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ABSTRACT 
 

Despite bicycling being considered on the order of ten times more dangerous than driving, the evidence 
continues to build that high-bicycling-mode-share cities are not only safer for bicyclists but for all road 
users. This paper looks to understand what makes these cities safer. Are the safety differences related to 
‘safety in numbers’ of bicyclists, or can they be better explained by differences in the physical places or 
the people that inhabit them? Based on thirteen years of data from twelve large U.S. cities, we 
investigated over 17,000 fatalities and more than 77,000 severe injuries across nearly 8,700 block groups 
via multilevel, longitudinal, negative binomial regression models. We hypothesize three potential 
pathways towards better road safety outcomes: i) travel behavior differences (e.g. ‘safety in numbers’ or 
shifts to ‘safer’ modes); ii) built environment differences (e.g. infrastructure that helps promote safer 
environments); and iii) socio-demographic and socio-economic differences (e.g. as some cities may be 
more populated by those with lower transportation injury risks).  

The results suggest that more bicyclists on the road is not the underlying reason these cities are safer for 
all road users. Better safety outcomes are instead associated with a greater prevalence of bike facilities – 
particularly protected and separated bike facilities – at the block group level, and even more strongly so, 
across the city as a whole. Higher intersection density, which typically corresponds to a more compact 
and lower-speed built environment, was strongly associated with better road safety outcomes for all road 
users. The variables representing gentrification also accounted for much of our explainable variation in 
safety outcomes.  This first chapter helps support an evidence-based approach to building safer cities for 
all road users. While the policy implications of this work point to protected and separated bike 
infrastructure as part of the solution, we need to keep in mind that the potential pathways toward safer 
cites are complementary and should not be considered in isolation. Moreover, our results – particularly 
the safety disparities associated with gentrification – suggest equity issues and the need for future 
research.  

The extent of the data collected for this project allowed us to delve deeper into safety-related questions of 
equity, age, and infrastructure. Part 2 of this report looks at road safety like a health impact begs the 
question: who is the most impacted?  Are there urban/rural differences?  How equitable are the impacts 
along racial/ethnic lines or with respect to income? This research considers these questions through a 
spatial analysis of over 970,000 geocoded road fatalities in the U.S. that took place over the course of a 
24-year period (1989–2012). Unlike other research, we also distinguished between crash location and the 
likely home zip code of those involved. Unfortunately, Americans are not bearing the public health 
impact of this problem equitably. We find road fatality disparities along racial and ethnic lines, 
particularly for pedestrians and bicyclists in predominantly black or Hispanic neighborhoods.  Our results 
also point to significant discrepancies across the urban/rural and population density spectrums as well as 
by household income.  For instance, lower income neighborhoods suffer from vehicle occupant fatality 
rates more than 3.5X higher than wealthier neighborhoods. Also, those living in our most rural zip codes 
endure vehicle occupant fatality rates approximately 6X higher than those living in our most urban zip 
codes.  This suggests that transportation and land use planning that facilitates more access with less 
mobility can reduce unnecessary exposure and lead to road safety outcomes on par with the safest 
developed countries in the world. 

Part 3 of this report the decline in bicyclist fatalities seen over the last thirty years and explores age-
related differences in the direction and magnitude of this trend and the impact different measures of 
exposure have. Using fatality data from the Fatality Analysis Reporting System (FARS) and exposure 
data from the National Sporting Goods Association (NSGA), we disaggregate age-specific bicyclist 
fatality trends for children (aged 7-17 years) and adults (aged 18+ years).  We then compare safety rates 
using exposure measures from the NSGA, the National Household Travel Survey (NHTS), the American 



 
 

Community Survey (ACS), and population counts from the U.S. Census Bureau. The results suggest that 
overall declines in bicyclist fatality rates have been primarily driven by a sharp decline in child bicyclist 
fatality rates, while adult bicyclist fatality rates have generally trended upwards. However, the utilization 
of different exposure metrics can shift these results. We then discuss differences between current bicycle 
exposure measures and the need for more complete data of we want to truly understand age-specific 
impacts of bicycling safety. 

Part 4 specifically examines shared lane markings, which are more commonly known as sharrows.  While 
past research confirms that sharrows may effectively influence spacing and other operational measures, 
the impact on safety outcomes remains unsubstantiated due to a lack of data on dooring-related bicycle 
crashes.  Fortunately, the city of Chicago instituted a program to collect dooring crash data in 2010.  
Thus, the purpose of this research is to longitudinally examine the association between sharrows and 
bicyclist injuries.  To begin to answer this question, we divide Census block groups in Chicago into three 
categories based on what bike infrastructure was installed between the years 2011 and 2014: i) those 
block groups with no bicycle facilities installed; ii) those with only sharrows installed; or iii) those with 
only bicycle lanes (standard, buffered, or protected) installed. Negative binomial regressions and Kruskal-
Wallis tests suggest that block groups with only sharrows installed experienced the largest increase in 
bicyclist injury rates, with exposure being accounted for through levels of bicycle commuter activity.  
This relationship held true for overall crashes as well as for dooring-related crashes.  These findings raise 
concerns regarding the safety effectiveness of sharrows as used by the City of Chicago during the study 
period and should be a call for more research on the subject in a variety of different contexts using 
various exposure metrics. 

The appendices include examples of how these issues were integrated into assignments for graduate level 
civil engineering classes. 
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PART 1:  Why are Bike-Friendly Cities Safer for All Road Users? 
 
1.   INTRODUCTION  
 
Bicycling as a fundamental mode of transportation is being reinvented in the United States. To begin 
with, Americans are becoming increasingly reliant on bicycling, as evidenced by the 51% increase in 
bicycling to work between 2010 and 2016 (ACS, 2018). At the same time, more and more U.S. cities are 
improving their bicycling infrastructure. For instance, the number of protected bike lanes in the U.S. has 
doubled every two years since 2009 (PeopleForBikes, 2018). Despite these changes, a recent bicycling 
safety report from the Organization for Economic Cooperation and Development (OECD) states that 
Americans still bicycle less than residents of the other 33 OECD countries and are among the most likely 
to die as bicyclists (OECD, 2013).  

Just how dangerous is bicycling in the U.S.? Given the lack of exposure data and bicycling counts, this is 
a difficult question to answer definitively. However, it can be estimated in relative terms. For instance, 
37,461 and 840 people were killed in motor vehicle and bicycle crashes in the U.S. in 2016, respectively 
(NHTSA, 2017a). Americans drove approximately 3.2 trillion miles in 2016, which equates to a fatality 
rate of 1.18 fatalities per 100 million VMT (vehicle miles traveled) (FHWA, 2017). Bicycling 
participation estimates range from less than 10% of Americans to 24% (Breakaway Research Group, 
2015; Mapes, 2009; NSGA, 2017). The National Sporting Goods Association, for example, reports that 
39.3 million Americans ride a bike at least once a year, which equates to about 12% of the population 
(NSGA, 2017). With 840 bicyclist fatalities, each of these 39.3 million bicyclists would have to bike 
more than 1,600 miles each year to be safer than those in motor vehicles. This would equate to 12% of 
Americans bicycling more than four miles every day of the year. However, this is not a realistic level of 
bicycle exposure in the U.S. context given current travel patterns (Mapes, 2009). Even if we increased our 
assumption to 24% of the population, it would still equate to more 800 miles of bicycling each year for 
more than 78 million people. 

Despite the myriad health benefits of bicycling (Deenihan & Caulfield, 2014; Jan Garrard, 2011; 
Marshall, Piatkowski, & Garrick, 2015), these back-of-the-envelope calculations suggest that bicycling is 
significantly more dangerous than driving, and those looking to promote the health benefits of bicycling 
typically do so despite the known road safety risks (de Hartog, Boogaard, Nijland, & Hoek, 2011). To be 
more specific, Pucher and Dijkstra approximated bicycling exposure from commute data and found that 
the per-mile fatality rate for drivers in the U.S. was approximately ten times lower than that for bicyclists 
(Pucher & Dijkstra, 2003). More recently, McAndrews et al. delved deeper into the data to derive 
mileage-based exposure metrics and estimated similar elevated risks for bicyclists (McAndrews, Beyer, 
Guse, & Layde, 2013).  

Transit, on the other hand, is a much safer mode of transportation than driving. Recent numbers suggest 
fewer than 0.06 fatalities per 100 million passenger transit miles traveled, which is approximately twenty 
times safer than driving (Politifact.com, 2011). Based upon this difference between transit and automobile 
safety, it would stand to reason that cities with a high percentage of people traveling by transit would be 
safer than the typical automobile-based city. At the city level, this trend turns out to be the case. In an 
international study, Kenworthy and Laube concluded that cities with high transit use also tended to have 
lower overall fatality rates (Kenworthy & Laube, 2000). In the U.S. context, Litman found that residents 
of automobile-oriented cities had a traffic fatality rate five times that of those living in transit-oriented 
communities (Litman, 2009, 2013). One reason behind these results is that more transit use tends to also 
lower the overall amount of vehicle use. Another explanation is that transit use is higher in relatively 
dense metropolitan areas with urban form designed around relatively slow speeds, thus reducing the 
number of deaths of travelers by just about any mode.  



2 
 

Given these safety trends, one might conclude that high bicycling cities must be far more dangerous than 
either transit-based cities or automobile-based cities. However, cities with high levels of biking also have 
surprisingly good traffic safety records, and not just for bicyclists, but for all road users (Marshall & 
Garrick, 2011b). For instance, the U.S. city long with the greatest percentage of people bicycling to work 
– Davis, California – endured 28 road fatalities over a recent 20-year period, with 19 of those fatalities 
occurring on non-limited access streets and two involving bicyclists. These results equate to a road 
fatality rate of 2.3 per 100,000 residents. With the current per capita crash rate in the U.S. more than five 
times higher at 12.4 fatalities per 100,000 residents, it is easiest to discount Davis as an anomaly. Yet, 
Davis is not alone. Another U.S. city that has become renowned for its bicycling – Portland, Oregon – has 
concurrently improved its road safety record. Between 1990 and 2010, for example, Portland’s bicycle 
mode share increased from 1.2% to 6.0%; over this same period, the road fatality rate in Portland dropped 
by 75% (City of Portland Bureau of Transportation, 2011). This is a relatively impressive safety record 
(4.5 fatalities per 100,000 residents) for a city of over 600,000 people and is comparable internationally to 
the countries reporting the lowest crash rates in the world such as the Netherlands (3.4 fatalities per 
100,000 residents) (Marshall, 2018). Perhaps not coincidentally, the Netherlands also boasts a bicyclist 
mode share of nearly 30% (Heinen, Maat, & van Wee, 2013). 

Examples such as Davis, Portland, and the Netherlands are often written off as outliers because their 
cultures of bicycling have been prevalent for decades. New York City, however, is a relative newcomer to 
the bicycling experiment, having installed over 600 lane miles of bike lanes since 2006 (New York City 
DOT, 2018). Since then, bicycling has more than doubled in New York City while traffic fatality rates 
dropped to the lowest numbers on record (Donohue, 2013; Miller, 2013). While these improvements 
cannot simply be attributed to increased levels of bicycling, these represent trends worthy of exploration. 

A number of existing papers have studied the idea of bicyclist ‘safety in numbers’ where individual 
bicyclist risk drops with an increasing number of bicyclists (Ekman, 2006; Jacobsen, 2003; Jacobsen, 
Ragland, & Komanoff, 2015; Jensen, 2002; Krista Nordback & Marshall, 2010; K. Nordback, Marshall, 
& Janson, 2014). The rationale most often given for this safety benefit is a shift in driver expectations and 
behavior based upon the perceived possibility of encountering a bicyclist. However, these studies only 
attempt to understand the difference in bicyclist safety. Fewer studies have investigated the safety effect 
of a high-bicycling-mode-share city on the safety of all road users (Marshall & Garrick, 2011b).  

Despite conventional logic, the evidence continues to build that high bicycling places are not only safer 
for bicyclists but for all road users. Via a longitudinal 13-year analysis of 12 large U.S. cities, this 
research study seeks to understand what makes cities with high bicycling rates safer for all road users. Do 
these safety trends have anything to do with safety in numbers, or can they be explained by other factors? 
Accordingly, we hypothesize three primary possibilities: 

1. Travel behavior differences, such as bicyclist safety in numbers, and/or shifts to modes that are 
safer or may reduce exposure; 

2. Built environment differences, such as bicycling infrastructure, that may help promote lower 
speed environments and safer streets; and 

3. Socio-demographic and socio-economic differences, as cities become more populated by 
populations with generally lower transportation injury risks. 

The next section delves into the theory behind these possible explanations. We then describe the study in 
more detail along with the data collection efforts and statistical methodology. This is followed by our 
results and conclusions. 
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2.   THEORY 
 
The pervasiveness of road deaths remains one of our most unrelenting public health failures. In fact, road 
fatalities purge more productive years of life than any other disease, including cancer and heart disease 
combined (Maxton & Wormald, 2004). Just last year alone, there were more than 40,000 road deaths in the 
U.S. and 1.25 million worldwide (National Safety Council, 2018). According to the Centers for Disease 
Control and Prevention, road fatalities are the number one cause of death for every U.S. age group from 5 
through 24 (CDC, 2017). Traffic safety should be considered a public health priority (Ewing & Dumbaugh, 
2009). The seriousness of this issue, combined with the fact that progress in this area remains slow, suggests 
a need for a fundamentally different approach. This paper attempts to accomplish this via a comprehensive 
look at what may be influencing road safety outcomes. This section examines the existing literature related 
to the potential pathways for better road safety outcomes.  

2.1 Travel Behavior Differences 

There is considerable bicycling research focused on the “safety in numbers” phenomenon. As far back as 
1996, Ekman found a significant relationship between bicyclist exposure and conflict rate (Ekman, 2006). 
In this comprehensive Swedish study, Ekman’s results suggest that the conflict rate for an individual 
bicyclist was higher when the number of bicyclists was low and that this conflict rate waned as the flow 
of bicyclists increased. In other words, the more bicyclists, the safer it is for each individual bicyclist. 
Pedestrians did not experience the same benefit in Ekman’s study. In a 2002 study from Copenhagen, 
Jensen found that a 40% increase in bicycle kilometers traveled corresponded to a 50% decrease in 
seriously injured bicyclists (Jensen, 2002). In one of the first U.S. studies looking at this issue, Jacobsen 
investigated 68 California cities and showed that the individual chance of a bicyclist being struck by a car 
drops with more people bicycling (Jacobsen, 2003). Larger-scale, international studies soon began to 
support these results (Pucher & Buehler, 2008; Pucher & Dijkstra, 2003; Robinson, 2005; Yao & Loo, 
2016). Similar results are now emanating from the research focused on developing safety performance 
functions (K. Nordback et al., 2014).  

While these studies generally focus on bicyclist-related crash outcomes and not on all road users, they do 
begin to shed light on why cities with high bicycling might see improved road safety outcomes. Although 
not explicitly studied, most of these papers assert that high levels of bicycling may influence driver 
behavior. In other words, when the number of bicyclists increases to the point where drivers habitually 
expect to see bicyclists, drivers may be more likely to, for example, look over their shoulder for a 
bicyclist when making a right turn. It is possible that higher driver awareness lends itself to safer 
outcomes for other road users as well. It is also possible that high numbers of bicyclists may even act a 
traffic calming measure themselves. Speeding down a street is not as easy when there are bicyclists in the 
way. Whereas switching from driving to bicycling might lead to worse safety outcomes in conventional 
circumstances, this may not be the case in cities with high bicycling rates.  

Since the statistics suggest that transit is on the order of twenty times safer than driving, it stands to 
reason that places with high transit usage might have lower road fatality rates (Kenworthy & Laube, 
2000; Litman, 2009, 2013). The same can be said for cities with higher percentages of people that work 
from home. The ability to access one’s job without exposing oneself to the dangers of the roads should, in 
theory, be safer than any conventional commute. In fact, the percentage of people working from home has 
grown more than walking, bicycling, or transit use over the last decade (ACS, 2018; Polzin, 2016). Yet, 
the contribution of this growing trend to road safety outcomes remains under-researched. 
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2.2   Built Environment Differences 

A recent development to the built environment of U.S. cities has been the growth of bicycle-focused 
infrastructure. Does such bicycling infrastructure actually improve road safety outcomes? The majority of 
papers find that bicycle paths and lanes help reduce bicyclist fatalities (Mulvaney et al., 2016; Pucher, 
2001; Reynolds, Harris, Teschke, Cripton, & Winters, 2009). However as described in the introduction, 
the number of protected bike lanes – also known as cycle tracks – went from being almost non-existent in 
U.S. cities to doubling every other year since 2009 (PeopleForBikes, 2018). While there remains a 
relative lack of peer-reviewed safety research on protected bicycling infrastructure in the U.S. (Mulvaney 
et al., 2016), the results seem promising (Harris et al., 2013; Zangenehpour, Strauss, Miranda-Moreno, & 
Saunier, 2016). It is worth pointing out, however, that most of these papers focus specifically on the 
safety of bicyclist; yet, it is conceivable that such bicycle infrastructure may also function as a traffic 
calming measure that reduces vehicle speeds and improves road safety outcomes for other road users as 
well (Marshall & Garrick, 2011b). In terms of the relationship between bike infrastructure and bicycling 
activity, separated infrastructure has been shown to increase bicycling rates and help reduce the bicycling 
gender gap (J. Garrard, Rose, & Lo, 2008). Yet, the research remains mixed. For instance, a report by the 
University of Minnesota concludes that “the ‘build it and they will come’ theory is not universally 
applicable” when it comes to bike facilities (Douma & Cleaveland, 2008). Such results suggest that we 
should consider changes in bicycling rates separately from changes in bicycling infrastructure. 

