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EXECUTIVE SUMMARY 
 
A model of investment in basic track components is estimated from 1985-2008 data for Class I railroads. 
Network size is measured in miles of road (MOR), while traffic is measured in revenue gross ton-miles 
(RGTM). In addition to MOR and RGTM, the model includes railroad indicator and time variables. The 
purpose of the railroad variables is to capture fixed effects (e.g., effects other than traffic and network 
size) that are specific to particular railroads, but which do not change over time. The time variable, on the 
other hand, accounts for industry-wide trends and changes that occur during the period. The study shows 
that when miles of road are held constant (a realistic scenario), a 100% increase in RGTM results in a 
50% increase in track investment. However, it is important to consider the interpretative context described 
in the paper. Several data anomalies were discovered and handled statistically. The parameter estimates 
vary somewhat with the index used to convert nominal dollars to constant dollars. 
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1. OVERVIEW 
 
Class I railroads in the United States have invested over $67 billion in basic track components:1 rails, ties, 
ballast, other track materials (such as tie plates, spikes, bolts, and anchors), and grading. These 
investments grew by 223% between 1985 and 2008, in nominal dollars, and by 137% in real dollars.2 As 
shown in Table 1.1, rails and other track materials comprise the largest investment component (43%), 
followed by crossties (26%), ballast (16%), and grading (15%), which includes expenditures for the initial 
construction (and subsequent reconstruction) of the roadbed. Collectively, these investments average 
$563,000 per route mile. However, the replacement cost of these assets is much greater than their nominal 
value. 

Table 1.1  Class I Railroad Track Investment Per Route Mile (Nominal 2008 Dollars) 
Track Component Investment per Mile Percent of Total 
Rail and Other Track Material $243,439   43% 
Ties $144,027   26% 
Ballast   $90,575   16% 
Grading   $84,898   15% 
Total: Basic Track Components $562,939  100% 

 
Investments in basic track components are necessary to (1) provide safe transportation of passengers and 
goods, (2) maintain infrastructure in a state of good repair, (3) add capacity, (4) reduce congestion, and 
(5) increase the overall efficiency of operations. Track investments are important from a regulatory 
perspective, as railroad revenues must recoup operating expenses and allow companies to earn an 
adequate return on invested capital. 

In many areas of regulation, the Surface Transportation Board (STB) utilizes the Uniform Railroad 
Costing System (URCS) to provide information about railroad costs. A return of 50% on roadway 
investment is reflected in the URCS variable cost.3 This long-standing assumption (that half of road 
capital investments are fixed) is based on traffic patterns and practices prior to 1955.4 Since then there 
have been many changes, including the following: 

1. Deregulation has allowed railroads greater decision-making authority and the capability to 
expeditiously abandon unprofitable lines.  

2. Changes in regulatory policies (e.g., the interpretation of the Public Convenience and Necessity 
clause) have made it easier to propose new rail lines or extensions.  

3. Car weights have dramatically increased.  
                                                      
1 This value is estimated from data reported to the U.S. Surface Transportation Board in Schedule 416 of the R-1 
Report. 
2 These percentages are estimated from data reported to the U. S. Surface Transportation Board in Schedule 416 of 
the R-1 Report. The real percentage increase is computed using the Rail Cost Adjustment Factor 
3 Surface Transportation Board. “Report to Congress Regarding the Uniform Rail Costing System.” May 27, 2010. 
4 See: Interstate Commerce Commission (Bureau of Accounts). Explanation of Rail Cost Finding Procedures and 
Principles Relating to the Use of Costs, Statement No. 7-63, Washington, D.C., November 1963. In developing the 
50% variability estimate, the ICC used data from 1939 through 1951, including traffic and investment data for the 
World War II period. The analysis includes “road-to-road comparisons” for 1944, 1946, and 1951. In synthesizing 
the results of several studies, wartime and prewar traffic densities were adjusted to 1951 levels. Based on these 
studies, the ICC found “operating expenses to be between 80 and 90 percent variable and plant investment to be 
upwards of 50 percent variable” [page 86]. In reaching its conclusion, the ICC noted: “The use of a figure of 50 
percent variable for road property and 100 percent variable for equipment is approximately equivalent to the use of 
an overall figure for road and equipment of 60 percent” [page 86]. 
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4. A much greater proportion of traffic moves in unit trains.  
5. Improvements in materials, metallurgy, and manufacturing techniques have resulted in improved 

track durability and response.  

For these (and many other reasons), a current analysis of railroad investment practices is needed. The 
objectives of this study are to describe patterns of track investment in the United States and show how 
track investments vary with network size, traffic, and other factors. 

It is important to note that the previously mentioned 50% variability ratio, which was developed by the 
Interstate Commerce Commission (ICC), applies to all road investments, not just basic track components. 
It is not clear if the ICC intended this ratio to apply specifically to track. This paper does not intend to 
assess the process by which the factor was originally developed or interpret the ICC’s original intent. 
Instead, the variability ratio is used in a general sense as a “null hypothesis.” An assessment will be made 
at this paper’s conclusion to determine if sufficient evidence exists to conclude that it is not applicable to 
basic track components. 
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2. TRACK INVESTMENT MODEL 
 
This study is based on R-1 reports submitted to the STB from 1985 through 2008. Elements of the R-1 
database include miles of road and track (derived from Schedule 700), gross ton-miles (derived from 
Schedule 755), and investments in basic track components from Schedule 416. All investment data have 
been restated in constant dollars. The increment to investment in each year is computed by subtracting the 
gross investment in year t + 1 from the investment in year t.  Each yearly increment is restated in 1985 
dollars and the recomputed increments are added back to the 1985 base to compute an adjusted value for 
each year. 

The track investment model reflects the sum of investments in density classes I and II (Table 2.1) from 
Column L of Schedule 416 and includes capital expenditures for rails, ties, ballast, other track materials, 
and grading. The latter category includes the preparation and reconstruction of roadbed. Collectively, 
these elements are referred to as basic track components. The hypothesized model is 𝐼𝐼 = 𝑓𝑓(𝐾𝐾,𝑄𝑄,𝐹𝐹,𝑇𝑇), 
where I denotes capital expenditures for track. K represents network size or scope. Q is a measure of 
traffic activity. F symbolizes firm (railroad-related) effects.  And T stands for time. 

Table 2.2  Density Categories used in Uniform System of Accounts 
Class  Description  
I Lines carrying at least 20 million gross ton-miles per mile on an annual basis and not 

designated as belonging to Density Class III 
II Lines carrying less than 20 million gross ton-miles per mile on an annual basis and not 

designated as belonging to Density Class III 
III Lines identified as potentially subject to abandonment pursuant to Section 10904 of the 

Interstate Commerce Act 
IV Yard and way switching tracks 
V Electronic yards 

 
Capital expenditures for basic track components include installation costs. For example, the costs of new 
rails reflect their placement in the track. In addition to the cost of materials, capital expenditures reflect 
labor, logistics, equipment, and other costs incurred in moving and installing components. However, the 
cost of maintaining and preserving the track is treated as an annual expense. Capital expenditures include 
replacements, additions, improvements, and rebuilding activities—when those activities extend the 
service lives of components. Repairs are classified as maintenance.  

When track components are replaced, they are considered to be “retired” and are no longer reflected in the 
investment base. The same track segment may experience capitalized expenditures and retirements 
several times over its life, as older light rails are replaced with new heavier ones; grades and/or curves are 
reconstructed to improve alignments; and passing tracks, side tracks, switches, and turnouts are added.   

2.1 Traffic Measures 
 
There are several potential traffic measures, including revenue ton-miles and gross ton-miles. A ton-mile 
represents the movement of one ton in one mile. It is a composite measure of weight and distance. The 
ton can be transported (i.e., hauled) or travel under its own power, as in the case of locomotives. Revenue 
ton-miles are computed by multiplying the cargo weight by the distance traveled. Gross ton-miles include 
the weights of locomotives, freight cars, containers, trailers, cargo, and other equipment, as well as the 
distance traveled. A subset of gross ton-miles (train or revenue gross ton-miles) excludes work-related 
and track equipment, but includes locomotive, car, container/trailer, and cargo ton-miles. 
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RGTM is the most appropriate measure for this study for the following reasons: (1) Cargo ton-miles alone 
do not describe the type of track structure that is needed. A track must be designed to support gross 
vehicle weights. (2) Revenue gross-ton-miles exclude non-revenue activities (e.g., work train miles).  

 
2.2 Network Size 
 
There are several potential measures of network size, including miles of road (MOR) and miles of 
running track (MRT). Both measures have been used in previous studies. MOR (or route miles) represent 
a railroad’s base network. Most rail lines were originally built as single-track lines to connect points or 
nodes within a network. As defined by the STB, MOR reflect only the first main track. In addition to the 
main track, a rail line may include second, third, and fourth main tracks and/or side tracks. For example, a 
10-mile segment between two junctions may consist of two main tracks and two miles of crossover or 
passing track. Altogether, this segment comprises 22 miles of running track, which includes 10 miles of 
road and 12 miles of “other running track.”  
 
As traffic grows, railroads may add capacity by adding second or third main tracks and/or passing and 
side tracks, i.e., other running tracks. Similarly, if traffic declines, other running tracks may be 
disassembled and the assets liquidated or used elsewhere in the network. However, the first main track 
can only be abandoned if local traffic disappears and through traffic moving over the line can be rerouted. 
Even then, the railroad must petition the STB for authority to abandon the line. In the short to 
intermediate run, miles of road are relatively fixed. Miles of other running track can be more easily 
adjusted. 
 
2.3 Main Effects 
 
A certain level of investment in the base network is necessary regardless of the level or composition of 
traffic. Initially, lines may be built with lighter rails and thinner ballast sections suitable for traditional 
(e.g., carload) traffic at lower volumes. Capacity may be provided by a single main track with periodic 
sidings or passing tracks. However, when unit trains and heavy axle load cars are added to a network and 
faster speeds are desired, the quality of the track infrastructure must be improved through investments in 
heavier (more durable) rails, heavier tie plates, more ballast, and, in some cases, concrete ties.  
 
Base investment is strongly correlated with miles of road and may not change substantially with modest 
increases in traffic. However, incremental investments—those designed to handle unit trains and heavier 
railcars—are a function of traffic. As traffic grows, other running tracks (such as passing and side track) 
may be added to increase capacity. Eventually, some lines may be doubled-tracked. Changes in miles of 
other running track are a function of traffic. If MRT is used to represent network size (instead of MOR) 
these investments will be attributed to the network, not to traffic. 
 
