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ABSTRACT 
 
The highway-rail crossing accident has been long recognized as a priority safety concern for worldwide 
rail industries and researchers because traffic crashes at highway-rail crossings are often catastrophic with 
serious consequences, which include fatalities, injuries, extensive property damage, and delays in both 
railway and highway traffic. Relatively few studies have focused on investigating accidents at highway-
rail crossings. Salmon et al. (2013) indicated that because of limited research efforts, various aspects of 
highway-rail crossing safety performance remain poorly understood. Therefore, a safety evaluation (i.e., 
accident frequency prediction) of highway-rail crossings is needed to re-examine both prediction methods 
and contribution factors (Austin & Carson, 2002).  

Generalized linear models (GLMs) have been frequently used in highway safety studies to explore the 
relationship between crash likelihood and contributors and to forecast future highway rail grade crossing 
accident likelihood because they are believed to be better suited for discrete and non-negative crash 
frequency data. However, GLMs have several limitations, such as a pre-defined underlying relationship 
between target variable and predictors and their limitations to fit dynamic non-linear relationships. Non-
parametric data mining methods are gaining popularity because they are not required to pre-define the 
underlying relationship between dependent and independent variables. They also model non-linear 
relationships among variables with missing data and between contributor variables and predictors. 

This research seeks to investigate highway rail grade crossing (HRGC) crash predicting models and 
contributing factors by exploring the application of GLM and data mining models. In summary, data 
mining models can serve as great alternative modeling tools to perform crash forecasting with relatively 
accurate forecasting power and strong ability to model non-linear relationships between contributors and 
crash likelihood. All the models will provide different sets of contributors. However, decision tree models 
may be hard to apply due to their large tree structure. Since GLM models are parametric, they tend to pick 
a limited number of explanatory variables; data mining algorithms, also considered as non-parametric 
algorithms, tend to select more contributor variables.  However, the top contributors identified by all the 
methods agree with each other on traffic exposure variables, such as highway traffic volume, rail traffic 
volumes, and their travel speed, and also on some crossing characteristics such as warning devices. 
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1. INTRODUCTION 
 

1.1 Background 
 

A highway-rail grade crossing (HRGC) is the intersection where a highway and a railway cross at the 
same elevation or grade. HRGCs are critical spatial locations of utmost importance for transportation 
safety because traffic crashes at HRGCs are often catastrophic with serious consequences, including 
fatalities, injuries, extensive property damage, and delays in railway and highway traffic (Raub, 2009.)  
The consequences can be exacerbated if collisions involve freight trains carrying hazardous materials, 
which could spill and create an environmental disaster and increased danger to those nearby. From 1996 
to 2014, 26% of RGC accidents in North Dakota involved hazardous material. The need to improve traffic 
safety has been a major social concern in the United States for decades. Transportation agencies and other 
stakeholders must identify the factors that contribute to the likelihood of an RGC collision to better 
predict crash probability and provide direction for RGC designs and policies that will reduce crash 
numbers. 
 
1.2 Research Objectives 
 

The primary objective of this project is to explore forecasting models that can identify impacted grade 
crossings in terms of future safety upgrades.  

The following major tasks have been included in the scope of the study: 

1. Explore and compare HRGC crash forecasting models, including statistical models and data 
mining models 

2. Develop, demonstrate, and validate the crash forecasting models and conduct contributor variable 
analysis 

3. Train one Ph.D. student on the various theoretical and applicable methods employed  
4. Develop publications and associated reports 

These research objectives will further the overall goals of promoting economic development, safety, 
interdisciplinary education, workforce development, and technology transfers that serve the critical needs 
of the Mountain-Plains Region. 

1.3 Report Organization 
 
This section introduces the report’s organization, which is as follows: 

• Section 2 conducts a complete literature review on the crash forecasting models. 
• Section 3 introduces the data used in this research. 
• Section 4 summarizes the application findings with statistical analysis. 
• Section 5 summarizes the application findings with data mining analysis. 
• Section 6 summarizes the conclusions and recommendations from the study. 
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2. LITERATURE REVIEW 
 
GLM models all require pre-defining the underlying distribution relationship between contributors and 
predictors. Poisson regression has been commonly used to model crash frequency because of the discrete 
and non-negative nature of crash data. However, Lord and Mannering (2010) pointed out that, although 
the GLMs possess desirable elements for describing accidents, these models face various data challenges 
and are shown to be a potential source of error in terms of incorrectly specifying statistical models that 
can result in incorrect predictions and explanatory factors. The most common crash data underlying 
distribution are over- or under-dispersion. Over-dispersion is where sample variance is greater than 
sample mean. In many collision data bases, the variance in accident frequency is higher than the mean. 
Over-dispersion arises from the unmeasured uncertainties associated with the observed or unobserved 
variables (Lord & Park, 2008). On rare occasions, crash data can display under-dispersion where the 
sample variance is less than the sample mean (Oh, Washington, & Nam, 2006). These issues are 
problematic (Lord & Mannering, 2010), because the most common count-data modeling approach 
requires that the variance be equal to the mean. Over- and under-dispersed data would lead to inconsistent 
standard errors for parameter estimates when using the traditional Poisson distribution (Cameron & 
Trivedi, 1998). Because of this, Poisson regression is usually a good modeling starting point (Oh, 
Washington, & Nam 2006). When data show over-dispersion, some modifications to the standard Poisson 
model are available to account for over-dispersion, such as Poisson-gamma or the negative binomial (NB) 
model (Lord & Mannering, 2010). When under-dispersion arises, less common models, such as the 
gamma probability count model, is believed to be capable of handling under-dispersion issues (Oh, 
Washington, & Nam, 2006). Poisson and NB or Poisson-gamma models have been shown to have great 
limitations when applied to under-dispersed crash data (Oh, Washington, & Nam, 2006).  

The statistical analysis part of this research will explore the potential GLM model options to handle 
under-dispersed HRGC crash data by 1) demonstrating the general forms of various models and 2) 
Investigating and comparing models that may handle under-dispersed data with public North Dakota 
HRGC crash data analysis in this research. That is followed by a data mining algorithm analysis to 
explore the non-linear relationship and forecasting power.  

2.1 Literature Review on Selected GLM Algorithms 
 
2.1.1 Poisson Model 
 
Non-negative integer count data are often approximated well by the Poisson regression model. In a 
Poisson regression model, the probability of HRGC i having 𝑦𝑦𝑖𝑖 crash (where 𝑦𝑦𝑖𝑖 is the expected number of 
0, 1, 2,…) is given by:  
 

𝑃𝑃(𝑦𝑦𝑖𝑖) = 𝑒𝑒(−𝜆𝜆𝑖𝑖)(𝜆𝜆𝑖𝑖
𝑦𝑦𝑖𝑖)

𝑦𝑦𝑖𝑖!
= 𝑒𝑒−𝜇𝜇(𝜇𝜇𝑦𝑦𝑖𝑖)

𝑦𝑦𝑖𝑖!
                                                                                                                   (1) 

 
Where, 𝜆𝜆𝑖𝑖 is the predicted count or Poisson parameter for HRGC i, which is equal to HRGC i’s expected 
number of crashes per year, E[𝑦𝑦𝑖𝑖] or 𝜇𝜇. The Poisson model is specifying the Poisson parameter 𝜆𝜆𝑖𝑖 as a 
function of explanatory variables, and the most commonly selected functional form (or function link) is in 
log-linear form: 
 
log(𝜆𝜆𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 +⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚                                                                                           (2) 
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where 𝛽𝛽s are the estimated regression coefficients and 𝑥𝑥s are the explanatory variables. One important 
property of the Poisson distribution model is that it restricts equal mean and variance of the distribution: 
 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = E[Y] = 𝜇𝜇                                                                                                                                 (3) 
 
If the mean is not equal to the variance of the crash counts, then the data are said to be either over- or 
under-dispersed, and the resulting parameter estimate will be biased (Cameron & Trivedi, 1998). Crash 
data have been found to often exhibit over-dispersion due to unmeasured variances associated with the 
observed or unobserved variables (Lord & Park, 2008). 
 