More generally in terms of the built environment, denser, more urban areas generally experience lower 
road fatality rates than more suburban or rural environments (Eric Dumbaugh, 2006; E. Dumbaugh & 
Rae, 2009; Ewing, Hamidi, & Grace, 2014; Ewing, Schieber, & Zegeer, 2003; Glaeser, 2011; Marshall 
& Garrick, 2010b, 2011a; Myers et al., 2013). For example, intersection density, which typically suggests 
a more compact and lower speed built environment, has been shown to be associated with more property 
damage only crashes but significantly fewer fatalities and severe injury crashes (Marshall & Garrick, 
2011a). When accounting for the built environment in terms of population density, one study found that 
those living in rural zip codes suffered from vehicle occupant fatality rates approximately six times higher 
than those living in the most urban zip codes (Marshall & Ferenchak, 2017).   

In an overview of the existing evidence on the subject of safety and the built environment, Ewing and 
Dumbaugh cite two main reasons for these road safety disparities: i) those living in urban areas generally 
drive less; and ii) urban areas tend to be designed to promote lower speeds (Ewing & Dumbaugh, 2009). 
In fact, speeding plays a role in more than 30% of fatal crashes in the U.S. (USDOT, 2014), and the 
preponderance of research suggests that lower speeds help reduce injury severity (Archer, Fotheringham, 
Symmons, & Corben, 2008). For instance, a synthesis paper by Elvik concluded “that the relationship 
between speed and road safety is causal, not just statistical” (Elvik, 2005). A later paper by the same 
author estimated that eliminating speeding would reduce road fatalities by 25% to 33% (Elvik, 2012). 

2.3   Socio-demographic and Socio-economic Differences 

Gentrification – typically defined as the arrival of wealthier people, usually white, into an existing urban 
neighborhood and the coincident displacement of lower-income, usually non-white, residents – has 
become a persistent issue for U.S. cities (Grant, 2011; Maciag, 2015). In terms of road safety outcomes, 
income has proven to be significant in road safety outcomes, all other factors being held equal (Al-Lamki, 
2010; Marshall & Ferenchak, 2017). With respect to socio-demographics, much of the literature suggests 
lower road fatality rates for non-Hispanic white populations (Baker, Braver, Chen, Pantula, & Massie, 
1998; Harper, Marine, Garrett, Lezotte, & Lowenstein, 2000; Schiff & Becker, 1996) while other papers 
found higher fatality rates for American Indian and Black populations (Braver, 2003; Campos-Outcalt, 
Bay, Dellapena, & Cota, 2003; Mayrose & Jehle, 2002; McAndrews et al., 2013). While the existing 
research struggles to explain why the transportation system is not equally safe for various demographic 
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and economic groups, it stands to reason that we need to account for the shifting demographics and 
incomes of cities when trying to understand the road safety disparities. 

In terms of age, the existing literature suggests that both younger drivers and older drivers have increased 
transportation risks. For instance, younger drivers are more likely to speed and tend to underestimate risk 
(Constantinou, Panayiotou, Konstantinou, Loutsiou-Ladd, & Kapardis, 2011; Hatfield & Fernandes, 
2009; Machin & Sankey, 2008; Rhodes & Pivik, 2011; Stradling et al., 2003). Older drivers, on the other 
hand, tend to have slower reaction and processing times as well as decreased visual acuity (Anstey, 
Wood, Lord, & Walker, 2005; Clay et al., 2005; Horswill et al., 2008).  
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1990's 2000's 2010's 1990 2000 2010 2015
Oklahoma City, OK 638,367 16.2 14.9 12.6 -3.6 -22.2% 0.1% 0.1% 0.2% 0.1% 0.0% -28.1%
Memphis, TN 652,717 20.3 16.5 13.5 -6.8 -33.5% 0.1% 0.1% 0.2% 0.1% 0.0% -25.3%
Kansas City, MO 481,420 18.3 15.3 13.6 -4.7 -25.8% 0.1% 0.1% 0.3% 0.1% 0.0% -10.5%
Dallas, TX 1,317,929 16.5 13.6 11.2 -5.3 -32.2% 0.2% 0.1% 0.1% 0.2% 0.0% 29.5%
Houston, TX 2,303,482 14.0 13.1 11.2 -2.7 -19.5% 0.4% 0.5% 0.4% 0.5% 0.1% 42.3%
Austin, TX 947,890 12.0 11.2 8.4 -3.5 -29.5% 0.8% 0.9% 1.5% 1.3% 0.5% 67.2%
Chicago, IL 2,704,958 9.4 7.7 5.8 -3.6 -38.2% 0.3% 0.5% 1.3% 1.8% 1.5% 541.4%
Denver, CO 682,545 11.1 10.5 6.6 -4.5 -40.3% 0.9% 1.0% 2.3% 2.1% 1.2% 143.4%
Seattle, WA 704,352 11.6 5.6 4.6 -7.0 -60.6% 1.5% 1.9% 3.4% 4.0% 2.5% 163.8%
San Francisco, CA 864,816 8.9 6.2 4.5 -4.4 -49.3% 1.0% 2.0% 3.4% 4.3% 3.3% 348.1%
Minneapolis, MN 413,651 6.4 5.5 4.1 -2.3 -36.2% 1.6% 1.9% 4.1% 5.0% 3.4% 207.8%
Portland, OR 639,863 14.0 7.4 5.1 -8.9 -63.5% 1.2% 1.8% 6.1% 7.0% 5.8% 504.5%

Population
Δ Mode 

Share
Percent 
Change

Δ Crash 
Rate

Percent 
Change

Bike Mode Share
Fatal Crash Rate             

(fatalities per 100k pop.)
1990 to 20151990's to 2010's

3.   STUDY OVERVIEW, DATA, & METHODS 
 
To answer these research questions, we carried out a longitudinal spatial analysis, gathering data for the 
same locations over a period of thirteen years, of road safety outcomes in cities with and without high-
bicycling mode shares. This section overviews the study design, followed by the data collection efforts, 
and finishes by describing the statistical analysis.  

With respect to site selection, the fundamental intent was to select cities across a spectrum of bicycling, 
bicycling infrastructure, and road safety outcomes. Hence, we first acquired city-level American 
Community Survey (ACS) data so that we could assess mode share longitudinally. We then supplemented 
the ACS data with the data behind the Alliance for Biking and Walking Benchmarking Report (Milne & 
Melin, 2014). This included, for the fifty most populous U.S. cities, city-level bicycling-related data such 
as mileage of bike facility by type, density of bike facility by type, and bicyclist fatalities per 10,000 
bicycling commuters. The intent was to use this data get a better sense of these cities in terms of bicycling 
activity and the different types of bicycling infrastructure being installed. We also retrieved fatal crash 
data from the Fatality Analysis Reporting System (FARS) and calculated fatal crash rates by year for each 
city from 1990 onward.    

As discussed above, we wanted to find cities that exhibited a broad range of road safety outcomes and 
bicycling rates as well as cities with varying degrees of investment in bicycle-specific infrastructure. Data 
availability was another important criterion (for instance, despite persistent attempts, we were unable to 
acquire non-fatal crash data from Baltimore). Based on our assessment of the bicycling infrastructure, 
fatality rates, and bicycle mode shares, we limited our study to twelve cities (primarily thanks to the 
arduous task of collecting the longitudinal data, particularly with respect to the bike infrastructure data 
and the non-fatal crash data, which is described later in this section). Table 1 displays the selected cities, 
ranked in order of bicycle mode share to work. The most recent bicycling mode shares range from almost 
negligible in a few cities to 7% in Portland. This table also presents fatal crash rates aggregated by 
decade. Road fatality rates range from 4.1 fatalities per 100,000 residents in Minneapolis to 13.6 per 
100,000 residents in Kansas City. While all cities improved their road safety records over the years, 
bicycling rates dropped nearly 30% in Oklahoma City but increased by over 500% in Chicago.  

Table 3.1  City Selection 
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We narrowed our study period down to 2000 through 2012 based on the availability of non-fatal crash data 
(we were particularly interested in severe injury crashes) and historic Google Earth satellite imagery, which 
was used to determine bike infrastructure installation periods. Since this paper focuses on large cities, it is 
important to point out that these results are not generalizable to smaller cities. The next sub-section focuses 
on the data collection efforts. Table 2 presents the descriptive statistics for the accumulated data. 

3.1   Data 

3.1.1  Crash Data 

The FARS database was created in the mid-1970s by the National Highway Traffic Safety Administration 
(NHTSA) to document all motor vehicle crashes resulting in a fatality (within 30 days of crash) on public 
roadways (NHTSA, 2017b). While the underlying FARS data is compiled from police crash reports and 
hospital reports separately by different states and multiple agencies, NHTSA staff cross-check all data 
before it enters the final database. For our time period of 2000 through 2012, we were able to geocode 
nearly all crashes occurring after 2001 using latitude and longitude information. The remaining fatal 
crashes were geocoded (using ESRI Online geocoding in combination with the online mapping services 
MapQuest and Google) to the highest degree of accuracy possible based on the location information 
provided by FARS. The location information for these crashes typically included the name of the street 
where the crash occurred and the nearest cross street, and such crashes were geocoded to the nearest 
intersection. Within this step, we tested a subset of geocoded crashes for accuracy or systematic errors 
and found no issues. In total, we were able to successfully geocode all of the approximately 17,000 fatal 
crash records.  

We collected non-fatal crash data from each of the cities. Three cities (Denver, Minneapolis, and 
Portland) had the data already available in GIS format. Four other cites (Austin, Chicago, Dallas, and 
Houston) gave us spreadsheet data with latitude/longitude columns included. The data for the remaining 
cities had some coordinate data but mostly had to be geocoded in the same fashion that we used for the 
FARS data. Due to differences by city in terms of crash severity definitions, we separated the crash data 
into two groups: those that resulted in a severe injury and all other crashes. This process resulted in 
77,456 severe injury crashes and 3,531,504 total crashes with a geocoding success rate of 97.9%.    

Using GIS, each of the geocoded crashes was counted and summed at the Census block group level of 
geography. The Census block group is the unit of analysis for our study because it is the smallest 
geographic unit that has journey to work data available. Our twelve cities include 8,686 block groups (at 
an average of approximately 724 block groups per city), each with 13 years of data, for a total of 112,918 
observations. According to the Census, a block group averages 250–500 housing units but varies in terms 
of area depending upon housing density.  

It is worth pointing out that such aggregated Census data may be affected by the modifiable areal unit 
problem and that similar studies based on a different geographic unit may find different results (Spielman, 
Folch, & Nagle, 2014). Another potential limitation is the ecological fallacy, so we should be careful not 
to assume that relationships found at the group level also apply at the individual level (Kramer, 1983; 
Schwartz, 1994). 

3.1.2   Census and American Community Survey Data 

In order to control for travel behavior changes, we collected journey-to-work Census data from the 
National Historical Geographic Information System (NHGIS) for the years 2000 and 2010 as well as ACS 
data for 2012 for both the city and block group level (Manson, Schroeder, Riper, & Ruggles, 2017). Our 
variables of interest were bicycle mode share to work, transit mode share to work, and the work from 
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home mode share. Driving mode share had a high inverse correlation with transit mode share and was not 
included in the analysis. For the sake of the longitudinal analysis, we interpolated between the Census and 
ACS years for each variable using the trend function in Microsoft Excel, which performs a linear least 
squares statistical regression. While annual data would have been preferred, such data was not available 
for these variables. 

Akin to the travel behavior data, we collected socio-demographic and socio-economic changes – in terms 
of age, race/ethnicity, and income – from the Census and ACS. In terms of age, we developed several 
age-related variables based on groups that the literature suggests have the highest risk. We created 
variables identifying the percent of the population age 15 to 24 and the percent of the population age 65 
or older, with the thinking being that places with a higher percentage of those age groups may have worse 
road safety outcomes, all things being equal. Our race/ethnicity variables were highly correlated with one 
another and could result in multicollinearity and biased estimators; as a result, we aggregated the data into 
a variable representing the percentage of non-Hispanic white residents. Income variables represented 
median household income in thousands of dollars.   

3.1.3   Built Environment Data 

With this research, we want to understand the influence that bike infrastructure might have on road safety 
outcomes. Although most of our cities managed bike infrastructure GIS layers, only Portland included the 
year each facility was built as an attribute. For our other cities, collecting longitudinal bike infrastructure 
proved to be relatively difficult and time consuming. The objective was to categorize and time stamp each 
piece of bike infrastructure in each city by type (i.e. protected/separated bike facilities, bike lanes, and 
shared lane markings or sharrows) and the year it was built. This required a combination of emails/phone 
calls with city planners and in-depth review of old bike maps and historic satellite imagery available in 
Google Earth. The goal was to be as accurate as possible given the data limitations, so most of this work 
was done manually and ended up being quite time consuming. When we compared our ability to discern 
bike infrastructure via Google Earth imagery against old bike maps, our results matched up well. During 
the Google Earth work, however, we noticed that some protected/separated cycle tracks, for instance, 
were previously bike lanes or sharrows. This led us to perform the same satellite imagery review for 
Portland as well. After categorizing and time stamping each piece of bike infrastructure based on Federal 
Highway Administration (FHWA) definitions, we calculated the cumulative length and density of each 
facility type for each year (FHWA, 2015). 

To control for the impact of the built environment, we also sought out population density data. Population 
density has long been used as a measure of urban form and has been shown to be associated with fatal 
crash outcomes (Ewing & Dumbaugh, 2009; Ewing et al., 2014; Marshall & Ferenchak, 2017; Marshall 
& Garrick, 2010a; Tsai, 2005). Since boundaries sometimes change over time (such as when a city 
annexes new land), we wanted to be careful not to simply calculate population density based upon the 
most recent areas. Accordingly, we downloaded historic GIS shapefiles from NHGIS and calculated 
population density using time series population data and the shapefile from the nearest year. 

We also collected cross-sectional intersection density data at the block group level, calculated as the 
number of intersections, including dead ends, per square mile (Marshall & Garrick, 2012). Intersection 
density is a measure of street network compactness or density (Marshall & Garrick, 2012) and has been 
shown to be associated with road safety outcomes (Marshall & Garrick, 2011a) as well as vehicle speed.  
Yokoo and Levinson (2016) used GPS data to study actual travel speeds in relation to street network 
variables and found long links to be conducive to higher speeds (Yokoo & Levinson, 2016). In order to 
gain a better sense of the impact of the built environment on vehicle speeds, we also collected data from 
an open source program called CitySpeed that aggregates an average driving speed in each city by 
mapping the distance and duration of over 1,000 routes in each city (Kleint, 2009). Based upon an origin-
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destination matrix determined by popular coffee shops and schools, this Python script then collects data 
for each origin-destination pair from the Google Maps API regrading average speed, distance, duration, 
number of turns, and the number of turns per mile. We collected data from the CitySpeed program for 
each of our cities and tested the city-level average driving speed result in the statistical analysis. 

3.2   Statistical Methodology  

This research tries to understand what makes high-bicycling-mode-share cities safer for all road users. 
The dependent variable for our analysis is a crash count. One common problem with road safety research 
relates to the handling of injury severity. For instance, some studies intermingle fatal crashes with minor 
injury crashes and property damage only crashes (Scheiner & Holz-Rau, 2011). Thus, a handful of 
property damage only crashes could outweigh one or two fatal crashes. We focus on fatalities and severe 
injuries in order to maintain an emphasis on road safety outcomes as a health impact.  

Given that our dependent variable is count-based data, a typical linear regression model may not be 
appropriate because of the requirement that the dependent response variable be normally distributed 
(Long, 1997). Researchers, instead, frequently apply generalized linear models (GLM) when analyzing 
crash data because they can account for a non-normal distribution using a link function that relates the 
linear portion of the model to the mean of the dependent variable. Link functions allow the response 
variable to relate to the explanatory variables in a nonlinear way (Long, 1997). 

Since our dependent variable is count data, we initially looked to a Poisson distribution (which is a 
discrete probability distribution intended to measure the rate of occurrence of some event) to see if it had 
the correct distributional properties, but since our data is considered over-dispersed (i.e. the variance in 
our response variables exceeds the mean), the negative binomial is more appropriate. The negative 
binomial model is a generalized version of the Poisson model that accounts for this over-dispersion by 
introducing a random stochastic component to the log-linear Poisson mean function relationship (Long, 
1997; Lord, Washington, & Ivan, 2005; Noland & Quddus, 2004).  

We conducted a longitudinal study since it can help provide insight into the potential causal factors 
underlying changes in transportation safety outcomes (Zhou, Ivan, & Sadek, 2009). We also used a 
multilevel, hierarchical statistical approach. Multilevel statistical models have become standard practice 
for researchers conducting spatial health studies over the last two decades (Burton et al., 2009; Healy, 
2001; Li, Fisher, Brownson, & Bosworth, 2005; Radenbush & Bruk, 2002; Rundle et al., 2007; 
Subramanian, Jones, & Duncan, 2003).  Multilevel models help account for spatial autocorrelation and 
the idea that block group-level outcomes in the same cities share the characteristics of those cities, which 
would infringe upon the independence assumption of typical statistical models (Ewing, Schmid, 
Killingsworth, Zlot, & Raudenbush, 2003). Since our data consists of road safety outcomes and possible 
explanatory factors on both the block group and city levels, we grouped those levels accordingly. 

