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ABSTRACT 
About 3,341 large truck related fatal crashes happened in United States in 2011, and more than 3,700 
people died, which accounted for more than 11% of all motor vehicle fatal crashes and fatalities, even 
though large trucks only accounted for 4% of registered vehicles and 9% of vehicle-miles traveled (VMT) 
(USDOT, 2013). Large truck VMT decreased 6.7% from 2010 to 2011; however, large truck related fatal 
crashes still increased 2% from 2010 to 2011 (USDOT, 2013).   

To reduce serious accidents involving these vehicles, the Federal Motor Carrier Safety Administration 
(FMCSA [formerly the Federal Highway Administration Office of Motor Carriers]) provides support for 
states to perform roadside inspections of commercial vehicles (large trucks, commercial buses, and 
hazardous materials vehicles) and drivers, compliance reviews, and other safety programs (GAO, 1997).   

 On-site reviews of motor carriers’ compliance with federal safety regulations are known as compliance 
reviews, which can be used to determine a safety fitness rating. The safety rating is used to determine how 
well each carrier is fit to operate safely on the nation’s highway.  

Roadside inspections occur on a particular driver or vehicle, most often when the drivers/vehicles are en 
route to their destination. Violations found during the inspection can be divided into two groups: 1) minor 
and 2) out-of-service (OOS). Minor means those violations that do not pose any immediate danger, and 
the driver/vehicle can return to the road even before the violations are addressed. Out-of-service 
violations are those that require the vehicle/driver violations to be fixed immediately before the vehicle 
can return to service. The purpose of the OOS is to ensure that a vehicle and/or its driver are not allowed 
to proceed back on the road until the conditions are safe. In return, it can decrease accident rates caused 
by mechanical defects. (Randhawa, Miller, Bell, and Montagne, 1998). Even though some researchers 
found there are some problems, such as an officer being unable to remain at the site to make sure the 
violation is corrected (Patten, 1989), great numbers of researchers still found that the roadside inspection 
is a useful tool to remove some potential unsafe vehicles from the highway and reduce the commercial 
vehicle accident rate. (Patten, 1989; GAO, 1997; Mitchell, Friswell, and Mooren, 2012; Schoor, Niekerk, 
and Grobbelaar, 2001; Randhawa, Miller, Bell and Montagne, 1998; Hall, and Intihar, 1997).  

Previous researchers have shed light toward better understanding the relationships among commercial 
vehicle safety performance, roadside inspection data, and motor carrier’s position (Lantz, B.M. 1993; 
Britto, R.A., Corsi, T.M., and Grimm, C.M., 2010); however, much of this research is outdated. 
Moreover, very few previous researchers focused on small motor carriers. There is need to revisit 
investigating the relationships among a motor carrier’s position (such as size and financial status), safety 
performance, and roadside inspection data. This research will provide additional evidence on such 
relationships, especially for various sized motor carriers. In addition, the trend in the relationships will be 
provided by comparing the most up-to-date analysis with previous ones. 

  



 
 

This research seeks to investigate crash severity predicting models and contributing factor explorations 
through the application of data mining models. There are 21 variables found to be associated with 
commercial truck injury severities. The importance analysis indicates the variable relative important levels 
for contribution. The top 11 variables account for more than 80% of injury forecasting. For property damage 
only, the most important variable is “Carrier State,” which indicates that the variable of Carrier State makes 
the most contributions, as compared with the other variables in explaining property damage only crashes.  
Variables contribute differently when explaining different crash severities. A variable showing significant 
importance for a certain severity level may be less crucial for another. For instance, “Cargo Body Type” 
is the second most important factor for predicting fatality crashes, but is much less important for 
predicting property damage only crashes (severity=0). However, it is clear that Carrier State is the most 
influential factor for all severity levels. Marginal effects of important variables are conducted and 
summarized in the research. 
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1. INTRODUCTION 

1.1 Background 
 
In 2011 there were about 3,341 fatal crashes involving large trucks in the United States. Of those crashes, 
more than 3,700 people died, which accounted for more than 11% of all motor vehicle fatal crashes and 
fatalities, even though large trucks accounted for only 4% of registered vehicles and 9% of vehicle-miles 
traveled (VMT) (USDOT, 2013). Large truck VMT decreased 6.7% from 2010 to 2011; however, fatal 
crashes involving large trucks still increased 2% from 2010 to 2011 (USDOT, 2013).  

To reduce serious accidents involving these vehicles, the Federal Motor Carrier Safety Administration 
(FMCSA [formerly the Federal Highway Administration Office of Motor Carriers]) provides support for 
states to perform roadside inspections of commercial vehicles (large trucks, commercial buses, and 
hazardous materials vehicles) and drivers, compliance reviews, and other safety programs (GAO, 1997).  

On-site reviews of motor carriers’ compliance with federal safety regulations are known as compliance 
reviews, which can be used to determine a safety fitness rating. The safety rating is used to determine how 
well each carrier is fit to operate safely on the nation’s highways. 

Roadside inspections occur on a particular driver or vehicle, most often when the drivers/vehicles are en 
route to their destinations. Violations found during the inspection can be divided into two groups: 1) 
minor and 2) out-of-service (OOS). Minor violations do not pose any immediate danger, and the 
driver/vehicle can return to the road even before the violations are fixed. OOS violations require the 
vehicle/driver violations to be fixed immediately before returning to service. The OOS is intended to 
ensure that a vehicle and/or its driver are not allowed to return to the road until conditions are safe. In 
return, it can decrease accident rates caused by mechanical defects. (Randhawa, Miller, Bell, and 
Montagne, 1998). Even though some researchers found problems, such as an officer cannot always 
remain at the site to ensure the violation is corrected (Patten, 1989), several researchers still found that the 
roadside inspection is a useful tool to remove some potential unsafe vehicles from the highway and 
reduce commercial vehicle accident rates. (Patten, 1989; GAO, 1997; Mitchell, Friswell, and Mooren, 
2012; Schoor, Niekerk, and Grobbelaar, 2001; Randhawa, Miller, Bell, and Montagne, 1998; Hall and 
Intihar, 1997). 

Previous research shed light to help us better understand the relationships among the commercial vehicle 
safety performance, roadside inspection data, and motor carrier’s position (Lantz, B.M. 1993; Britto, 
R.A., Corsi, T.M., and Grimm, C.M., 2010); however, much of such research is outdated. Moreover, very 
few previous researchers focused on small motor carriers. There is a need to reinvestigate the 
relationships among a motor carrier’s position, such as size and financial status, safety performance, and 
roadside inspection data. This research will provide additional evidence regarding such relationships, 
especially for various sized motor carriers. In addition, the trend in the relationships will be provided by 
comparing the most up-to-date analyses with previous ones. 

1.2 Research Objectives 
The primary objective of this project is to conduct a statistical analysis to better understand the 
relationships among roadside inspection data and safety performance data by using data from the Motor 
Carrier Management Information System (MCMIS). 
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The following major tasks have been included in the scope of the study: 

1) Literature Review: A national and state literature review pertaining to commercial motor carriers’ 
safety performance and roadside inspection will be performed to identify analysis techniques and data 
requirements. The review will cover journal articles and government reports. 