2.1.2 Negative Binomial Model 
 
The negative binomial or Poisson-gamma mixture model is a variant of the Poisson model designed to 
deal with over-dispersed data.  The negative binomial model relaxes the constraint of equal mean and 
variance. The model assumes that the Poisson parameter 𝜆𝜆𝑖𝑖 follows a gamma probability distribution as: 
 
log(𝜆𝜆𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 +⋯+ 𝛽𝛽𝑚𝑚𝑥𝑥𝑖𝑖𝑚𝑚 + 𝜀𝜀𝑖𝑖                                                                               (4) 
 
where Exp(𝜀𝜀𝑖𝑖) is a gamma distributed error term with other variables as defined earlier. The addition of 
this term allows the sample mean to differ from the sample variance such as: 
 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝐸𝐸[𝑌𝑌](1 + 𝑘𝑘𝐸𝐸[𝑌𝑌]) = 𝐸𝐸[𝑌𝑌] + 𝑘𝑘𝐸𝐸[𝑌𝑌]2 = 𝜇𝜇 + 𝑘𝑘𝜇𝜇2                                                                 (5) 
 
where 𝑘𝑘 is a second ancillary or heterogeneity parameter and often refers to the dispersion parameter 
(Saha & Paul, 2005), if 𝑘𝑘 equals 0, the negative binomial model reduces to the Poisson model. As an NB 
model, counts are gamma distributed as they enter into the model, and 𝑘𝑘 also enters into the model as a 
measure of over-dispersion in the data. 
 
The NB model is probably the most frequently used model in traffic crash data analysis; however, the NB 
models suffer limitations to handle under-dispersed data. If the dispersion parameter, 𝑘𝑘, is set as a 
negative value to try to handle the under-dispersion issue, it would make the count no longer gamma 
distributed and lead to unreliable parameter estimates, especially when sample mean is low and sample 
size is small (Saha & Paul 2005; Oh, Washington, & Nam, 2006). 
 
2.1.3 The Gamma Model 
 
The gamma model has been proposed by Oh et al. (2006) to handle under-dispersed HRGC crash data. 
The gamma count model for count data is given as: 
 
Pr(𝑦𝑦𝑖𝑖 = 𝑗𝑗) = 𝐺𝐺𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉(𝛼𝛼𝑗𝑗, 𝜆𝜆𝑖𝑖) − 𝐺𝐺𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉(𝛼𝛼𝑗𝑗 + 𝛼𝛼, 𝜆𝜆𝑖𝑖)                                                                         (6) 
 
where 𝜆𝜆𝑖𝑖 = exp(𝛽𝛽𝑋𝑋𝑖𝑖) and 𝜆𝜆𝑖𝑖 is the mean of the crashes, 𝜇𝜇. 
 

𝐺𝐺𝑉𝑉𝐺𝐺𝐺𝐺𝑉𝑉(𝛼𝛼𝑗𝑗, 𝜆𝜆𝑖𝑖) = �
1,                                                                   𝑖𝑖𝑖𝑖 𝑗𝑗 = 0
1

Γ(𝛼𝛼𝛼𝛼)∫ 𝑢𝑢𝛼𝛼𝛼𝛼−1𝑒𝑒−𝑢𝑢𝑑𝑑𝑢𝑢𝜆𝜆𝑖𝑖
0                              𝑖𝑖𝑖𝑖 𝑗𝑗 > 0                                                    (7) 

 
where 𝛼𝛼 is the dispersion parameter, if 𝛼𝛼 <1, there is over-dispersion; if 𝛼𝛼>1, there is under-dispersion; 
and if 𝛼𝛼 =1, the gamma model reduces to the Poisson model, which would indicate the model can handle 
both under- and over-dispersion.  Although the model is flexible enough to handle crash data, its 
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limitations constrain its applications (Lord & Mannering, 2010), these limitations include a time-
dependent observation assumption (Cameron & Trivedi, 1998) and a two-state characteristic to handle 
zero observations separately (Lord & Mannering, 2010), because general gamma distribution restricts 
discrete responses to positive values. 
 
2.1.4 The Conway-Maxwell-Poisson Model 
 
The Conway-Maxwell-Poisson (CMP) is a generalization of the Poisson distribution that enables it to 
model both under- and over-dispersed data. The CMP is defined to be the distribution with probability 
mass function: 
 
𝑃𝑃(𝑦𝑦𝑖𝑖) = 1

𝑍𝑍(𝜆𝜆𝑖𝑖,𝑣𝑣𝑖𝑖)
𝜆𝜆𝑖𝑖
𝑦𝑦𝑖𝑖

(𝑦𝑦𝑖𝑖!)𝜐𝜐𝑖𝑖
                𝑖𝑖𝑓𝑓𝑉𝑉 𝑦𝑦𝑖𝑖 = 0, 1, 2, ….                                                                                (8) 

 
Note that, except for the normalization factor, 𝑍𝑍(𝜆𝜆𝑖𝑖, 𝑣𝑣𝑖𝑖), which equals to∑ 𝜆𝜆𝑖𝑖

𝑛𝑛

(𝑛𝑛!)𝑖𝑖
∞
𝑛𝑛=0 , the CMP distribution 

is very similar to Poisson distribution with an extra parameter, 𝜐𝜐𝑖𝑖, which can take any non-negative value. 
The CMP distribution overcomes the requirement that mean and variance are equal by introducing 𝜐𝜐 to 
allow flexibility in modeling the tail behavior of the distribution. If 𝜐𝜐 = 1, the distribution is Poisson 
distribution. If 𝜐𝜐 < 1, the distribution will have longer tails than the Poisson distribution and can model 
over-dispersed data. A special case in this situation is, when 𝜐𝜐 = 0 and 𝜆𝜆 < 1, the distribution is 
geometric distribution, an extreme over-dispersion. If 𝜐𝜐 > 1, the distributions have shorter tails than the 
Poisson distributions and can model under-dispersed data. Another special case in this situation is, when 
𝜐𝜐 → ∞ 𝑉𝑉𝑎𝑎𝑑𝑑 𝜆𝜆 < 1, the distribution is Bernoulli distribution, an extreme under-dispersion, and the data 
can only take the values of 0 and 1.  