In developing our database, one consistent issue was high correlation among some of our variables. For 
instance, population density and transit mode share had a Pearson correlation coefficient of 0.95 at the 
city level, which suggests a very high positive correlation. The related statistical problem was that 
including such highly-correlated variables in the same model could result in multicollinearity and biased 
estimators. While we would normally omit one of the offending variables from the final statistical model 
to deal with this issue, one objective of this paper was to understand the relative influence of the possible 
pathways to road safety outcomes. To best assess these differences, we separated the pathways into 
statistical blocks and initially tested each one separately against our dependent variables. The following 
and the left-hand portion of Table 2 indicates our block structure: 

 Block 1: Travel Behavior Data 
 Block 2: Built Environment Data 
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 Block 3: Socio-demographic and Socio-economic Data 

After presenting the results of each block, we combine them into final models. First stepping through the 
results block-by-block meant that we could eliminate non-significant variables found in the block models 
from the full models, which was useful in dealing with the multi-collinearity issues (see Appendix 1 for a 
correlation matrix). The model fit variables shown in the results tables include log-likelihood and Wald 
chi-square. While these fit statistics cannot be compared across models, we used them to help with final 
variable selection for the full models using Stata 15.   

We account for exposure in all of our models with population data at the block group level. Population-
based exposure metrics are considered a better measure of road safety as a health statistic and are 
common in studies that consider socio-demographic and socio-economic issues (Campos-Outcalt et al., 
2003; Gallaher, Fleming, Berger, & Sewell, 1992; Marshall & Ferenchak, 2017; Marshall & Garrick, 
2010b; Schiff & Becker, 1996; Sewell et al., 1989). According to McAndrews et al., for example, 
outcomes based on population-based exposure reflect overall societal risk while those based on travel 
exposure (e.g. distance or time) reflect travel risk (McAndrews et al., 2013).  

Table 3.2  Descriptive Statistics (selected variables) 

 
 

Variable Obs Mean SD Min Max
Dependent Variables

Block Group Level: Fatal Crashes 112,918 0.15 0.51 0 29
Block Group Level: Fatal & Severe Injury Crashes 112,918 0.84 1.64 0 40

Population Variables
City Level: Population (in 1000s) 156 942 705 383 2,896

Block Group Level: Population 112,918 1,479 576 0 13,362
Travel Behavior Variables

City Level: Bicycle Mode Share to Work 156 1.52 1.52 0.11 7.01
City Level: Transit Mode Share to Work 156 10.90 9.51 0.53 32.67
City Level: Work from Home Modal Share 156 4.19 1.46 1.73 7.64

Block Group Level: Bicycle Mode Share to Work 112,918 1.06 2.51 0 62.40
Block Group Level: Transit Mode Share to Work 112,918 13.53 13.96 0 100
Block Group Level: Work from Home Modal Share 112,918 3.75 4.31 0 100

Built Environment Variables
City Level: Density of Protected/Separated Bike Facilities (100s of  f t. per sq. mi.) 156 30.8 30.8 0 111.6
City Level: Desnity of Bike Lanes (100s of  f t. per sq. mi.) 156 29.3 35.8 0 135.8
City Level: Density of Sharrows (100s of  f t. per sq. mi.) 156 41.5 106.3 0 588.3
City Level: Population Density (pop. per sq. mi.) 156 5,282 4,571 816 17,234
City Level: Intersection Density (intersections per sq. mi.) 12 181.0 97.8 53.0 396.0
City Level: Driving Speed Variable (mph) 12 27.8 6.2 18.0 40.1

Block Group Level: Density of Protected/Separated Bike Facilities (100s of  f t. per sq. mi.) 112,918 61.8 1,717.2 0 144,085
Block Group Level: Desnity of Bike Lanes (100s of  f t. per sq. mi.) 112,918 120.8 3,866.8 0 467,729
Block Group Level: Density of Sharrows (100s of  f t. per sq. mi.) 112,918 24.2 877.0 0 149,120
Block Group Level: Population Density (pop. per sq. mi.) 112,918 14,361 21,538 0 1,412,671
Block Group Level: Intersection Density (intersections per sq. mi.) 8,686 338 220 0 1,947

Socio-economic & Socio-demographic Variables
City Level: Percent of Population Age 15 to 24 156 15.16 1.89 11.77 20.33
City Level: Percent of Population Age 65 or older 156 10.49 1.79 6.78 14.09
City Level: Percent of Population Identifying as White 156 60.19 13.42 28.81 81.28
City Level: Median Household Income (in 1000s) 156 46.01 8.92 32.29 77.52

Block Group Level: Percent of Population Age 15 to 24 112,918 14.22 7.31 0 100
Block Group Level: Percent of Population Age 65 or older 112,918 10.65 7.14 0 100
Block Group Level: Percent of Population Identifying as White 112,918 54.11 29.76 0 100
Block Group Level: Median Household Income (in 1000s) 112,918 49.60 28.90 0 291.12
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4.   RESULTS 
 
4.1   Block Model Results 

As described in the statistical methodology section above, we initially developed statistical models for 
each data block individually. These results are presented first and include a fatality model followed by a 
fatal and severe injury model. If a variable in one of these models was determined to be non-significant in 
these block-by-block results, we were able to remove it from the corresponding full model. Every model 
controls for population at the block group level, and to ease interpretation of the resulting coefficients, all 
independent variables were standardized (for each variable, we subtracted the mean and divided by the 
standard deviation so that the standardized value represents the number of standard deviations above or 
below the mean and the resulting coefficients are more directly comparable). When dealing with multi-
collinearity issues, we selected the presented models based upon model fit statistics. The dispersion 
parameters all indicate the negative binomial model to be appropriate, and the city variance variable 
suggests the same about the hierarchical modeling.  

4.1.1   Travel Behavior Results 

When assessing the association between bicycling mode share and fatalities, we find a ‘safety in numbers’ 
effect when the data remains ungrouped. However, when we run multilevel fatality models nested at the 
city level, as in Table 3, bicycling mode share at both the city and block group level become non-
significant. This suggests that factors other than bicycling mode share may better account for differences 
in fatal crash outcomes.  In the fatal and severe injury model, bicycling mode share – at both the city and 
block group level – is significantly associated with worse safety outcomes. Simply put, the results do not 
suggest a ‘safety in numbers’ effect.  

City-level transit mode share was non-significant in both models but associated with more crashes when 
measured at the block group level. While riding transit is generally considered to be safer than driving, 
transit usage requires additional time as a pedestrian, which could potentially explain the seemingly 
increased risk. This result may also speak to socio-demographic and socio-economic differences with 
respect to road safety risk. As the existing literature described above suggests, minority populations and 
lower income groups tend to be associated with additional crash risk, all other variables being held equal. 
At the same time, these populations have also been shown to have higher transit rates (Rosenbloom & 
Clifton, 1996). Since this block model does not include socio-demographic or socio-economic variables, 
it makes sense that higher transit usage at the block group level may be associated with worse safety 
outcomes despite per-mile transit being safer than driving. City-level work from home mode share was 
significant in the fatality model and associated with fewer crashes.    

While the time variable is non-significant in this first fatality model, it is highly significant in all of the 
other models presented in this paper. The results are consistent and suggest fewer fatalities over time but 
additional severe injury crashes over time.  
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Table 4.1  Block 1 Negative Binomial Statistical Models 

 
 

4.1.2  Block 2: Built Environment Results 

In terms of bike infrastructure, the variables representing the density of protected/separated bike facilities 
and the density of standard bike lanes were highly correlated with one another at both the city and block 
group levels (Pearson correlation coefficients of 0.68 and 0.60, respectively).  The results suggest that 
increased density of bike facilities (either protected/separated or standard bike lanes) is associated with 
fewer crashes across both severity levels. Since the model employing both the city and block group-level 
protected/separated bike facilities variables led to the strongest model fit statistics, Table 4 displays these 
results. The density of shared lane markings (road markings used to indicate a shared lane for bicycles 
and cars and more commonly known as sharrows) turned out to be non-significant. 

Higher intersection density at the block group level, a measure of street network compactness and typically 
illustrative of slower speed streets, was associated with fewer road fatalities as well as fewer fatal and severe 
crashes. Population density suggested similar trends (i.e. higher population density significantly associated 
with better road safety outcomes), but the variable was highly correlated with intersection density but with 
reduced model fit statistics. The cross-sectional, city-level speed variable was not significant in either 
model. 
 

  

Variable p-value p-value
Constant - 1.9431 <.0001 0.1083 - 1.2372 <.0001 0.2443

City Level Variables
Bike Mode Share - 0.2668 <.0001 0.0211
Transit Mode Share - -
Work from Home Share - 0.1422 0.001 0.0420 -

Block Group Level Variables
Population 0.1626 <.0001 0.0081 0.1692 <.0001 0.0051
Bike Mode Share - 0.0284 <.0001 0.0069
Transit Mode Share 0.0938 <.0001 0.0133 0.1041 <.0001 0.0069
Work from Home Share - -

Longitudinal Effects
Time (years) - 0.0002 0.968 0.0052 0.1226 <.0001 0.0019

Model Fit
log of Dispersion Parameter 0.7388 0.0269 0.2870 0.0105
Hierarchical Effects: City Variance 0.1327 0.0568 0.7147 0.2937
Log-Likelihood -49,078 -130,408
Wald Chi-Square 554 8,791
No. of Observations Used 112,918 112,918
Number of Groups 12 12

Fatal Crash Model Fatal & Severe Injury 
Model
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Table 4.2  Block 2 Negative Binomial Statistical Models 

 
 

4.1.3  Block 3: Socio-demographic and Socio-economic Results 

With regard to race and income, the Block 3 results in Table 5 generally support the literature findings. In 
terms of fatalities, the results suggest that, all things being held equal, we would expect fewer fatalities as 
block groups as cities gain higher proportions of white residents. Income results were similar, in that 
higher incomes were associated with better road safety outcomes, but income was highly correlated with 
the race variable, which resulted in the stronger models that are presented. The block-group race variable 
holds in the fatal and severe injury model as well but is non-significant at the city level. 

In terms of age, cities with a higher percentage of the population older than 65 are significantly associated 
with fewer fatalities. The same can be said when looking at fatal and severe injuries with respect to the 
percent of the population older than 65 at the block group level. While older populations may have 
increased risk on a per-mile basis, they may also have lower exposure and reduced population-based crash 
rates. As for young people age 15 to 24, we find more young people at the block group level to be 
significantly associated with more fatal and severe injury crashes. 

  

Variable p-value p-value
Constant - 1.9413 <.0001 0.0550 - 1.2678 <.0001 0.1672

City Level Variables
Population Density - -
Density of Protected/Separated Bike Facilities - 0.2566 0.023 0.0425 - 0.2317 <.0001 0.0622
Density of Standard Bike Lanes - -
Density of Sharrows - -
Driving Speed Variable - -

Block Group Level Variables
Population 0.1433 <.0001 0.0081 0.1549 <.0001 0.0051
Population Density - -
Intersection Density - 0.2724 <.0001 0.0136 - 0.1152 <.0001 0.0067
Density of Protected/Separated Bike Facilities - 0.0322 0.046 0.0161 - 0.0300 <.0001 0.0078
Density of Standard Bike Lanes - -
Density of Sharrows - -

Longitudinal Effects
Time (years) - 0.01123 <.0001 0.0026 0.14289 <.0001 0.0021

Model Fit
log of Dispersion Parameter 0.69453 0.0273 0.28610 0.0105
Hierarchical Effects: City Variance 0.03238 0.0141 0.33349 0.1367
Log-Likelihood -48,881 -130,470
Wald Chi-Square 954 8,744
No. of Observations Used 112,918 112,918
Number of Groups 12 12

Fatal Crash Model Fatal & Severe Injury 
Model
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Table 4.3  Block 3 Negative Binomial Statistical Models 

 
 

4.2 Full Model Results 

This section combines all the significant variables found above into full statistical models. Table 6 
presents the resulting statistical models, and the dispersion parameters indicate that the negative binomial 
model is appropriate. Table 7 presents the percent change in expected crash counts based upon changing 
the level of a single variable and holding all other variables at their mean value for the dataset. These 
values are mathematically the same as elasticity measures but easier to visualize and comprehend (Noland 
& Quddus, 2004). The reference values tend to be close to the mean of that variable, and the levels 
generally correspond with the standard deviation. For example, consider the lower right box of Table 7, 
which presents the expected crash outcomes at different levels of the variable representing the percent of 
the population age 65 or older. At the reference value, 10% of the block group population is age 65 or 
older. With all other variables held at their mean, we could expect 0.79 fatal/severe injury crashes per 
block group per year, which equates to a crash rate of 53.4 fatal/severe injury crashes per 100,000 
residents annually. In a block group where 20% of the population is 65 or older, we would expect only 
0.76 fatal/severe injury crashes per block group per year. This equates to a fatal/severe injury crash rate of 
51.2 per 100,000 residents annually, a 4.2% decrease.  

The remainder of this section describes the results based upon such expected crash rate differences. 

  

Variable p-value p-value
Constant - 1.7543 <.0001 0.1238 - 1.2508 <.0001 0.1772

City Level Variables
Age: % of Population 15 to 24 - -
Age: % of Population 65 Plus - 0.1326 0.021 0.0576 -
Race: % of Population White - 0.3069 <.0001 0.0910 -
Median HH Income (1000's) - -

Block Group Level Variables
Population 0.1653 <.0001 0.0081 0.1583 <.0001 0.0051
Age: % of Population 15 to 24 - 0.0379 <.0001 0.0056
Age: % of Population 65 Plus - - 0.0281 <.0001 0.0055
Race: % of Population White - 0.1644 <.0001 0.0099 - 0.0999 <.0001 0.0055
Median HH Income (1000's) - -

Longitudinal Effects
Time (years) - 0.01578 <.0001 0.0024 0.13729 <.0001 0.0015

Model Fit
log of Dispersion Parameter 0.72331 0.0270 0.28581 0.0105
Hierarchical Effects: City Variance 0.16877 0.0809 0.37527 0.1532
Log-Likelihood -48,952 -130,380
Wald Chi-Square 795 8,893
No. of Observations Used 112,918 112,918
Number of Groups 12 12
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4.2.1 Block 1: Travel Behavior Results 

When combining the three variable blocks in the same models, nearly all the travel behavior variables 
lose their significance. This includes the transit variables that become non-significant when either the race 
or income variables are added. The remaining travel behavior variable is bicycling mode share at the 
block group level in the fatal/severe injury model. For a block group with 3% bike mode share compared 
to the reference value of 1.3%, this equates to 3.9% more fatal/severe injury crashes, holding all other 
variables at their mean. So, when we ask the question as to what makes high-bicycling-mode-share cities 
safer for all road users, the answer does not seem to be a ‘safety in numbers’ effect. 

4.2.2 Block 2: Built Environment Results 

Though bike mode share did not explain much in terms of differences in safety outcomes, the 
infrastructure cities build for bicyclists played a more significant role. For example, with the variable 
representing the density of protected/separated bike facilities at the city level, the reference value of 25 
equates to 2,500 linear feet of protected or separated bike facilities per square mile. At that density of 
protected/separated bike infrastructure, we would expect 0.14 fatalities and 0.79 fatal/severe injury 
crashes per block group per year. This equates to annual crash rates of 9.7 fatalities per 100,000 residents 
and 53.4 fatal/severe injury crashes per 100,000 residents. If we increase the density of 
protected/separated bike facilities to 5,000 linear feet per square mile (approximately 1 standard deviation 
increase), and holding all other variables at their mean value, we would expect 0.12 fatalities and 0.61 
fatal/severe injury crashes per block group per year. With annual crash rates of 7.9 fatalities per 100,000 
residents and 41.5 fatal/severe injury crashes per 100,000 residents, this suggests a nearly 18% drop in the 
fatal crash rate and more than a 22% drop in the fatal/severe injury crash rate. At the highest level of 
citywide protected/separated bike infrastructure, we would expect a 44% reduction in the fatal crash rate 
and more than 50% drop in the fatal/severe injury crash rate, all other variables held at their mean.  

While a higher density of protected/separated bike facilities at the block group level is associated with 
fewer crashes in both models, the results suggest that bike infrastructure at the city level is more 
important. For instance, we would expect about a little less than a 3% reduction in both fatalities and 
fatal/severe crashes when the density of protected/separated bike infrastructure increases from the mean 
reference level to approximately one standard deviation higher. We also tested the variables representing 
the density of standard bike lanes in place of the protected/separated bike facility variables, and even 
though both standard bike lane variables were significant in the block models, they interestingly become 
non-significant in the full models. This suggests that improved road safety for all road users is tied to the 
prevalence of protected/separated bike facilities much more so than the prevalence of standard bike lanes. 