2) Data Collection and Preparation: MCMIS is the main data resource. The primary data documentations 
from MCMIS will be explored to summarize required inputs to perform the analysis and they are: 

• Crash file documentation 
• Census file documentation 
• Inspection file documentation 

The crash file contains data from state police crash reports involving drivers and motor carrier vehicles in 
the United States. Each report contains about 80 data elements, such as motor carrier, driver, and vehicle 
information. The crash file may contain multiple records for a crash, which can be distinguished by the 
crash report number field. Separate report records exist for each commercial motor vehicle involved in the 
same crash. 

The census file contains data for a steadily growing number of active Carriers. Each census record 
contains: 1) census information, 2) business/operation data, 3) cargo classification, 4) hazardous 
materials, 5) equipment and driver data, and 6) carrier review data. 

The inspection file contains data from state and federal inspection actions involving motor carriers, 
shippers, and US transporters of hazardous materials. Most of the inspections were conducted at the 
roadside by state personnel under the Motor Carrier Safety Assistance Program (MCSAP); however, the 
file also includes mandatory periodic inspections data.  

3) Analysis and Evaluation: In this task, a statistical analysis with collected input data is performed. The 
results from the analysis are summarized and compared with previous research conclusions. Trends of the 
relationship are provided and analyzed. 

4) Train one Ph.D. student on the various theoretical and applicable methods employed.  

5) Develop publications and associated research reports. 

These research objectives will further the overall goals of promoting economic development, safety, 
interdisciplinary education, workforce development, and technology transfer that serves the critical needs 
of the Mountain-Plains Region. 

1.3 Report Organization 
This section introduces the organization of the report: 

Section 2 conducts a complete literature review on the commercial truck crash severity analysis and 
forecasting models. 

Section 3 introduces the data used in this research. 

Section 4 summarizes the application findings with data mining analysis. 

Section 5 summarizes the conclusions and recommendations from the study. 
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2. LITERATURE REVIEW 

2.1 Background Introduction 
In the U.S., there are more than 268 million registered vehicles, and 218 million people holding a valid 
driver’s license (Statista, 2017). In 2015, there were approximately 6.3 million traffic accidents in the 
U.S. (Statista, 2017). Traffic accidents create an annual average loss to the economy of $871 billion (PBS, 
2014), which is more than double national public spending on transportation and water infrastructure at 
$416 billion. In the United States, 30,000 people die in traffic accidents each year. Every year, traffic 
accidents cause more than a million deaths around the world. Truck crashes not only interrupt traffic flow, 
but also cause economic loss. Moreover, truck crashes contribute to a large number of injuries and 
fatalities due to additional risks, such as larger vehicle size, heavier weight, and possible hazardous 
material release. Truck crashes are overall more likely to result in more severe outcomes, such as a 
fatality. In 2014, there were 14 fatalities in large truck crashes per 100 million large truck vehicle miles 
traveled, while there were only 10.5 fatalities in passenger vehicle crashes per 100 million passenger 
vehicles miles traveld.. Additionally, there were 29.4 injury crashes involving large trucks per 100 million 
VMT by large trucks, compared with 58.5 for passenger vehicles (Federal Motor Carrier Safety 
Administration, 2014). 

The need to improve commercial trucking companies’ safety performance has been a major social 
concern in the United States for decades. Transportation agencies and other stakeholders must first 
identify the complete picture of factors that contribute to the severity levels of commercial truck 
collisions, then provide directions for commercial truck operation policies to reduce the severe crash rates 
of commercial trucks.  

Previous studies on modeling truck crash severities provide great insights and findings (Lemp, J. et al., 
2011; Zhu and Srinivasan, 2011). However, some factors are overlooked and not considered in those 
studies. Intuitively thinking, management characteristics, organization, culture, strategies, and financial 
situations in a trucking company should be closely associated with the company’s safety performance. 
For example, safety culture shapes the attitude and behavior of employees. Building a strong safety 
culture has a great effect on incident reduction (U.S. Department of Labor, 2016). Furthermore, a strong 
safety culture will result in better trained employees, who will react better when they encounter a 
potential crash situation, which may result in a less severe crash outcome. Moreover, sufficient capital 
and profit promote truck maintenance and technology development so equipment performs well, which 
will minimize risk of equipment failure. In return, incident likelihood and crash severity level would be 
reduced. Although several studies have been carried out to investigate contributing variables to truck 
crash severity outcomes, the literature review revealed it is still not clear how some commercial trucking 
company and driver characteristics impact crash severity levels.  The research intends to investigate 
commercial truck crash severity and contributing factors, especially trucking company related factors, 
through the application of a data mining model.  

Generalized linear models (GLMs) are the most popular statistical models favored by researchers in 
transportation safety studies (Lu and Tolliver, 2016). GLMs are able to construct an easy-to-interpret 
quantitative relationship between a dependent variable and its contributors with a mathematical equation. 
However, GLMs have several limitations (Lu and Tolliver, 2016): 1) They can only handle structured 
data. When a dataset is complex, especially when it includes a mixture of interval, nominal, ordinal, and 
numerical variables, and there are a large number of redundant and irrelevant variables (Brusilovkey, 
2016), GLMs can have low performance. 2) GLM performance can also be affected when the data are 
highly heterogeneous and have a high percentage of missing values and outliers. Safety data are usually 
noisy, and consist of various types of variables. In addition, the high percentage of missing values and 
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large number of redundant variables can all affect GLM performance. 3) GLMs rely heavily on 
predefined assumptions. When handling big data, all the predefined assumptions can hardly be satisfied at 
the same time.  

Compared with GLMs, data mining models are usually suited to handle more data. In a GLM, a 
hypothesis has to be proposed before testing the model. Therefore, the noisy data type and redundant 
variables greatly affect the model and variable selection. However, data mining models require no such 
hypothesis. In fact, they can reveal the underlying pattern among variables. GLMs are mainly limited by 
the required predefined assumptions. Moreover, data mining models assume no specific linear 
relationships, so they are able to discover nonlinear complicated relationships between dependent 
variables and associated factors.  

Statistics and data mining share the same goal: discover and identify structure of the data and turn the data 
into valuable information. Even though data mining greatly relies on statistics theories, it utilizes 
knowledge from other fields as well, including machine learning, computer science, and database 
technology (Priyadharshini, 2017). In a statistics study, a hypothesis needs to be proposed and 
mathematic functions and models are built up to test the hypothesis. In data mining, no hypothesis is pre-
required. The links between the target variable and its associated factors are automatically established. 

2.2 Literature  
Vehicle types, such as passenger cars or commercial trucks, should have a different impact on crash 
severity outcomes. Numerous studies focused on single contributor effects on truck crash frequency 
(Young and Liesman, 2007; Bai, Yang, Li, 2015; Curnow, 2002; Braver, et al., 1997; Anderson, et al., 
2012); however, few studies focused on understanding commercial truck crash severity contributors 
(Khattak, Schneider, and Targa, 2003; Naik et al., 2016; Campbell, 1991; Uddin and Huynh, 2017; Zou, 
Wang, and Zhang, 2017).  Uddin and Huynh (2017) studied influential factors of crash severity involving 
hazardous materials trucks. Contributors identified in the study are number of vehicle occupant, crash, 
vehicle, roadway, environmental, and temporal characteristics. Pahukula, Hernandez, and Unnikrishnan 
(2015) studied the effect of contributor variables on truck crash injury severity in large populated urban 
areas. Key contributors were identified as traffic flow, light conditions, surface conditions, time of year, 
traffic flow patterns, speeding and changing lane patterns, and percentage of trucks on the road. Naik et 
al. (2016) investigated the impact of weather conditions on single-vehicle truck crash injury severity. 
Their results indicated that wind speed, rain, air temperature, humidity, and icy or snowy road surfaces 
are associated with crash severities. Campbell (1991) collected survey data about trucks involved in fatal 
crashes, and analyzed the effect of drivers’ ages on fatal crash likelihood. Khattak, Schneider, and Targa 
(2003) investigated the effect of associated factors with truck-involved single-vehicle crash severity 
levels. The study found that crashes with greater severity levels were associated with curves and, 
especially, dangerous driving behaviors, including reckless driving, speeding, passing violations and 
alcohol/drug use. Zou, Wang, and Zhang (2017) link truck crash severity with spatial location and time of 
day. Their results revealed that individual truck crashes are spatially dependent events for single- and 
multi-vehicle crashes.  

