$195	\$0	\$256
	October	86-24 / Buffalo-Sussex Cutoff Grave	7.00	\$211	\$262	\$0	\$473
	October	804 / Haul Gravel	3.50	\$131	\$316	\$259	\$706
	March	307 / Loading Trucks	4.00	\$155	\$193	\$347	\$694
	April	804 / Haul Gravel	588.5	\$22,324	\$46,512	\$87,606	\$156,441
	April	806 / Lay Gravel	382.00	\$10,225	\$31,435	\$2,929	\$44,589
2015	February	86-09 / Buffalo-Sussex Cutoff Grave	3.00	\$101	\$48	\$24	\$173
2015	February	86-12 / Buffalo-Sussex Cutoff Grave	12.00	\$420	\$429	\$167	\$1,016
	January	86-20 / Buffalo-Sussex Cutoff Grave	10.00	\$367	\$63	\$36	\$466
	February	804 / Haul Gravel	4.50	\$140	\$441	\$0	\$581
	February	806 / Lay Gravel	2.00	\$62	\$196	\$146	\$404
		Total		\$37,136	\$84,311	\$94,387	\$215,834

2014 Irrigary maintainenace cost

Year	Month	Project na	Labor Hr	Labor cost	Equipment	Material	Total Cost
2013	July	GM	7.00	225.26	188.92	82.52	\$ 497
	September	GM	7.00	225.26	105.77	101.47	\$ 433
	October	GM	5.5	176.99	110.82	48.97752	\$ 337
	November	GM	7.5	241.35	113.325	0	\$ 355
2014	January	GM	25.5	841.14	505.57	211.0588	\$ 1,558
	February	GM	8.5	277.64	123.755	114.9467	\$ 516
	May	GM	9.5	305.71	143.545	115.789	\$ 565
	Total		70.50	\$2,293.35	<mark>\$1,291.70</mark>	<mark>\$67</mark> 4.77	\$4,259.82

		2015 Iri	rigaray m	naintenanc	e cost		
Year	Month	Project name	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
	July	GM	24	\$593.52	\$517.55	\$423.81	\$1,534.88
2014	August	GM	10	\$213.90	\$73.01	\$58.08	\$344.99
	September	GM	\$5.00	\$180.12	\$167.16	\$0.00	\$347.28
	February	GM	15.5	\$481.24	\$385.05	\$69.43	\$935.72
2015	April	GM	20.5	\$744.45	\$645.74	\$56.63	\$1,446.82
	June	GM	4	\$136.78	\$51.08	\$55.70	\$243.56
	<mark>Total</mark>		79	\$2,350.01	\$1,839.59	\$663.65	\$4,853.24
Year	Month	Project name	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
			40	\$0.00	\$6,894.30	\$7,040.00	\$13,934.30
2015	June	010 / Haul Gravel Contractor					
2014	August		3.00	\$ 90.42	\$ 215.64	\$-	\$ 306.06
2015	June	802 / Blade Patching Gravel	8	\$ 241.12	\$ 781.20	\$ 119.03	\$ 1,141.35
2014	August	804 / Haul Gravel	36.00	\$ 1,404.65	\$ 2,218.31	\$ 1,935.49	\$ 5,558.45
2015	June		28.00	\$ 1,139.05	\$ 1,933.53	\$ 3,402.65	\$ 6,475.23
	July	806 / Lay Gravel	14.00	\$ 176.96	\$ 1,050.00	\$ 104.26	\$ 1,331.22
2014	August		8.00	\$ 101.12	\$ 600.00	\$ 34.75	\$ 735.87
2015	June		3.00	\$ 137.19	\$-	\$-	\$ 137.19
2014	September		3.00	\$113.07	\$215.64	\$11.10	\$ 339.81
2015	February	809 / Pulling Shoulders/Ditchwork	8.00	\$248.00	\$784.00	\$ 220.93	\$ 1,252.93
	Total		190	\$14,708.24	\$22,896.14	\$12,879.32	\$31,212.41

			201	4 Lower S	ussex cost		
Year	Month	Project n	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
	July	GM	0.5	\$16.50	\$48.83	\$0.00	\$65.32
2013	August	GM	2	\$62.68	\$99.78	\$63.76	\$226.22
	Septembe	GM	4	\$128.72	\$143.59	\$0.00	\$272.31
	October	GM	8.5	\$273.53	\$156.15	\$66.57	\$496.25
	February	GM	2.5	\$80.45	\$37.78	\$31.85	\$150.08
	March	GM	9.00	\$ 284.31	\$103.15	\$28.48	\$415.94
2014	April	GM	17.00	\$ 588.67	\$387.58	\$86.57	\$1,062.82
	May	GM	2.5	\$80.45	\$26.08	\$28.55	\$135.08
	June	GM	13	\$409.31	\$621.96	\$67.59	\$1,098.86
	Total		59	\$1,924.61	\$1,624.87	\$373.37	\$3,922.85
Year	Month	Project n			Equipment cost		Total Cost
2014	April	804 / Haul Gravel	18.50	\$658.63	\$1,413.89	\$1,559.43	\$3,631.94
2013	July	809 / Pulling Shoulders /Ditchwor	3.50	\$115.47	\$341.78	0	\$ 457.24
2014	April	804 / Haul Gravel Lower Sussex	7.50	\$247.77	\$454.25	\$403.62	\$1,105.63
2014	April	804 / Haul Gravel Lower Sussex	5.50	\$185.73	\$357.56	\$313.90	\$857.19
2014	April	000 / Travel	18.00	\$619.90	\$388.97	\$53.40	\$1,062.27
2014	April	804 / Haul Gravel	3.00	\$94.02	\$181.71	\$171.41	\$447.14
	Total		169.5	\$5,787.62	\$10,360.74	\$8,459.83	\$7,561.40

		2015 Low	er Susse	x maintena	ance cost		
Year	Month	Project name	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
2014	July	GM	5.00	160.90	75.55	\$99.01	\$335.46
2014	September	GM	2	\$66.34	\$99.78	\$0.00	\$166.12
	March	GM	10	\$390.10	\$443.16	\$39.10	\$872.36
	April	GM	13	\$507.13	\$255.60	\$42.11	\$804.84
2015	May						
	June	GM	7	\$295.39	\$15.84	\$0.00	\$311.23
	August						
	Total		37	<mark>\$1,419.86</mark>	\$889.93	\$180.21	\$2,490.00
Year	Month	Project name	Labor hr	Labor cost	Equipment cost	Material Cost	Total Cost
2015	March	809 / Pulling Shoulders/Ditchwork	8.00	\$312.08	\$678.72	\$70.96	\$1,061.76
2015	August	76-07 / Lower Sussex Gravel Segment 7	3.5	123.59	242.38	0	365.97
2014	September	76-08 / Lower Sussex Gravel Segment 8	10.50	\$375.89	\$316.32	\$206.30	\$898.50
2015	June	-	2.50	\$94.18	\$3,478.80	\$3,795.27	\$ 7,368.25
2015	June	76-13 / Lower Sussex Gravel Segment 13	0	\$0.00	\$3,607.70	\$3,410.00	\$ 7,017.70
2015	Мау	76-14 / Lower Sussex Gravel Segment 14	1	\$ 31.00	\$ 15.11	\$ 15.92	\$ 62.03
2015	June	76-17 / Lower Sussex Gravel Segment 17	7.00	\$764.54	\$1,650.70	\$715.00	\$3,130.24
	Total		138.00	\$3,915.65	\$31,592.61	\$24,304.45	\$19,904.44

20151 int ... ~