The CMP distribution does not have closed-form expressions for its moments in terms of the 
parameters 𝜐𝜐 𝑉𝑉𝑎𝑎𝑑𝑑 𝜆𝜆, approximated by Shmueli et al. (2005), and mean and variance are estimated by: 
 
𝐸𝐸[𝑌𝑌] ≈ 𝜆𝜆1/𝜐𝜐 + 1

2𝜐𝜐
− 1

2
                                                                                                                                 (9) 

 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] ≈ 1

𝜐𝜐
𝜆𝜆1/𝜐𝜐                                                                                                                                        (10)    

       
 Guikema and Coffelt (2008) proposed a re-parameterization of the Shmueli et al. (2005) model in which 
and mean and variance can be approximated as: 
 
𝐸𝐸[𝑌𝑌] ≈ 𝜇𝜇 + 1

2
𝜐𝜐 − 1

2
                                                                                                                                    (11) 

 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] ≈ 𝜇𝜇

𝜐𝜐
                                                                                                                                                (12)   

  
The dispersion is defined as: 
 
𝐷𝐷[𝑌𝑌] = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌)

𝐸𝐸(𝑌𝑌)
≈ 1

𝜐𝜐
                                                                                                                                     (13) 
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2.1.5 The Bernoulli Model 
 
The Bernoulli distribution model is a logistic model that restricts responses and follows the Bernoulli 
distribution and only has two possible outcomes, “failure” or “success” (0 or 1). The distribution is given 
as: 
 
𝑃𝑃(𝑦𝑦𝑖𝑖) = 𝜇𝜇𝑦𝑦𝑖𝑖(1 − 𝜇𝜇)(1−𝑦𝑦𝑖𝑖)                       𝑖𝑖𝑓𝑓𝑉𝑉 𝑦𝑦𝑖𝑖 = 0,1,2, ….                                                                (14) 
 
For the Bernoulli distribution, the response is binomial events. The variance is: 
 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝜇𝜇(1 − 𝜇𝜇)                                                                                                                            (15)    
 
The Bernoulli model only can handle under-dispersed data based on the relationship between sample 
variance and mean. 
 
2.1.6 The Hurdle Poisson Model 
 
The hurdle Poisson model allows for a systematic difference in the statistical process governing 
observations with zero counts and those with a positive number of counts. One part of the hurdle model is 
a binary outcome model (logistic) governing observations with zero and positive counts; the second part 
of the model is a truncated-at-zero Poisson count model for observations with positive counts. The hurdle 
model is not only flexible enough to handle both under- and over-dispersion but also can account for 
“excess zeros.” The probability distribution of the hurdle model is given as: 
 

𝑖𝑖(𝑦𝑦𝑖𝑖) = �
𝑖𝑖1(𝑧𝑧𝑖𝑖𝛾𝛾)                                                                            𝑦𝑦𝑖𝑖 = 0

1−𝑓𝑓1(𝑧𝑧𝑖𝑖𝛾𝛾)
1−𝑓𝑓2(0)  𝑖𝑖2(𝑦𝑦𝑖𝑖) = 𝜙𝜙 𝑖𝑖2(𝑦𝑦𝑖𝑖)                                                𝑦𝑦𝑖𝑖 = 1, 2, … . .                            (16) 

 
Where 𝑖𝑖1(𝑧𝑧𝑖𝑖𝛾𝛾), the probability of extra zeros,𝜋𝜋, is the density function of the logistic model with 
explanatory variables 𝑧𝑧𝑖𝑖 and parameters 𝛾𝛾.  𝑖𝑖2(𝑦𝑦𝑖𝑖) is the probability density function of a truncated 
Poisson regression model. The numerator of 𝜙𝜙 is the probability of crossing the hurdle and if the 
numerator is the same as the denominator, which is the sum of probabilities of positive counts, 𝜙𝜙=1, 
which will reduce the hurdle model back to a one-stage parent model. When excess zeros exist, 𝜙𝜙>1.  The 
variance and mean are defined as: 
 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝜙𝜙𝜆𝜆2(𝜆𝜆2 + 1) − (𝜙𝜙𝜆𝜆2)2                                                                                                    (17) 
 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝐸𝐸[𝑌𝑌] + 1−𝜙𝜙

𝜙𝜙
(𝐸𝐸[𝑌𝑌])2                                                                                                         (18) 

 
where 𝜆𝜆2 is the expected value of the un-truncated parent distribution. Under-dispersion is obtained for 
1< 𝜙𝜙 < 𝜆𝜆2+1

𝜆𝜆2
 and when 0< 𝜙𝜙 < 1 over-dispersion is obtained. 
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2.1.7 Zero-inflated Poisson Model (ZIP) 
 
Zero-inflated models are theorized to account for “excess zeroes,” which means zeroes observed in the 
data base are beyond the number of zeroes predicted by Poisson models. The model is a mixed model 
with two components and is a dual-state model like the hurdle model. The difference between the ZIP and 
hurdle models is that only one component of the hurdle model corresponds to the zero-generating process, 
but both components in the ZIP model govern the zero-generating process. 
 
One part of the ZIP model is a binary outcome model (logistic) that governs observations with excess 
zeros and non-zero counts. The second part of the model is governed by a Poisson distribution that 
generates counts, some of which can be zero. ZIP assumes that events, Y = {𝑦𝑦𝑖𝑖}, are independent, and the 
probability distribution of the hurdle model is given as: 
 

𝑖𝑖(𝑦𝑦𝑖𝑖) = �
𝑖𝑖1(𝑧𝑧𝑖𝑖𝛾𝛾) + (1 − 𝑖𝑖1(𝑧𝑧𝑖𝑖𝛾𝛾))𝑖𝑖2(0)                                                                    𝑦𝑦𝑖𝑖 = 0
�1 − 𝑖𝑖1(𝑧𝑧𝑖𝑖𝛾𝛾)� 𝑖𝑖2(𝑦𝑦𝑖𝑖)                                                                       𝑦𝑦𝑖𝑖 = 1, 2, … . .                      (19) 

where 𝑖𝑖1(𝑧𝑧𝑖𝑖𝛾𝛾) is the probability of extra zeros,𝜋𝜋, 𝑖𝑖2(𝑦𝑦𝑖𝑖) = 𝜆𝜆𝑦𝑦𝑖𝑖𝑒𝑒−𝜆𝜆

𝑦𝑦𝑖𝑖!
 is the probability density of Poisson, 

and 𝜆𝜆𝑖𝑖 is the expected Poisson count for the ith individual. The variance and mean are defined as: 
 
𝐸𝐸[𝑌𝑌] = 𝜆𝜆(1 − 𝜋𝜋)                                                                                                                                 (20)    
 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌] = 𝜆𝜆(1 − 𝜋𝜋)(1 + 𝜆𝜆𝜋𝜋)                                                                                                              (21)    
 
2.2 Literature Review on Data Mining Algorithms 
 
2.2.1 Decision Tree Model 
 
A decision tree (DT), a non-parametric data mining method without any requirement to pre-define the 
underlying relationship between dependent and independent variables, has a powerful capability for 
detecting patterns in a large data set. Unlike GLM models, it substitutes surrogate splitters for missing 
primary splitters.  The surrogate splitters mimic the primary splitters (SAS Institute Inc.). Although the 
DT method is relatively new in HRGC crash rate studies, it shows a strong predictive ability and is widely 
used in economy, business, agriculture, and other fields (Raorane & Kulkarni, 2012).  

A DT is a hierarchical tree-based prediction model. There are two types of DT models: classification tree 
and regression tree. A classification tree is developed for categorical target variables; whereas, a 
numerical target variable will be fitted with a regression tree. The target variable in this study is discrete 
with two outcome levels: crossings with a crash and crossings without a crash. Thus, a classification tree 
will be generated. 