Among all previous research, understanding how trucking company size attributes and driver’s licenses 
influence crash injury severity is still unclear. Several studies discussed that the little research on how 
trucking company characteristics impact crash severity is due to the lack of available company data 
(Chen, 2008). Moreover, research in previous studies was conducted with limited contributors, and few 
did the study with a large dataset containing comprehensive potential contributors. This research focuses 
on risk factors for commercial truck crash severity, particularly how company related characteristics 
affect crash severity, and with a more comprehensive truck crash dataset from the Federal Motor Carrier 
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Safety Administration (FMCSA). The detailed information regarding this database is described later in 
the data description section. 

The literature search also reveals that most prior studies are based on logit, probit, and their extension 
statistical models (Lemp, J., et al., 2011; Zhu and Srinivasan, 2011; Wu et al., 2016; Charbotel et al., 
2003). However, these statistical models all required certain assumptions. One of the common 
assumptions is that the effects of contributing factors are assumed identical across different severity 
levels. These assumptions are inappropriate and do not hold true in most circumstances. Once violated, 
numerous errors will be generated.  In addition, truck crashes are affected by a set of heterogeneous 
variables (Kumar and Toshniwai, 2015). A goal of the study is to be able to extract hidden, valuable 
information from large, complex datasets. Thus, instead of applying statistical models, the non-parametric 
gradient boosting (GB) model, a data mining technique, is selected in this study to overcome the 
shortcomings and achieve more convincing conclusions. The GB model does not have any predefined 
data assumptions. Moreover, the GB model inherits most of the tree-based data mining models’ 
advantages. It is also superior to most of the tree-based data mining models with its missing data handling 
techniques, robustness with data noise, and resistance to over-fitting (Friedman and Meulman, 2003; 
Zheng, Lu, and Tolliver, 2016). The GB model has proven its success in crash prediction analysis 
(Chung, 2013; Saha, Alluri, Gan, 2015); however, it has been rarely seen in a truck crash injury severity 
explanatory study. Therefore, in this study, the authors adopted a GB model to comprehensively analyze 
influential factors on truck crash injury severity. 

2.3 Gradient Boosting Model 
The gradient boosting method is also known as multiple additive trees (MAT), and is a machine-learning 
data-mining technique for regression and classification problems proposed by Friedman (2001, 2003) at 
Stanford University. A GB model can be viewed as a series expansion approximating the true functional 
relationship (Salford-Systems). Therefore, the GB model inherits all the advantages of tree-based models 
while improving other aspects, such as forecasting accuracy (Friedman and Meulman, 2003). In general, a 
GB model starts by fitting the data with a simple decision tree model, which has a certain level of error in 
terms of fitness with the data. The simple DT model is referred as a weak learner. Considering the errors 
having the same correlation with outcome value, the GB model then develops another decision tree model 
on the errors or residuals of the previous tree. 

The detailed algorithm of GB is described as follows (De’ath, 2007; Hastie, Tibshirani, and Friedman, 
2009): 

∑∑ ==
n

nn
n

n xgxfxf ),()()( γβ      (25) 

Where x is a set of predictors, and f (x) is the approximation of the response variable. g(x,γn) are single 
decision trees with the parameter γn indicating the split variables. n (n=1,2,…,n) are the coefficients, and 
determine how each single tree is to be combined. Loss function measures prediction performance, such 
as deviance. Friedman (2001) proposed a numerical optimization method called functional gradient 
descent, which is an iterative tree-building process. The process keeps adding trees until all observations 
are perfectly fitted. To avoid over-fitting, the model is also validated with a testing dataset. Iterative 
training will stop when the performance of the model reaches a point where the model predicts well for 
both the training and testing datasets.  
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3. DATA 

3.1 Data Sources 
In this study, truck crash data were obtained from the FMCSA. Crash data files, census file, and 
inspection files from the MCMIS are selected for the research. The MCMIS datasets contain 1) records 
from state police crash reports, including information on drivers, crash conditions, environmental factors 
when the crash occurred, and crash-involved truck conditions; 2) motor carrier corporation variables and 
operational factors; and 3) motor carrier safety inspection records. This study examines truck crash 
related data for crashes that occurred in North Dakota and Colorado from 2010 to 2016. The selection of 
the two states is due to the availability of data, research interest, and data size limitation; however, the 
research can be extended to a national level or include additional states if this is of interest.  

3.2 Data Analyzed 
The authors excluded irrelevant, privacy variables and four redundancy variables from the raw data 
before performing mathematical analysis. As summarized in Table 3.1, 38 variables are removed from 
analysis. 

Table 3.1  Summary of Unanalyzed Variables 
Variable Rationale for removal 
Carrier related variables 
Address Irrelevant variable 
Zip code Irrelevant variable 
Country Irrelevant variable 
Phone Irrelevant variable 
Identification number Irrelevant variable 
Last updated date Irrelevant variable 
May have undeliverable physical address Irrelevant variable 
May have undeliverable mailing address. Irrelevant variable 
Carrier name Irrelevant variable 
USDOT number Irrelevant variable 
City Irrelevant variable 
Crash related variables 
Crash ID Irrelevant variable 
Crash year Redundant variable with variable “Year” 
Crash quarter Irrelevant variable 
Federal recordable Irrelevant variable 
Officer badge Irrelevant variable 
Crash number Irrelevant variable 
Crash date Irrelevant variable 
Crash time Redundant variable with variable "Time of 

Day" 
Officer badge Irrelevant variable 
Record status Irrelevant variable 
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(Table 3.1 continued)  
Matched status Irrelevant variable 
SAFETYNET input date Irrelevant variable 
MCMIS upload date Irrelevant variable 
Number days to SAFETYNET Irrelevant variable 
Number days to MCMIS Irrelevant variable 
Counter Irrelevant variable 
Vehicle configuration desc Redundant variable with variable "Vehicle 

configuration" 
GVW rating Desc Redundant variable with variable "GVW" 
City Irrelevant variable 
City code Irrelevant variable 
County  Irrelevant variable 
County code Irrelevant variable 
Number assigned to motor carriers engaging in interstate 
or foreign operations 

Irrelevant variable 

Registered as a common carrier: A- Active registration, I- 
Inactive registration, N- no registration 

Irrelevant variable 

Driver related variables 
First name Irrelevant variable 
Last name Irrelevant variable 
Mid name Irrelevant variable 

 
Detailed information of the data analyzed in this research is shown in Table 3.1. In general the data 
variables can be grouped into the following five categories: trucking company characteristics, crash 
characteristics, environmental characteristics, driver characteristics, and truck characteristics. 