With the built environment results, we also found that higher intersection densities at the block group 
level correspond with fewer expected crashes across both severity levels when holding all other variables 
at their mean. Since intersection density has been shown to be an appropriate proxy for the level of 
urbanity, these results support the research showing that more urban neighborhoods have better safety 
outcomes (Ewing et al., 2014; Marshall & Ferenchak, 2017). 
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4.2.3  Block 3: Socio-demographic and Socio-economic Results 

For the variables representing gentrification and the changing demographics of a city or neighborhood, 
the results suggest fewer fatalities as a city or neighborhood becomes whiter. Median household income 
would have been similarly significant to the race variables, but the resulting models were not as strong. In 
terms of the city-level race variable, it was non-significant in the second model, but we would expect a 
10% decrease in the fatality rate when a city changes from 50% to 60% white. The block group race 
variable had a similar effect in both models but to a lesser extent. As the block gentrifies and a greater 
percentage of white residents arrive, a jump from 50% to 60% white suggests an expected drop in 
fatalities of 5% and a drop in fatal and severe crashes of just over 3%. These results support studies that 
suggest changing demographics and economics can play a role in road safety outcomes (McAndrews et 
al., 2013). They are also suggestive of equity disparities that deserve additional research.  

In the full fatality model, the age variables become non-significant. The block group-level age subgroup 
variables, however, remain significant in the fatal/severe injury model while the city-level age variables 
both drop out. This suggests that city-level age distributions do not seem to be important factors in block 
group-level crash outcomes. In terms of block group-level age categories, an increase in those aged 15 to 
24 from 10% to 15% of the block group population suggests an almost 3% increase in fatal/severe injury 
crashes. If the population of those aged 65 or older similarly increases from 10% to 15% of the block group 
population, we would expect a 2% decrease in fatal/severe injury crashes. These results may speak to the 
possibility of reduced travel exposure for those over 65 years old. In other words, their risk may be higher 
per mile of travel, but if they travel less, the result may be improved road safety outcomes. 
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Table 4.5  Full Negative Binomial Statistical Models 

   

Variable p-value p-value
Constant - 1.8853 <.0001 0.0579 - 1.2554 <.0001 0.1682

City Level Variables
Bike Mode Share - -
Transit Mode Share - -
Work from Home Share - -

Block Group Level Variables
Bike Mode Share - 0.0559 <.0001 0.0054
Transit Mode Share - -
Work from Home Share - -

City Level Variables
Population Density - -
Driving Speed Variable - -
Density of Protected/Separated Bike Facilities - 0.1939 <.0001 0.0436 - 0.2505 <.0001 0.0623
Density of Standard Bike Lanes - -
Density of Sharrows - -

Block Group Level Variables
Population Density - -
Intersection Density - 0.2715 <.0001 0.0137 - 0.1213 <.0001 0.0068
Density of Protected/Separated Bike Facilities - 0.0297 0.059 0.0158 - 0.0286 <.0001 0.0077
Density of Standard Bike Lanes - -
Density of Sharrows - -

City Level Variables
Age: % of Population 15 to 24 - -
Age: % of Population 65 Plus - -
Race: % of Population White - 0.1255 0.041 0.0613 -
Median HH Income (1000's) - -

Block Group Level Variables
Population 0.1465 <.0001 0.0080 0.1521 <.0001 0.0051
Age: % of Population 15 to 24 - 0.0389 <.0001 0.0056
Age: % of Population 65 Plus - - 0.0307 <.0001 0.0055
Race: % of Population White - 0.1591 <.0001 0.0098 - 0.1002 <.0001 0.0056
Median HH Income (1000's) - -

Longitudinal Effects
Time (years) - 0.0130 <.0001 0.0026 0.1414 <.0001 0.0021

Model Fit
log of Dispersion Parameter 0.6745 0.0275 0.2705 0.0105
Hierarchical Effects: City 0.0315 <.0001 0.0181 0.3374 <.0001 0.1384
Log-Likelihood -48,741 -130,163
Wald Chi-Square 1,219 9,328
No. of Observations Used 112,918 112,918
Number of Groups 12 12
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 Table 4.6  Expected Change in Crash Counts for Full Models 

 
  

 Expected 
Crashes1 p-value S.E.

Crash 
Rate2

Percent 
Change3

 Expected 
Crashes1 p-value S.E.

Crash 
Rate2

Percent 
Change3

Base Annual Expected Crash Outcomes/Crash Rates 1 0.143 <.0001 0.0086 9.6 - 0.788 <.0001 0.1439 53.3 -

Block 1 - Travel Behavior Differences
BG Level: Bicycling Mode Share to Work

0.0% 0.770 <.0001 0.1406 52.1 -2.8%
1.3%  (reference value) 0.792 <.0001 0.1447 53.6 -
3.0% 0.823 <.0001 0.1503 55.6 3.9%
5.0% 0.860 <.0001 0.1572 58.2 8.6%
7.0% 0.899 <.0001 0.1646 60.8 13.5%

Block 2 - Built Environment Differences
City Level: Protected/Separated Bike Facility Density

  (in 100s of feet per sq. mi.)
0 0.174 <.0001 0.0135 11.8 21.6% 1.018 <.0001 0.2036 68.8 28.8%

25  (reference value) 0.143 <.0001 0.0086 9.7 - 0.790 <.0001 0.1443 53.4 -
50 0.117 <.0001 0.0084 7.9 -17.8% 0.614 <.0001 0.1142 41.5 -22.4%

100 0.079 <.0001 0.0112 5.4 -44.4% 0.370 <.0001 0.0913 25.0 -53.2%
BG Level: Protected/Separated Bike Facility Density

  (in 100s of feet per sq. mi.)
60  (reference value) 0.143 <.0001 0.0085 9.6 - 0.788 <.0001 0.1437 53.3 -

1,750 0.139 <.0001 0.0085 9.4 -2.8% 0.766 <.0001 0.1400 51.8 -2.7%
3,500 0.134 <.0001 0.0091 9.1 -5.7% 0.744 <.0001 0.1363 50.3 -5.5%
7,000 0.126 <.0001 0.0111 8.6 -11.3% 0.702 <.0001 0.1300 47.5 -10.9%

BG Level: Intersection Density
81 0.196 <.0001 0.0120 13.3 19.5% 0.908 <.0001 0.1660 61.4 8.3%

144 0.181 <.0001 0.0110 12.3 10.5% 0.877 <.0001 0.1602 59.3 4.6%
225  (reference value) 0.164 <.0001 0.0099 11.1 - 0.839 <.0001 0.1532 56.7 -
324 0.145 <.0001 0.0087 9.8 -11.5% 0.794 <.0001 0.1450 53.7 -5.3%

Block 3 - Socio-economic/Socio-demographic Differences
City Level: Percent of Population Identifying as White

30% 0.185 <.0001 0.0309 12.5 22.4%
40% 0.167 <.0001 0.0200 11.3 10.6%
50%  (reference value) 0.151 <.0001 0.0117 10.2 -
60% 0.136 <.0001 0.0074 9.2 -9.6%
70% 0.123 <.0001 0.0088 8.3 -18.3%

BG Level: Percent of Population Identifying as White
30% 0.162 <.0001 0.0098 11.0 11.3% 0.855 <.0001 0.1561 57.8 7.0%
40% 0.154 <.0001 0.0093 10.4 5.5% 0.826 <.0001 0.1509 55.9 3.4%
50%  (reference value) 0.146 <.0001 0.0088 9.9 - 0.799 <.0001 0.1459 54.0 -
60% 0.138 <.0001 0.0083 9.3 -5.2% 0.773 <.0001 0.1411 52.2 -3.3%
70% 0.131 <.0001 0.0079 8.9 -10.1% 0.747 <.0001 0.1364 50.5 -6.5%

BG Level: Percent of Population Age 15 to 24
0% 0.731 <.0001 0.1337 49.4 -5.2%
5% 0.750 <.0001 0.1371 50.7 -2.6%

10%  (reference value) 0.771 <.0001 0.1407 52.1 -
15% 0.791 <.0001 0.1445 53.5 2.7%
20% 0.813 <.0001 0.1483 55.0 5.5%

BG Level: Percent of Population Age 65 Plus
0% 0.825 <.0001 0.1508 55.8 4.4%
5% 0.808 <.0001 0.1475 54.6 2.2%

10%  (reference value) 0.790 <.0001 0.0144 53.4 -
15% 0.774 <.0001 0.1412 52.3 -2.1%
20% 0.757 <.0001 0.1383 51.2 -4.2%

1calculated using mean values for all other variables 2 crash rates calculated per 100,000 block group residents
3percentage change from reference value when holding all other variables at their mean

Fatality Model Fatal & Severe Injury Model
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5.   CONCLUSIONS 
 
What makes high-bicycling-mode-share cities so much safer than many of their counterparts? Our results 
suggest that more bicyclists on the road is not as important as the infrastructure we build for them. More 
specifically, our results suggest that improving bike infrastructure with more protected/separated bike 
facilities is significantly associated with fewer fatalities and better road safety outcomes. It stands to 
reason that such infrastructure may help improve bicyclist safety. Then again, our study finds 
protected/separated bike facilities significantly associated with better safety for all road users, so such 
infrastructure may have a traffic calming effect and facilitate safer speeds. Given our results, we also 
cannot ignore the possibility that the lower road safety risks of the people that tend to inhabit high-
bicycling-mode-share cities also plays a role, as our variables representing gentrifying neighborhoods 
were also significant. This outcome may be indicative of inequity issues in need of additional research. 

In terms of study limitations, it is important to understand that the relationship between safety outcomes 
and bicycling activity is quite complex and possibly bi-directional. Better safety outcomes – or at least the 
perception of better safety – can lead to increased bicycling. Statistically, the related methodological 
problem is called endogeneity (Sweet, 2014). The issue is that this could create a situation where the error 
term in the statistical model is correlated with the variable representing bicycling activity, which could in 
turn violate the independence assumption and perhaps bias the model (Baum-Snow, 2007; Chatman & 
Noland, 2014; Duranton & Turner, 2011; Hymel, 2009; Sweet, 2011, 2014). Future studies should 
attempt to control for potential endogeneity issues. While our study was an extensive data collection 
project that included twelve large U.S. cities and thirteen years of data, more cities, in more countries, and 
more years of data would still have been preferable. At this point, the results should not be considered 
generalizable to other countries or smaller cities. 

Taking a broader view, it is important to understand that the potential pathways for safer places are 
complementary and should not be considered in isolation. Compact street networks in many U.S. cities, 
for example, are typically representative of lower-speed urban environments with better bike facilities, 
increased traffic calming, and improved emergency response (Pucher & Dijkstra, 2000; Retting, 
Ferguson, & McCartt, 2003). Those looking towards trying to fulfill the promise of Vision Zero and the 
goal of zero fatalities or serious injuries on the roads – as opposed to the business-as-usual, whack-a-mole 
approach to road safety – are in need of evidence-based research. This paper helps fulfill this need and 
can inform cities in their effort toward a safer and healthier transportation system. 
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PART 2:  Assessing Equity and Urban/Rural Road Safety 
 Disparities 

7.   INTRODUCTION  
 
Road fatalities in the United States went from being a non-factor at the turn of the twentieth century to 
being grouped among the top ten leading causes of death less than a generation later in 1926 (CDC, 
2000).  By 1951, the number of Americans killed in car crashes had surpassed one million; not long 
thereafter, the number of U.S. traffic deaths eclipsed the total number of Americans killed in all U.S. wars 
combined, including the American Revolution (Weingroff, 2003).  Across the world, we face 1.2 million 
deaths and another 50 million injuries in road crashes each year (World Health Organization, 2004).  One 
might assume this issue would be treated in the same vein as other international catastrophes.  However, 
the fact that more people die on the roads globally every single day than in the September 11th terrorist 
attacks does not engender the same level of public outcry (World Health Organization, 2004).  In the 
U.S., roads continue to take the lives of at least 32,000 people each year and purge more productive years 
of life than any other disease, including more than cancer and heart disease combined (G. Lovegrove, 
Lim, & Sayed, 2010; Maxton & Wormald, 2004).  Moreover, road crashes are the number one cause of 
death for every U.S. age group from 4 through 34 (CDC, 2014).  Unfortunately, we perceive this problem 
as part of the cost of doing business rather than what it truly is: a public health failure. 

Looking at road safety like a health impact begs the question: how equitable are the impacts? Equity 
refers to the fairness with which impacts – both benefits and costs – are distributed (Litman, 2015).  With 
respect to transportation, poor safety outcomes persist as a major cost.  If this particular cost is not being 
distributed across socio-demographic/socio-economic lines or geographic areas relatively evenly, this 
paper intends to highlight these disparities.  In other words, how equitable are the impacts along income 
and race/ethnicity lines?  Are there geographic or urban/rural differences?   

This research delves into these questions through a spatial analysis of over 970,000 road fatalities in the 
U.S. that took place over the course of a 24-year period (1989 – 2012).  For this timespan, we attempted 
to geocode the entire Fatality Analysis Reporting System (FARS) database, separating out vehicle 
occupants from pedestrian/bicyclist fatalities, and analyzing crashes both in terms of where the crash 
occurred as well as by the home zip code of the driver  (NHTSA, 2014).  By distinguishing between 
where the crash happened and where those involved were likely from allowed us to better understand the 
impact of our transportation system on various communities and populations.  Accordingly, we are able to 
consider road safety in a manner unlike any of the previous research that exclusively focused on crash 
location.  This fills a major gap in the literature and facilitates a heretofore-unseen equity analysis of road 
safety at the zip code level of geography for the entire U.S. over a substantial 24-year timeframe. 

After a brief background and literature review, we further detail the data and methodologies before 
presenting results and conclusions. 
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8. BACKGROUND  
 
8.1 Measuring Road Safety as a Health Impact 

Figure 8.1 illustrates the drop in road fatalities per 100 million miles driven in the U.S. for the last 116 
years.   
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1  U.S. Road Fatalities per 100 million VMT (1900 – 2015)  

Based on such graphs, road safety engineers boast that the U.S. transportation system is safer than ever.  
Looking at Figure 8.1, this point is difficult to argue.  However, consider the following example 
comparing two hypothetical cities in Table 8.1. 

Table 8.1  Road Safety Outcomes Example 

  City A City B
Annual Road Fatalities 8 deaths 8 deaths
Annual Vehicle Miles Traveled 8 hundred millions miles 1 hundred million miles
Population 50,000 people 100,000 people

Fatality Rate per                 
Hundred Million Miles Driven

1.0 8.0

Fatality Rate per                     
Hundred Thousand Population

16.0 8.0
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Both cities in Table 8.1 experienced eight road casualties last year. Those living in City A drove a total of 
8 hundred million miles while those living in City B drove 1 hundred million miles. Given the differing 
levels of exposure, City A has a road fatality rate of one death per hundred million vehicle miles traveled 
(VMT), and City B has a road fatality rate of eight per hundred million VMT.  Based on such numbers, it 
is easy to think that City A is safest.   

However, what if City A has a population of 50,000 and City B a population of 100,000?  If we used 
population as the exposure metric, how would that change our impression of safety?  Now, the road 
fatality rate is sixteen per 100,000 population for City A and eight per 100,000 population for City B.  
Using this metric – akin to how we compute other public health outcomes – City B seems safer.   

Which city really is safer?  To shed light on that question, we compare some example residents of City A 
and City B.  Based on the VMT estimates, the average person in City A drives more than 40 miles per day 
while the average person in City B drives just over 10.  For the sake of the example, let us assume that the 
City A resident commutes 20 miles each way to work while the City B resident commutes 5 miles each 
way to work, for a total of approximately 10,000 and 2,500 annual commuting miles, respectively.  Over 
the course of the year, let us also assume that the City A resident gets into 2 crashes while the City B 
resident gets into only 1 crash.  Using miles traveled as the exposure metric, the results would argue that 
the City A resident is twice as safe because they were only involved in 1 crash every 5,000 miles while 
the City B resident experienced 1 crash every 2,500 miles driven.  However, if we consider this from the 
perspective of those involved, most people would rather be in the shoes of the City B resident since they 
were able to accomplish their daily tasks with fewer crashes.  The problem with using miles driven as the 
exposure metric: the more one drives, the safer one seems.          

Other exposure metrics include: the number of trips taken, the time spent traveling, traffic volumes, the 
number of streets crossed, the number of registered cars, and the number of licensed drivers (Beck, 
Dellinger, & O'Neil, 2007; Carroll, 1973; McAndrews, Beyer, Guse, & Layde, 2013).  The problem with 
many of these exposure measures – such as VMT – is that neighborhood characteristics impact travel 
habits, which presents an endogeneity problem when it comes to trying to understand safety (Ewing & 
Cervero, 2001, 2010; W. E. Marshall & Garrick, 2010).  For instance, living in a place where one needs to 
drive more to carry out his or her daily activities is: i) potentially a part of the problem when concerned 
with the health impacts of the transportation system; and ii) not the sort of variable we should use to 
normalize crashes because it rewards inefficient transportation and land uses patterns with better 
perceived safety outcomes.  In contrast, transportation and land use planning, which has the ability to 
facilitate a population that lives, works, and plays in the same area, would be penalized in terms of safety 
outcomes due to relatively low driving exposure.  The overarching problem is that with conventional 
mileage-based exposure metrics, populations with lower levels of driving often end up being considered 
less safe, even when a much lower percentage of the population is dying on the roads.  This confounds the 
relationships among urbanism, exposure, and road safety.   