 Generally, DT development involves three steps. The first is tree growth. As shown in Figure 2.1, at the 
beginning, all data are concentrated in the root node.  
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Figure 2.1  Structure of a Typical Decision Tree 
 
The data set is then broken down into child nodes by applying a series of splitting variables (splitters). 
Each child node will be treated as a parent node for further splitting. The principle behind splitting is to 
ensure each child node is as homogeneous as possible after splitting. The ID3 algorithm measures 
entropy, expected entropy, and information gained to decide if a variable should be chosen as the splitter, 
and whether or not the node can be further split (Sayad, 2010). Entropy measures the amount of 
unpredictability in an event. The higher the entropy value, the harder it is to predict the outcome of an 
event. If a sample is completely homogeneous, the entropy value should be zero. For a variable S with c 
distinct values, the entropy E(S) of S is calculated as Equation (22): (Freitas, 2013) 

∑
=

−=
c

i
ii ppSE

1
2log)(

                                                                                                     (22) 

Where pi is the probability of taking a certain value, I is the index number of options. 

If variable S is divided into subsets: S1 , …  Sc by certain splitters, the expected entropy (EH) measures 
the expected unpredictability of these c outcomes of variable S after splitting, and calculated as: 
 

)log(
1

2∑
=

−×=
c

i
ii

i pp
a
aEH

                                                                                             (23) 
 
Where: ai is the number of observations in each subset S1 , …  Sc , and a is the total number of 
observations in parent node S. 
 
The difference between EH and E(S) is called the reduction in entropy or information gain (I), shown in 
Equation (24). Information gain measures how much a splitter can help predict the outcomes. The 
variable that generates the highest information gain discriminates the parent node into the most 
homogeneous child nodes. Thus, after computing the information gain for candidate variables, the one 
with the highest information gain will be selected as the splitting variable. 
 

EHSEI −= )(                                                                                                                      (24) 

A node with an information gain 0 is considered as a terminal node, which means no further splitting can 
be performed, and the data in each terminal node will be the most homogenous. After applying the steps 
above recursively, a saturated tree is obtained. The saturated tree provides a best fit to the training data, 
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but also ends up over-fitting the data set. Thus, the data set is divided for training and validating. The 
training data are used for splitting the nodes, and validating data are for measuring the misclassification 
rate in the pruning step. After a sequence of pruned trees are established, the last step is to select the 
optimal one from the sequence of pruned trees, based on a measurement of the misclassification rate of 
validation data. 
 
2.2.2 Gradient Boosting Model 
 
The gradient boosting (GB) method is an extension of DT algorithm, which is also known as multiple 
additive trees. The GB method theoretically extends and improves the simple DT model using stochastic 
gradient boosting (Friedman, 2001). A GB model can be viewed as a series expansion approximating the 
true functional relationship (Salford-Systems). In general, the GB model starts by fitting the data with a 
simple DT model, which has a certain level of error in terms of fitness with the data. The simple DT 
model is referred to as a weak learner. Considering the errors having the same correlation with outcome 
value, the GB model then develops another DT model on the errors or the residuals of the previous tree. 
The detailed algorithm of GB is described as follows (De’ath, 2007; Hastie, Tibshirani, & Friedman, 
2009): 
 

∑∑ ==
n

nn
n

n xgxfxf ),()()( γβ
                                                                                           (25) 

 

where x is a set of predictors, and f (x) is the approximation of the response variable.  g(x,γn) are single 
decision trees with the parameter γn indicating the split variables. n (n=1,2,…,n) are the coefficients and 
determine how each single tree is to be combined. 

The iterative tree-building process keeps adding trees until all observations are perfectly fitted, and 
iterative training will stop when the performance of the model reaches a point where the model predicts 
well for both the training and testing data sets. 

2.2.3 Neural Network Model 
 
Neural Network (NN) is a progressive learning process inspired by the biological neural network of 
animal brains. Information is processed and passes through the NN by a group of connected units or 
nodes called neurons (analogous to biological neurons of animal brains). A typical NN structure is shown 
in Figure 2. A typical NN contains three layers: input, intermediate (also called the hidden layer), and 
output. Each neuron in the input layer is one predictor, denoted as Xi in Figure 2.2. A hidden layer is a 
layer of neurons transferring information from inputs into outputs. Several hidden layers can be placed 
between the input and output layers. The value of a neuron in the input layer is transferred into hidden 
layers through a transformation function. The weight (Wij) represents the ratio of transformed value to the 
value of the input variable. The downstream is computed as the summation of the values of neurons in the 
upstream layer multiplied by the corresponding connection weights (W in Figure 2.2). Information 
transfers from hidden layers to the output layer through an activation function. In this study, the target 
variable, crashes, is defined as a two-level variable: 0 and 1 indicating non-event level and event level, 
respectively. Thus, in this research, the binary step function is suitable for activation function and 
expressed as Equation (26) (McCulloch & Pitts, 1943): 
 





>
<

=
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                                                                                                          (26) 
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where x is predicted value. When x is greater than a defined threshold, the predicted output is 1, 
otherwise, 0. 

The NN will be initialized with random weights and run through the model for the first time. This run is 
very unlikely to result in the optimal solution. Thus, in the following iterations, the model will change the 
weights to get a smaller error. This process will repeat numerous times until the desired output agrees 
within some predetermined tolerance. The entire procedure is called back propagation.  
 

 
Figure 2.2  Structure of Neural Network 
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3. DATA 
 
3.1 Data Sources 
 

With consideration given to data size and needs for local RGC crash analysis for North Dakota, data for 
this investigation were extracted from public RGC data in the state from 1996 to 2014. In this research, 
344 public highway-rail grade crossing accidents occurring from 1996 to 2014 were selected from a 
sample of 5,551 highway-rail grade crossings records.  

Data to support the research came from two resources: (1) the FRA’s Office of Safety accident/incident 
database and (2) the FRA’s Office of Safety highway-rail crossing inventory. The accident/incident 
database provides accident-related information for each accident occurrence. The highway-rail crossing 
inventory database describes each crossing’s location, traffic conditions, infrastructure equipment, and 
historical accident information. A new data set was generated by using the highway-rail grade crossing 
identification number in both data sets to include data elements in both data sets for each crossing.  

3.2 Data Analyzed 
 
All explanatory variables, including warning devices, highway pavement condition, appearance of 
pavement markings, appearance of interconnection/pre-emption, smallest crossing angle, appearance of 
pullout lane, functional classifications of highway, train traffic density, highway user types, weather 
conditions, track conditions, highway traffic density, maximum train speed, location, accident history, and 
commercial power availability were investigated and tested and are shown in Table 3.1.  

A binary target variable (ACCIDENT) is defined with two classes: a value of 1 indicates that there was a 
crash, while value of 0 represents a crossing with no crash. These variables can be divided into three 
categories: traffic characteristics, highway characteristics, and crossing characteristics. Traffic 
characteristics record traffic information at crossings. These characteristics describe highway and railway 
traffic volume and traffic speed. Highway characteristics contain highway design information at 
crossings, such as number of highway lanes, pavement, and highway system levels. Crossing 
characteristics describe warning devices and other crossing related characteristics.  

3.3 Data Management Plan 
 
Detailed metadata and archiving information regarding the data used in this analysis are documented in 
Appendix A. 
 