Conceptually, MOR and RGTM are correlated. However, in practice, they are independent, at least over 
the analysis period. This fact is illustrated in Figure 2.1, which shows distinctly different trend lines for 
the two variables. Miles of road have declined since 1985, but at a decreasing rate. In comparison, 
revenue gross ton-miles have increased. The decline in miles of road owned by Class I carriers is largely a 
function of line sales to local and regional railroads and line abandonments. However, MOR has remained 
relatively constant since 1998. The recent drop in RGTM reflects a downturn in the global economy.  
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Figure 2.1  Trends in Miles of Road and Revenue Gross Ton-Miles 

 

2.4 Treatment of Other Effects 
 
A density variable is not included in the model because miles of road and gross ton-miles implicitly 
capture density effects. Increasing revenue gross ton-miles (while holding miles of road constant) results 
in higher traffic densities. Alternatively, increasing miles of road (while holding RGTM constant) reduces 
traffic density. 
 
Most variations in basic track components result from the scope and quality of the base network and 
traffic. Nevertheless, investments may be made over time for other reasons. Throughout much of the 
analysis period, Class I railroads were making incremental track investments to effectively handle 
286,000-lb. and 315,000-lb. railcars. While RGTM is the best traffic measure available, it does not 
explicitly account for axle weights. Two groups of traffic may generate the same RGTM, but have 
different effects on track because of differences in axle loads. Heavier axle loads require higher-quality 
track. However, the use of heavier railcars may result in fewer car-miles (thus, fewer tare ton-miles) and 
fewer locomotive-miles to move the same quantity. Because of these trade-offs, the effects of heavier 
railcars on gross ton-miles are mixed.  
 
Axle loads are not reported in the R-1 data and cannot be computed directly from public sources. Given 
the mixed relationship between axle weights and RGTM, the effects of increasing axle loads may be 
subsumed in the time trend variable rather than being reflected in RGTM, which is expected to be 
positive. The time variable may reflect other changes in investment patterns over time that are not 
associated with traffic, network size, or specific railroads. As described later, the effects of mergers and 
consolidations are explicitly accounted for.  
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2.5 Statistical Model 
 
The theoretical model is transformed into a statistical model in Equation 1. The subscript “i” denotes an 
observation for a particular railroad, while the subscript “t” indicates a particular year of the data series. 
Using this notation and letting epsilon (𝜖𝜖) represent the error term, the regression equation may be written 
as: 
 

(1)   𝐼𝐼𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑖𝑖𝑖𝑖+ 𝛽𝛽3𝑇𝑇𝑖𝑖 + 𝛽𝛽4𝐹𝐹𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 
 
The model includes two main explanatory variables (traffic and network size), time (T), and an array of 
railroad indicator variables (Fi). The purpose of the railroad variables is to capture fixed effects that are 
specific to particular railroads but do not change over time. T, on the other hand, accounts for industry-
wide trends and changes that occur over time. Even when all of these variables are considered (21 
altogether, including the indicator variables), a great many factors are not accounted for in the model and 
are subsumed in the error term (epsilon). 
 
Fi can assume values of 0 or 1. Fi is equal to 1 when the observation comes from a particular railroad. 
Once i is specified (i.e., the observation is determined to come from a particular railroad), the effect of β4 
is to shift the intercept (β0) for that railroad.5 T is an integer that measures the elapsed time in years since 
1984. For example, t assumes a value of 1 in 1985, 5 in 1989, 10 in 1994, and so forth. Once t is specified 
(i.e., the observation is determined to belong to a particular year), the contribution of time is computed as 
β3 × t. Once computed in this manner, the contribution of time becomes a constant that shifts the intercept 
for a particular year. The slope of the regression is determined by MOR and RGTM. 
 
2.5.1 Functional Form 
 
The choice of functional form is based on data and statistical issues. A plot of track investment against 
miles of road is shown in Figure 2.2. In addition to revealing non-constant variance, the graph highlights 
the vast differences in scale between smaller Class I railroads (e.g., the Kansas City Southern and Soo 
Line) and the largest carriers (e.g., BNSF and UP). 
 
While the apparent heteroscedasticity can be accounted for, the differences in scale are problematic. A 
linear model results in a negative intercept for MOR in a simple regression equation and a negative 
(counterintuitive) sign in a multiple regression model. 
 
For comparative purposes, a plot of the natural log of track investment against the natural log of miles of 
road is shown in Figure 2.3. A graph of track investment and RGTM is presented in Figure 2.4, while 
Figure 2.5 depicts the logarithmic relationship between these two variables. Comparisons of Figures 2.2 
and 2.3 and 2.4 and 2.5 suggest that the variances of the log relationships are relatively constant—more so 
than the linear ones.  

 

                                                      
5For purposes of simplification, β4 is used in a collective sense in this description. In actuality, each railroad 
indicator variable has its own beta coefficient in the model (e.g., β4–β21). 
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Figure 2.2  Plot of Track Investment against Miles of Road 

 

 
Figure 2.3  Plot of Log of Track Investment against Log of Miles of Road 
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Figure 2.4  Plot of Track Investment against Revenue Gross Ton-Miles 

 

 
Figure 2.5  Plot of Log of Track Investment against Log of RGTM 
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2.5.2 Initial Model 
 
The parameter estimates and standard errors from a logarithmic regression model are shown in Table 2.2. 
The dependent variable is the natural log of track investment, where investments are expressed in constant 
1985 dollars using the Rail Cost Adjustment Factor (RCAF). The primary explanatory variables are the 
logs of MOR and RGTM. However, each Class I railroad that existed during the 1985-2008 period is 
represented by an indicator variable, e.g., KCS. When the observation is for the Kansas City Southern 
Railway, KCS equals 1. Otherwise, KCS equals zero. Additional indicator variables are defined for 
mergers. For example, the UP system includes three railroads that appear in the database: Union Pacific 
(UP), Southern Pacific (SP), and Chicago and North Western (CNW). CNW was acquired by UP in 1995. 
UP merged with SP in 1997. In the analysis, UP-CNW assumes a value of 1 in 1995, and each year 
thereafter, but is zero otherwise. Similarly, the variable UP-SP assumes a value of 1 in 1996, and each 
year thereafter, but is zero otherwise. 
 
Table 2.3  Parameter Estimates from Logarithmic Model of Track Investment 
Variable Parameter Estimate Standard Error t Value     Pr > |t| 
Intercept -3.9008 1.93940 -2.01 0.0456 
ln(MOR) 0.34868 0.06448 5.41 <.0001 
ln(RGTM) 0.83199 0.08085 10.29 <.0001 
ln(T) 0.08896 0.02067 4.30 <.0001 
ATSF 0.40643 0.08134 5.00 <.0001 
BNSF -0.41320 0.13223 -3.12 0.0020 
BN 0.14038 0.05686 2.47 0.0144 
UPSP -0.53416 0.13430 -3.98 <.0001 
UPCNW -0.31632 0.19125 -1.65 0.0996 
SP 0.53123 0.06809 7.80 <.0001 
CNW 0.38754 0.14885 2.60 0.0099 
SOO 0.42883 0.17406 2.46 0.0146 
ICG 0.68665 0.18027 3.81 0.0002 
ICG89 -0.14949 0.13323 -1.12 0.2631 
GTW 0.65526 0.25117 2.61 0.0097 
GTC -0.17770 0.32128 -0.55 0.5808 
KCS 0.94761 0.19579 4.84 <.0001 
CR 0.79455 0.07507 10.58 <.0001 
CSX 0.42085 0.05668 7.43 <.0001 
CSXCR -0.78369 0.10486 -7.47 <.0001 
NSCR -0.93980 0.11257 -8.35 <.0001 
NS 0.56670 0.06820 8.31 <.0001 

 
Analogous variables are defined for other mergers or acquisitions. For example, Burlington Northern 
merged with Atchison, Topeka, and Santa Fe (ATSF) in 1996 to form the Burlington Northern-Santa Fe 
(BNSF). CSX and Norfolk Southern (NS) acquired parts of Conrail in 1999. In 2002, the Canadian 
National Railway consolidated the Illinois Central Gulf (ICG), Grand Trunk Western (GTW), and other 
rail lines into the Grand Trunk Corporation (GTC). In the Grand Trunk system, GTC is 1 if the year is 
2002 or later; however, GTC is zero otherwise. The ICG indicator variable assumes a value of 1 when 
GTC is 1, or when the observation is for the old ICG prior to 2002. The GTW variable works in a similar 
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manner. The sign and estimate of each railroad indicator variable is relative to the variable omitted from 
the equation, which is the unmerged UP railroad. The meaning of the variable ICG89 is discussed later. 
 
The results of a linear model, which includes the same fixed (railroad) and time variables as the log 
model, are shown in Table 2.3. In the linear model, MOR has a negative sign and weaker statistical 
relationship than in the log model. For statistical reasons, subsequent analyses are based on the 
logarithmic model. 

Table 2.4  Main Parameter Estimates from Linear Regression Model of Track Investment 
Variable Parameter Estimate Standard Error t Value Prob.  >  |t| 
Intercept -688008058 994797992 -0.69 0.4899 
MOR -35083 38001 -0.92 0.3570 
RGTM 0.01187 0.00086289 13.75 <.0001 

 
As shown in Tables 2.4 and 2.5, the logarithmic model has excellent statistical properties, including an R-
Square of 0.99 and a coefficient of variation of less than 1%. The model explains nearly all of the 
variation in the log of investment and provides a very precise fit. The low coefficient of variation (0.6%) 
suggests that the model could be an excellent predictor within the range of observed values. However, the 
Durbin-Watson test (Table 2.6) indicates autocorrelation, i.e., the errors are correlated over time. This 
leads to the formulation of an autoregressive model. 
 
Table 2.5 Mean Square Error and F-Value for Log Model of Track Investment 

Source 
Degrees 

of Freedom 
Sum of 

Squares 
Mean 

Square F Value Prob. > F 
Model   21 367.48915 17.49948 1051.34 <.0001 
Error 210 3.49544 0.01664     
Corrected Total 231 370.98459      

Table 2.6  R-Square and Coefficient of Variation for Log Model of Track Investment 
Root Mean Square Error 0.12902 R-Square 0.99 
Coefficient of Variation (%) 0.60547 Adjusted R-Square 0.99 

 
Table 2.7  Results of Test for Serial Correlation in Log Model of Track Investment 

Durbin-Watson Statistic 0.725 
Prob. <  DW <.0001 
Prob. >  DW 1.0000 
1st Order Autocorrelation Coefficient 0.638 

 
2.5.3 Autoregression Model 
 
In regression analysis, each t is assumed to be normally and independently distributed with a mean of zero 
and a variance of 𝜎𝜎2 (i.e., 𝜀𝜀𝑖𝑖~𝐼𝐼𝐼𝐼(0,𝜎𝜎2). Violation of this assumption may affect statistical tests and 
parameter estimates. In the revised model, the original regression equation is augmented with an 
autoregressive sub-model of the error term. This process is described in Appendix A. 
 