Population-based exposure metrics represent a method used by several other studies that also looked at 
socio-demographic and socio-economic issues and are considered a better measure of road safety as a 
health statistic (Campos-Outcalt, Bay, Dellapena, & Cota, 2003; Gallaher, Fleming, Berger, & Sewell, 
1992; W. E. Marshall & Garrick, 2011a; Schiff & Becker, 1996; Sewell et al., 1989). Figure 8.2 depicts 
the overall U.S. fatality rate with population as the denominator.  The population-based metric tells a bit 
of a different story than we saw in Figure 7.1.  While road safety statistics in the U.S. still seem to be 
headed in the right direction, presenting fatality rates with population as the exposure does a better job of 
representing health impacts and is the approach we employ in the remainder of the paper.  
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Figure 8.2  U.S. Road Fatalities per 100,000 Population (1900 - 2015)  

8.2 Literature Review 

The papers related to road safety and the equity/geographic issues we investigate generally fall into one of 
two categories: i) those that look at safety with respect to socio-demographic characteristics such as race 
and ethnicity; and ii) those that look at safety with respect to geographic location in terms of urban, 
suburban, and rural characteristics.  We will briefly cover each of these literature strands before 
discussing some of the general limitations we seek to resolve. 

The existing literature uses a variety of methods in attempting to identify road safety disparities by socio-
demographic variables.  Trends tended to surface – such as higher crash rates for American Indian and 
Black populations (Braver, 2003; Campos-Outcalt et al., 2003; Mayrose & Jehle, 2002; McAndrews et 
al., 2013) – but overall, the findings lacked consistency.  For instance, most papers suggest higher road 
fatality rates for Hispanic populations as compared to non-Hispanic whites (Baker, Braver, Chen, Pantula, 
& Massie, 1998; Harper, Marine, Garrett, Lezotte, & Lowenstein, 2000; Schiff & Becker, 1996).  
However, one of the few national studies also found higher crude rates for Hispanic populations, but this 
result was deemed insignificant when controlling for socio-economic status (Braver, 2003).  Another 
paper accounted for crash location across the urban-rural spectrum and found significantly lower fatality 
rates for Hispanic populations (Campos-Outcalt et al., 2003).  This last paper focused on Arizona at the 
county level using seven years of crash data, which was representative of the general limitations of the 
existing work.  For example, Braver’s paper, while national in scope, relied upon a single year of crash 
data (Braver, 2003).  We intend to conduct a national study at a smaller level of geography, the zip code, 
using 24 years of fatal crash data.  
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The second major strand of literature related to this paper looks at road safety with respect to geographic 
location.  Given the national overall injury death database, it is easy to show that most deaths happen to 
urban residents (CDC, 2013; Myers et al., 2013). Looking more specifically at road safety, it is also easy 
to show that places with more people, jobs, and roads see more total crashes (Hadayeghi, Shalab, & 
Persaud, 2003; Hadayeghi, Shalaby, Persaud, & Cheung, 2006; Klein & Löffler, 2001; Kmet, Brasher, & 
Macarthur, 2003; Ladron de Guevara, Washington, & Oh, 2004; Levine, Kim, & Nitz, 1995a, 1995b).  
Due to a number of issues, these studies shed little light on relative risk and whether urban populations 
are actually less safe than those living in other contexts (Ewing, Hamidi, & Grace, 2014).  One common 
problem relates to injury severity.  Some studies intermingle fatal crashes with injury crashes and 
property damage only crashes (Scheiner & Holz-Rau, 2011). As a result, a handful of fender benders – 
which are more likely to occur in urban areas anyway – would outweigh one or two fatal crashes. Given 
that we are interested in the health impacts of the transportation system, we focus on road fatalities.  
Preferably, we would include injury-related crashes as well, particularly those of a severe nature, but that 
data is not consistently available nationally. 

In attempting to uncover road safety disparities based on where one lives, a third limitation of most 
existing crash studies is the focus on crash location (Ewing et al., 2014; Lucy, 2003).  For instance, a road 
fatality taking place in a major city may solely involve long-distance commuters instead of local 
residents.  In other words, the location of the crash does not necessarily equate to the place of residence of 
those involved.  Attributing that fatality to the place where the crash occurred might lead to false findings 
regarding the relative risk of living in a particular place.  The urban area may seem to be the issue; 
however, sparse, homogenous land uses leading to the need to commute to that urban area in the first 
place may be the underlying problem.  Since we seek to understand these underlying issues, we joined 
each FARS crash in GIS with the home zip code of the driver (which is included in a different table 
within the overall FARS dataset) to determine where the deceased was likely from and differentiate 
between where the crash took place and the communities where the populations are being impacted.  This 
effort is similar to the methods used by Scheiner and Holz-Rau (2011) in a Germany-based study where 
they found fatality rates increasing with decreasing population density to the point where the most rural 
places had twice the risk of the most urban (Scheiner & Holz-Rau, 2011).   

The next section details the data and methodology.  
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9. DATA & METHODS 
 
A significant data collection effort was needed to understand the road safety research questions we 
present.  The initial concept was to geocode as much FARS crash data as possible and assemble the most 
appropriate socio-demographic and socio-economic data available.  Given that the driver’s crash record 
included his/her home zip code, we focused on the zip code as the unit of analysis. 

9.1 Crash Data 

Administered by the National Center for Statistics and Analysis (NCSA) of the National Highway Traffic 
Safety Administration (NHTSA), the Fatality Analysis Reporting System (FARS) was created in 1975 to 
document all motor vehicle crashes resulting in a fatality (within 30 days of crash) on public roadways 
(NHTSA, 2014).  Initial annual FARS reports are released each August for the preceding year.  
Approximately eight months later, the final dataset is released, which includes more than 125 pieces of 
information (Briggs et al., 2005).  

For this project, fatal crash data from the years 1989 through 2012 was retrieved from the FARS database, 
and each crash record was geocoded into a GIS database.  Fatal crashes occurring post approximately 
2001 were typically coded using latitude and longitude information.  Fatal crashes up until around 2001 
were geocoded to the highest degree of accuracy possible based on the location information provided by 
FARS.  Geocoding was conducted using ESRI Online geocoding in combination with the online mapping 
services MapQuest and Google.  With each step, a subset of geocoded crashes were tested for accuracy 
and/or any systematic errors; if errors were found, the crashes would be re-geocoded using another 
technique.  The overall geocoding success rate was 99.9995%.  We excluded crashes prior to 1989 due to 
a lack of information sufficient for geocoding and a resulting lower success rate.  Table 9.1 shows the 
geocoding results by method employed over three-year increments.  The total number of successfully 
geocoded fatalities over the 24-year period of analysis included 831,399 vehicle occupant deaths and 
140,207 deaths of those not within a motor vehicle (e.g. pedestrians and bicyclists) for a total of 971,606 
fatalities.  This equates to more than 40,483 road fatalities for each year of our 24-year study period.  
These fatalities corresponded to 872,929 crashes.  We were able to successfully geocode 872,925 of those 
crashes.  Thus, only 4 crashes (0.0005% of the total number of crashes) were not geocoded or included in 
the analysis.    

Table 9.1  Geocoding Results 
  

Years
Total 

Fatalities

Vehicle 
Occupant 
Fatalities

Ped/Bike 
Fatalities

Total          
Fatal 

Crashes

Crashes          
with 

Coordinates

Crashes 
Needing 

Geocoding

Successfully 
Geocoded

Geocoded 
with     

ArcGIS

Geocoded 
with 

MapQuest

Geocoded 
with     

Google

1989-1991 131,689 110,339 21,350 117,514 0 117,514 117,510 115,761 0 1,749
1992-1994 120,116 101,110 19,006 106,976 0 106,976 106,976 12,407 71,691 22,878
1995-1997 125,895 107,141 18,754 112,059 0 112,059 112,059 15,506 66,652 29,901
1998-2000 125,163 108,037 17,126 111,773 359 111,414 111,414 15,478 66,862 29,074
2001-2003 128,085 111,541 16,544 114,831 102,065 12,766 12,766 1,504 7,446 3,816
2004-2006 129,054 112,417 16,637 116,344 111,735 4,609 4,609 472 2,665 1,472
2007-2009 112,565 97,300 15,265 102,469 100,633 1,836 1,836 265 857 714
2010-2012 99,039 83,514 15,525 90,963 89,701 1,262 1,262 429 201 632

Totals 971,606 831,399 140,207 872,929 404,493 468,436 468,432 161,822 216,374 90,236
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After geocoding, we then counted road deaths in two manners: i) by geocoded location (i.e. where the 
crash happened); and ii) by summarizing the driver’s home zip code (i.e. where the deceased was likely 
from).  This was done in order to differentiate between where fatal crashes physically took place and the 
communities being impacted by these fatalities.  With respect to pedestrian and bicyclist road fatalities, 
we followed the methodology in the Scheiner and Holz-Rau (2011) paper and classified residence as the 
same location where the crash occurred (Scheiner & Holz-Rau, 2011).  This may overestimate the number 
of pedestrian and bicyclist fatalities in, for instance, downtown areas; however, this was unavoidable due 
to the limitations of our dataset and will be accounted for when interpreting the results. 

With the first step, each of the geocoded road fatalities was counted and summed at the zip code level of 
geography.  The second GIS step involved attributing the driver’s home zip code (that is available within 
the vehicle tables of the FARS database) to each vehicle occupant death.  After linking the appropriate zip 
code to the person table, we summarized the total number of fatalities by zip code and joined the 
summary table to the zip code GIS file.  The result represents the risk to an individual from that zip code 
under the supposition that the vehicle occupant killed was likely from the same zip code as the driver.  
While not ideal, this again is a limitation of our dataset. 

9.2 Socio-demographic and Socio-economic Data 

Beginning in 1999, FARS requested states include data for race and Hispanic ethnicity with each crash 
report.  At that time, approximately 85% of crashes included race information (Briggs et al., 2005).  Using 
three years of more recent data from 2010 through 2012, we calculated that only 85.9% of fatalities 
included race data.  In terms of assessing relative accuracy for the FARS race/ethnicity data, a study by 
Rosenberg et al. (1999) compared death certificate data with self-reported data on race and ethnicity and 
found 98% accuracy for white and black populations, 83% for Asian populations, 57% for American 
Indian, and 90% for Hispanic ethnicities (Rosenberg et al., 1999).  Given some of the issues associated 
with the race and ethnicity data, particularly with respect to the ten years of data from 1989 through 1998 
prior to FARS including race and ethnicity, we elected to focus on the socio-demographics of the 
communities impacted.  Accordingly, we collected Census data from the National Historical Geographic 
Information System (nhgis.org) for the years 1990, 2000, and 2010 and linked each crash to the nearest 
temporal decennial Census year (e.g. 1996 FARS data is compared to 2000 Census data).  We attributed 
each crash to the appropriate zip code, first by crash location and second by driver’s zip code.  This 
facilitated an analysis where we could assess the relative impact of road fatalities on communities with 
higher or lower percentages of each population.  We then collected data from the 2012 American 
Community Survey (ACS) and analyzed the entire crash database against the 2012 ACS socio-
demographic data.  The trends within each set of results (i.e. based upon the nearest temporal decennial 
Census year and based only on the 2012 ACS) were remarkably similar; as a result, we focused the results 
presented in this paper on the 2012 ACS data for the sake of consistency and clarity.   

FARS does not include data related to socio-economic status.  As an alternative, we followed the 
methodology documented by Lerner et al. (2001) and Briggs et al. (2005) where they linked the driver’s 
zip code from the FARS database to the median household income data from the Census, or in our case, 
the 2012 ACS.  We compared these results to that which would be found by using median household 
income based on crash location.  This allowed us to distinguish between the concentration of fatal crashes 
taking place in, for instance, our lowest income neighborhoods versus the relative impact of road fatalities 
on those living in the same neighborhood.  In other words, our methodology allowed us to estimate 
whether, for example, residents of poorer or wealthier neighborhoods experience an overall greater risk of 
road death and assess how that risk compares to methods based on crash location instead of zip code 
residence.  Incomes are reported in 2012 dollars. 
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9.3 Fatality Rates and Statistical Methodology 

The fatality rates presented were calculated as the number of fatalities per year per 100,000 population.  
During our preliminary analysis, we also found that averaging the fatality rates resulted in noticeably 
different results than if the fatality rates were weighted by population.  Take for example: one zip code 
with 100,000 residents and a fatality rate of 8 deaths per year per 100,000 population; and a second zip 
code with only 5,000 residents but a fatality rate of 15 per year per 100,000 population.  Simply averaging 
the two would result in a fatality rate of 11.5, which would not be representative of reality.  As a result, 
we weighted the results by population.  In this case, the average weighted fatality rate for these two zip 
codes would be 8.3.  Thus, the fatality rates presented in the next section are population-weighted 
averages. 

We also calculated 95% confidence intervals for the population-based fatality rates based upon the 
gamma distribution, which has the following relationship with the Poisson distribution and is preferred 
over the Normal distribution for non-negative count data such crash outcomes (Fay & Feuer, 1997): 

Pr[𝑋𝑋 ≥ 𝑥𝑥|𝜇𝜇] = Pr [𝑍𝑍 ≤ 𝜇𝜇|𝐸𝐸(𝑍𝑍) = 𝑥𝑥, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑍𝑍) = 𝑥𝑥] 

where: 𝑋𝑋 is Poisson with mean µ 
𝑍𝑍 is a random variable distributed by the gamma distribution with 𝐸𝐸(𝑍𝑍) = 𝑥𝑥 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑍𝑍) 

The lower and upper confidences limits are then calculated using the following Excel equations 
(Kochanek, Murphy, Anderson, & Scott, 2004):  

𝐿𝐿(𝛼𝛼) =GAMMA.INV(p, α, β) and U(α)=GAMMA.INV(1-p, α+1, β) 

where: 𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈 represent the Lower and Upper confidence limits 
p = probability = 0.025 for calculating the 95% confidence interval 
𝛼𝛼 = the total number of fatalities over the 24-year period for the category of interest 
β = 1 for the standard gamma distribution 

After determining the lower and upper confidence limits for the total number of deaths, we calculated the 
upper and lower fatality rates based on the weighted population totals.  This method followed the 
approach of McAndrews et al. (2013), and due to the extensive crash data considered for our study, 
resulted in relatively tight confidence intervals for most categories of interest. 
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10. RESULTS 
 
The results are presented in Tables 9.1 through 9.3.  Table 9.1 depicts the fatality rates and 95% 
confidence intervals for urban vs. rural, by population density, and by household income.  We classify 
“urban” and “rural” areas based upon the Census Bureau definition of urban areas as: i) Urbanized Areas 
with populations of 50,000 or more; or ii) Urban Clusters with at least 2,500 people but less than 50,000 
(U.S. Census Bureau, 2010).  All locations not deemed urban are then classified as rural.  Given that this 
binary classification is not ideal, nor representative of the spectrum of built environment types, we also 
disaggregate our results by population density. 

Table 9.2 shows the same results by race/ethnicity, while Table 9.3 divides these categories into urban 
and rural contexts.  The number of zip codes for each category is represented by the n value shown in the 
tables.  The vehicle occupant results are also color-coded by relative level of safety with:  

• Green = 0 to 5 fatalities per year per 100,000 residents; 
• Yellow = 5 to 10 fatalities per year per 100,000 residents; 
• Orange = 10 to 15 fatalities per year per 100,000 residents; and 
• Red = 15+ fatalities per year per 100,000 residents. 

Green is on the order of some of the safest countries in the world, such as the Netherlands, which has a 
fatality rate of 4.0 road fatalities per 100,000 residents (OECD, 2011).  The latest road fatality rate for the 
U.S. is approximately 11.0 per 100,000 residents. 

The results in Table 10.1 show a significant difference between the road safety health impacts of the 
transportation system of those living in urban areas versus those living in rural areas.  This was true when 
aggregating by crash location as well as place of residence (by driver’s zip code); in both cases, the 
fatality rate in rural areas was double that of urban areas.  On the other hand, the pedestrian/bicyclist 
fatality rates were remarkably similar in urban and rural areas, despite the likelihood of large exposure 
differences (i.e. higher rates of walking and bicycling in urban areas) (Pucher & Renne, 2004). This may 
speak to a safety in numbers effect.  

The population density results magnify the urban/rural comparison.  Overall, those living in the sparser 
locations find a fatality rate more than 6X greater than those living in the densest areas.  This equates to 
our more urban and dense areas being as safe as some of the safest developed nations in the world and our 
more rural areas being akin the most dangerous developed countries in the world.  When evaluating from 
most sparse to most dense, the results show significantly greater safety with greater population densities.  
In fact, those living in our most rural zip codes with 50 or fewer people per square mile (which represents 
more than 37.5% of all zip codes) suffer from vehicle occupant fatality rates between 6X (based on 
driver’s zip code) and 10X (based on crash location) higher than those living in our most urban zip codes.  
Also, the difference in pedestrian/bicyclist fatality rates were significantly different between these groups 
but far more similar than one might expect despite such ostensibly different rates of active transportation 
(Pucher & Renne, 2004).  

Analyzing the fatality rates across categories of household income generated much bigger differences 
between the crash location results and those aggregated by the driver’s zip code.  For instance, with the 
wealthiest zip codes, the fatality rate exceeded 19 per 100,000 residents when considering where the crash 
occurred but less than 6 when looking at the driver’s zip code.  This suggests that while there might be 
high motor vehicle fatality numbers in our wealthiest neighborhoods, they rarely involve somebody from 
that neighborhood.  When focusing on the driver’s zip code results, lower income neighborhoods (20k – 
40k median household income) experienced vehicle occupant fatality rates 3.6X higher than wealthier 
neighborhoods (160k to 200k median household income).   
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The wealthiest zip codes tended to have an exceedingly high pedestrian/bicyclist fatality rate.  However, 
these highest income zip codes were much more likely to be located near the downtowns of major cities; 
thus, it is difficult to judge whether the pedestrians and bicyclists killed were residents of the same 
wealthy neighborhoods or downtown visitors.  On the other hand, the poorest zip codes also saw a 
relatively high pedestrian/bicyclist fatality rate (albeit about half the rate of the wealthiest zip codes).  
This high rate may instead be due to a combination of an unsafe walking environment and/or a population 
with little choice but to walk.  Overall, the income trends suggest – particularly when focusing on the 
driver’s zip code results that are intended to be more representative of the road safety impact on the local 
population – tremendous disparities along income thresholds. 