Table 3.1  Input Variable Description 

Variable Property Description 
ACCIDENT Target 

 
1= crash happened, 0=no crash  

ID ID variable Crossing identification 
Traffic Characteristics 
AADT_N Numeric Annual average daily traffic 
AVERAGE_TRAIN_SPEED Numeric Average train speed 
DAYSWT Numeric Day switching train movements 
DAYTHRU Numeric Day through-train movements 
NGHTSWT Numeric Night switching-train movements 
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NGHTTHRU Numeric Night through-train movements 
SCHLBUS Numeric Average number of school bus passing over the 

crossing on a school day 
Highway Characteristics 
Highway_Paved Category Is highway paved or not? 1=yes, 0=no 
Highway_Stop Category Highway stop sign presence: 1=yes, 0=no 
HWYSYS Category Highway system: 1=interstate national highway 

system, 2=other national highway system, 
3=federal-aid highway system, 4=non-federal-aid 
highway system 

TRUCKLN Category Are truck pull-out lanes present? 1=yes, 0=no 
Crossing Characteristics 
ADVWARN Category Railroad advance warning signal presence: 1=yes, 

0=no 
COMPOWER Category Commercial power availability: 1=yes, 0=no 
DOWNST Category Does track run down a street? 1=yes, 0=no 
FLASHMAS Numeric Number of mast mounted flashing lights in pairs 

FLASHNOV Numeric Number of cantilevered flashing light not over 
traffic lane 

FLASHOV Numeric Number of cantilevered flashing light over traffic 
lane 

FLASHPAI Numeric Number of flashing light in pairs 
GATES Numeric Number of gates 
Near_City Category In or near city? 1=near city, 0=in city 
PAVEMRK Category Pavement markings: 1=less than 75 ft., 2=75 to 

200 ft., 3=200 to 500 ft., 4=N/A 
SGNLEQP Category Is track equipped with train signals? 1=yes, 0=no 

SPSEL Category Train detection: 1=constant warning time system 
(CWT), 2=Direct current audio frequency overlay 
(DC/AFO), 3=N/A 

STOPSTD Numeric Number of highway stop signs 
TOTAL_NUMBER_TRACK Numeric Number of rail tracks 
TRAFICLN Numeric Number of traffic lanes crossing railroad 
WHISTBAN Category Quiet zone: 1=24 hours, 2=partial, 3=unknown, 

4=no 
WIGWAGS Numeric Number of wigwags 
XANGLE Category Smallest crossing angle: 1=0-29, 2=30-59, 3=60-

90 
XBUCK Numeric Number of cross buck 
No-Historical Accident Category 1=with historical accident and 0=no historical  
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4. GLM ANALYSIS RESULTS AND DISCUSSIONS 
 
4.1 Result Analysis 
 
The estimation results of the saturated Poisson model are presented in Table 4.1. Seven variables are 
found to be statistically significant in determining accident likelihood, and under-dispersion may exist 
according to fractural lack-of-fit value, Value/DF=0.69, which is significantly different from 1. This 
reveals the data may be under-dispersed. 

Table 4.1  Poisson Estimation Results 
Variable Estimated 

 
P-Statistic>ChiSq Type 3 Analysis P 

Intercept -1.3266 0.0001 <0.0001 
Cross Buck -0.6576 0.024 <0.0001 
Gate -0.2664 0.3895 
No Control -2.9525 0.0046 
Flashing -1.2687 0.057 
Stop Sign - - 
AADT 0.0001 <0.0001 0.0004 
Train per Day 0.0267 <0.0001 <0.0001 
Track Numbers 0.1763 0.0079 0.01 
Paved Highway 0.5764 0.0001 0.0002 
Max Train Speed 0.0149 <0.0001 <0.0001 
No Historical Accident -2.4058 <0.0001 <0.0001 
AIC 1939 
BIC 2012 
Pearson Chi-Square 3888.66 
Value/DF 0.69 
Log likelihood -958.579 

 
As shown in Table 4.1, highway traffic, train traffic, number of tracks, and max train speed all 
significantly and positively influence accident likelihood. Certain types of warning devices will decrease 
the accident likelihood compared with “stop sign” warning devices only. When the highway is paved, the 
accident likelihood increases compared with an unpaved highway. Likewise, when a crossing has no 
historical accident record, the likelihood of an accident decreases. All the results indicate that the Poisson 
model is a good first choice for investigating crash data. However, as mentioned earlier in this report, the 
negative binomial model, which is suggested by many researchers as a modeling method for crash data, is 
not appropriate to handle the under-dispersed data, which may occur in this research data set. To continue 
to improve the crash frequency regression model while suspecting possible under-dispersion, attempts 
were made to analyze accident frequency from under-dispersed data with Zero-Inflated-Poisson (ZIP), 
NB, Poisson Hurdle (PH), Bernoulli, and Conway-Maxwell-Poisson models using least squares 
regression techniques. Where ZIP and NB models are selected for their popularity in the literature, PH, 
Bernoulli, and CMP are selected to handle under-dispersed data. 
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4.2 Model Comparison 
 
Table 4.2 compares statistically significant contributing variables and model goodness of fit (GOF) 
statistics, including AIC, BIC, Pearson chi-square statistics, degree of freedom (DF), and log likelihood 
(LL) statistics.  

Smaller AIC and BIC values indicate a better fit. If the model fits the data perfectly without any 
dispersion, the Pearson chi-square is roughly equal to the model degree of freedom. In other words, the 
closer the Pearson chi-Square is to the DF, the better the model fits the data (SAS, 2011). The LL statistic 
is calculated by taking the logarithm of the estimated likelihood for each observation and summarizing 
those log-likelihoods. In the closer-to-zero sense, the larger LL indicates the better model (UCLA, 2011).  

Table 4.2  GOF Model Comparison Results 

“X” indicates significant parameter and “-” indicates that the variable is a reference variable for warning devices. 

As indicated from Table 4.2, all Poisson, CMP, Bernoulli, NB, and Poisson hurdle models provide 
consistent significant contributory variables, except ZIP model identifying less contributory variables is 
significant.  

4.3 Model Result Discussions 
 
Findings thus far include the following: 1) All GOF variables provide consistent model preferences; for 
AIC and BIC, the Bernoulli model is the first model preference followed by CMP, PH, ZIP, Poisson, and 
NB models; for Pearson Chi-Square/DF and LL, both the Bernoulli and PH models are tied as the first 
preference then followed by CMP, ZIP, Poisson, and NB models. 2) All three proposed models, CMP, 
Bernoulli, and PH, which potentially can handle under-dispersed data, do fit better than the Poisson 
model. The three models perform almost equally well for under-dispersed data since the GOF variables’ 
values generated by those three models are very close.  3) If a wrong model, such as the NB model, was 
selected to fit under-dispersed data, the GOF criteria values will indicate poor model fit compared with 
the Poisson model. 4) If a model, such as the ZIP model, is selected to solve other issues but not under-

Variable Poisson CMP Bernoulli PH ZIP NB 
Intercept X X X X  X 
Cross Buck      X 
Gate       
No Control X X X X  X 
Flashing  X X X   
Stop Sign - - - - - - 
AADT X X X X X X 
Train per Day X X X X X X 
Track Numbers X X X X X X 
Paved Highway X X X X  X 
Max Train Speed X X X X X X 
No Historical Accident X X X X  X 
AIC 1939(5) 1609(2) 1601(1) 1623(3) 1825(4) 1941(6) 
BIC 2012(5) 1709(2) 1674(1) 1769(3) 1971(4) 2021(6) 
Pearson Chi-Square 3889(5) 4732(3) 4753(1) 4753(1) 4482(4) 3889(5) 
DF 5609 5605 5605 5605 5609 5609(5) 
Log likelihood -958.58(5) -789.49(3) -789.5(1) -789.5(1) -890.7(4) -958.58(5) 
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dispersion, the GOF criteria values may show improved model fit compared with the Poisson model as 
the potential improvement of unnoticed issues, but only with limited improvement since the under-
dispersed issue is not solved by ZIP. 