As shown in Table2.7, the parameter estimates of the structural variables have changed. The coefficient of 
the log of MOR indicates that track investment increases by roughly 0.59% when miles of road increase 
by 1%. The estimate for the log of RGTM indicates that track investment increases by roughly 0.50% 
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when gross ton-miles increase by 1%. As expected, the time-related variable is positive and highly 
significant, indicating that track investment has been increasing over time for other reasons.6 Many of the 
railroad and merger variables are highly significant, capturing differences among railroads attributable to 
economic, managerial, and locational factors and post-merger synthesis and rationalization. 

Table 2.8  Results of Autoregression Model of Track Investment 
Variable Parameter Estimate Standard Error    t Value Approx. Pr. > |t| 
Intercept 2.2451 2.0308 1.11 0.2703 
ln(MOR) 0.5902 0.0650 9.08 <.0001 
ln(RGTM) 0.5026 0.0877 5.73 <.0001 
ln(T) 0.1780 0.0196 9.07 <.0001 
ATSF 0.5035 0.0834 6.04 <.0001 
BNSF -0.3110 0.1222 -2.54 0.0118 
BN 0.1699 0.0554 3.07 0.0025 
UPSP -0.5807 0.1124 -5.17 <.0001 
UPCNW 0.0592 0.1770 0.33 0.7383 
SP 0.6215 0.0743 8.37 <.0001 
CNW 0.2117 0.1420 1.49 0.1375 
SOO 0.1372 0.1716 0.80 0.4250 
ICG 0.5070 0.1771 2.86 0.0047 
ICG89 -0.2709 0.0657 -4.12 <.0001 
GTW 0.5299 0.2371 2.24 0.0266 
GTC -0.0843 0.3025 -0.28 0.7809 
KCS 0.6806 0.1912 3.56 0.0005 
CR 0.7689 0.0709 10.84 <.0001 
CSX 0.4392 0.0497 8.83 <.0001 
CSXCR -0.7520 0.0926 -8.12 <.0001 
NSCR -0.9769 0.0982 -9.95 <.0001 
NS 0.5558 0.0578 9.62 <.0001 

 
The Durbin-Watson statistic for first order autocorrelation in the revised model is essentially 2.0. The 
probability values shown in Table 2.8 indicate that the null hypothesis (independence of errors) should 
not be rejected. Because the transformed model is estimated via generalized least squares, the error 
variances are homoscedastic. The regression R-square is essentially unchanged. The error sum of squares 
is 1.4145 and the mean square error is 0.00756. 
  

                                                      
6 In this study, the model is estimated from a population of observations, not a sample. The relationships between 
the parameter estimates and standard errors are important in assessing the fit and precision of the regression. 
Technically, the probability or p-values based on sampling theory are not applicable to the interpretation of results. 
Nevertheless, the population of Class I railroads may be thought of as a sample consisting of railroads that were 
classified as Class I carriers during a given year (based on the revenue definitions established by the Surface 
Transportation Board) from a larger population of railroads. In this way, the familiar interpretations of p-values can 
be applied. It is also instructive to note that the null hypothesis for a t-test is that the slope of a parameter estimate is 
zero. The t-ratios and p-values are instructive in this regard, indicating the likelihood of observing a larger value of 
the parameter estimate when the null hypothesis is true, its value is actually zero. 
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Table 2.9  Durbin-Watson Test for First Order Autocorrelation 
DW Prob. < DW Prob. > DW 

1.9981 0.2128 0.7872 
 
2.5.4 Data Issues 
 
Most of the data series are consistent throughout the period. However, data for the Illinois Central Gulf 
(ICG) stand out (Table 2.9). Line investment suddenly drops by 46% between 1988 and 1989. Distinct 
trends exist before and after 1989. The sudden drop is captured by the indicator variable ICG89, which 
assumes a value of 1 if the railroad is ICG and the year is 1989. Otherwise, ICG89 is zero. 
 
Table 2.10  Data for Illinois Central Gulf (ICG) Railroad 

Year Miles of Road Nominal Line Investment (millions) 
1988 2,900 $691 
1989 2,887 $396 
1990 2,773 $398 
1991 2,766 $405 

 
As shown in Table 2.7, ICG89 is highly significant and negative, suggesting that the indicator variable is 
capturing the sudden drop in investment without a corresponding drop in miles of road. The actual reason 
for the sudden decrease in reported investments is unknown. Without a detailed inquiry, it must be 
assumed that the data are correct but anomalous. Irrespective of the reason for the sudden drop, the 
parameter estimates are largely unaffected when the indicator variable is included in the model. 
 
Table 2.10 indicates a second anomaly in the data. Conrail was acquired by Norfolk Southern and CSX in 
1999. Conrail appears in the data series for the last time in 1998. In 1999, the miles of road reported by 
CSX and NS collectively increased by 38%, reflecting the integration of Conrail into the two networks. 
Similarly, the collective RGTM of CSX and Norfolk Southern increased by 37% between 1998 and 1999. 
However, the reported investments in basic track components increased by only 4%. 
 
Table 2.11  Data for Conrail, CSX, and Norfolk Southern Before and After Acquisition 

Year Railroad Miles of Road RGTM (millions) 
Nominal Line Investment 

(Thousands) 
1998 CR 10,797 209,069 $3,169,190 

 CSX 18,181 337,311 $5,742,229 
 NS 14,423 249,840 $4,633,736 

1999 CSX 23,357 440,836 $6,024,295 
 NS 21,788 364,826 $4,728,444 

2000 CSX 23,320 461,935 $6,467,962 
 NS 21,759 376,550 $4,751,575 

 
There could be many reasons for this inconsistency. As shown in Table 2.7, all five indicator variables 
associated with these railroads (CR, CSX, CSXCR, NSCR, and NS) are highly significant. The two 
indicator variables associated with the post-acquisition railroads (CSXCR and NSCR) are highly 
significant and negative, suggesting that these variables are capturing the anomaly, where MOR and 
RGTM jump while line investment remains largely unchanged. The indicator variables may be capturing 
other effects as well. 
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2.6 Model Interpretations 
 
2.6.1 Defining Predictive Equations 
 
The model can be used to predict the log of investment for individual railroads. The intercept and all 
applicable indicator variables are used in these predictions. For example, the mean-value formula for 
BNSF (Equation 2) uses the average values of MOR and RGTM for the 1996-2008 period. 

   (2)   𝑙𝑙𝑙𝑙(𝐼𝐼)� = 𝛽𝛽0 + 𝛽𝛽1ln(𝑀𝑀𝑀𝑀𝑀𝑀�������) + 𝛽𝛽2 ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀��������) + 𝛽𝛽3 ln(𝑇𝑇∗) + 𝛽𝛽4𝐴𝐴𝑇𝑇𝐴𝐴𝐹𝐹 + 𝛽𝛽5𝐵𝐵𝐼𝐼 + 𝛽𝛽6𝐵𝐵𝐼𝐼𝐴𝐴𝐹𝐹  

Where: 

𝑙𝑙𝑙𝑙(𝐼𝐼)� = Predicted log of investment for BNSF 
ln(𝑀𝑀𝑀𝑀𝑀𝑀�������) = Log of mean value of miles of road for BNSF 
ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀��������) =Log of mean value of RGTM for BNSF 
ln(𝑇𝑇∗) = Log of T, where T* represents the midpoint of the period 

 
Similar equations can be developed for other railroads using different indicator variables. The predictions 
for Norfolk Southern utilize the variables CR, NS, and NSCR. Predictions for CSX utilize CR, CSX, and 
CSXCR. When the appropriate indicator variables are selected, the model yields a series of predictive 
equations for individual railroads. 
 
2.6.2 Implications of Constant Elasticity 
 
The log model is a constant elasticity model, e.g., the percentage change in track investment resulting 
from a 1% change in RGTM is the same for all output levels. However, this does not mean that the 
increase in investment is the same at all levels. A 1% increase starting from an investment base of $1 
billion is much greater than a 1% increase starting from a base of $500 million. The slope of the log 
model reflects the same (relative) rate of change in investment over the range of observations. In 
comparison, the slope of a linear model represents a constant (absolute) rate of change. 
 
Even though the elasticity of the log model is constant, the effects are nonlinear. This is illustrated in 
Figure 2.6, which shows how the predicted values of investment for a particular railway (BNSF) derived 
from Equation 2 change when RGTM is varied, while holding miles of road constant at its mean value: 
(𝑀𝑀𝑀𝑀𝑀𝑀�������). The graph is juxtaposed against a linear trend line to illustrate economies of density. 
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Figure 2.6  Variations in Predicted Track Investment from Log Model Holding Miles of Road Constant 

at Mean Value 

2.6.3 Economies of Density 
 
RGTM and miles of road are the numerator and denominator, respectively, of traffic density as measured 
in revenue gross ton-miles per route mile. As Equation 3 suggests, density can be increased by scaling 
(reducing) the size of the network in relation to traffic or increasing traffic for a given size of network.  
 

(3)    𝐷𝐷𝐷𝐷𝑙𝑙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀

 
 
As shown in Figure 1, MOR decreased throughout much of the period. The elasticity of MOR suggests 
that track investments decrease when miles of road decrease, but at a less-than-proportionate rate. If 
RGTM is held constant, a 1% MOR reduction results in a 0.59% decrease in track investment. Similarly, 
the elasticity of RGTM indicates that track investments increase with traffic, but at a less-than-
proportionate rate. If miles of road are held constant while RGTM increases, capital expenditures for 
basic track components will rise by approximately 0.50% for each 1% increase in RGTM. Output will 
increase at a greater rate than input cost, implying economies of density. 
 
2.6.4 Magnitudes of Parameter Estimates 
 
Several obvious questions stem from the results.  

• Why is the elasticity of track investment with respect to MOR substantially less than 1.0? Should 
not a 1% reduction in MOR result in a proportional decrease in track investment? If the 
investment in each mile of road was the same (e.g., a constant $500,000 per mile) the expected 
elasticity would be 1.0 (ceteris paribus). However, the average investment in rail lines sold or 
abandoned by Class I railroads (and thus disappear from the investment base) may be less than 
the average investment in retained lines (which tend to be mainlines). Moreover, when miles of 
road are decreased while revenue gross ton-miles are held constant, the same level of traffic is 
concentrated on fewer route miles. While this leads to economies of density, the additional traffic 
may require incremental investments elsewhere in the system, i.e., on those lines that now have 
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higher traffic levels. If this occurs, the overall reduction in track investment resulting from a 1% 
reduction in MOR will be less than 1%.  

• Why is the elasticity of track investment with respect to revenue gross ton-miles less than 1.0?  
(1) Economies of Utilization: In many cases, significant traffic volumes can be added to lines with 
low traffic levels before any incremental investments are needed. When investments are needed, 
adding passing tracks to an existing line to accommodate traffic growth costs less than the 
construction of the main track. (2) Economies of Design: In some cases, the strength of materials 
increases in a nonlinear manner with size or weight. For example, a rail’s moment of inertia is an 
indication of its tendency to resist rotational and bending forces. Moment of inertia increases with 
both the cross-sectional area of the rail and its weight. Upgrading a track from 115-lb. to 136-lb. 
rail increases the weight of the rail by only 18%, but the moment of inertia increases by 45%. As 
described below, incremental capital investments made to existing track and roadbed realize 
foundational economies. 