The authors selected 24 variables to be investigated and tested. Of those, 21 are categorical variables 
(labeled with “$” in Table 3.2) and two of them are numeric variables. In this study, the target variable 
(injury severity) is classified as: 0=property damage only; 1=injury only (no fatalities); 2=only one 
fatality; 3=two or more fatalities. There were 16,389 recorded truck-involved crashes in North Dakota 
and Colorado from 2010 to 2016. Of those crashes, 72.13% (11,822) resulted in property damage only 
(severity=0); 24.22% (3,969) were injury only (severity=1); 1.97% (323) caused one fatality (severity=2); 
and 1.68% (275) caused two or more fatalities (severity=3). Trucking companies are divided into five 
categories based on company size: 1=single truck companies; 2=small truck companies; 3=medium-size 
truck companies; 4=large truck companies; and 5=very large truck companies.   
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Table 3.2  Variable Description 

Variable Total 
Missing 
Records 

Missing 
Percentage Data Description 

Trucking Company Characteristics 
Carrier State$ 16,389 0 0 State/District/Province of the principal place of business of the carrier 

registered 

Company Size$ 13,221 3,168 19.33 1, 2, 3, 4, 5 

Indicator$ 13,269 3,120 19.04 ‘S’ = Safety; ‘I’ = Insufficient Data; ‘N’ = Intrastate Safety; ‘R’ = 
Random  

 

Inspection Value 13,269 3,120 19.04 Inspection value. Ranging from 0 to 100 with 100 indicate the worst 
performance 

Interstate Carrier$ 15,376 1,013 6.18 Is carrier an interstate carrier? Yes/No 

New Entrant$ 16,389 0 0 Is carrier a new registered carrier? Yes/No 

Crash Characteristics 

Day of Week$ 16,389 0 0 Sun.; Mon.; Tue.; Wed.; Thu.; Fri.; Sat. 

First Harmful Event$ 16,114 275 1.68 The first injury or damage-producing event 

Time of Day$ 16,250 139 0.85 12:00 - 2:59 AM; 3:00 - 5:59 AM; 6:00 - 8:59 AM; 9:00 - 11:59 AM; 
12:00 - 2:59 PM; 3:00 - 5:59 PM; 6:00 - 8:59 PM; 9:00 - 11:59 PM 

Tow Away$ 16,389 0 0 Is accident vehicle towed away? Yes/No 

Number of Vehicles  16,388 1 0.01 The total number of vehicles or vehicle combinations involved in the 
crash.  

Environmental Characteristics 
Light Condition$ 16,371 18 0.11 Dark – Lighted; Dark - Not Lighted; Dark - Unknown Roadway 

Lighting, Dawn; Daylight; Dusk; Other; Unknown 

Road Surface Condition$ 16,382 7 0.04 Dry; Ice; Other; Sand, Mud, Dirt, Oil Or Gravel; Slush; Snow; 
Water(Standing, Moving); Wet; Unknown; 

Traffic Way Type$ 16,388 1 0.01 Not Reported; One-Way Trafficway, Not Divided; Two-Way 
Trafficway, Divided, Positive Barrier; Two-Way Trafficway, Divided, 
Unprotected Median; Two-Way Trafficway, Not Divided 

Weather Condition$ 16,378 11 0.07 Blowing Sand, Soil, Dirt, Or Snow; Fog; No Adverse Conditions; 
Other; Rain; Severe Crosswinds; Sleet, Hail; Snow; Unknown 

Driver Characteristics 

Driver’s Age$ 16,389 0 0 <26; 26 – 35; 36 – 45; 46 – 55; 56 – 65; 66 – 75; >75 

Driver’s License Class$ 15,816 573 3.5 A, B, C, D 

Driver’s License State$ 16,020 369 2.25  The license state/district/province of the driver.  

Valid Driver’s License$ 16,148 241 1.47 If driver’s license is valid or not. Yes/No 

Truck Characteristics 
GVWR$ 16,382 7 0.04 Gross Vehicle Weight Rating in pounds: 

< 10,000; 10,001-26,000;>26,000 
Cargo Body Type$ 16,333 56 0.34 Auto Transporter; Bus Seats For 9-15 People, Including Driver; Bus 

Seats For > 15 People, Including Driver; Cargo Tank; Concrete Mixer; 
Dump; Flatbed; Garbage/Refuse; Grain, Chips, Gravel; Intermodal; 
Logging; Not Applicable/No Cargo Body; Other; Pole; Van/Enclosed 
Box; Vehicle Towing Another Vehicle 

Vehicle Configuration$ 16,370 19 0.12 Light Truck(Only If Vehicle Displays Hm Placa; Single-Unit Truck (2-
Axle, 6 Tire); Single-Unit Truck (3 Or More Axles); Tractor/Double; 
Tractor/Semi-Trailer; Tractor/Triples; Truck Tractor (Bobtail); 
Truck/Trailer; Unknown 

Vehicle License State$ 16,356 33 0.2 The license state/district/province of the truck.  
Target Variable 

Severity 16,389 0 0 0=no injuries and no fatalities; 1=injuries and no fatalities; 2=one 
fatality and no injuries; 3=one fatality and injuries, or two or more 
fatalities 
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4. ANALYSIS RESULTS AND DISCUSSIONS 

4.1 Result Analysis 
 
The raw crash data from North Dakota and Colorado are fit into the GB model, and 25 contributor 
variables are tested as predictors of injury severity. Of these variables, 21 are found to be associated with 
injury severities. To further understand the importance of the 21 contributors, the relative variable 
importance analysis for causal importance of inputs is also conducted. Table 4.1 presents variable 
importance under four injury severity levels. The importance of a variable in a simple single tree is 
measured by the number of times the variable is used as a splitter, and the improvement on mean squared 
error attributed to the tree due to the splits by the variable. After summing the importance score computed 
in a simple single tree over the ensemble of trees and the average value of the summation is scaled to the 
most important variable, which scores 100, the scaled average value is then regarded as the variable’s 
importance in the model. A high value of variable importance indicates a high contribution a variable 
makes to the prediction (Friedman and Meulman, 2003). As noted in Table 4.1, the top 11 variables 
account for more than 80% of injury forecasting. For Injury, the most important variable is Carrier State, 
which indicates that this variable makes the most contributions as compared with the other variables in 
explaining injury crashes. First Harmful is the second most important contributor, and it accounts for 85% 
of the importance that Carrier State contributes to. The column Cum % in Table 4.1 indicates the absolute 
cumulative contribution of the variables. For Injury, one can say that two contributors, Carrier State and 
First Harmful, account for 30% of contributions among all the contributors to explain crash severity.  
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Table 4.1  Variable Importance under Each Level of Severity 
Damage only (Severity=0) Injury (Severity=1) One Fatality (Severity=2) Multiple Fatalities (Severity=3) 

Variable Score 
Cum 

% Variable Score 
Cum 

% Variable Score 
Cum 

% Variable Score 
Cum 

% 
Carrier State 100 16% Carrier State 100 16% Carrier State 100 17% Carrier State 100 16% 