Table 10.2 shows that the results by race/ethnicity had fewer differences when comparing crash location 
and driver’s zip code.  Interestingly, neighborhoods with mostly white residents saw the highest fatality 
rate while those with relatively high Asian populations saw the lowest fatality rates.  In contrast to some 
of the existing literature, predominantly black or Hispanic neighborhoods were significantly safer than 
neighborhoods with high percentages of non-Hispanic white residents.  However, neighborhoods with 
high percentages of black or Hispanic residents saw significantly higher rates of pedestrian and bicyclist 
fatalities as compared to white or Asian neighborhoods.  For instance, the pedestrian and bicyclist fatality 
rate for zip codes with less than 10% white residents was 3.3; when that percentage of white residents 
increased to more than 90%, the fatality rate dropped to 1.4.  On the other hand, neighborhoods with less 
than 5% black or Hispanic residents had pedestrian and bicyclist fatality rates of 1.6 and 1.7, respectively.  
When black or Hispanic resident population percentages increased to more than 50%, the pedestrian and 
bicyclist fatality rates jumped to 3.2 and 2.7, respectively. 

We disaggregated the race and ethnicity results into urban and rural categories, as shown in Table 10.3.  
The most noticeable differences were again in the rural versus urban findings for each category.  Across 
the board, the rural residents had fatality rates 2X to 3X higher than those of their counterparts in almost 
every race/ethnicity category.  The difference in pedestrian/bicyclist fatality rates between urban and rural 
areas was not as noticeable; however, similar race and ethnicity disparities to what we saw in Table 10.2 
persisted for both urban and rural residents.  More specifically, neighborhoods with high percentages of 
white residents were remarkably safer for pedestrians and bicyclists as compared to neighborhoods with 
relatively high populations of black or Hispanic residents.   
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n Crash 
Location

95% C.I.
Driver's      

Zip Code
95% CI

Crash 
Location

95% C.I.

Urban vs. Rural
Urban 8,404 6.74 (6.72, 6,77) 7.79 (7.76, 7.81) 1.99 (1.98, 2.00)

Rural 24,249 17.41 (17.35, 17.45) 15.44 (15.39, 15.48) 1.82 (1.81, 1.84)

Population Density (people / sq. mi.)
0 - 50 13,436 31.35 (31.20, 31.49) 24.49 (24.36, 24.62) 2.22 (2.18, 2.25)

50 - 200 7,107 18.82 (18.74. 18.90) 17.01 (16.93, 17.09) 1.81 (1.79, 1.84)

200 - 500 3,132 12.32 (12.25, 13.39) 11.55 (11.48, 11.62) 1.65 (1.62, 1.68)

500 - 1,000 2,097 8.73 (8.66, 8.79) 8.96 (8.90, 9.03) 1.58 (1.55, 1.61)

1,000 - 3,000 3,362 6.91 (6.87, 6.95) 7.88 (7.83, 7.92) 1.70 (1.68, 1.72)

3,000 - 5,000 3,362 5.89 (5.84, 5.94) 7.73 (7.68, 7.79) 2.04 (2.01, 2.07)

5,000 - 7,000 1,649 5.56 (5.49, 5.63) 7.46 (7.39, 7.54) 2.41 (2.17, 2.46)

7,000 - 9,000 712 4.33 (4.25, 4.42) 6.33 (6.23, 6.44) 2.25 (2.19, 2.32)

9,000 - 12,000 360 4.61 (4.51, 4.71) 6.00 (5.89, 6.12) 2.69 (2.62, 2.77)

12,000+ 540 2.96 (2.91, 3.01) 4.12 (4.06, 4.18) 2.58 (2.53, 2.62)

Household Income
0 - 20k 1,193 22.17 (21.73, 22.62) 13.03 (12.69, 13.37) 5.69 (5.46, 5.91)

20k - 40k 8,980 15.31 (15.25, 15.37) 14.98 (14.92, 15.04) 2.83 (2.80, 2.85)

40k - 80k 19,419 10.48 (10.46, 10.51) 10.55 (10.52, 10.58) 1.74 (1.73, 1.75)

80k - 120k 2,541 5.81 (5.76, 5.86) 5.62 (5.57, 5.66) 1.22 (1.19, 1.24)

120k - 160k 400 5.21 (5.08, 5.35) 4.28 (4.16, 4.40) 1.23 (1.17, 1.30)

160k - 200k 82 5.43 (5.08, 5.79) 4.12 (3.81, 4.44) 0.87 (0.74, 1.03)

200k+ 38 19.16 (17.59, 20.83) 5.64 (4.81, 6.58) 10.84 (9.66, 12.11)

Vehicle Occupant Fatality Rate
Pedestiran/Bicyclist 

Fatality Rate

Fatality Rate Color 
(fatals/100k pop) Coding

0 - 5 1.74

5 - 10 7.00

10 - 15 12.00

15+ 18.00

Table 10.1  Road Fatality Rates by Geography and Income with 95% Confidence Intervals 
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n Crash 
Location

95% C.I.
Driver's      

Zip Code
95% CI

Crash 
Location

95% C.I.

Race / Ethnicity
% White
0 - 10% 486 9.56 (9.29, 9.74) 11.61 (11.42, 11.80) 3.34 (3.24, 3.45)
10 - 30% 773 8.84 (8.74, 8.94) 9.04 (8.94, 9.15) 2.99 (2.93, 3.05)
30 - 50% 1,433 9.27 (9.20, 9.35) 9.06 (8.99, 9.13) 2.69 (2.65, 2.73)
50 - 70% 2,971 9.21 (9.16, 9.27) 9.53 (9.48, 9.59) 2.30 (2.28, 2.33)
70 - 90% 8,064 9.54 (9.50, 9.57) 9.81 (9.77, 9.84) 1.76 (1.75, 1.78)
90+% 15,186 14.46 (14.41, 14.51) 13.40 (13.35, 13.45) 1.42 (1.40, 1.44)

% Black
0 - 5% 23,572 11.69 (11.66, 11.73) 11.28 (11.24, 11.31) 1.63 (1.62, 1.65)
5 - 10% 2,672 8.59 (8.54, 8.64) 9.00 (8.95, 9.06) 1.82 (1.80, 1.85)
10 - 20% 2,451 9.78 (9.72, 9.84) 10.14 (10.07, 10.20) 2.06 (2.03, 2.09)
20 - 30% 1,277 10.46 (10.37, 10.55) 10.70 (10.61, 10.79) 2.25 (2.21, 2.29)
30 - 50% 1,346 12.46 (12.36, 12.56) 11.81 (11.71, 11.90) 2.67 (2.62, 2.71)
50+% 1,301 11.89 (11.78, 11.98) 11.69 (11.59, 11.79) 3.16 (3.10, 3.21)

% Asian
0 - 5% 29,447 12.85 (12.82, 12.88) 12.52 (12.49, 12.55) 1.95 (1.94, 1.96)
5 - 10% 1,709 6.01 (5.96, 6.06) 6.45 (6.40, 6.50) 1.74 (1.72, 1.77)
10 - 20% 951 4.91 (4.85, 4.97) 5.42 (5.36, 5.48) 1.91 (1.87, 1.94)
20+% 546 4.42 (4.35, 4.49) 4.66 (4.59, 4.73) 2.08 (2.03, 2.13)

% Hispanic
0 - 5% 21,401 14.32 (14.28, 14.37) 13.31 (13.26, 13.35) 1.67 (1.66, 1.69)
5 - 10% 4,268 9.51 (9.46, 9.56) 9.47 (9.42, 9.52) 1.80 (1.78, 1.83)
10 - 20% 3,207 8.63 (8.58, 8.69) 8.83 (8.78, 8.89) 1.93 (1.91, 1.96)
20 - 30% 1,338 8.70 (8.63, 8.78) 9.10 (9.02, 9.17) 2.23 (2.19, 2.27)
30 - 50% 1,226 7.97 (7.90, 8.04) 9.17 (9.09, 9.24) 2.21 (2.18, 2.25)
50+% 1,178 8.24 (8.17, 8.31) 9.35 (9.27, 9.42) 2.69 (2.65, 2.73)

Vehicle Occupant Fatality Rate
Pedestiran/Bicyclist 

Fatality Rate

Table 10.2  Road Fatality Rates by Race/Ethnicity with 95% Confidence Intervals 
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n Crash 
Location

95% C.I.
Driver's           

Zip Code
95% CI

Crash 
Location

95% C.I. n Crash 
Location

95% C.I.
Driver's          

Zip Code
95% CI

Crash 
Location

95% C.I.

Urban Rural
% White % White
0 - 10% 174 7.14 (6.98, 7.30) 9.36 (9.18, 9.55) 2.99 (2.89, 3.10) 0 - 10% 312 23.89 (23.17, 24.63) 24.88 (24.15, 25.63) 5.41 (5.07, 5.77)
10 - 30% 405 6.84 (6.74, 6.94) 7.53 (7.43, 7.64) 2.97 (2.91, 3.04) 10 - 30% 368 21.89 (21.45, 22.34) 18.93 (18.52, 19.34) 3.12 (2.95, 3.29)
30 - 50% 733 6.47 (6.40, 6.54) 7.18 (7.10, 7.25) 2.58 (2.54, 2.63) 30 - 50% 700 21.26 (21.00, 21.52) 17.11 (16.88, 17.35) 3.14 (3.04, 3.24)
50 - 70% 1,499 6.63 (6.58, 6.69) 7.55 (7.49, 7.60) 2.30 (2.27, 2.33) 50 - 70% 1,472 16.77 (16.63, 16.91) 15.36 (15.22, 15.49) 2.31 (2.26, 2.37)
70 - 90% 3,383 6.33 (6.30, 6.37) 7.61 (7.57, 7.65) 1.72 (1.70, 1.74) 70 - 90% 4,681 15.44 (15.36, 15.51) 13.86 (13.79, 13.93) 1.84 (1.82, 1.87)
90+% 2,002 8.05 (7.98, 8.11) 8.86 (8.79, 8.92) 1.33 (1.31, 1.36) 90+% 13,184 18.04 (17.97, 18.11) 15.93 (15.86, 16.00) 1.47 (1.45, 1.49)

% Black % Black
0 - 5% 4,030 6.21 (6.18, 6.25) 7.30 (7.26, 7.33) 1.64 (1.63, 1.66) 0 - 5% 19,542 17.31 (17.25, 17.37) 15.35 (15.30, 15.41) 1.62 (1.61, 1.64)
5 - 10% 1,398 6.32 (6.26, 6.37) 7.47 (7.41, 7.53) 1.88 (1.85, 1.91) 5 - 10% 1,274 14.56 (14.43, 14.69) 13.04 (12.91, 13.16) 1.68 (1.63, 1.72)
10 - 20% 1,204 6.99 (6.93, 7.05) 8.07 (8.00, 8.14) 2.04 (2.01, 2.08) 10 - 20% 1,247 16.21 (16.07, 16.35) 14.89 (14.76, 15.03) 2.09 (2.04, 2.14)
20 - 30% 562 6.92 (6.83, 7.01) 8.14 (8.05, 8.24) 2.24 (2.19, 2.29) 20 - 30% 715 18.10 (17.89, 18.31) 16.24 (16.04, 16.44) 2.25 (2.18, 2.33)
30 - 50% 559 8.12 (8.02, 8.21) 8.44 (8.34, 8.54) 2.66 (2.60, 2.72) 30 - 50% 787 22.05 (21.81, 22.29) 19.25 (19.03, 19.48) 2.67 (2.59, 2.75)
50+% 643 8.61 (8.51, 8.70) 9.60 (9.50. 9.70) 3.11 (3.05, 3.16) 50+% 658 24.96 (24.63, 25.28) 20.03 (19.75, 20.33) 3.35 (3.24, 3.48)

% Asian % Asian
0 - 5% 5,925 7.82 (7.79, 7.85) 9.09 (9.06, 9.13) 2.04 (2.02, 2.06) 0 - 5% 23,522 18.31 (18.26, 18.36) 16.25 (16.20, 16.30) 1.85 (1.84, 1.87)
5 - 10% 1,253 5.47 (5.41, 5.52) 6.12 (6.07, 6.18) 1.80 (1.77, 1.82) 5 - 10% 456 8.67 (8.53, 8.82) 8.04 (7.90, 8.18) 1.49 (1.43, 1.55)
10 - 20% 796 4.47 (4.41, 4.52) 5.26 (5.20, 5.32) 1.92 (1.89, 1.96) 10 - 20% 155 9.00 (8.77, 9.25) 6.88 (6.67, 7.09) 1.75 (1.65, 1.86)
20+% 430 4.17 (4.10, 4.24) 4.56 (4.48, 4.63) 2.17 (2.12, 2.23) 20+% 116 6.38 (6.13, 6.63) 5.45 (5.23, 5.69) 1.34 (1.23, 1.46)

% Hispanic % Hispanic
0 - 5% 3,358 8.13 (8.08, 8.17) 8.55 (8.50, 8.60) 1.66 (1.64, 1.68) 0 - 5% 18,043 19.39 (19.32, 19.46) 17.20 (17.13, 17.26) 1.68 (1.66, 1.70)
5 - 10% 1,708 6.45 (8.50, 8.60) 7.30 (7.24, 7.35) 1.83 (1.80, 1.85) 5 - 10% 2,560 15.03 (14.93, 15.14) 13.38 (13.28, 13.48) 1.77 (1.73, 1.80)
10 - 20% 1,496 6.01 (5.96, 6.07) 7.08 (7.03, 7.14) 1.95 (1.92, 1.98) 10 - 20% 1,711 15.22 (15.09, 15.35) 13.23 (13.11, 13.35) 1.89 (1.85, 1.94)
20 - 30% 659 6.36 (6.28, 6.43) 7.71 (7.63, 7.79) 2.24 (2.20, 2.28) 20 - 30% 679 15.41 (15.22, 15.61) 13.08 (13.90, 13.26) 2.21 (2.14, 2.28)
30 - 50% 615 5.80 (5.74, 5.87) 7.67 (7.60, 7.75) 2.25 (2.20, 2.29) 30 - 50% 611 14.95 (14.75, 15.14) 13.99 (13.80, 14.18) 2.12 (2.04, 2.19)
50+% 561 6.30 (6.23, 6.37) 8.14 (8.06, 8.22) 2.72 (2.68, 2.77) 50+% 617 14.45 (14.27, 14.64) 13.22 (13.04, 13.40) 2.58 (2.50, 2.66)

Pedestiran/Bicyclist 
Fatality Rate

Vehicle Occupant Fatality Rate
Pedestiran/Bicyclist 

Fatality Rate
Vehicle Occupant Fatality Rate

Table 10.3  Fatality Rate by Race/Ethnicity by Urban and Rural with 95% Confidence Intervals 



39 

11. CONCLUSIONS 
 
At a 1949 conference on road safety, President Truman spoke about the continuing “frightful slaughter on 
our streets and highways,” citing the fact that the number of road fatalities in just 1948 was more than 
double the number of troops lost during the six-week Normandy campaign (Weingroff, 2003).  Truman 
went on to highlight the 429 road fatalities that had occurred on Memorial Day of the previous year 
(Weingroff, 2003).   

Now, if a town had been wiped out by a tornado or a flood or a fire and killed 429 people, there 
would be a great hullabaloo about it. We would turn out the Red Cross, and we would have the 
General declare an emergency...  Yet, when we kill them on the road…, we just take it for 
granted.  We mustn't do that.  

− President Harry S. Truman, June 2, 1949 

Now, more than 65 years after President Truman spoke about inadequate road safety and a lackadaisical 
attitude of the general public towards road deaths, it is hard to believe how little things have changed.  
With horrific car crashes a common occurrence on the nightly news, we continue to treat road fatalities as 
part of the cost of doing business.  Unfortunately, all Americans are not bearing the costs of this problem 
equitably.   

When the existing research uses metrics such as traffic counts as exposure, rural locations often appear 
safer (Hadayeghi et al., 2003; Klein & Löffler, 2001; Gordon Lovegrove & Sayed, 2006).  However, the 
lion's share of recent research has taken an area-wide, population-based approach and found that urban 
places are generally safer (Eric Dumbaugh, 2006; E. Dumbaugh & Rae, 2009; Ewing & Dumbaugh, 
2009; Ewing et al., 2014; Ewing, Schieber, & Zegeer, 2003; Glaeser, 2011; W. E. Marshall & Garrick, 
2011a; Myers et al., 2013).  Our research – which focuses on road safety as a health impact – comport 
with the finding that urban areas experience better road safety outcomes.  Beyond the vast urban-rural 
divide, we also find significant discrepancies across the population density spectrum as well as by 
household income.  For instance, those living in our most rural zip codes suffered from vehicle occupant 
fatality rates approximately 6X higher than those living in our most urban zip codes.  Moreover, lower 
income neighborhoods experienced fatality rates as high as 3.6X those in wealthier neighborhoods.  If the 
cost of doing business is people dying on the roads, it is noteworthy that those living in areas with low 
incomes tend to be the most impacted.   