• Why is the elasticity of track investment with respect to revenue gross ton-miles less than the 
elasticity with respect to MOR? Economies of design and utilization are two key factors. Some 
base level of investment in roadbed, ties, ballast, rails, and other track materials is necessary to 
initially build and operate a line, regardless of the expected traffic level. In the model, base 
investment is a function of MOR. However, once a line is built, further improvements (which are 
a function of traffic) comprise incremental capital investments, such as replacing lighter rails with 
heavier ones. Incremental investments such as these may not require re-grading or roadbed 
reconstruction. Because of foundational investments, capital projects that utilize existing 
roadbeds and tracks may be less expensive than initial construction, which reflects extensive 
grading and roadbed preparation costs. While the parameter estimates of MOR and RGTM are 
different, they are not divergent or inconsistent.  

2.7 Sensitivity of Estimates to Cost Indexes 
 
In the results presented thus far, track investments have been restated in constant 1985 dollars using the 
RCAF. The Railroad Cost Recovery Index (RCRI) is an alternative series. However, neither index is 
perfect for this study. Both are heavily influenced by increases in fuel costs. The mix of labor, materials, 
fuel, and other inputs for track construction is unique. While fuel is a significant construction cost, other 
railroad activities, such as train and yard operations, are more fuel-intensive than construction projects. 
The disadvantage of using an aggregate index is that it reflects cost increases for the railroad as a whole, 
not for a specific category such as track investment. 
 
For comparison purposes, the Civil Works Construction Cost (CWCC) Index for roads, railroads, and 
bridges, published by the U.S. Army Corps of Engineers, is shown in Figure 7.7 This index is specific to 
construction, but reflects highways and bridges as well as track. As the graph shows, the RCAF and the 
CWCC are closely aligned until 2008. All things considered, the RCAF may be the best index. 
 
The sensitivities of the parameter estimates to the two indexes are illustrated in Table 2.10, where 
elasticities for miles of road, gross ton-miles, and time are shown using the RCRI and the RCAF. These 
values are compared with parameter estimates derived from a model that uses nominal investments, 
unadjusted by either index. The elasticities based on nominal dollars reflect the true underlying mix of 
labor, materials, fuel, and other inputs used in track construction each year. However, the coefficients 

                                                      
7 U.S. Army Corps of Engineers, Department of the Army. Civil Works Construction Cost Index System, March 31, 
2011. 
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may be misleading because the dollars are not constantly valued. All things considered, the elasticities 
based on the RACF may be the most relevant ones. 
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3. INTERPRETIVE CONTEXT 
 
In addition to the uncertainties posed by cost indexes, other factors should be considered when 
interpreting the results of this study. 

 

 
Figure 3.7  Comparison of RCRI, RCAF, and CWCC Indexes 

Table 3.12  Estimated Elasticities of Track Investment with Respect to Miles of Road, Gross Ton-Miles, 
and Time Under Different Assumptions 

 Nominal Dollars 

Constant Dollars Based on 
Rail Cost Adjustment 

Factor 
Railroad Cost 

Recovery Index 
Miles of Road 0.6623 0.5902 0.5831 
Gross Ton-Miles 0.6088 0.5026 0.4791 
Time 0.2136 0.1780 0.1721 

 

3.2 Delayed Capital Expenditures 
 
The full cost of owning and operating a rail line includes both capital and maintenance expenditures. If 
capital expenditures are delayed or deferred, maintenance costs may rise. On the other hand, timely 
capital investments may reduce maintenance costs.  
 
In an earlier era, railroads may have delayed capital expenditures because of low returns on investment. 
However, Class I industry returns improved from 1.7% in 1970 to more than 10% in 2006 and exceeded 
5% for most years since 1985. Given this trend, there is a greater likelihood that capital investments were 
made when needed during the analysis period.  
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3.3 Regulated Versus Market Investments 
 
Some investment (and disinvestment) decisions are regulated, while others are not. For example, 
decisions to abandon a main track, extend a line, or construct a new rail line must be approved by the 
STB. In contrast, decisions to upgrade an existing line or add tracks within the existing right-of-way are 
often independent decisions under control of the railway. Nevertheless, investment levels must provide 
for safe operations, as rail lines are subject to inspection by the Federal Railroad Administration. In many 
respects, railroad investment decisions are mixed choices, reflecting purely private objectives as well as 
societal goals.   

3.4 Accounting Interpretations 
 
For the most part, the data series appear to be consistent. However, the distinction between capital and 
maintenance expenditures can be subjective. If expenditures are to be capitalized, the cost of a rebuilding 
a line should be “material” in relation to the cost of replacing it. But, what is material? Projects to 
improve track alignment without roadbed reconstruction pose interpretative dilemmas. Nevertheless, it is 
likely that these decisions are made similarly across railroads. If this is not the case, the railroad indicator 
variables should capture the differences. 

This study utilizes gross (original) investment instead of net investment. The latter is computed by 
subtracting accumulated depreciation from gross investment. Depreciation is an accounting concept, 
based on the typical lives of assets. However, depreciation may reflect tax guidelines or incentives and 
include “accelerated depreciation.” In some years, negative accumulated depreciation is reported in the R-
1. Issues such as these would need to be addressed before net investment could be used as the dependent 
variable in a model. These issues do not affect gross investment, which is a reflection of the railroad’s 
reactions to traffic and profit potential, as well as to general economic indicators. 
 
3.5 Economies of Traffic Density 
 
While the data and model suggest that economies of traffic density exist with respect to investments in 
basic track components, this conclusion cannot be generalized to track maintenance and line operating 
costs. Overall economies of density may be different when line operating and maintenance expenses are 
considered. The model is not offered as a comprehensive cost function. Rather, the study is an empirical 
one, in which patterns of investment are observed over time.  

3.6 Forecasting with the Model 
 
MOR have been relatively constant for the last decade. Given this stability, forecasting investments into 
the future based on variations in RGTM may yield valid results. Nevertheless, railway investment 
decisions are influenced by a variety of business and regulatory factors. Using the model for forecasting 
purposes assumes that these unobserved and uncontrollable factors, which were present between 1985 and 
2008, will remain the same in the future. Predicting beyond the range of RGTM poses additional risks, 
given the nonlinear nature of the model. 

3.7 Relative Contributions of Traffic and Network Size 
 
The relative contributions of MOR and gross ton-miles to track investment are of interest from a 
regulatory perspective. When MOR are held constant (a very realistic scenario), the increase in track 
investment is roughly 50%; i.e., for a 100% increase in RGTM, track investment is expected to increase 
by 50%. However, this is not a completely satisfactory answer. As shown in Table 2.7, the elasticity of 
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investment with respect to time is 18%. T could, at least in part, reflect the upgrading of tracks to handle 
heavier axle loads. 
 
Investments to handle heavier cars do not represent fixed investments. It is unclear whether these effects 
should be attributed, wholly or in part, to “traffic.” Perhaps the best conclusion that can be drawn from 
this study is that there is no compelling evidence to suggest that the traditional assumption (i.e., half of a 
railroad’s investment in road varies with traffic) is no longer applicable to investments in basic track 
components. However, this conclusion cannot be extended to other areas of roadway investment. 
 
Note that in the long run, track investments are primarily a function of traffic. The investment function 
estimated in this study is a short- to intermediate-run one. In the long run, miles of road are theoretically a 
function of traffic, even though MOR and RGTM are independent in the short run. A challenge for this 
and similar studies is that it is impossible to observe track investments measured on a consistent basis 
over a truly long-run period. If the same model was estimated from 75 years of consistent investment 
data, the parameter estimates could change. 
 
3.8 Other Statistical Issues 
 
3.8.1 Multicollinearity  
 
The railroad indicator variables provide valuable information in the model and absorb data anomalies. 
However, the indicator variables are strongly correlated with MOR and RGTM. While multicollinearity is 
often a concern in multiple regression analysis, it poses no real problems for the track investment model, 
with the possible exception that some of the hypothesis tests for the indicator variables may be affected.  
 
The null hypothesis for an indicator variable is that it does not significantly shift the intercept; i.e., its 
effect is nil. As shown in Table 2.7, only four of the indicator variables have p-values > 0.05, meaning 
that they are not statistically significant. It is possible that the standard errors of these variables are so 
inflated by multicollinearity that the hypothesis tests are misleading and that these four indicator variables 
are actually statistically significant. Even if this were true, it would have no real impact on the primary 
interpretations of the study. 
 
However, multicollinearity has a more general effect. The parameter estimates are conditional on the 
indicator variables being included in the model. If the indicator variables are removed, the parameter 
estimates of MOR and RGTM will change. Since there are strong theoretical and practical justifications 
for the indicator variables being included in the model, they should not be removed. Moreover, the 
statistical significance of the indicator variables must be appraised collectively. Dropping the indicator 
variables with high p-values, while keeping the other indicator variables in the model, would not be 
appropriate.8 
 
  

                                                      
8 The significance of the indicator variables as a group can be assessed through a partial F-test. The error sum of 
squares from a reduced model excluding the railroad indicator variables is 3.6592. In comparison, the error sum of 
squares from the full model (including the railroad indicator variables) is 1.4145. The difference in the error sum of 
squares attributable to the railroad indicator variables is 2.2448. This calculated value (which is reflected in the 
numerator of the F-statistic) has 21 minus 18, or 3 degrees of freedom. The error sum of squares from the full model 
(which is reflected in the denominator of the F-statistic) has 232 – 21 – 1, or 210 degrees of freedom. The computed 
F-value of 111 is far greater than the critical F-value of 2.65 for an alpha of .05. This test formally confirms what is 
apparent from Table 2.7. Collectively, the railroad indicator variables significantly improve the model. Therefore, all 
18 indicator variables should stay in the model. 
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3.8.2 Impacts of Other Activity Variables 
 
Introducing another highly correlated activity variable into the model will change the parameter estimates. 
For example, it could be argued that changes in other running track miles are linked to train-miles, more 
so than to revenue gross ton-miles. However, the R-square from a regression of the log of train-miles 
(TM) against the log of RGTM is 0.99. 
 
As shown in Table 3.2, the log of TM is not statistically significant when it is included in a model with 
the log of RGTM and the log of MOR. Its p-value is 0.07. However, this is not a binding statistical 
conclusion, given the possible effects of multicollinearity on hypothesis tests. The primary justification 
for including TM would be if they contribute a unique and independent effect that RGTM does not. This 
is a difficult argument to make, given that the R-square from a regression of the log of TM against the log 
of RGTM is 0.99. 
 
Table 3.13  Results of Track Investment Model with Train-Miles Added 

Variable Estimate Standard Error t Value Approx. Prob. > |t| 
ln(MOR) 0.5591 0.0664 8.42 <.0001 
ln(RGTM) 0.3385 0.1354 2.50 0.0133 
ln(TM) 0.2398 0.1306 1.84 0.0680 
ln(T) 0.1766 0.0195 9.07 <.0001 

For purposes of brevity, only the main variables from a model that also includes 18 indicator variables 
are shown. 