Tow away 71 28% First Harmful 
Event 

85 30% First Harmful 
Event 

69 28% Number of 
Vehicles 

66 27% 

First Harmful 
Event 

53 36% Tow away 50 39% Cargo Body 
Type 

55 38% First Harmful 
Event 

50 35% 

Cargo Body 
Type 

50 44% Vehicle 
Configuration 

44 46% Time of Day 45 45% Cargo Body 
Type 

45 43% 

Time of Day 46 52% Traffic Way 
Type 

44 53% Day of Week 39 52% Time of Day 43 50% 

Day of Week 40 58% Cargo Body 
Type 

43 60% Vehicle 
Configuration 

37 58% Weather 
Condition 

41 57% 

Driver Age 33 64% Road Surface 
Condition 

40 67% Driver Age 35 64% Day of Week 33 62% 

Weather 
Condition 

31 69% Light 
Condition 

32 72% Road Surface 
Condition 

33 69% Light 
Condition 

30 67% 

Number of 
Vehicles 

26 73% Number of 
Vehicles 

30 77% Weather 
Condition 

24 73% Tow away 25 72% 

Vehicle 
Configuration 

26 77% Weather 
Condition 

25 81% Company Size 22 77% Vehicle 
Configuration 

25 76% 

Company Size 22 81% Driver Age 22 85% Driver’s 
License Class 

21 81% Inspection 
Value 

25 80% 

Light 
Condition 

19 84% Time of Day 19 88% Inspection 
Value 

17 84% Driver Age 24 84% 

Road Surface 
Condition 

17 87% Day of Week 16 91% Number of 
Vehicles 

16 86% Traffic Way 
Type 

22 88% 

GVWR 15 89% Company Size 15 93% Indicator 15 89% Company Size 
 

20 91% 

Indicator 14 92% GVWR 9 95% Light 
Condition 

15 92% Road Surface 
Condition 

17 94% 

Driver’s 
License Class 

13 94% Indicator 8 96% Tow away 14 94% Indicator 10 96% 

Inspection 
Value 

13 96% Interstate 
Carrier 

7 98% Traffic Way 
Type 

14 96% New Entrant 8 97% 

Traffic Way 
Type 

10 98% Inspection 
Value 

6 99% Interstate 
Carrier 

7 98% GVWR 5 98% 

Interstate 
Carrier 

9 99% Driver’s 
License Class 

6 100% GVWR 5 99% Interstate 
Carrier 

5 99% 

New Entrant 2 100% Valid Driver’s 
License 

1 100% Valid Driver’s 
License 

5 100% Driver’s 
License Class 

4 100% 

Valid Driver’s 
License 

1 100% New Entrant 0 100% New Entrant 2 100% Valid Driver’s 
License 

1 100% 
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As illustrated in Table 4.1, variables contribute differently when explaining different crash severities. A 
variable showing significant importance for a certain severity level may be less crucial for another. For 
instance, Cargo Body Type is the second most important factor for predicting fatality crashes, but is much 
less important for predicting property damage only crashes (severity=0). However, it is clear that Carrier 
State is the most influential factor for all severity levels. First Harmful Event also plays an important role 
in predicting all severity levels. Figure 4.1 better indicates the relative importance levels. 
 

 
Figure 4.1  Importance Bar-Charts for Four Severity Levels 
 
From Figure 4.1 and Table 4.1, one can tell that for Damage Only, the top contributors are Carrier State, 
Tow Away, First Harmful Event, Cargo Body Type, Time of Day, and Day of Week; but for very severe 
crash results, Multiple Fatalities, the top contributors are Carrier State, Number of Vehicles, First Harmful 
Event, Cargo Body Type, Time of Day, and Weather Condition.  

Some other interesting findings are observed in the analysis: 1) three variables are all identified as 
important contributors for all four severity levels: Carrier State, Cargo Body Type, and First Harmful 
Event; 2) Time of Day and Day of Week play more important roles in explaining damage only crash and 
fatality crash, but less importance in explaining injury; 3) Driver Age plays a more important role for 
damage only and one fatality, but less importance for injury and multiple fatalities; 4) Vehicle 
Configuration plays a more important role in injury and one fatality than in damage only and more 
fatalities; 5) Number of Vehicles plays a very important role in multiple crashes, and a relatively 
important role in property damage and injury crashes, but relatively low importance in one fatality crash; 
6) Inspection Value plays a relatively important role in fatality crashes, but plays a relatively less 
important role in damage only crashes and injury crashes; 7) Road Surface Condition plays relatively 
important role in injury and one fatality, but plays a relatively less important role in property damage and 
multiple fatalities; and 8) trucking company size, road surface condition, safety inspection value, valid 
driver’s license, and driver’s license class all significantly impact crash severities at different levels. The 
GB successfully identified the contribution variables to crash severities and prioritized their importance. 
A marginal effect analysis of each influential variable is also analyzed to provide a further detailed 
understanding of how they contribute to various crash severities. 
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4.2 Marginal Effects Analysis Result Discussions 
Marginal effects of important variables are summarized in Table 4.2. For categorical variables with 
various levels, due to the space limitations, Table 4.2 only shows selected levels for a significant 
contributor categorical variable with the most significant impacts. Moreover, levels with more 
outstandingly significant impacts are bolded. For example, from Table 4.1, one can tell that weather 
condition is the 8th significant contributor variable for a damage only crash. In Table 4.2, only the 
positive effect of the weather condition of snow is listed, which has a much more significant impact on 
damage only crashes than any other weather conditions. And the level of snow is bolded. The first 
column, Variable, lists influential variables whose impact on severity prediction is valuable. Positive 
effect (P) means that the corresponding categories for the influential variable will increase the probability 
of a certain severity level (column severity=0, 1, 2, 3), while negative effect (N) means it will decrease 
that likelihood.  

Examining Carrier State as one example, if a carrier is registered in Massachusetts, Mississippi, Ohio, or 
Wisconsin, this has a significantly positive effect on damage only, and if a carrier is registered in North 
Dakota or Texas, this has a significantly negative effect on damage. All other unlisted carrier states have 
no significantly different contribution for damage only crashes.  And there is no bolded state among all 
listed positive or negative impact carrier states, which indicates their positive/negative impact effects are 
not significantly different within their corresponding category. 

Table 4.2  Marginal Effect of Influential Variables 
Variable Effect Damage only (Severity=0) Injury 

(Severity=1) 
One Fatality 
(Severity=2) 

Two or More Fatality 
(Severity=3) 

Trucking Company Characteristics 
Carrier 
State$ P MA, MS, OH, WI AL, OR, WI, MS MO, KS MI, MB, NC, ND, PA 

 N ND, TX KS, MO GA, NY, PA AL, MA, MS, FL, OH, OR 
Inspection 
Value P <30 <25 <45 30-70, >90 

 N >30 >25 >50 80-90 
Company 
Size$ P 1, 5 (very small or very 

large) 
1, 4 (very small or large 
size) 1, 3 (very small, medium) 4, 5 (large, very large) 

 N 2, 4 (small or large) 2, 3, 5 (small, medium, or 
very large) 

2, 4, 5 (small, large, very 
large) 

1, 2, 3 (very small, small, 
medium) 

Interstate 
Carrier$ P N N Y Y 

 N Y Y N N 
New 
Entrant$ P N/A N Y Y 

 N N/A Y N N 
Indicator$ P N, R I, N, R S N, S 
 N I, S S I, N, R I, R 
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(Table 4.2 continued) 

Crash Characteristics 

First 
Harmful 
Event$ 

P 

Involving Animal; 
Involving Fixed Object; 
Involving Other Movable 
Object; Involving Train; 
Involving Unknown 
Movable Object; Work 
Zone Maintenance 
Equipment; Eqp Failure; 
Cargo Loss or Shift; 
Cross Median/Centerline; 
Downhill Runaway;  
Explosion Or Fire; 
Jackknife; Other; 
Overturn (Rollover); 
Separation Of Unit; 
Unknown 