Our results also suggest road fatality disparities along racial and ethnic differences, particularly for 
pedestrians and bicyclists in predominantly black or Hispanic neighborhoods.  While we were not able to 
account for the relative levels of walking and bicycling in these neighborhoods at this time, the results 
suggest inequities with respect to the provision of safe active transportation facilities in neighborhoods 
with high percentages of black or Hispanic populations as compared to neighborhoods with more white 
residents.  Future work should take into account rates of walking and bicycling in order to better gauge 
safety by mode for different races and ethnicities.  Other limitations of this study include the lack of 
person-specific income data in the FARS dataset.  While we were instead able to focus on the 
characteristics of where the driver lives, such data being included in the FARS dataset along with the 
home zip code of any other victims (i.e. pedestrians, bicyclists, and motor vehicle passengers) would have 
been preferable.  Another potential limitation relates to the fact that not everybody updates their driver’s 
license – and their stated home code – immediately after moving.   

A number of factors likely contribute to these results, including differences in transit use (Litman, 2016), 
emergency medical care (Lucy, 2003), alcohol consumption (Voas, Tippetts, & Fisher, 2000), and seat 
belt norms (Lerner et al., 2001; Wells, Williams, & Farmer, 2002).  The existing research also suggests 
that safety decreases with increased per capita driving (Litman & Fitzroy, 2005).  As such, transportation 
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design and land use differences are also likely to play a major role in road safety outcomes.  Lewis 
Mumford once wrote: “a good transportation system minimizes unnecessary transportation” (Mumford 
1963).  This quote from Lewis Mumford is not intended to place value judgments or specifically define 
what constitutes economically or socially valuable transportation.  Instead, the intent is to suggest the 
value of facilitating more access with less travel.  If one person lives on the same mixed-use block as their 
dentist, another lives along the same light rail corridor as their dentist, and a third person lives in a 
bedroom community where going to the dentist requires a 20-mile driving trip, it is important to 
recognize that these transportation and land use differences can have road safety impacts.  Even though 
this driving trip for the last person might very well be economically and socially productive, the 
transportation and land use systems for the first two people make this driving trip – and the exposure 
experienced – unnecessary.   

While the U.S. road fatality rate is almost as low as it has been since around the advent of the automobile, 
it is worth asking how the U.S. is doing as compared to the rest of the world.  Given the all the 
engineering, vehicle, policy/regulation, and medical advances, it would make sense if the U.S. was one of 
the safest countries in the world when it comes to road safety.  Unfortunately, this is not the case.  Less 
than forty years ago, there were a dozen major countries with road fatality rates exceeding that of the U.S. 
(International Traffic Safety Data and Analysis Group, 2005).  The U.S. world ranking on this front 
dropped to the point where nearly every single one of the Organisation for Economic Co-operation and 
Development (OECD) countries with road safety statistics had a lower road fatality rate per population 
than the U.S., and ten of those countries now have rates less than half the U.S. rate (OECD, 2011).  The 
obvious question: what is the U.S. doing wrong? 

Notwithstanding data showing that urban places were safer than rural areas as far back as the 1950s, the 
approach that the U.S. decided to take in trying to improve road safety over the last 65 years focused on 
solutions that were decidedly rural.  For instance, consider the clear zone concept.  The clear zone refers 
to the removal of trees and other “fixed-object hazards” from the roadside and has been standard design 
practice since the 1967 AASHO1 publication of Highway Design and Operational Practices Related to 
Highway Safety, which cited the need for a 6-meter (19.7’) clear zone (AASHO, 1967).  Soon thereafter, 
the recommended lateral clearance increased to 9-meters (29.7’) and explicitly included both rural and 
urban locations (AASHTO, 1970).  While today’s traffic engineers acknowledge that urban right-of-ways 
are often extremely restricted, the 2011 AASHTO Roadside Deign Guide continues to encourage clear 
zone application wherever practical (AASHTO, 2011; FHWA, 2006) despite research suggesting that 
such safety “improvements” may actually be a safety detriment due to issues of risk compensation (Eric 
Dumbaugh & Gattis, 2005; Ivan, Raghubhushan, Pasupathy, & Ossenbruggen, 1999; W. Marshall, 
Garrick, & Hansen, 2008; W. E. Marshall & Garrick, 2011a, 2011b; Naderi, Kweon, & Maghelal, 2008; 
Noland & Oh, 2004; Ossenbruggen, Pendharkar, & Ivan, 2001). 

This clear zone idea originated with the 1966 Congressional road safety hearings when a General Motors 
engineer named Kenneth Stonex said the following (Eric Dumbaugh & Gattis, 2005; Weingroff, 2003): 

What we must do is to operate the 90% or more of our surface streets just as we do our 
freeways… [converting] the surface highway and street network to freeway and Proving Ground 
road and roadside conditions. 

− Kenneth Stonex, GM Engineer, 1966 

  

                                                      
1 AASHO, or the American Association of State Highway Officials, was the original name of present-day AASHTO, author of 
the “Green Book” and also known as the American Association of State Highway and Transportation Officials.  
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Stonex derived this design approach from the fact that limited access highways are far safer on a per-mile 
basis than most other street types.  However, this type of mileage-based thinking does not fully account 
for the costs and health impacts of our transportation system.  While such designs may help facilitate 
longer travel distances at higher speeds – and better safety on a per-mile basis – there is a significant 
exposure increase and mortality cost that comes with such advantages.  Good urbanism can provide more 
access with less mobility, and when touting the advantages of good urbanism, better road safety can be 
added to that list.   

There is also a small strand of relevant research from England regarding the fundamental differences in 
how we can approach road safety issues.  Davis (1993) and Tight el al. (1998) proposed what they called 
the “danger reduction” approach to road safety in contrast to the conventional “casualty reduction” 
approach.  The conventional approach to road safety focuses on crash investigation, reconstruction, and 
prevention using performance measures based on the number of crashes per some measures of exposure.  
The objective is usually to devise countermeasures that diminish the chance that such crashes or injuries 
would occur in the future.  In turn, the safety-related performance metrics should improve.  
The danger reduction approach, on the other hand, takes a more comprehensive view of the road safety 
issue (Davis, 1993; Tight, Page, Wolinski, & Dixey, 1998).  While this approach also tries to reduce 
crashes and injuries, it focuses more on the sources of the danger rather than the behaviors of the victims.  
For instance, if a bicyclist gets hit by a car, the conventional approach might focus on making sure that 
bicyclists wear helmets so that the chance of head trauma decreases.  The danger reduction approach 
instead focuses on the source of the danger – in this case the car – and looks to solutions that reduce or 
eliminate that danger, such as improved bike infrastructure, lower driving speeds, and mode shift away 
from cars into modes with less chance to harm others.   

This type of thinking extends to issues with crash data.  A street with no pedestrian or bicyclist crashes 
would be deemed safe under conventional thinking.  A more comprehensive approach considers the 
possibility that a seemingly dangerous road might be suppressing walking and biking modes.  Thus, the 
underlying reason for the lack of pedestrian/bicyclist crashes is a lack of use.  When we look to 
transportation as a multi-objective function where the outcomes include issues related to public health 
instead of just mobility, then unmet active transportation demand is also a valid concern.  Despite the 
complexity, future road safety research needs to build upon these issues so that we can better assess the 
health and safety impacts of our transportation and land use systems in the proper context. 
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PART 3:  Age-Specific Bicycling Safety Trends, 1985-2015 

13. INTRODUCTION  
 
Despite a recent increase since 2011 (Appleyard et al. 2017), bicyclist fatalities have been in a general 
decline in the U.S. since at least the mid-1970’s (Pucher and Dijkstra 2003; IIHS 2016).  Once exposure 
(e.g. bicycle trips, bicycle commuters, etc.) is controlled for, trends suggest that bicycling continues to get 
safer (Pucher et al. 2011; Pucher and Buehler 2016).  However, preliminary research notes that child 
bicyclist fatalities have seen a sharper decline during this time frame than other age groups (Pucher and 
Dijkstra 2003; IIHS 2016; Pucher et al. 1999; Williams 2014; Buehler and Pucher 2012).  Has bicycling 
actually gotten safer, or is the downward trend in bicyclist fatality rates driven by a drop in child bicyclist 
fatalities?  How important is age when examining bicycling safety? 

Limited data pertaining to bicycling exposure has precluded a complete understanding of the impact age 
has on bicycling safety.  Age-specific trends have been examined using a number of different exposure 
metrics, including per-capita fatality rates (Vargo et al. 2015) and per kilometer cycled fatality rates 
derived from national travel survey data (Buehler and Pucher 2017).  While these methods provide 
important insight, we add to the conversation by examining the problem with age-specific bicycling 
participation data over a thirty-year time frame using exposure data from the National Sporting Goods 
Association (NSGA). Combined with fatality counts from the Fatality Analysis Reporting System 
(FARS), this paper explores the magnitude and direction of age-specific trends in bicyclist fatality rates 
from 1985 through 2015.  The results help to define the importance of considering age when analyzing 
bicycling safety and add to the critical conversation of bicycle exposure metrics. 
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14. BACKGROUND  
 
It is commonly reported that bicycling safety in the U.S. has generally been improving over the last forty 
years.  Other than an increase since 2011 (Appleyard et al. 2017), the overall number of bicyclist fatalities 
has been in a steady general decline (Figure 14.1).  Annual bicyclist fatalities have gone from a high of 
1,003 in 1975 (the first year for which FARS data is available) to a low of 621 in 2010 (IIHS 2016). 

These trends towards safety have been confirmed by controlling for bicyclist exposure.  Exposure is 
commonly defined as the number of potential opportunities for a crash to occur.  Both analysis of 
historical trends and predictive models of causation – such as safety performance functions – utilize 
exposure in their analyses (Turner et al. 2017).  However, exposure is often measured in a number of 
different ways.  Exposure metrics that account for the time and/or distance bicyclists spend exposed to 
traffic safety risks are generally preferred (Molino et al. 2012).  The number of bicycle trips is also a close 
indicator of exposure, although not as favorable because trips can vary by time and distance.  Such data 
are typically obtained through travel surveys such as the National Household Travel Survey (NHTS). An 
important aspect of these time/distance/trip exposure metrics is that they can account for the “safety in 
numbers” concept (Molino et al. 2012).  “Safety in numbers” is an inverse non-linear relationship 
between bicycling levels and safety outcomes that takes effect after certain thresholds are reached 
(Jacobsen 2003; Nordback et al. 2014).  In other words, when there are more cyclists present, those 
cyclists are safer than similar cyclists that do not have as many fellow riders. Drawbacks of these 
time/distance/trip exposure metrics include: i) difficulty in accurately recalling or recording the amount of 
time or distance that was cycled; and ii) adults tend to underestimate the number and duration of 
children’s bicycle trips (Molino et al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14.1  U.S. Bicyclist Fatalities (1975-2015) 

  



48 

Numbers of bicycle commuters or bicycle participants are also commonly used as measures of bicyclist 
exposure.  Unfortunately, these metrics do not account for the number, distance, or duration of bicycle 
trips.  For example, while two individuals may both identify themselves as bicycle riders, one may take 
multiple long trips each day while another rides a few short trips each month, thusly having substantially 
different levels of exposure.  Such data can be obtained from surveys, with the American Community 
Survey (ACS) being a common source of bicycle commuter data. 

Finally, raw population has also been used as a measure of bicyclist exposure even though the metric does 
not account for the number of bicyclists, number of trips, or duration/distance of those trips (Dennis et al. 
2013; DiMaggio et al. 2016).  Population-based exposure metrics work on the assumption that areas with 
more residents will experience more crashes, although it is not substantiated whether those residents are 
bicyclists.  These population-based metrics can therefore not account for “safety in numbers” (Molino et 
al. 2012).  Researchers have also used population data to derive exposure metrics that estimate numbers 
of bicyclists through the multiplication of population and commute mode share (Marshall and Garrick 
2011). 

One primary factor that none of these exposure metrics capture is where bicyclists are riding their 
bicycles. Bicyclists that ride on-road intrinsically have higher levels of exposure to traffic than bicyclists 
that ride off-road, where exposure to motor vehicles is typically limited to roadway crossings. 
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15. LITERATURE REVIEW  
 
Researchers have utilized these various bicyclist exposure metrics at the national scale to confirm the 
broad trend toward improved bicyclist safety for cyclists of all ages.  In the U.S. from 1977 through 2009, 
bicyclist fatality rates per 10 million bicycle trips (all trip purposes; from the National Personal 
Transportation Survey (NPTS) and the NHTS) fell from 5.1 to 1.8 (Pucher et al. 2011).  From 1980 
through 2008, bicyclist fatality rates per 10,000 bicycle commuters (from the U.S. Census Bureau) fell 
from 21 to 9 (Pucher et al. 2011).  More recently, research found that bicyclist fatalities per 100 million 
kilometers cycled (from the NHTS) dropped from 6.8 in 2001-2002 to 4.7 in 2008-2009 (Buehler and 
Pucher 2017).  In eight major U.S. cities, bicyclist fatalities and severe injuries per 100,000 bicycling trips 
decreased between 43% and 79% from the early- and mid-2000’s to 2015 (Pucher and Buehler 2016).  
Bicycling trips were calculated by assuming that each bicycle commuter (from the U.S. Census Bureau) 
made two commuting trips per day, and those commuting trips accounted for 17% of all urban bicycle 
trips (an assumption from the 2008-2009 NHTS).  There appears to be a consensus that general bicyclist 
fatality rates have trended downwards over the last thirty years. 

While these drops in bicyclist fatalities and fatality rates are promising, past studies have noted that such 
trends are at least partially explained by sharp declines in child bicyclist fatalities (Pucher and Dijkstra 
2003; IIHS 2016; Pucher et al. 1999; Williams 2014; Buehler and Pucher 2012).  Declines in child 
bicyclist fatalities are reflected in the fact that the average age of bicyclist fatality victims in the U.S. 
increased from 39 years of age in 2005 to 45 years of age in 2014 (NHTSA 2016). 

As with overall bicyclist fatality trends, it is important to account for exposure when examining age-
specific bicyclist fatality trends.  Unfortunately, while bicycle exposure data is rare, such data that is age-
stratified and available longitudinally is even rarer.  Many popular exposure metrics – such as commuter 
(16 years or older) counts from the ACS – do not account for children.  One method to account for such 
deficiencies in exposure data has been to utilize population-based exposure metrics.  Such per-capita 
fatality rates do not account for differing levels of bicycling (bicyclists, trips, or distance/duration) but 
instead assume that bicycling levels remain relatively consistent over time.  Vargo et al. (2015) examined 
annual bicyclist mortality rates per 100,000 age-specific persons, finding that trends varied in direction 
and magnitude for different age groups (Vargo et al. 2015).  While bicyclist fatality rates for children 
aged less than 15 years declined by 92% between 1975 and 2012, the rate for adults aged 35-54 years 
increased threefold (Vargo et al. 2015).  Sanford et al. (2015) found similar trends for per-capita bicyclist 
injury rates and per-capita bicycling-related hospital admissions from 1998 to 2013.  While the proportion 
of bicycle injuries and hospital admissions decreased for bicyclists aged 18 years to 44 years, they 
increased for bicyclists aged 45 years and up (Sanford et al. 2015).  Although findings from these works 
are insightful, they utilize population-based exposure metrics, a form which does not account for actual 
levels of bicycling.  We will explore the age-specific bicyclist safety trend with an exposure metric that 
accounts for the number of bicyclists. 

Researchers have also studied age-specific bicycling fatality rates with kilometers cycled (from the 
NHTS) as an exposure metric (Buehler and Pucher 2017).  Fatality rates decreased for all age groups from 
2001-2002 to 2008-2009.  The largest drop (while not statistically significant) was seen for individuals 
aged 15 years to 24 years (10.0 to 4.2 bicyclist fatalities per 100 million kilometers) while the smallest 
drop (statistically significant) was for children aged 5 years to 14 years (5.9 to 4.1 bicyclist fatalities per 
100 million kilometers).  Such exposure metrics – while insightful because they account for distance of 
bicycle travel – provide only two snapshots over a relatively small timeframe.  This paper will examine 
each year over a thirty year period with an exposure metric that accounts for the number of bicycle riders.  
While bicycling fatalities and fatality rates in the U.S. have been found to generally decrease over the 
most-recent decades, important differences in age have been identified that warrant further exploration.   
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16. DATA 
 
16.1 Crash Data 

In order to study age-specific differences in bicycling safety, we utilized bicyclist fatalities from FARS, a 
database maintained by the U.S. Department of Transportation’s National Highway Traffic Safety 
Administration (NHTSA).  We would have preferred to look at data pertaining to all bicyclist injuries and 
fatalities because other factors (e.g. improved emergency medical care) may have concurrently impacted 
fatality rates over the study period.  Unfortunately, examining all bicyclist injuries on the national level is 
not currently feasible due to bicyclist injuries being underreported and inconsistently reported (Pucher 
and Dijkstra 2003).  To be included in the FARS database, a crash must involve a motorist on a roadway 
that is open to the public and must result in a fatality (either vehicle occupant or non-occupant) within 30 
days of the collision.  Lone bicyclist crashes, bicyclist-on-bicyclist crashes, bicyclist-on-pedestrian 
crashes, and dooring crashes that result in a fatality are missed in this database.  We queried person tables 
for non-occupant bicyclists whose injuries were classified as fatal.  We also utilized the age variable, 
which has been consistently reported (other than a change in the designation of unknown ages) across the 
study years.  Bicyclist fatality victims with unknown ages were not used in the analysis (149 of the 
23,872 total bicyclist fatalities from 1985-2015). 