 
The primary effect of TM (when it is included in the model) is to reduce the parameter estimates of the 
other variables. However, the combined partial effects of TM and RGTM are only marginally greater than 
the effect of RGTM in the previous model. The general conclusion regarding the elasticity of track 
investment with respect to “traffic” does not change substantially when TM is added to the model.  
 
The decision in this case is not to add TM, for all of the reasons noted above. However, this is a 
judgmental decision as there may be differing points of view.  
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4. RESEARCH TO EXPAND THE ANALYSIS 
 
The model presented in this paper includes only a subset of roadway investment costs, e.g., the basic track 
accounts. Therefore, it only partially addresses the gap in knowledge. No definitive statements can be 
made regarding the efficacy of the STB’s overall assumption that roadway investment costs are 50% 
variable with traffic. Roadway investment includes many other cost elements. Thus, other models of 
roadway investment are possible.  
 
4.1 Other Roadway Investment Models 
 
A model of traffic control and communication infrastructure could be estimated using investments in 
communication systems, signals and interlockers, power transmission systems, and grade crossings. 
These investments may be more closely related to TM than to RGTM. Traffic control and communication 
investments are affected more by the number of trains per day than by train weight.  
 
Investments in structures, such as tunnels, bridges, and trestles, and miscellaneous facilities could 
comprise additional clusters. Gross ton-miles may be the most logical traffic variable for a structure’s 
sub-model, while investments in other facilities, including station and office buildings, may be more 
appropriately modeled as a function of revenue gross ton-miles or revenue tons. Investments in 
specialized facilities, such as COFC/TOFC terminals, could be modeled as a function of related activities 
(e.g., container and trailer units loaded and unloaded). 
 
A moderate level of effort is involved in developing these models. The R-1 database developed for this 
project includes all of the variables. However, programs must be written to create the input datasets in 
proper format for the models. These data elements have not been examined for consistency or statistical 
issues. 

 
4.2 Individual Component Models 
 
It is also possible to develop models for individual track components, such as rails and other track 
materials, ballast, ties, and roadbed. However, a sub-modeling approach may impose restrictions on the 
regression functions. For example, railroads may trade off better ballast and ties against heavier rails in 
some cases. The track is an integrated structure. The results of individual component models must be 
interpreted accordingly. 
 
4.3 Density Class Models 
 
Using data from Schedule 720, it may be possible to develop separate regression models for density 
classes I and II. The consistency of Schedule 720 data has not been examined. Moreover, programming 
changes are needed to create a database for use with density class models. However, the time and 
resource costs to develop these databases are moderate. The practical applications of the models with  
respect to URCS are unclear. 
 
4.4 Axle Load Effects 
 
In theory, track impacts are a function of axle loads and speed, which determine the dynamic impacts and 
deflections of the track. Car axle loads cannot be effectively computed from R-1 data. In order to add this 
variable, a weighted average would have to be computed from the waybill sample for each railroad, for 
each year. The axle weights in the sample could be weighted by the car-miles of travel.  
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An aggregate measure of speed can be computed from R-1 data by dividing train-miles by train-hours. 
However, this calculated value is a broad system performance measure that includes many factors, such 
as train delays. It is of little use in analyzing the dynamic effects of axle loads. A more promising 
approach is to estimate the weighted-average speed limit from Schedule 720. This variable could serve as 
a proxy for the weighted dynamic effect on each railroad’s system, based on the carrier’s line 
classifications and speed limits. 
 
The resource cost of adding these variables is moderate. However, the probability of success is unknown.  
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APPENDIX A: STATISTICAL MODELING PROCEDURES 
 
In this study, the SAS REG and AUTOREG procedures are used in conjunction with the underlying data 
illustrated in Appendix B. Because the initial results indicate serial correlation, the regression model is 
transformed. To illustrate the issues associated with autocorrelation and potential solutions, the structure 
and assumptions of the ordinary least squares (OLS) model (the results of which are shown in Table 3) 
are briefly introduced. 

A.1 OLS Model: The Starting Point 
 
If the track investment model was not affected by serial correlation, the OLS procedures inherent in 
PROC REG could be used. Using matrix notation, the OLS model can be depicted as: 
 

(A. 1)    𝐘𝐘 = 𝐗𝐗𝜷𝜷 + 𝛜𝛜 
 
𝐘𝐘 represents an (n × 1) vector of observations on the dependent variable, e.g., a 232 × 1 vector of track 
investment data for Class I railroads over time. 𝐗𝐗 is an augmented (n × (k + 1)) matrix of observations of 
explanatory variables. In this case, 𝐗𝐗 is a (232 × [21 + 1]) matrix, in which the first column is a vector of 
ones corresponding to the implied coefficient of the intercept term. 𝜷𝜷 is a (k + 1) × 1 vector of parameters 
to be estimated (including the intercept). The expected value of 𝐘𝐘 (E[𝐘𝐘]) is 𝐗𝐗𝜷𝜷. The variance of 𝐘𝐘 is 
equal to the assumed-to-be-constant variance (𝜎𝜎2) times an identity matrix (i.e., 𝑣𝑣𝑣𝑣𝑣𝑣[𝐘𝐘] = 𝜎𝜎2𝐈𝐈). The 
covariance of the errors (e) is assumed to be zero, i.e., 𝑐𝑐𝑐𝑐𝑣𝑣(𝐷𝐷𝑖𝑖, 𝐷𝐷𝑖𝑖−1) = 0, which is equivalent to saying 
that the 𝑐𝑐𝑐𝑐𝑣𝑣(𝑌𝑌𝑖𝑖 ,𝑌𝑌𝑖𝑖−1) = 0. The objective is to minimize the sum of the squared errors (SSE or 𝒆𝒆𝒆𝒆′). Since 
𝐞𝐞 = 𝐘𝐘 − 𝐗𝐗, SSE may be expressed as: 
  

(A. 2)     SSE = (𝐘𝐘 − 𝐗𝐗𝜷𝜷)′(𝐘𝐘 − 𝐗𝐗𝜷𝜷)  
 
A.2 is minimized by taking the partial derivative with respect to 𝜷𝜷, setting the derivative equal to zero, 
solving for 𝜷𝜷, and verifying that the second derivative is nonnegative.  
 

(A. 3)    
𝜕𝜕
𝜕𝜕𝜷𝜷

SSE =
𝜕𝜕
𝜕𝜕𝜷𝜷

(𝐘𝐘′𝐘𝐘 − 2𝐘𝐘′𝐗𝐗𝜷𝜷 + 𝜷𝜷′𝐗𝐗′𝐗𝐗𝜷𝜷) 
Expand the expression 

(A. 4)    
𝜕𝜕
𝜕𝜕𝜷𝜷

SSE =
𝜕𝜕
𝜕𝜕𝜷𝜷

(2𝐗𝐗′𝐘𝐘+ 2𝐗𝐗′𝐗𝐗𝜷𝜷) 
Take the first derivative 

(A. 5)    2𝐗𝐗′𝐘𝐘+ 2𝐗𝐗′𝐗𝐗𝜷𝜷 = 0 Set it to zero 

(A. 6)    𝐗𝐗′𝐗𝐗𝜷𝜷 = 𝐗𝐗′𝐘𝐘 Rearrange the expression 

(A. 7)    𝜷𝜷 = (𝐗𝐗′𝐗𝐗)−1𝐗𝐗′𝐘𝐘 Solve for  𝜷𝜷 

(A. 8)    
𝜕𝜕2

𝜕𝜕2𝜷𝜷
SSE = 𝐗𝐗′𝐗𝐗 

Evaluate the second derivative 

An assumption in OLS regression is that the errors (i.e., the residuals of the regression) are uncorrelated, 
i.e., their covariance is zero. If this is not true, the OLS parameter estimates may no longer be the 
minimum variance estimators, in which case an autocorrelation model offers improvements.  

 



24 
 

In the following paragraphs, a transformation and autoregression modeling process is illustrated for the 
simple case of first-order autocorrelation. This process—referred to as AR(1)—serves to illustrate a more 
complex process with higher orders of autocorrelation. 
 
A.2 Autocorrelated Errors 
 
An autocorrelated error term may be envisioned as consisting of two components: (1) an inertial error that 
is carried forward from the previous time period, and (2) an error that is specific to the current period.9 
The inertial error reflects perceptions of railroad managers about factors outside the model. These 
unobserved and uncontrolled influences may include perceptions of government policies, regulations, and 
programs; modal competition; the cost of capital and projected ROI; and a variety of risks. Such 
perceptions tend to change slowly.  
 
In addition to inertial perceptions, new factors may affect decision making in any given year. Changes in 
tax policies, stimulus spending, new or revised loan programs and other financial changes not reflected in 
the model may introduce error disturbances. Changes in the competitive milieu (such as changes in 
highway funding and truck size and weight regulations) may have similar effects. 
 
A.2.1 Equation of Autocorrelated Error Term 
 
The previous theory of unobserved influences is reflected in Equation A.9, where 𝐷𝐷𝑖𝑖−1 represents the 
inertial error carried forward from the previous time period and 𝜀𝜀𝑖𝑖 represents the uncorrelated disturbance 
in the current year. 

 
    (A. 9)     𝐷𝐷𝑖𝑖 = 𝜌𝜌𝐷𝐷𝑖𝑖−1 + 𝜀𝜀𝑖𝑖   

 
Rho (ρ) is the autocorrelation coefficient. In a stationary process, it can assume values < |1.0|. The inertial 
error carried forward (𝜌𝜌𝐷𝐷𝑖𝑖−1) must be less than the error in the previous period. This restriction has a 
practical benefit of preventing the error from increasing without bound.  
 
A.2.2 Error Variance and Correlation 
 
Letting 𝜎𝜎𝑒𝑒2 denote the variance of 𝐷𝐷𝑖𝑖 (the inertial component) and 𝜎𝜎𝜀𝜀2 represent the variance of 𝜀𝜀𝑖𝑖, it can be 
shown that: 
 

(A. 10)      𝜎𝜎𝑒𝑒2 =
𝜎𝜎𝜀𝜀2

1 − 𝜌𝜌2
 

 
Moreover, it can be shown that the error covariance [𝑐𝑐𝑐𝑐𝑣𝑣(𝐷𝐷𝑖𝑖 , 𝐷𝐷𝑖𝑖−1)] is equal to 𝜌𝜌𝜎𝜎𝜀𝜀2 and that ρ is the 
correlation coefficient that describes the strength of the relationship between 𝐷𝐷𝑖𝑖  and 𝐷𝐷𝑖𝑖−1. If ρ > 0 
successive errors are positively correlated. If ρ < 0 successive errors are negatively correlated. The 
covariance between errors more than one period apart (i.e., k periods apart) is equal to 𝜌𝜌𝑘𝑘𝜎𝜎𝜀𝜀2, while 𝜌𝜌𝑘𝑘 is 
the correlation coefficient of errors separated by more than one time period. The errors in the 
autocorrelation model are homoscedastic because the variance of 𝐷𝐷𝑖𝑖 is equal to 𝜎𝜎𝜀𝜀2 (1 − 𝜌𝜌2)⁄ , which is the 
same for all observations. 
 