Involving Fixed Object; 
Involving Pedalcycle; 
Involving Unknown 
Movable Object; Work Zone 
Maintenance Equipment; 
Eqp Failure; Cargo Loss or 
Shift; Downhill Runaway; 
Explosion Or Fire; 
Jackknife; Other; Overturn 
(Rollover); Ran Off Road; 
Separation Of Unit; 
Unknown 

Involving Animal; 
Involving Fixed Object; 
Involving Other Movable 
Object; Involving 
Pedalcycle; Involving 
Pedestrian; Involving 
Train; Involving 
Unknown Movable 
Object; Work Zone 
Maintenance Equipment; 
Downhill Runaway; Ran 
Off Road; Other 

Involving Motor Vehicle In 
Transport; Involving 
Parked Motor Vehicle; 
Involving Pedestrian; 
Involving Train; Work 
Zone Maintenance 
Equipment; Cross 
Median/Centerline;  

 N 

Involving Motor Vehicle 
In Transport; Involving 
Parked Motor Vehicle; 
Involving Pedalcycle; 
Involving Pedestrian; 
Involving Train; Ran Off 
Road; 

Involving Animal; Involving 
Motor Vehicle In Transport; 
Involving Other Movable 
Object; Involving Parked 
Motor Vehicle; Involving 
Pedestrian; Involving Train; 
Cross Median/Centerline; 

Involving Motor Vehicle 
In Transport; Involving 
Parked Motor Vehicle; 
Eqp Failure; Cargo Loss 
Or Shift; Cross 
Median/Centerline; 
Explosion Or Fire; 
Jackknife; Overturn 
(Rollover); Separation Of 
Unit; 

Involving Animal; Involving 
Fixed Object; Involving 
Other Movable Object; 
Involving Pedalcycle; 
Involving Unknown 
Movable Object; Eqp 
Failure; Cargo Loss Or 
Shift; Downhill Runaway; 
Explosion Or Fire; 
Jackknife; Other; Overturn 
(Rollover); Ran Off Road; 
Separation Of Unit; 

Number of 
Vehicle in 
Crash 

P <2 <2 >2 >4 

 N >2 >2 <2 <4 
 
Time of 
Day$ 

P 9-12AM; 12PM-3PM; 3-6 
PM 

12 AM - 3 AM; 6AM - 9 
AM; 12 PM - 3 PM; 3PM - 
6 PM;  

3AM - 6 AM; 9:00 PM - 
12PM 

0 AM - 3 AM; 3 AM - 6 
AM; 12PM - 3 PM; 6 PM - 
9 PM; 

 N The rest 
3 AM - 6 AM;  
9 AM - 12 AM; 6 PM - 9 
PM; 9 PM - 12 PM 

0AM - 3 AM; 6 AM - 9 
AM; 9 AM - 12 AM; 12 
PM - 3 PM; 3:00 PM - 6 
PM; 6 PM - 9 PM; 

6 AM - 9 AM; 9AM - 12 
AM; 3 PM - 6 PM; 9 PM - 
12 PM 

Day of 
Week$ P Mon. Wed. Thu. Fri. Mon. Wed. Fri. Tue. Sat. Sun. Mon. Wed. Thu. Sat. Sun. 

 N Tue. Sat. Sun. Tue. Thu. Sat. Sun. Mon. Wed. Thu. Fri. Tue. Fri. 
Tow 
Away$ P Y N N Y 

 N N Y Y N 

Environment Characteristics 
 
Weather 
Condition$ P 

Rain; Severe Crosswinds; 
Sleet, Hail; Snow; 
Unknown 

Blowing Sand, Soil, Dirt, 
Or Snow; Fog; Rain; 
Severe Crosswinds; Sleet, 
Hail; Snow; Unknown 

No Adverse Conditions; 
Fog; Other; Severe 
Crosswinds; Sleet, Hail; 
Unknown 

 

N 
Blowing Sand, Soil, Dirt, 
Or Snow; Fog; No Adverse 
Conditions; Other; 

No Adverse Conditions; 
Other; 

Blowing Sand, Soil, Dirt, 
Or Snow; Fog; Other; 
Rain; Severe Crosswinds; 
Sleet, Hail; Snow; 
Unknown 

Blowing Sand, Soil, Dirt, Or 
Snow; No Adverse 
Conditions; Rain; Snow 

 
Road 
Surface 
Condition$ 

P Ice; Slush 

Ice; Sand, Mud, Dirt, Oil Or 
Gravel; Slush; Snow; 
Unknown; Water(Standing, 
Moving);  

Dry; Ice; Other; Sand, 
Mud, Dirt, Oil Or Gravel; 
Unknown; 
Water(Standing, 
Moving); Wet 

Dry; Wet 
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(Table 4.2 continued) 

 N 

Dry; Other; Sand, Mud, 
Dirt, Oil Or Gravel; Snow; 
Unknown; Water(Standing, 
Moving); Wet 

Dry; Other; Wet Slush; Snow; 

Ice; Other;  Sand, Mud, Dirt, 
Oil Or Gravel; Slush; Snow; 
Unknown; Water(Standing, 
Moving); 

Light 
Condition$ P 

Dark – Lighted; Dark - 
Unknown Roadway 
Lighting, Dawn; Daylight; 
Other; Unknown 

Dark – Lighted; Dark - 
Unknown Roadway 
Lighting, Dawn; Daylight; 
Other; Unknown 

Dark – Lighted; Dark - 
Not Lighted; Dusk Dark - Not Lighted; 

 N Dark - Not Lighted; Dusk Dark - Not Lighted; Dusk; 

Dark - Unknown 
Roadway Lighting, 
Dawn; Daylight; Other; 
Unknown 

Dark – Lighted; Dark - 
Unknown Roadway 
Lighting, Dawn; Daylight; 
Dusk; Other; Unknown 

Trafficway 
Type$ P 

Not Reported; One-Way 
Trafficway, Not Divided; 
Two-Way Trafficway, 
Divided, Positive Barrier;  

One-Way Trafficway, Not 
Divided; Two-Way 
Trafficway, Divided, 
Unprotected Median; 

Two-Way Trafficway, 
Divided, Unprotected 
Median; 

One-Way Trafficway, Not 
Divided; Two-Way 
Trafficway, Divided, 
Unprotected Median; Two-
Way Trafficway, Not 
Divided 

 N 

Two-Way Trafficway, 
Divided, Unprotected 
Median; Two-Way 
Trafficway, Not Divided 

 
Not Reported; Two-Way 
Trafficway, Divided, 
Positive Barrier; Two-Way 
Trafficway, Not Divided 

Not Reported; One-Way 
Trafficway, Not Divided; 
Two-Way Trafficway, 
Divided, Positive Barrier; 
Two-Way Trafficway, 
Not Divided 

Not Reported; Two-Way 
Trafficway, Divided, 
Positive Barrier; 

Driver Characteristics 
Driver 
Age$ P 26-45 26-45, 66+ <25, 45-65, 75+ 75+, 25- 

 N the rest the rest the rest 26-45 
Driver’s 
License 
Class$ 

P B, C B, C A, D B, C, D 

 N A, D A, D B, C A 
Valid 
Driver’s 
License$ 

P N Y N N 

 N Y N Y Y 

Truck Characteristics 

Cargo 
Body 
Type$ 

P 

Auto Transporter; Bus 
Seats For 9-15 People, 
Including Driver; Bus 
Seats For > 15 People, 
Including DriverDump; 
Intermodal; Logging; Pole; 
Van/Enclosed Box;  