Note that the nu parameter, 𝜐𝜐, in the CMP model is estimated as 32 for the data set. Recall that if 𝜐𝜐 > 1, 
CMP can model under-dispersed data, and when 𝜐𝜐 → ∞, the distribution is reduced to Bernoulli. 
Observation of nu equals to 32, and the close GOF variables indicate that the data set used in the research 
may be an extreme under-dispersion and the CMP model performs equally as well as the Bernoulli model.  

Of the six tested prediction models, the Poisson is suggested to be the starting model because its equal-
dispersion assumption and the values of the crash data are represented by a discrete, non-negative integer. 
The Poisson model’s equal-dispersion assumption can help assess data dispersion. 

The Convey-Maxwell-Poisson, Bernoulli, and Poisson hurdle models are suitable models for assessing 
ND RGC accident data, which exhibited under-dispersion with respect to the Poisson distribution. The 
Convey-Maxwell-Poisson and Poisson hurdle are flexible models that can accommodate both under- and 
over-dispersion. The Bernoulli distribution regression model is only appropriate for under-dispersion. All 
three proposed models have rarely been used in transportation safety literature.  

Data mining models will be explored in regard to model forecasting power and contributor variable 
nonlinear relationships with predictor in the following section. 
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5. DATA MINING ANALYSIS RESULTS AND DISCUSSIONS 
 
5.1 Decision Tree Structure 
 
Decision tree algorithm results will serve as reference for forecasting power comparison among gradient 
boosting and neural network algorithms.  The final tree structure has 44 terminal nodes and can be viewed 
in Figure 5.1. Decision tree algorithm is the only method that can produce an interpretable structure 
among the selected three algorithms, so the further contributing variable sensitivity analysis will be 
conducted with gradient boosting and neural network. However, due to the tree’s unstable structure, such 
an analysis cannot be conducted with decision tree method. 

 
Figure 5.1  Decision Tree Output Structure 
 
5.2 Contributing Variable Importance Analysis 
 
All three algorithms take in the contributing variables for forecasting crash likelihood, and researchers 
can identify how importantly each variable was used to contribute to the final predicting crash likelihood. 
This section summarizes the variables important in each method. 

As stated earlier, the importance of a variable in a simple single tree is measured by the number of times 
the variable is used as a splitter and the squared error improvement attributed to the tree due to the splits 
by the variable. The average value of the summation of those two values is used as the measurement of 
variable importance in the model. The GB model is an extension of a simple decision tree model so it uses 
the same algorithm to measure variable importance. Variable importance in a neural network can be 
measured by different criteria; to be consistent with the other two algorithms, the mean-square-error 
method is selected to calculate variable importance for NN. This algorithm focuses on predictive 
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importance since it eliminates one variable at a time and measures the change in mean square error. A 
variable makes more change in a mean square error, which indicates it is more important. 

Table 5.1 summarizes the variables by their importance in predicting crash frequency for all three 
algorithms. Looking at Table 4, one can tell that three methodologies identify different sets of important 
variables, and their relative importance levels as measured by how important each variable counted 
toward forecasting crash likelihood in each of the three methods. However, as one can also tell from 
Table 4, some top contributors commonly agree with the three methods; those contributors include 
AADT, train volume, train speed, number of highway traffic lanes, total number of tracks, and crossing 
controls.   

“Important” contributors are calculated based on each algorithm’s theory and how they contribute to 
predicting crash likelihood. In the next section, the researchers conducted a prediction accuracy 
comparison analysis to demonstrate each model’s prediction power. That is followed by a contributor 
variable sensitivity analysis to demonstrate how each contributor quantitatively contributes to forecasting 
crash likelihood. 

Table 5.1  Variable Importance 
Decision Tree Importance Analysis 
Variable Relative Importance 
Night through train  1 1 
Average Train Speed 0.9295 2 
Day through train 0.8221 3 
AADT 0.737 4 
Highway system 0.6703 5 
Signal equipped or not 0.6472 6 
Highway Paved or not 0.6456 7 
Train Detection System 0.6099 8 
Number of traffic lane 0.4382 9 
Gates 0.4283 10 
HMAS Flash 0.4094 11 
Total_Number_Track 0.3916 12 
Advanced waring system 0.2328 13 
Run down street or not 0.2313 14 
Number of flashing lights 0.204 15 
Cross bucks 0.2021 16 
Night switching train 0.1877 17 
Day switching train 0.1705 18 
Pavement mark 0.0987 19 
Commercial power 0.086 20 
Truck lane or not 0.0809 21 
School bus route or not 0.0734 22 
Crossing angle 0.0435 23 
Gradient Boosting Importance Analysis 
Variable Relative Importance 
AADT 1 1 
Day through train 0.7333 2 
Train Detection System 0.6773 3 
Night through train 0.5828 4 
Average Train Speed 0.5493 5 
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Number of traffic lane 0.4562 6 
Highway system 0.3798 7 
Advanced waring system 0.3719 8 
Total_Number_Track 0.3575 9 
Pavement mark 0.3415 10 
Crossing angle 0.3285 11 
Number of flashing lights 0.3124 12 
Commercial power 0.2752 13 
Highway stop sign 0.2736 14 
Near city or not 0.2631 15 
Cross Bucks 0.2573 16 
Highway Paved or not 0.2193 17 
Mounted flashlight 0.2142 18 
School bus route or not 0.1978 19 
Train signal 0.1945 20 
Gates 0.1800 21 
Truck lane or not 0.1670 22 
highway stop signs 0.1424 23 
Run down street or not 0.1358 24 
Whistle ban or not 0.1346 25 
Day switching train 0.1319 26 
Night switching train 0.1180 27 
Cantilevered flashing lights 0.0937 28 
Neural Network Importance Analysis 
Variable Relative Importance 
AADT 1 1 
Number of traffic lane 1 2 
Number of tracks 0.6 3 
Mounted flashlight 0.55 4 
Day through train 0.54 5 
Day switching train 0.53 6 
Night through train 0.53 7 
Cantilevered flashing lights 0.53 8 
Cross Bucks 0.52 9 
Advanced waring system 0.51 10 
School bus route or not 0.5 11 
Gates 0.49 12 
highway stop signs 0.44 13 
Train speed 0.43 14 
Number of flashing lights 0.4 15 
Night switching train 0.3 16 
Highway Paved or not 0.28 17 
Commercial power 0.27 18 
Run down street or not 0.26 19 
WIGWAG 0.24 20 
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5.3 Prediction Accuracy Analysis 
For crash forecasting, prediction accuracy can be explained in Table 5 and equations (27) to (29). As 
indicated in Table 5.2, the letters a to d represent the number of the corresponding cases. 

Table 5.2  Accuracy Description Table 
 Observed Condition 

Present Absent 
Predicted Condition Positive True Positive (a) False Positive (b) 

Negative False Negative (c) True Negative (d) 
 
Overall forecasting accuracy can be described with equation (27). Basically, it described total true 
estimates (a+d) out of total conditions (a+b+c+d). However, how accurate the models are in terms of 
crash forecasting is a more critical indicator to measure model performance. Thus, many researchers 
reported accuracy for crash (event) and non-crash (non-event), and they are described with equations (28) 
and (29). 
 