  

                                                      
9 Griffiths, W., Hill, R. and Judge, G.: Learning and Practicing Econometrics, John Wiley and Sons, 1993 
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A.2.3 Transformations to Achieve Desired Error Properties 
 
The objective of the transformation process is to derive a new equation in which the error term is 𝜀𝜀𝑖𝑖 
instead of 𝐷𝐷𝑖𝑖. De-emphasizing the indicator variables that affect only the intercept, the regression equation 
for any observation (except the first one) can be represented as: 
 

 (A. 11)    ln(𝐼𝐼𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1 ln(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖) + 𝛽𝛽2 ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑖𝑖) +⋯+ 𝜌𝜌𝐷𝐷𝑖𝑖−1 + 𝜀𝜀𝑖𝑖 
 

The equation for the previous observation (in period t−1) can be denoted as: 
 

(A. 12)    ln(𝐼𝐼𝑖𝑖−1) = 𝛽𝛽0 + 𝛽𝛽1 ln(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖−1) + 𝛽𝛽2 ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑖𝑖−1) + ⋯+ 𝐷𝐷𝑖𝑖−1 
 

Solving Equation A.12 for 𝐷𝐷𝑖𝑖−1, multiplying both sides of the solved equation by ρ (which results in 
𝜌𝜌𝐷𝐷𝑖𝑖−1 on the left-hand side), substituting the solved equation for 𝜌𝜌𝐷𝐷𝑖𝑖−1 into Equation A.11, and 
simplifying the results yields a transformed equation in which the modified terms are: 

(A. 13)    ln(𝐼𝐼𝑖𝑖∗) = ln(𝐼𝐼𝑖𝑖) − 𝜌𝜌ln(𝐼𝐼𝑖𝑖−1) 

(A. 14)    ln(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖∗) = ln(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖)− 𝜌𝜌ln(𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖−1) 

(A. 15)    ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑖𝑖
∗) = ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀) − 𝜌𝜌ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑖𝑖−1) 

(A. 16)    𝛽𝛽0∗ = 1 − 𝜌𝜌 

𝛽𝛽0∗ is the transformed intercept. After transformation, the error term has the following properties: 
𝜀𝜀𝑖𝑖~(0,𝜎𝜎𝜀𝜀2). However, the transformation results in only n−1 new observations, leaving the first 
observation unchanged. Since, the error of the first observation is not linked to previous ones, the 
equation for the first observation may be written as: 

(A. 17)    ln(𝐼𝐼1) = 𝛽𝛽0 + 𝛽𝛽1 ln(𝑀𝑀𝑀𝑀𝑀𝑀1) + 𝛽𝛽2 ln(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀1) + ⋯+ 𝐷𝐷1 
 

It can be shown that multiplying A.17 by �(1 − 𝜌𝜌2) results in a variance of: 

(A. 18)    𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷1∗) = (1 − 𝜌𝜌2)𝑣𝑣𝑣𝑣𝑣𝑣(𝐷𝐷1) = (1 − 𝜌𝜌2)
𝜎𝜎𝜀𝜀2

1 − 𝜌𝜌2
= 𝜎𝜎𝜀𝜀2 

With this transformation, the errors for all observations have the same desired properties. 
 
A.3 Autocorrelation Modeling Process 
 
The primary steps in the process are: 

1. Run the regression  
2. Output the residuals (errors) to file 
3. Use the outputted errors in a new regression model to estimate the autocorrelation coefficient (ρ) 
4. Estimate the transformed regression equation using the estimated value of ρ from the regression in 

step 3 and the transformed variables shown in Equations A.13–A.16 
5. Output the residuals of the regression using the transformed equation to file 
6. Return to step 3 and use the outputted residuals from step 5 to estimate a revised value of rho 
7. Repeat steps 4–6 until the value of rho from the previous iteration is essentially unchanged 
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To illustrate step 3, let �̂�𝐷 represent the residuals outputted in step 2. The new regression model can be 
depicted as  �̂�𝐷𝑖𝑖 = �̂�𝛽1�̂�𝐷𝑖𝑖−1 + 𝑣𝑣𝑖𝑖, where �̂�𝛽1 is an OLS estimate of the autocorrelation coefficient (𝜌𝜌�) and 𝑣𝑣𝑖𝑖 
is an estimate of the uncorrelated component of the error term.  

The process described above is broadly referred to as generalized least squares (GLS). SAS 
AUTOREG uses a matrix algebra procedure to simultaneously estimate a vector of autoregressive 
parameters that includes many lag variables, not just a single variable corresponding to the first lag 
period.  
 
A.3.1 Model Specification 
 
In many cases, the form of autocorrelation can be hypothesized from theory or observation.  In addition to 
the AR(1) model, second- and third-order autocorrelation models are frequently  hypothesized. In each 
case, the error process is well understood. In this case, it is not. 
 
In the long run, investment in basic track components is a regular process. However, it can be quite 
irregular and periodic in the short run. Rails have long lives. When a line is rebuilt with new rail, it may 
be some time before significant capital investments are made in the line again. Perceptions related to ROI 
and risks may lag several periods. Reactions to changes in government policies may be cautious and 
unfold over many years. Inertial forces may extend over several periods, complicated by the scale and 
cyclical nature of capital investments. 
 
First-order autocorrelation is very likely to be found in the track investment model. However, higher 
orders of autocorrelation may exist. Given the complex structure of the error covariances, an empirical 
approach is used. The R-1 database includes 24 years of observations for most railroads. Therefore, 23 lag 
periods are analyzed. The estimated values of rho (𝜌𝜌�) are graphed in Figure A.1, which shows 
autocorrelation throughout much of the period, including significant autocorrelations in lag years 11 
through 15.  
 

 
Figure A.14 Autocorrelations in Track Investment Model 
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A.3.2 Illustrative Manual Process 
 
An iterative solution procedure for an AR(1) process can be derived using PROC REG. The SAS 
statements used in the first iteration of the process are shown below.   
 

proc reg data=track ; 
model LnI=LnMOR LnRGTM LnT;  
output out=gls1(keep=ehat)  
r=ehat /* residuals */; 

data gls2; 
set gls1; 
* compute lagged value of residual; 
lage=lag(ehat);  

proc reg data=gls2  
outest=rho1  
(keep=lage rename=(lage=rhohat)); 
model ehat=lage; 

data gls4; 
if _n_=1 then set rho1; 
set track; 
* create lag variables; 
ylag = lag(LnI);               
x1lag = lag(LnMor);            
x2lag = lag(LnRGTM); 
x3lag = lag(LnT); 
* transform variables, including intercept; 
if _n_ = 1 then do;   /* first obs. */ 
 y = sqrt(1- rhohat**2)*LnI; 
 x1 = sqrt(1- rhohat**2)*LnMOR; 
 x2 = sqrt(1- rhohat**2)*LnRGTM; 
 x3 = sqrt(1- rhohat**2)*LnT; 
 int = sqrt(1- rhohat**2); 
end; 
else do; 
 y = LnI - rhohat*ylag; 
 x1 = LnMOR - rhohat*x1lag; 
 x2 = LnRGTM - rhohat*x2lag; 
 x3 = LnT - rhohat*x3lag; 
 int= 1 - rhohat; 
end; 

proc reg data=gls4; 
model y=int x1 x2 x3/noint; 

 
This process could be repeated several times by outputting the residuals from the last data step (gls4) and 
returning to step 3 (gls2), until the estimated value of ρ (rhohat) does not change significantly from the 
previous iteration. While this process could be automated with an SAS macro, it is inefficient and 
becomes quite cumbersome when several lag periods are considered. Instead of the manual process, 
PROC AUTOREG is used. The essential SAS statements are shown below.  
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proc autoreg data=track; 
model LnI=LnMOR LnRGTM LnT ATSF BNSF BN UPSP UPCNW SP CNW SOO ICG ICG89 
GTW GTC KCS CR CSX CSXCR NSCR NS / nlag=23 iter; 

 
Before describing how the estimation procedures in PROC AUTOREG work, the generalized least 
squares (GLS) process is highlighted. 
 
A.3.3 Generalized Least Squares 
 
When the errors of a regression model are correlated, the calculation of the variance as 𝜎𝜎2𝐈𝐈 is no longer 
valid. The covariance matrix can no longer be represented as the product of a common (scalar) variance 
times an identity matrix, which has ones on the diagonal and zeros elsewhere. The off-diagonal elements 
of the matrix, which represent the covariances among the errors from different time periods, 
e.g.,[𝑐𝑐𝑐𝑐𝑣𝑣(𝐷𝐷𝑖𝑖 , 𝐷𝐷𝑖𝑖−1)], may not be zero. Instead, the variance-covariance matrix resembles A.19, in the case 
of first-order autocorrelation.  
 

(A. 19)    𝜎𝜎2

⎣
⎢
⎢
⎢
⎡1 𝜌𝜌 𝜌𝜌2 ⋯ 𝜌𝜌𝑛𝑛−1

𝜌𝜌 1 𝜌𝜌 ⋯ 𝜌𝜌𝑛𝑛−2

𝜌𝜌2 𝜌𝜌 1 ⋯ 𝜌𝜌𝑛𝑛−3
⋯ ⋯ ⋯ ⋯ ⋯
𝜌𝜌𝑛𝑛−1 𝜌𝜌𝑛𝑛−2 𝜌𝜌𝑛𝑛−3 ⋯ 1 ⎦

⎥
⎥
⎥
⎤

= 𝜊𝜊2𝐕𝐕 

 
In this situation, the error covariances have a general, but not a specific, form. The variance is equal to 
𝜎𝜎2𝐕𝐕 (as shown above) rather than 𝜎𝜎2𝐈𝐈. Letting 𝚺𝚺 = 𝜎𝜎2𝐕𝐕, the objective of GLS is to minimize the 
generalized sum of squares, as shown in A.20. 
 

(A. 20)    𝐴𝐴𝐴𝐴𝑆𝑆𝑔𝑔 = (𝐘𝐘 − 𝐗𝐗𝜷𝜷)′𝚺𝚺−1(𝐘𝐘 − 𝐗𝐗𝜷𝜷) 
 
Equation A.21 depicts the normal GLS equation, derived in the same manner as before, which can 
subsequently be solved for 𝜷𝜷. 
 

(A. 21)    (𝐗𝐗′𝚺𝚺−1𝐗𝐗)𝜷𝜷 = 𝐗𝐗′𝚺𝚺−1𝐘𝐘 
 
With this background, the estimation procedures used in SAS AUTOREG are described. 
 