Auto Transporter; Bus Seats 
For 9-15 People, Including 
Driver; Bus Seats For > 15 
People, Including Driver; 
Concrete Mixer;  

Auto Transporter; Cargo 
Tank; Concrete Mixer; 
Dump; Flatbed; 
Garbage/Refuse; Grain, 
Chips, Gravel; 
Intermodal; Logging; 
Other; Pole; Vehicle 
Towing Another Vehicle 

Cargo Tank; Dump; Flatbed; 
Garbage/Refuse; Grain, 
Chips, Gravel; Logging; Not 
Applicable/No Cargo Body; 
Other; Van/Enclosed Box; 
Vehicle Towing Another 
Vehicle 

 N 

; Cargo Tank; Concrete 
Mixer; Flatbed; 
Garbage/Refuse; Grain, 
Chips, Gravel; Not 
Applicable/No Cargo 
Body; Other; Vehicle 
Towing Another Vehicle 

Cargo Tank; Dump; Flatbed; 
Garbage/Refuse; Grain, 
Chips, Gravel; Intermodal; 
Logging; Not Applicable/No 
Cargo Body; Other; Pole; 
Van/Enclosed Box; Vehicle 
Towing Another Vehicle 

Bus Seats For 9-15 
People, Including Driver; 
Bus Seats For > 15 
People, Including Driver; 
Not Applicable/No Cargo 
Body; Van/Enclosed Box 

Auto Transporter; Bus Seats 
For 9-15 People, Including 
Driver; Bus Seats For > 15 
People, Including Driver; 
Concrete Mixer; Intermodal; 
Pole 

Vehicle 
Configurati
on$ 

P 

Light Truck(Only If 
Vehicle Displays Hm 
Placa; Single-Unit Truck 
(2-Axle, 6 Tire); 
Tractor/Triples; 
Truck/Trailer; Unknown 

Light Truck(Only If Vehicle 
Displays Hm Placa; Single-
Unit Truck (3 Or More 
Axles); Tractor/Triples; 
Truck/Trailer; Unknown 

Tractor/Double; 
Tractor/Semi-Trailer; 
Truck Tractor (Bobtail); 
Truck/Trailer; Unknown 

Single-Unit Truck (2-Axle, 
6 Tire); Tractor/Double; 
Tractor/Semi-Trailer 
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(Table 4.2 continued) 

 N 

Single-Unit Truck (3 Or 
More Axles); 
Tractor/Double; 
Tractor/Semi-Trailer; 
Truck Tractor (Bobtail); 

Single-Unit Truck (2-Axle, 
6 Tire); Tractor/Double; 
Tractor/Semi-Trailer; Truck 
Tractor (Bobtail); 

Light Truck(Only If 
Vehicle Displays Hm 
Placa; Single-Unit Truck 
(2-Axle, 6 Tire); Single-
Unit Truck (3 Or More 
Axles); Tractor/Triples; 

Light Truck(Only If Vehicle 
Displays Hm Placa; Single-
Unit Truck (3 Or More 
Axles); Tractor/Triples; 
Truck Tractor (Bobtail); 
Truck/Trailer; Unknown 

GVWR$ P 10,001-26,000; 10,001-26,000; >26,000 >26,000 >26,000 

 N >26,000 >26,000 10,001-26,000; 10,001-26,000; 

 
From Table 4.2, one can tell trucks registered in different states perform differently in terms of crash 
severity.  For single fatality analysis, crashes with trucks for carriers registered in Missouri and Kansas 
are significantly more prone to have a single fatality crash, while trucks from carriers registered in 
Georgia, New York, and Pennsylvania are prone to not have a single fatality crash. Other states not listed 
have no significant difference with the likelihood of a single fatality crash.  

Trucking companies own various numbers of trucks, which have different influences on different crash 
severity levels. For damage only, trucks from very large or single-truck companies are more likely to be 
involved in damage only crashes, while trucks from small or large companies are less likely to be 
involved in damage only crashes. Trucks from medium sized companies have no significant difference in 
involvement in damage only crashes. In examining single-truck companies, one can see they have a high 
risk to be involved in damage only, injury, or single fatality crashes, but have a low risk to be involved in 
multiple fatality crashes. Very large companies, those that own more than 100 trucks, tend to have a high 
risk to be involved in either damage only or multiple fatality crashes, but a low risk to be involved in 
injury or single fatality crashes. It is also notable that small truck companies, those with two to five 
trucks, are found to be the best safety performance companies in terms of crash severity, given that they 
are estimated to have a negative impact on all levels of crash severity. In other words, small sized 
companies are significantly different than any other size company in their involvement in any crash 
severity level. The underlying reasons for this observation are unclear, and further investigation is needed. 
It is inferred that in a fatal crash, trucks from large and very large companies are more likely to cause 
multiple deaths. A potential rationale could be larger truck companies own heavier and larger trucks, and 
those trucks are hard to maneuver and need more time to perform brake operations in an emergency 
situation. 

As expected, the company inspection value has a significant impact on their safety conditions. FMCSA 
has defined three general categories based on the inspection value: higher risk carriers have inspection 
values of 75 or greater, medium risk carriers have inspection values between 50 and 74, and low risk 
carriers have inspection values less than 50. The results indicate that low inspection values, less than 30 
or 25, respectively, are positively associated with the likelihood of a less severe crash result, such as 
damage only or injury. In other words, low inspection values generally indicate better performing 
companies; however, the benchmark value is around 25 to 30 rather than 50 in terms of crash severity. 
For fatality analysis, the benchmark value is 45, which is close to the 50 used in FMCSA inspection 
categories. The most interesting finding is for multiple-fatality crashes. A truck with a company 
inspection value between 30 and 70 or greater than 90 is significantly more prone to multiple-fatality 
crashes. For a company with an inspection value greater than 90, this finding was not a surprise. The 
inspection value is based on the prior safety record of the company. Those companies with higher values 
have had more crashes and more violations in past inspections, and thus are more likely to continue to 
have safety issues. Another rationale for this observation could be that those companies have much larger 
trucks, but further study is suggested to verify the hypothesis. However, for a company with a value 
between 30 and 70, the finding is very surprising. Further single factor investigation is needed to 
understand how the inspection value is associated with crash severity. 
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It was found that trucks owned by interstate companies are more prone to have fatality crashes, while 
those owned by an intrastate company are more likely to be involved in damage or injury only crashes. 
Interstate company truck drivers usually have longer driving distances, which could cause drowsy driving 
and run-off-the-road fatal crashes. Thus, further data collection to support significant testing on how 
drowsy driving by interstate and intrastate company truck drivers contributes to crash severity levels 
between is recommended.  

In addition, interstate companies may hire more drivers registered in the same state as the companies. 
Drivers from other states may be not familiar with local driving behavior when driving in states other than 
their own. For example, comparing North Dakota and Colorado, most ND highways are rural, and ND 
drivers are less aggressive than CO drivers. Thus, when ND truck drivers are on roads in Colorado, they 
may not familiar with the driving behavior, and may not react in time. Because of limited data, it is 
suggested that law enforcement officers record state registration of the license for each truck driver 
involved in a crash. If the hypothesis is verified, it is recommended that truck drivers be trained to drive 
in various driving behavior environments.  

Newly registered companies are found to be non-significant for damage-only crashes. However, trucks 
owned by newly registered companies have a higher risk of fatality crashes. This meet the expectations 
because newly registered companies are usually less experienced in fleet management and safety 
practices. 