Accuracyoverall= 𝑉𝑉+𝑑𝑑

𝑉𝑉+𝑏𝑏+𝑐𝑐+𝑑𝑑
                                                                                                  (27) 

 
AccuracyCrash= 𝑉𝑉

𝑉𝑉+𝑐𝑐
                                                                                                           (28) 

 
Accuracynon_crash= 𝑑𝑑

𝑏𝑏+𝑑𝑑
                                                                                                      (29) 

 

As one can tell from equations (28) and (29), those measurements measure the model forecasting 
accuracy given the number of observed conditions; but note, they ignore the false positive when 
accounting for crash accuracy and ignore the false negative when accounting for non-crash accuracy. 

All accuracy measurements for both the training and testing data sets for three selected models are shown 
in Table 5.3. The three models perform very closely to each other. However, one can tell that the gradient 
boosting model outperformed the other two models in all three measurements, followed by the neural 
network and the decision tree model for the training data set. Regarding the testing data set, the gradient 
boosting model outperforms other two models for overall and non-crash accuracy; but for crash accuracy, 
the decision tree model is the best performer, followed by gradient boosting and neural network.  

Table 5.3  Comparison Model Predictive Accuracy 

Training 
Data set 

  Overall Crash Non-Crash 
Decision Tree 77.7%  84.1% 77.2% 
Gradient Boosting 84.4% 88.6% 84.1% 
Neural Network 82.6% 84.8% 

 
82.5% 
 

Testing 
Data set 

Decision Tree 77.1% 88.9% 76.3% 
Gradient Boosting 81.91% 86.1% 81.6% 
Neural Network 79.5% 83.3% 

 
79.2% 
  

As stated earlier, the importance of a variable will be a bit different based on different algorithms and 
their final optimal model. In this report, the researchers pay more attention to the recommendations 
provided by the gradient boosting model due to its superior forecasting power. 
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Recall from Table 4, AADT, daily through train traffic, train detection type, nightly through-train traffic, 
train speed, and the number of traffic lanes are the top six contributors to crash prediction, with individual 
influence percentages greater than 5%. 

5.4 Variable Sensitivity Analysis 
 
To better understand contributor variables, conducting further sensitivity analysis is needed to indicate 
their directional and quantitative effects.  

A general method to evaluate the effect of explanatory variables on the response variable is to describe 
the relationship between the predictor variable and the studied contributor variable with partial dependent 
plots. Figure 5.2 indicates partial plot analysis results for the gradient boosting model with x-axis 
indicating the contributor variable and y-axis indicating the likelihood of the crash. 
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(g) 

 

 

 

 
 
Figure 5.2  Partial dependent plots 
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(c) (d) 

(e) (f) 
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One can tell from Figure 5.2(a) that all the contributors exhibit a complex and nonlinear relationship with 
crashes. However, in general, a positive (increasing) relationship is observed for traffic exposure 
variables, such as AADT, daily through train traffic, nightly through train traffic, and average train speed. 
For character variables, the analysis indicates their relative relationship with crashes. For example, for 
HWYSYS, Figure 5.2(e) shows that incidents tend to occur at crossings with federal-aid highways, and 
not to occur at crossings with non-interstate highways and non-federal-aid highways. For SPSEL, crashes 
tend not to happen at SPSEL=2, which is equipped with direct current audio frequency overlay, but tend 
to happen at SPSEL=1, which is equipped with constant warning time systems. For TRAFICLN, it is 
suggested that crossings intersect with highways with no more than two lanes as those are less likely to 
have crashes than highways with four lanes. 
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6. SUMMARY AND FUTURE RESEARCH 
 
This research explores the modeling options for highway rail grade crossing crash analysis with an 
empirical analysis of accidents in North Dakota. Six statistical models and three data mining models are 
explored. Each model has its own advantages and challenges. For data mining models, further prediction 
accuracy, contributor variable importance analysis, and contributor variable sensitivity analysis are also 
conducted and compared. 

In summary, data mining models can serve as great alternative modeling tools to perform crash 
forecasting with relatively accurate forecasting power and strong ability to model non-linear relationships 
between contributors and crash likelihood. All the models will provide different sets of contributors. 
However, a decision tree model may be hard to apply due to its large tree structure. Since GLM models 
are parametric, they tend to pick a limited number of explanatory variables; data mining algorithms, also 
considered as non-parametric algorithms, tend to select more contributor variables.  However, the top 
contributors identified by all the methods agree with each other on traffic exposure variables, such as 
highway traffic volume, rail traffic volumes and their travel speed, and also on some crossing 
characteristics such as warning devices.   

Throughout the literature search, we found little research conducted on highway rail grade crossing safety 
analyses compared with highway roadside crash analyses. Highway rail grade crossing safety is a major 
safety and economic focus in the United States; however, it received limited research effort, and its safety 
performance remains poorly understood. Therefore, this research re-examined both prediction methods 
and how their identified contribution factors affect HRGC crashes.  

Further research will focus on developing 1) an agency-friendly user tool that allows agencies to conduct 
contributor sensitivity analyses for various “what-if” scenarios, and 2) an integrated forecasting model for 
agencies that accounts for both crash likelihood and severity. Moreover, a decision-making tool will also 
be developed for agencies to allocate their limited safety improvement resources.  
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APPENDIX A. DATA  
 
The data used in this analysis is archived in SAS data format and the detail about the data metadata is 
documented in the following tables. 
 

Variable Label Variable Description Variable Values and 
Description 

AADT   Annual average daily traffic  
Average_Train_Speed   Average train travel speed  
Highway_Paved   Is highway paved? 0=Yes; 

1=No 
ID   Index ID  
Near_City   In or near city 0=In city; 

1=Near city 
TRUCKLN TRUCKLN Number of truck lanes  
Total_Number_Track   Total number of track  
accident   Does the highway-rail grade crossing 

have an accident record before? 
0=No; 
1=Yes. 

advance_warning ADVWARN Does the HRGC equip with advance 
warning signs? 

0=Missing; 
1=Yes; 
2=No 

crossing_angle XANGLE Smallest crossing angle. 0=Missing; 
1=0-29; 
2=30-59 

highway_system HWYSYS Highway systems 0=Missing 
1= Interstate National 
Highway System; 
2= Other National 
Highway System; 
3= Other Federal-Aid 
Highway-Not NHS; 
4= Non Federal-Aid 

illumination COMPOWER Commercial power available? 0=Yes; 
1=No; 
2=Missing 

lights_in pairs FLASHPAI Number of flashing light in pairs  
lights_not_over_lane FLASHNOV Number of levered (or bridged) flashing 

lights not over traffic lane. 
 

lights_over_lane FLASHOV Number of Flashing lights over traffic 
lane. 

 

mast_mounted_lights FLASHMAS Number of mast mounted flashing lights  
Gates GATES Presents of gates. 0=No; 

1=Yes. 
number_of_crossbucks XBUCK Number of crossbucks.  
number_of_trafficlane TRAFICLN Number of traffic lanes.  
number_of_wigwags WIGWAGS Number of wigwags.  
pavemark_distance PAVEMRK Pavemark distance. 0=Missing 

1=<75ft; 
2=75 to 200ft;  
3=200 to 500ft; 
4=NA 

quiet_zone_hour WHISTBAN Is HRGC in quite zone? 0=Yes;  
1=No 



26 
 

schoolbus_traffic SCHLBUS Number of schoolbus passing over the 
crossing on a school day. 