A.3.4 Iterated Yule-Walker Method 
 
AUTOREG uses what is called the iterated Yule-Walker method, a GLS process in which the OLS 
residuals are used to estimate the error covariances. Since the autocorrelation coefficient (ρ) is unknown 
and must be estimated from the residuals, the method may be referred to as estimated generalized least 
squares (EGLS), a process in which the estimators have desirable large sample or asymptotic properties 
only. In some publications, the Yule-Walker method has been referred to as the two-step full transform 
method. For an AR(1) process, Yule-Walker estimates are consistent with Prais-Winsten estimates. 
 
In the Yule-Walker method, the initial (structural) model is augmented with a vector of autoregressive 
terms. By simultaneously estimating the regression coefficients and the autoregressive terms of the error 
model, the parameter estimates can be corrected for autocorrelation. In this process, the variance matrix 𝐕𝐕 
is formed from the autoregressive parameters (as illustrated in A.19). Afterward, 𝚺𝚺 is computed as 𝜎𝜎2𝐕𝐕 
and efficient parameters estimates are derived via generalized least squares. The estimation of 𝜷𝜷 using 
GLS is alternated with the estimation of 𝝆𝝆 (a vector of autocorrelation coefficients), in much the same 
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manner as the manual process described earlier. The method starts by generating the OLS estimates of 𝜷𝜷. 
Next, 𝝆𝝆 is estimated from the OLS residuals. 𝐕𝐕 is estimated from the estimate of 𝝆𝝆 and 𝚺𝚺 is estimated 
from 𝐕𝐕 and the OLS estimate of the common variance σ2. The estimates of the regression parameters 𝜷𝜷 
(corrected for autocorrelation) are computed via GLS, using the estimated 𝚺𝚺 matrix. The only difference 
is that in the iterated method, the steps are repeated until the estimates of 𝝆𝝆 are essentially stable. A 
convergence criterion of 0.001 is used. 
 
Other estimation methods can be used with AUTOREG, including unconditional least squares (also 
referred to as nonlinear least squares) and maximum likelihood. The maximum likelihood method is 
recommended in cases where there are many missing values in the data series, which does not apply in 
this case. 
 
The Yule-Walker estimates were shown earlier in Table 2.7. As shown in Table A.2, the maximum 
likelihood method yields somewhat different estimates. Nevertheless, the selection of methods does not 
affect the conclusions of the study. 
 
Table A.15  Parameter Estimates from Autoregression Model Using Maximum Likelihood Method 

Variable Parameter Estimate Standard Error t Value Approx. Pr > |t| 
ln(MOR) 0.5886 0.0636 9.26 <.0001 
ln(RGTM) 0.5415 0.0869 6.23 <.0001 
ln(T) 0.1749 0.0197 8.87 <.0001 

 
A.4 Test for Autocorrelation 
 
The Durbin-Watson test was referred to several times in the paper. The calculation of the Durbin-Watson 
statistic (D) is illustrated in Equation A.22. 
 

(A. 22)    𝑑𝑑 =
∑ (�̂�𝐷𝑖𝑖 − �̂�𝐷𝑖𝑖−1)2𝑛𝑛
𝑖𝑖=2
∑ �̂�𝐷𝑖𝑖2𝑛𝑛
𝑖𝑖=1

 

 
Where �̂�𝐷𝑖𝑖 = 𝐷𝐷𝑖𝑖 − 𝐷𝐷�𝑖𝑖 is the residual for observation “i” from the regression.  
 
A more technically correct statistic for panel datasets has been proposed by Bhargava, et al. (1982).10 In 
this approach, the D statistic shown in Equation A.223 is estimated within each cross-sectional class, e.g., 
each railroad.  
 

(A. 23)     𝑑𝑑𝑝𝑝𝑝𝑝 =
∑ ∑ ��̂�𝐷𝑖𝑖,𝑖𝑖 − �̂�𝐷𝑖𝑖,𝑖𝑖−1�

2𝑇𝑇
𝑖𝑖=2

𝑛𝑛
𝑖𝑖=1

∑ ∑ �̂�𝐷𝑖𝑖,𝑖𝑖2𝑇𝑇
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

 

 
Both statistics have been calculated in this study. Because the time period is 24 years, the two approaches 
produce essentially the same results. Therefore, the Durbin-Watson statistic generated by the SAS 
software is reported in this study. Before a regression analysis is run, the data are sorted by railroad and 
year—a prerequisite for the calculation of either statistic and the running of PROC AUTOREG. 
  

                                                      
10 Bhargava, A., Franzini, L., and W. Narendranathan. “Serial Correlation and the Fixed Effects Model.” Review of 
Economic Studies (1982), XLIX, pp. 533-549. 
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APPENDIX B: DATA 
 
Table B.16  Values of Variables Used in Study 

Year Railroad 

Nominal 
Investment 
(Millions) 

Real 
Investment 

Based on RCRI 
(Millions) 

Miles  
of  

Road 
Rev. Gross Ton-
Miles (Millions) 

1985 ATSF $1,699.49 $1,699.49 11,869 157,684 
1986 ATSF $1,799.32 $1,798.55 11,661 151,567 
1987 ATSF $1,906.36 $1,901.53 11,709 162,949 
1988 ATSF $1,964.07 $1,954.27 11,652 176,361 
1989 ATSF $1,999.36 $1,985.16 11,266 184,985 
1990 ATSF $1,984.65 $1,972.90 10,650 174,188 
1991 ATSF $1,990.52 $1,977.58 9,639 183,349 
1992 ATSF $1,997.78 $1,983.24 8,750 191,942 
1993 ATSF $2,129.92 $2,085.27 8,536 204,541 
1994 ATSF $2,300.21 $2,214.80 8,352 219,414 
1995 ATSF $3,971.82 $3,429.94 9,126 231,333 
1985 BN $3,903.63 $3,903.63 26,780 372,141 
1986 BN $4,000.85 $4,000.10 25,539 379,314 
1987 BN $3,955.10 $3,956.09 23,476 405,198 
1988 BN $3,849.95 $3,860.00 23,391 418,197 
1989 BN $4,140.81 $4,114.62 23,356 430,129 
1990 BN $4,379.87 $4,313.86 23,212 444,586 
1991 BN $4,404.02 $4,333.15 23,088 434,152 
1992 BN $4,572.68 $4,464.43 22,786 432,203 
1993 BN $4,740.11 $4,593.72 22,316 441,711 
1994 BN $4,937.18 $4,743.61 22,189 477,845 
1995 BN $5,155.14 $4,902.05 22,200 529,042 
1996 BNSF $9,758.43 $8,119.94 35,208 732,330 
1997 BNSF $10,118.87 $8,368.03 33,757 838,302 
1998 BNSF $11,192.65 $9,096.80 33,353 921,062 
1999 BNSF $11,371.33 $9,218.35 33,264 949,469 
2000 BNSF $11,910.07 $9,554.09 33,386 958,576 
2001 BNSF $12,429.78 $9,869.05 33,063 981,469 
2002 BNSF $13,429.25 $10,470.39 32,525 955,477 
2003 BNSF $14,117.32 $10,869.94 32,266 991,230 
2004 BNSF $14,820.72 $11,256.99 32,150 1,106,373 
2005 BNSF $15,711.84 $11,691.92 32,154 1,158,305 
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Year Railroad 

Nominal 
Investment 
(Millions) 

Real 
Investment 

Based on RCRI 
(Millions) 

Miles  
of  

Road 
Rev. Gross Ton-
Miles (Millions) 

2006 BNSF $17,558.73 $12,547.49 31,910 1,223,757 
2007 BNSF $18,472.58 $12,951.87 32,205 1,227,033 
2008 BNSF $19,542.32 $13,368.06 32,166 1,224,930 
1985 CNW $619.41 $619.41 7,301 53,455 
1986 CNW $640.60 $640.43 6,305 56,303 
1987 CNW $665.22 $664.12 6,214 56,446 
1988 CNW $664.63 $663.58 5,794 61,037 
1989 CNW $552.68 $565.58 5,650 57,719 
1990 CNW $584.67 $592.25 5,624 56,911 
1991 CNW $618.93 $619.61 5,573 57,540 
1992 CNW $673.47 $662.06 5,419 59,830 
1993 CNW $724.44 $701.42 5,337 65,651 
1994 CNW $756.69 $725.95 5,211 71,018 
1985 CR $3,014.27 $3,014.27 14,025 174,647 
1986 CR $3,322.99 $3,320.62 13,739 175,305 
1987 CR $3,539.05 $3,528.49 13,341 188,585 
1988 CR $3,794.03 $3,761.48 13,111 198,112 
1989 CR $3,991.19 $3,934.07 13,068 191,552 
1990 CR $4,115.38 $4,037.57 12,828 193,964 
1991 CR $3,765.09 $3,757.82 12,454 187,539 
1992 CR $4,055.61 $3,983.96 11,895 193,025 
1993 CR $3,310.39 $3,408.51 11,831 200,936 
1994 CR $3,369.21 $3,453.25 11,349 217,930 
1995 CR $3,171.24 $3,309.34 10,701 211,182 
1996 CR $3,034.50 $3,213.75 10,543 215,110 
1997 CR $3,114.26 $3,268.65 10,801 220,096 
1998 CR $3,169.19 $3,305.93 10,797 226,994 
1985 CSX $3,110.62 $3,110.62 23,945 299,388 
1986 CSX $3,534.61 $3,531.36 22,887 288,572 
1987 CSX $3,628.41 $3,621.60 21,494 310,651 
1988 CSX $3,743.39 $3,726.67 20,376 315,604 
1989 CSX $3,830.15 $3,802.62 19,565 293,003 
1990 CSX $4,152.94 $4,071.65 18,943 318,267 
1991 CSX $4,470.51 $4,325.27 18,854 295,766 
1992 CSX $4,418.19 $4,284.55 18,905 309,593 
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Year Railroad 

Nominal 
Investment 
(Millions) 

Real 
Investment 

Based on RCRI 
(Millions) 

Miles  
of  

Road 
Rev. Gross Ton-
Miles (Millions) 