Regarding crash characteristics, the first harmful event is one of the most significant explanatory 
variables in crash outcome prediction. A conclusion can be drawn that the huge difference in speed and 
weight among vehicles involved in crashes is one of the major contributors to fatality crashes. In such 
cases, the more vulnerable road users expose themselves to a high risk of fatal crashes. For example, 
when a truck hits a passenger car, the fatal outcome could be due to the huge impact at the moment of 
collision. As expected, the more vehicles involved in a truck crash increases the probability of a more 
severe outcome. Crash severity level also changes over the times in a day. It is notable that early morning 
(3 am to 6 am) is considered the most dangerous time, given that both single-fatality and multiple-fatality 
crashes are more likely to happen during this period. This may result from difficulty in a driver making 
appropriate responses when it is dark or suffers from lack of sleep (Pahukula, Hernandez, and 
Unnikrishnan, 2015). During weekends, crashes are more likely to be fatal, while on Fridays, crashes are 
prone to be non-fatal.  

Regarding environmental characteristics, it is not surprising that weather condition is a significant factor 
affecting crash severity levels. Interestingly, fatal crashes are less likely to happen on a snowy or rainy 
day when drivers are more cautious than usual. Nevertheless, single-fatality crashes are more likely to 
happen with no adverse weather conditions. The reasons could be more truck traffic and/or higher travel 
speeds in good weather, and also drivers tend to fully focus on driving, slow down, and keep their eyes on 
the road under bad weather. Thus, traffic exposure data can be very helpful to better understand the 
relationship between weather and severity. Validation of such a hypothesis can result in warning signs to 
remind drivers to obey speed limits or apply speed enforcement during good weather. Fog and severe 
crosswinds negatively affect drivers’ visualization and make large trucks hard to control. Thus, under 
these conditions, the probability of multiple-fatality crashes is predicted to increase. An icy road surface 
is a definite crash factor. Drivers usually pay more attention than usual; however, an icy road surface can 
make crashes inevitable. Thus, an icy road surface increases the risk of damage-only, injury, and single-
fatality crashes, but decreases the likelihood of multiple-fatality crashes, most likely because drivers 
lower their speed under such conditions. A slushy road condition raises the risk of damage-only and 
injury crashes. On the other hand, the likelihood of fatal crashes increases under a dry or wet road surface 
condition. Night is considered a dangerous time, because it is a positively significant contributor to all 
fatality level crashes. It is noteworthy that the fatal crash risk increases at night with no street lighting; 
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thus, visualization is negatively impacted, which is supported by previous studies (Lemp, Kockelman, and 
Unnikrishnan, 2011; Kockelman, Murray, and Ma, 2007). 

The marginal effect of traffic way type indicates that a median barrier effectively prevents fatal crashes, 
because those are more likely when two-way traffic is not separated. 

Regarding driver characteristics, a driver’s age is a significant factor for predicting crash severity levels. 
Younger drivers (< 25 years old) and older drivers (> 75 years old) are found to be the most vulnerable 
groups for multiple-fatality crashes.  The underlying reason could be that young people have less driving 
experience and may be more prone to dangerous actions. On the other hand, older people do not react as 
quickly as younger persons, and their overall health condition could also impact their risk of fatalities 
(Chen et al., 2015; Campbell, 1991). The driver’s license class is another significant variable. Class A, B, 
and C are significant in improving truck safety performance in regard to crash severity level. For 
example, drivers with class D licenses are predicted to more likely be involved in fatal crashes. An invalid 
driver’s license is predicted to increase risk of damage-only, single-fatality, and multiple-fatality crashes. 
Not surprisingly, considering it is illegal, people driving with an invalid driver’s license could be less 
responsible, more aggressive, and possibly have a bad driving record. 

Regarding truck characteristics, the cargo body type is a factor impacting injury severity. Cargo tanks, 
flatbeds, and grain trucks, or trucks towing another vehicle, increase the probability of high injury 
severities (severity=2, 3). The weight of these trucks increases operation difficulty in an emergency 
situation. Severity level is predicted to positively relate with gross vehicle weight.  
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5. CONCLUSIONS 

5.1 Research Results, Summary, and Conclusions 
 
This research details a comprehensive analysis regarding the impacts of a set of heterogeneous factors 
(trucking company, crash, environment, truck driver, and truck characteristics) on injury severity caused 
by truck crashes by analyzing six recent years of Federal Motor Carrier Safety Administration data. 
Gradient boosting, a data mining technique, is used to study significant influential factors and their 
marginal effect on injury severities. 

The target variable (crash severity) is classified into four categories: property damage only, injury only, 
one fatality, and two or more fatalities. Based on a GB model, 22 variables are proven to significantly 
relate with severity. For the first time, trucking company and driver characteristics are proven to have 
significant impact on truck crash injury severity. Some of the results in this study reinforce previous 
studies’ conclusions. For example, wet road surface, bad visualization (dark or low light conditions, or 
fog/poor weather conditions), strong crosswinds, heavy gross vehicle weight (over 26,000 lbs.), and 
collisions with opposing traffic are estimated to increase the likelihood of more severe outcomes. 
Younger drivers (under 25 years old) and older drivers (over 75 years old) are predicted as the most likely 
groups to be involved in crashes resulting in fatalities. Also, truck crash severity levels become higher 
when more vehicles are involved. 

One interesting finding is that fatal crashes are more likely when weather is good or the road surface has 
no adverse conditions, perhaps because adverse conditions make people vigilant to potential risk. Another 
unique contribution of this study is to demonstrate the significant effect of the trucking company and 
driver characteristics on injury severities. Based on ND and CO crash data, it is estimated that carriers 
registered in Missouri, Manitoba, North Carolina, North Dakota, and Pennsylvania increase the likelihood 
of the most severe outcomes. Companies owning two to five trucks are predicted to have the lowest 
probability of crash risk. Carriers with inspection values of 30-70, or greater than 90, increased the 
possibility of high injury severities. Newly registered carriers and interstate carriers are estimated to be 
associated with a higher probability of fatal crashes. Drivers with a regular license (Class D) only are at 
greater risk of being involved in fatal crashes. Special training, experience, skill, and knowledge are 
efficacious to improving truck safety, and are required for safely operating a truck. The analyzed factors 
in this study can contribute to lowering injury severity of crashes, and provide guidance for transportation 
agencies to improve safety. 

5.2 Research Limitation and Future Studies 
 
Instead of demonstrating that data mining models are superior to GLMs in all aspects, research tends to 
promote the application of data mining models in commercial truck safety studies. This study applied a 
GB data mining model in commercial truck severity analysis and identified the contributor variables, 
especially trucking company characteristics, through the application of a data mining model to 
commercial trucking crash data. This study did not examine all data mining models in safety studies. In 
addition, as different data mining models have different features, they are probably feasible in different 
types of research. Thus, more data mining models, such as clustering analysis, are recommended to be 
tested in safety research. In practice, it is feasible that combinations of a few data mining models be used. 
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Moreover, in this research, crash severity and relationships of several major contributors, especially 
trucking company characteristics, are discovered. Underlying reasons leading to the observations are 
assumed and described in the research report; however, they are not analyzed due to data limitation. 
Further studies are recommended to demonstrate the hypothetical rationales and extend this study to the 
following: effects of truck configuration at the corporation level, effects of traffic exposure at corporation 
level, and effects of driver behavior and driving environment awareness at corporation level; and national 
commercial truck safety analyses are recommended for further research. 
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