 

stop_sign  STOPSTD Does highway stop sign present? 0=No; 
1=Yes. 

track_run_down_street DOWNST Does track run down a street? 0=Missing; 
1=Yes; 
0=No 

train_detection_type SPSEL Train detection type. 1=constant warning time 
system; 
2=Direct current audio 
frequency overlay; 
3=NA 

DAYTHRU DAYTHRU Day through train movements  
DAYSWT DAYSWT Day switch train movements  
NGHTTHRU NGHTTHRU Night through train movements  
NGHTSWT NGHTSWT Night switch train movements  

 
 

accident Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 5359 93.80 5359 93.80 
1 354 6.20 5713 100.00 

  
 

stop_sign Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 5621 98.39 5621 98.39 
1 92 1.61 5713 100.00 

 
 

Highway_Paved Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0=Yes 4660 81.57 4660 81.57 
1=No 1053 18.43 5713 100.00 

 
FLASHOV 

lights_over_lane Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 5652 98.93 5652 98.93 
1 7 0.12 5659 99.05 
2 49 0.86 5708 99.91 
4 3 0.05 5711 99.96 
8 2 0.04 5713 100.00 

 
FLASHNOV 

lights_not_over_lane Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 5700 99.77 5700 99.77 
1 3 0.05 5703 99.82 
2 7 0.12 5710 99.95 
4 3 0.05 5713 100.00 
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FLASHMAS 
mast_mounted_lights Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0 5128 89.76 5128 89.76 
1 6 0.11 5134 89.87 
2 516 9.03 5650 98.90 
3 12 0.21 5662 99.11 
4 21 0.37 5683 99.47 
5 4 0.07 5687 99.54 
6 5 0.09 5692 99.63 
8 21 0.37 5713 100.00 

 
WIGWAGS 

number_of_wigwags Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 5712 99.98 5712 99.98 
2 1 0.02 5713 100.00 

 
COMPOWER 

illumination Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0=Yes 87 1.52 87 1.52 
1=No 3730 65.29 3817 66.81 
2=Missing 1896 33.19 5713 100.00 

 
SPSEL 

SPSEL Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

1=constant warning time system 411 7.24 411 7.24 
2=Direct current audio frequency overlay 1056 18.59 1565 27.56 
3=NA 4114 72.44 5679 100.00 

 
 

DOWNST 
track_run_down_street Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0=Missing 89 1.56 89 1.56 
1= Track Run Down a Street 176 3.08 265 4.64 
2=Track does not run down a street 5448 95.36 5713 100.00 

 
PAVEMRK 

pavemark_distance Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0=Missing 89 1.56 89 1.56 
1=<75ft 68 1.19 157 2.75 
2=75 to 200ft 34 0.60 191 3.34 
3=200 to 500ft 5340 93.47 5531 96.81 
4=NA 182 3.19 5713 100.00 
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ADVWARN 
advance_warning Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0=Missing 89 1.56 89 1.56 
1=Yes 2044 35.78 2133 37.34 
2=No 3580 62.66 5713 100.00 

 
XANGLE 

crossing_angle Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0=Missing 89 1.56 89 1.56 
1=0-29 112 1.96 201 3.52 
2=30-59 1318 23.07 1519 26.59 
3=60-90 4194 73.41 5713 100.00 

 
TRAFICLN 

number_of_trafficlane Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 89 1.56 89 1.56 
1 1284 22.48 1373 24.03 
2 4290 75.09 5663 99.12 
3 5 0.09 5668 99.21 
4 44 0.77 5712 99.98 
5 1 0.02 5713 100.00 

 
TRUCKLN 

TRUCKLN Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 89 1.56 89 1.56 
1 154 2.70 243 4.25 
2 5470 95.75 5713 100.00 

 
HWYSYS 

highway_system Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0=Missing 88 1.54 88 1.54 
1= Interstate National Highway System 1 0.02 89 1.56 
2= Other National Highway System 197 3.45 286 5.01 
3= Other Federal-Aid Highway-Not NHS 773 13.53 1059 18.54 
4= Non Federal-Aid 4654 81.46 5713 100.00 
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SCHLBUS 
schoolbus_traffic Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0 5556 97.25 5556 97.25 
1 1 0.02 5557 97.27 
2 35 0.61 5592 97.88 
4 73 1.28 5665 99.16 
5 1 0.02 5666 99.18 
6 35 0.61 5701 99.79 
8 9 0.16 5710 99.95 

10 1 0.02 5711 99.96 
13 1 0.02 5712 99.98 
36 1 0.02 5713 100.00 

 
WHISTBAN 

quiet_zone_hour Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0=Yes 5684 99.49 5684 99.49 
1=No 29 0.51 5713 100.00 

 
XBUCK 

number_of_crossbucks Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 708 12.39 708 12.39 
1 830 14.53 1538 26.92 
2 4114 72.01 5652 98.93 
3 35 0.61 5687 99.54 
4 24 0.42 5711 99.96 
6 2 0.04 5713 100.00 

 
GATES 

Gates Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 5058 88.53 5058 88.53 
1   6553 11.47 5713 100.00 

 
FLASHPAI 

lights_inpairs Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 5194 90.92 5194 90.92 
1 2 0.04 5196 90.95 
2 4 0.07 5200 91.02 
4 299 5.23 5499 96.25 
5 112 1.96 5611 98.21 
6 58 1.02 5669 99.23 
7 10 0.18 5679 99.40 
8 12 0.21 5691 99.61 
9 4 0.07 5695 99.68 

10 9 0.16 5704 99.84 
11 8 0.14 5712 99.98 
14 1 0.02 5713 100.00 
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AADT 
Basic Statistical Measures 

Location Variability 
Mean 351.0004 Std Deviation 1388 
Median 30.0000 Variance 1925729 
Mode 20.0000 Range 25600 
    Interquartile Range 105.00000 

 
Average_Train_Speed 

Basic Statistical Measures 
Location Variability 

Mean 18.78741 Std Deviation 11.32215 
Median 13.00000 Variance 128.19110 
Mode 13.00000 Range 62.50000 
    Interquartile Range 17.50000 

 
 

Total_Number_Track Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 34 0.60 34 0.60 
1 4637 81.17 4671 81.76 
2 764 13.37 5435 95.13 
3 209 3.66 5644 98.79 
4 56 0.98 5700 99.77 
5 11 0.19 5711 99.96 
6 2 0.04 5713 100.00 

 
Basic Statistical Measures 

Location Variability 
Mean 1.239804 Std Deviation 0.59695 
Median 1.000000 Variance 0.35635 
Mode 1.000000 Range 6.00000 
    Interquartile Range 0 

 
 

Near_City Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

0 1192 20.86 1192 20.86 
1 4521 79.14 5713 100.00 

 
DAYTHRU 

Basic Statistical Measures 
Location Variability 

Mean 2.668300 Std Deviation 5.5014072 
Median 1 Variance 30.26548 
Mode 0.00000 Range 34 
    Interquartile Range 1 

 
DAYSWT 

Basic Statistical Measures 
Location Variability 

Mean 0.15315 Std Deviation 0.65049 
Median 0 Variance 0.42314 
Mode 0.00000 Range 30 
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    Interquartile Range 0 
 
NGHTTHRU 

Basic Statistical Measures 
Location Variability 

Mean 1.75056 Std Deviation 3.63952 
Median 0 Variance 13.24607 
Mode 0.00000 Range 32 
    Interquartile Range 2 

 
NGHTSWT 

Basic Statistical Measures 
Location Variability 

Mean 0.05968 Std Deviation 0.52438 
Median 0 Variance 0.27497 
Mode 0.00000 Range 30 
    Interquartile Range 0 

 
 