1993 CSX $4,771.31 $4,557.22 18,779 317,469 
1994 CSX $4,926.64 $4,675.36 18,759 333,507 
1995 CSX $5,049.52 $4,764.69 18,645 343,071 
1996 CSX $5,394.76 $5,006.03 18,504 345,489 
1997 CSX $5,494.33 $5,074.56 18,285 356,293 
1998 CSX $5,742.23 $5,242.81 18,181 363,024 
1999 CSX $6,024.30 $5,434.69 23,357 474,249 
2000 CSX $6,467.96 $5,711.18 23,320 497,518 
2001 CSX $6,598.98 $5,790.59 23,297 489,717 
2002 CSX $6,817.81 $5,922.24 23,160 467,258 
2003 CSX $7,194.58 $6,141.02 22,841 485,501 
2004 CSX $10,272.84 $7,834.87 22,153 507,184 
2005 CSX $10,390.04 $7,892.07 21,357 501,575 
2006 CSX $10,811.76 $8,087.43 21,114 510,137 
2007 CSX $11,273.38 $8,291.70 21,166 493,041 
2008 CSX $11,745.58 $8,475.41 21,204 483,792 
2002 GTC $3,721.43 $2,306.01 6,390 104,014 
2003 GTC $3,701.34 $2,294.34 6,493 105,363 
2004 GTC $4,013.63 $2,466.18 6,822 109,589 
2005 GTC $4,176.46 $2,545.66 6,736 109,498 
2006 GTC $4,314.97 $2,609.82 6,737 111,835 
2007 GTC $4,353.93 $2,627.06 6,738 110,833 
2008 GTC $4,538.17 $2,698.74 6,738 108,413 
1985 GTW $138.46 $138.46 1,310 14,201 
1986 GTW $139.81 $139.79 1,311 14,021 
1987 GTW $124.17 $124.76 943 13,380 
1988 GTW $120.89 $121.76 931 13,905 
1989 GTW $128.91 $128.78 959 14,436 
1990 GTW $137.82 $136.20 927 14,096 
1991 GTW $144.02 $141.15 925 13,277 
1992 GTW $156.14 $150.59 925 14,008 
1993 GTW $173.99 $164.37 925 15,998 
1994 GTW $186.51 $173.89 925 16,715 
1995 GTW $189.31 $175.93 916 16,265 
1996 GTW $201.00 $184.10 918 23,514 
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Year Railroad 

Nominal 
Investment 
(Millions) 

Real 
Investment 

Based on RCRI 
(Millions) 

Miles  
of  

Road 
Rev. Gross Ton-
Miles (Millions) 

1997 GTW $189.78 $176.38 659 25,165 
1998 GTW $211.04 $190.81 646 23,877 
1999 GTW $239.52 $210.18 628 24,829 
2000 GTW $278.93 $234.74 627 26,645 
2001 GTW $298.19 $246.42 627 28,015 
1985 ICG $843.26 $843.26 4,772 54,016 
1986 ICG $780.42 $780.90 3,788 42,052 
1987 ICG $705.10 $708.44 3,205 36,262 
1988 ICG $686.17 $691.14 2,900 36,652 
1989 ICG $349.26 $396.22 2,887 36,086 
1990 ICG $351.10 $397.75 2,773 35,137 
1991 ICG $363.76 $405.46 2,766 37,037 
1992 ICG $376.43 $417.66 2,732 35,207 
1993 ICG $393.16 $430.58 2,717 37,690 
1994 ICG $407.82 $441.73 2,665 39,290 
1995 ICG $430.47 $458.20 2,642 45,337 
1996 ICG $448.65 $470.90 2,623 41,905 
1997 ICG $483.49 $494.89 2,598 42,128 
1998 ICG $511.64 $514.00 2,593 44,463 
1999 ICG $543.75 $535.84 2,591 46,451 
2000 ICG $577.39 $556.80 2,544 50,168 
2001 ICG $609.09 $576.01 2,544 50,094 
1985 KCS $263.88 $263.88 1,661 24,101 
1986 KCS $272.05 $271.99 1,666 22,999 
1987 KCS $292.09 $291.27 1,665 23,095 
1988 KCS $301.02 $299.43 1,681 22,878 
1989 KCS $366.14 $356.43 1,681 23,056 
1990 KCS $391.16 $377.28 1,681 23,669 
1991 KCS $389.98 $376.34 1,682 23,678 
1992 KCS $411.18 $392.84 1,680 25,459 
1993 KCS $433.71 $410.24 1,712 26,313 
1994 KCS $700.50 $613.16 2,880 33,412 
1995 KCS $753.51 $651.69 2,931 37,697 
1996 KCS $769.70 $663.01 2,954 36,916 
1997 KCS $769.26 $662.71 2,845 38,335 
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Year Railroad 

Nominal 
Investment 
(Millions) 

Real 
Investment 

Based on RCRI 
(Millions) 

Miles  
of  

Road 
Rev. Gross Ton-
Miles (Millions) 

1998 KCS $784.21 $672.86 2,756 41,956 
1999 KCS $803.69 $686.11 2,756 42,986 
2000 KCS $812.23 $691.43 2,701 38,434 
2001 KCS $887.89 $737.28 3,102 39,271 
2002 KCS $931.52 $763.53 3,084 37,494 
2003 KCS $950.62 $774.63 3,084 41,104 
2004 KCS $1,009.75 $807.16 3,072 43,630 
2005 KCS $1,094.60 $848.57 3,197 53,943 
2006 KCS $1,118.58 $859.68 3,176 55,721 
2007 KCS $1,290.98 $935.97 3,151 54,431 
2008 KCS $1,506.99 $1,020.01 3,165 53,501 
1985 NS $2,638.60 $2,638.60 17,620 202,461 
1986 NS $2,733.98 $2,733.25 17,520 200,234 
1987 NS $2,707.71 $2,707.98 17,254 203,048 
1988 NS $2,877.33 $2,862.98 17,006 208,730 
1989 NS $3,026.94 $2,993.94 15,955 209,196 
1990 NS $3,417.24 $3,319.24 14,842 218,678 
1991 NS $3,458.20 $3,351.95 14,721 211,409 
1992 NS $3,637.36 $3,491.40 14,703 221,153 
1993 NS $3,755.77 $3,582.83 14,589 228,558 
1994 NS $4,036.88 $3,796.65 14,652 246,101 
1995 NS $4,228.76 $3,936.13 14,407 255,330 
1996 NS $4,505.18 $4,129.36 14,282 261,810 
1997 NS $4,628.21 $4,214.04 14,415 270,247 
1998 NS $4,633.74 $4,217.79 14,423 272,617 
1999 NS $4,728.44 $4,282.22 21,788 396,548 
2000 NS $4,751.58 $4,296.64 21,759 408,243 
2001 NS $4,833.75 $4,346.44 21,569 377,468 
2002 NS $5,077.69 $4,493.20 21,558 372,260 
2003 NS $5,221.11 $4,576.48 21,520 378,836 
2004 NS $9,302.68 $6,822.41 21,336 406,904 
2005 NS $9,613.29 $6,974.01 21,184 415,827 
2006 NS $9,781.08 $7,051.74 21,141 417,423 
2007 NS $10,156.48 $7,217.85 20,890 398,857 
2008 NS $10,665.95 $7,416.07 20,831 391,457 
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Year Railroad 

Nominal 
Investment 
(Millions) 

Real 
Investment 

Based on RCRI 
(Millions) 

Miles  
of  

Road 
Rev. Gross Ton-
Miles (Millions) 

1985 SOO $535.27 $535.27 7,975 39,346 
1986 SOO $539.12 $539.09 7,747 42,956 
1987 SOO $396.23 $401.63 5,809 43,689 
1988 SOO $414.77 $418.57 5,807 39,856 
1989 SOO $420.99 $424.01 5,770 39,235 
1990 SOO $501.96 $491.49 5,293 43,707 
1991 SOO $502.27 $491.74 5,045 43,600 
1992 SOO $549.52 $528.52 5,033 43,556 
1993 SOO $573.62 $547.13 5,062 43,730 
1994 SOO $597.25 $565.11 5,139 40,327 
1995 SOO $351.66 $386.57 5,130 48,893 
1996 SOO $390.15 $413.48 4,980 48,547 
1997 SOO $453.06 $456.79 3,364 41,566 
1998 SOO $500.93 $489.27 3,358 40,282 
1999 SOO $520.57 $502.63 3,261 40,639 
2000 SOO $481.61 $478.35 3,225 43,329 
2001 SOO $505.98 $493.12 3,225 45,281 
2002 SOO $547.28 $517.97 3,225 45,427 
2003 SOO $562.96 $527.08 3,258 48,191 
2004 SOO $602.56 $548.86 3,251 49,945 
2005 SOO $631.23 $562.86 3,511 47,713 
2006 SOO $670.52 $581.06 3,267 48,323 
2007 SOO $697.59 $593.04 3,267 48,670 
2008 SOO $735.55 $607.81 3,267 46,122 
1985 SP $2,491.11 $2,491.11 15,624 200,706 
1986 SP $2,651.37 $2,650.14 15,194 194,792 
1987 SP $2,712.88 $2,709.32 15,046 203,470 
1988 SP $3,062.36 $3,028.67 15,023 210,530 
1989 SP $3,332.37 $3,265.03 15,023 220,390 
1990 SP $3,498.59 $3,403.57 14,846 215,851 
1991 SP $3,554.38 $3,448.12 14,389 214,183 
1992 SP $3,721.61 $3,578.29 14,389 233,049 
1993 SP $3,819.43 $3,653.82 14,099 246,077 
1994 SP $3,620.63 $3,502.62 13,715 268,935 
1995 SP $3,668.91 $3,537.72 15,388 288,759 
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Year Railroad 

Nominal 
Investment 
(Millions) 

Real 
Investment 

Based on RCRI 
(Millions) 

Miles  
of  

Road 
Rev. Gross Ton-
Miles (Millions) 

1996 SP $3,907.74 $3,704.67 14,404 306,641 
1985 UP $1,566.95 $1,566.95 24,259 297,972 
1986 UP $2,967.25 $2,956.52 24,793 304,890 
1987 UP $2,999.35 $2,987.41 24,074 359,644 
1988 UP $3,379.96 $3,335.20 22,653 388,379 
1989 UP $3,508.62 $3,447.83 21,882 389,286 
1990 UP $3,778.91 $3,673.10 21,128 404,333 
1991 UP $3,838.58 $3,720.76 20,261 419,745 
1992 UP $4,044.66 $3,881.17 19,020 436,341 
1993 UP $4,279.23 $4,062.29 17,835 460,359 
1994 UP $4,517.95 $4,243.87 17,499 492,756 
1995 UP $6,668.97 $5,807.51 22,785 626,250 
1996 UP $6,812.47 $5,907.83 22,266 658,322 
1997 UP $9,656.12 $7,865.15 34,946 939,906 
1998 UP $10,588.35 $8,497.84 33,706 905,103 
1999 UP $11,282.92 $8,970.35 33,341 987,482 
2000 UP $12,026.13 $9,433.51 33,035 1,020,951 
2001 UP $12,610.23 $9,787.49 33,586 1,046,395 
2002 UP $13,369.19 $10,244.12 33,141 1,080,195 
2003 UP $14,021.04 $10,622.64 32,831 1,105,236 
2004 UP $14,762.22 $11,030.48 32,616 1,123,480 
2005 UP $15,609.93 $11,444.22 32,426 1,134,716 
2006 UP $16,479.55 $11,847.07 32,339 1,169,215 
2007 UP $17,319.48 $12,218.75 32,205 1,148,521 
2008 UP $18,470.82 $12,666.68 32,012 1,111,650 
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