16.2 Exposure Data 

We then needed an age-specific exposure metric.  We utilized participation data from the National 
Sporting Goods Association (NSGA) for this end.  Data from the NSGA was used because it has been 
consistently reported over the last thirty years.  The NHTS and its predecessor the NPTS have been run 
every 5-8 years in 1969, 1977, 1983, 1990, 1995, 2001, and 2009.  However, because the survey shifted 
from recalling prior trips to a travel diary in 1995, children below five years of age were included 
beginning in 2001, and prompts were incorporated in 2001 to remind respondents to include walk/bike 
trips, it is difficult to compare data longitudinally (Santos et al. 2011).  Bicycling data from the U.S. 
Census Bureau is available decennially for 1980, 1990, and 2000, and for every year from 2001 to the 
present.  However, numbers provided are for commute trips by workers 16 years and over and do not 
include children or recreational trips.  A population-based exposure metric can be used for the thirty-year 
timeframe, but population-based exposure metrics do not account for levels of bicycling activity.  While 
bicycling participation is not as ideal as a distance- or duration-based exposure metric, the participation 
exposure metric from the NSGA is available with a consistent survey methodology over thirty years and 
is age-specific. 

On behalf of the NSGA, Survey Sampling International (SSI) maintains a panel that is used to reach out 
to random households across the U.S. Data pertaining to activity participation over the previous year is 
collected for household members that are seven years of age or older.  Approximately 34,000 – 35,000 
individuals annually have returned surveys since an online format was introduced in 2010, while 10,000 – 
15,000 households were mailed surveys from 1985 to 2009.  The NSGA weights responses to 
demographic compositions based on state of residence, household income, and population density, higher 
weights being given to population segments with lower return rates.  Data is then projected to the U.S. 
population by age and gender to become nationally representative, despite relatively small annual sample 
sizes.  According to the NSGA, African Americans and Hispanics have been somewhat underrepresented 
since the 2010 format transition (NSGA 2016). 
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By asking for the number of days of participation in “Bicycle Riding” over the last year, the survey 
measures the number of participants and the frequency of participation (days per year). Bicycle riding 
participants are defined as individuals who rode their bicycle six or more times in the last year. Both 
recreational and utilitarian bicycling trips are accounted for in the “Bicycle Riding” category used in this 
analysis.  A separate category in the NSGA data that captures mountain bicycling participation was not 
used in this analysis.  The survey covers a total of 55 sports and recreational activities, which are shown 
in alphabetical order for half of respondents and reverse-alphabetical order for the other half of 
respondents in order to reduce bias. 

Participation levels measured by the NSGA are not direct measures of exposure, as explained in the 
literature review.  It is certainly possible that bicyclists in 1985 rode for longer or shorter distances or 
durations than bicyclists in 2015. Ideally, bicycle trip distance or time spent exposed to traffic would be 
used as a direct measure of bicyclist exposure to traffic. However, participation levels can be an 
approximate indicator of bicycling exposure levels. NSGA data is commonly used as an exposure metric 
in health and safety studies (Mello et al. 2009; Conn et al. 2004; Pappas et al. 2011; Xiang et al. 2005; 
Bakhos et al. 2010; Kyle et al. 2002). 
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17.  METHODS 
 
Because of existing NSGA age designations, we defined children as individuals aged 7 years to 17 years 
and adults were defined as individuals aged 18 years or older. Children six years of age and younger were 
not included in the NSGA dataset and were therefore not included in the analysis. After querying data for 
appropriate age groups, we derived rates of bicyclist fatalities per 100,000 bicyclists. We also examined 
gender-specific trends in fatality rates.  However, because gender did not provide a unique longitudinal 
trend while age did, gender-specific trends are not included in the analysis. This is further detailed in the 
Conclusions. 
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18. RESULTS 
 
In the U.S. between 1985 and 2015, there were 22,744 vehicle-related fatalities of bicyclists with known 
ages greater than 7 years (an average of 734 annually).  Bicyclist fatalities generally decreased over much 
of this time period, going from a high of 878 bicyclist fatalities in 1987 to a low of 610 bicyclist fatalities 
in 2003 (Figure 18.1).  For child bicyclists aged 7 years to 17 years, fatalities dropped precipitously from 
a high of 444 bicyclist fatalities in 1986 to a low of 63 bicyclist fatalities in 2015.  For adults aged 18 
years and older, fatalities generally increased from 381 bicyclist fatalities in 1985 to 743 bicyclist 
fatalities in 2015. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18.1  Age-specific Bicyclist Fatalities (1985-2015) 
 
The questions that arise from these raw bicyclist fatality trends are: i) is the drop in child bicyclist 
fatalities because child bicyclists are getting safer or because of lower levels of child bicycling; and ii) is 
the increase in adult bicyclist fatalities because adult bicyclists are getting less safe or because of higher 
levels of adult bicycling? To answer these, we begin by looking at participation trends which leads to the 
analysis of fatality rates. 

According to NSGA data, overall bicycling participation reached its height in 1989 with 56.9 million 
bicycling participants and saw the lowest participation levels in 2013 and 2014 with 35.6 million 
bicycling participants (Figure 18.2).  Child bicycling participants went from a high of 22.9 million in 
1995 to a low of 10.1 million in 2013.  Adults went from a high of 35.4 million in 1988 to a low of 21.1 
million in 2003. 
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Bicyclist fatality rates for all ages (7 years and older) went from a low of 1.22 bicyclist fatalities per 
100,000 bicyclists in 1992 to a high of 2.24 bicyclist fatalities per 100,000 bicyclists in 2015 (Figure 
18.3).  The substantial drop in fatality rates experienced in 1992 was result of a sharp decline in bicyclist 
fatalities for that year.  Age-specific bicyclist fatality rates vary in both direction and magnitude.  Child 
bicyclists aged 7 years to 17 years experienced declining fatality rates, going from a high of 2.39 bicyclist 
fatalities per 100,000 bicyclists in 1986 to a low of 0.49 bicyclist fatalities per 100,000 bicyclists in 2011.  
Adult bicyclists aged 18 years and older experienced increasing fatality rates, with a low of 1.15 bicyclist 
fatalities per 100,000 bicyclists in 1989 and a high of 2.95 bicyclist fatalities per 100,000 bicyclists in 
2006.  Adult bicyclist fatality rates surpassed child bicyclist fatality rates between the years 1990 and 
1993. 

For comparisons sake, the graph below shows bicyclist fatality trends from 1985 – 2015 when using 
different exposure metrics (Figure 18.4).  As can be seen, different exposure metrics tell different stories, 
many of which are erratic or incomplete. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.2  Age-specific Bicycling Participants (1985-2015) 
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Figure 18.3  Age-specific Bicyclist Fatality Rates (1985-2015) 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 18.4  Bicyclist Fatality Rates with Different Exposure Sources 

(ACS includes ages 16+, NSGA includes ages 7+, Population includes all ages, and NHTS includes 
ages 5+ before 2001 and all ages from 2001 on) 
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19. CONCLUSIONS 
 
Findings suggest that age is an important lens through which to examine the issue of bicycling safety.  
Because of distinct age-specific longitudinal trends in bicycling safety which vary in direction and 
magnitude, it is apparent that simply examining age-aggregated trends may hide important patterns.  
While more evidence is necessary to determine whether bicycling has been getting more or less safe, we 
can definitively say that age plays an important role in that answer. 

Gender-specific trends in fatality rates were also examined in the analysis.  However, gender-specific 
analysis did not elucidate trends with unique magnitudes or direction and were therefore not included in 
this study.  Female bicyclists were found to be much safer than male bicyclists.  However, fatality rates 
for both female and male adult bicyclists increased throughout the study period, while fatality rates for 
both female and male child bicyclists decreased throughout the study period.  Because gender did not 
provide a unique longitudinal trend while age did, gender-specific trends are not included in the analysis. 

Limitations of the study are primarily focused around measuring exposure.  While bicycling participation 
may be a general indicator of bicycling levels, it is not a direct measure of the amount of exposure 
bicyclists have to possible traffic collisions.  The NSGA survey is also a small survey relative to other 
sources of bicyclist exposure data, with responses returned by approximately 35,000 individuals annually.  
In comparison, the NHTS had responses returned by over 300,000 individuals in 2009 and the ACS had 
responses returned by over 2.46 million individuals in 2015 (Santos et al. 2011; U.S. Census Bureau 
2017).  Furthermore, there are inconsistencies between data provided by the NSGA and data provided by 
the federal government in terms of bicyclist gender.  Responses from the NHTS indicate that women 
made 24% of all bicycle trips in 2009 while the ACS indicates that 30.8% of bike commuters were 
women in 2015 (Alliance for Biking & Walking 2016).  Bicycling participation numbers from the NSGA 
suggest that slightly more than 43% of bicycle participants in 2015 were women, significantly higher than 
the federal numbers.  However, a recent PeopleForBikes survey (with responses from approximately 
24,000 individuals) reported that 43% of individuals that rode a bicycle in 2014 were women 
(PeopleForBikes 2017).  In addition to these other concerns, the NSGA participation data does not 
differentiate by type of riding (recreational/utility) or location (on-road/off-road). 

Another important factor to consider when looking at bicyclist safety is the geographic level of the 
analysis.  In this study, we took a broad approach by looking at national safety trends.  Such macro-scale 
analysis is effective at identifying pervasive trends, such as the age-specific trends identified in this paper.  
Such results that inform broader discussions of bicyclist safety may not be readily applicable for 
practitioners.  More fine-grained analyses are able to provide concrete recommendations for amending 
scenario-specific issues. 

While findings from this work may not provide a conclusive answer on the topic of bicycling safety, the 
results should catalyze questions regarding the structure of bicycling safety, acting as a call for future 
research. If the goal is to improve safety for bicyclists, might we now turn to child bicyclists to better 
understand safety?  Have youths changed their bicycling behavior in ways that adults have not?  Have 
engineering treatments been especially beneficial for children?  Are youths riding off-road more?  Or 
have helmet regulations or education played a role in increased safety?  We can similarly ask which 
factors have contributed to the poor safety outcomes experienced by adults.  It is questions such as these 
that must be examined with full consideration of age differences if we wish to have a complete view of 
bicycling safety. 

The work should also be a call for better bicyclist data in terms of exposure.  From changes in 
methodology and inconsistent reporting to infrequent surveying and small sample sizes, each data source 
has unique drawbacks.  If we want to better understand bicycling safety, it needs to start with better data.  
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An ideal exposure metric would account for the number of bicycle trips, distance and time spent exposed 
to traffic, trip purpose, and rider demographics all on different geographic levels and over a longitudinal 
time frame.  Steps to achieve such an exposure metric might have cities and planning organizations 
moving away from short-term manual counts toward continuous automated counts through pneumatic, 
video, or thermal detection and mobile technologies. 

Past work has contributed much to the understanding of how to best keep bicyclists safe on our streets.  
However, neglecting age-specific trends in bicycling safety can hide important patterns, thereby inhibiting 
a complete understanding.  By obtaining a more holistic view of age-specific bicycling safety through 
improved data sources, we may be better able to reach our goal of keeping bicyclists safe. 
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PART 4:  ADVANCING HEALTHY CITIES THROUGH SAFER CYCLING: 
AN EXAMINATION OF SHARED LANE MARKINGS 

21. INTRODUCTION  
 
Bicycling has been shown to have an overall positive impact on the health of those who ride (de Hartog et 
al., 2010).  However, one of the primary barriers to bicycling is traffic safety concerns (Fowler et al., 
2017).  By improving traffic safety outcomes for bicyclists, we can expect not only direct health benefits 
in terms of reduced injuries and fatalities, but indirect health benefits accrued through greater 
participation and increased physical activity.  Research has also shown that cities with elevated levels of 
bicycling have better safety outcomes for all road users and lower air pollution, further amplifying the 
health benefits of bicycling (Marshall and Garrick, 2011; Johansson et al., 2017).  In terms of advancing 
healthy cities, enabling more bicycling through improved safety is a worthy cause. 

One common method of improving traffic safety for bicyclists is through the implementation of bicycle 
treatments and facilities.  An extensive toolbox of such treatments exists, ranging from signage and 
wayfinding to dedicated and protected facilities exclusive to bicyclists.  A relatively new treatment is the 
shared lane marking. 

Shared lane markings – more commonly known as sharrows – trace their origins to Denver, Colorado, in 
the early 1990s (Alta Planning + Design, 2004; Pein et al., 1999).  The markings were initially purposed 
to improve bicyclist safety by raising driver awareness of bicyclists and reducing wrong-way riding (City 
and County of Denver, 1993).  They have since evolved to serve a number of different functions, such as 
reducing sidewalk riding and avoiding collisions with the doors of parked cars (i.e., dooring crashes).  
The markings have become a popular substitute for more expensive and expansive alternatives, such as 
bicycle lanes and cycle tracks (Figure 21.1).  Today, sharrows comprise the majority of the bicycle 
network in nearly every major city in the United States and have become a staple in the toolboxes of 
transportation planners and engineers.  In 2009, sharrows were added to the Federal Highway 
Administration’s Manual on Uniform Traffic Control Devices (MUTCD), solidifying their place as an 
accepted bicycle treatment (U.S. Department of Transportation, 2009).  However, little past research has 
adequately examined whether these markings help make bicyclists safer.   

One of the main reasons for this lack of safety research is a result of the lack of data on dooring crashes.  
Since one of the stated justifications for sharrow installation is to help move bicyclists out of the door 
zone, a safety analysis without dooring crashes would be insufficient.  Nearly all cities neglect dooring 
crashes because the crashes do not involve a moving motor vehicle, therefore failing to meet the standard 
of what constitutes a motor vehicle crash.  One of the only exceptions is the City of Chicago.  In 2010, 
Chicago initiated a program to systematically collect dooring crash data.  The release of this dooring 
crash data marks the first time that the impact of sharrows on bicyclist safety can begin to be properly 
studied.  

With bicycling popularity rising in cities across the country, this paper aims to longitudinally examine 
safety outcomes, in terms of bicyclist injuries, Chicago block groups that had sharrows installed against 
block groups that installed bicycle lanes (standard, buffered, or protected) as well as those that added no 
new bicycle facilities.  More specifically, we investigate changes in bicyclist injury counts within these 
treatment typology groups by utilizing negative binomial regressions.  We then analyze changes in injury 
rates between the different typologies through a Kruskal-Wallis test.   
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Over the past two decades, interest in bicycling has continued to increase across the United States and the 
health benefits of such activity have become better understood.  Coinciding with this increased interest in 
bicycling, sharrows have become a standard bicycle treatment.  However, a void exists in the research as 
to how these treatments influence actual safety outcomes.  This paper will utilize spatial and statistical 
analyses to examine the relationship between sharrows and bicyclist injuries. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 21.1  Example of a Sharrow   



62 
 

22. THEORY 
 
Although their overall goal is to improve bicyclist safety, the exact operational function of sharrows is 
multifaceted and seems to have evolved over time.  Many early studies that examined sharrows identified 
the altering of bicycle and vehicle spacing as an objective, including the spacing of bicyclists to avoid 
dooring crashes (Alta Planning + Design, 2004; U.S. Department of Transportation, 2010; Pucher et al., 
2010).  Similarly, four of the MUTCD’s five objectives for sharrows deal with lateral spacing, the first of 
which is to assist bicyclists with lateral positioning to avoid a bicyclist’s impacting of the open door of a 
parked vehicle (U.S. Department of Transportation, 2009).  While results are mixed, past studies suggest 
that the effects of sharrows on spacing tend to be theoretically positive.  In other words, the mean distance 
between bicycles and parked cars, between bicycles and the curb, and between bicycles and moving 
vehicles can increase up to 10.5 inches with the installation of sharrows, which gives bicyclists more 
space to operate (Hunter et al., 2011; Hunter et al., 2012; Brady et al., 2010; Sando, 2014).  However, 
other studies suggest no significant changes in lateral spacing at certain sites (Pein et al., 1999).   

Today, this objective of altering spacing is less often the primary aim when installing a sharrow.  
Guidelines such as the MUTCD and the National Association of City Transportation Officials’ (NACTO) 
Urban Bikeway Design Guide recommend using sharrows to accomplish a variety of other operational 
objectives, such as alerting road users of bicyclists’ presence, encouraging safe passing behaviors, 
reducing wrong-way riding, indicating the proper riding path over hazards such as railroad tracks, 
functioning as wayfinding devices, and reducing sidewalk riding (U.S. Department of Transportation, 
2009; NACTO, 2011). 

The academic community has also focused on the impact that sharrows have on these other operational 
measures (Pein et al., 1999; Furth et al., 2011; Hunter et al., 2011; Hunter et al., 2012).  Overall, past 
studies have reported inconsistent findings regarding the installation of sharrows in terms of weaving 
through vehicle queues, sidewalk riding, and wrong-way riding (Hunter et al., 2012; Alta Planning + 
Design, 2004; U.S. Department of Transportation, 2011; Brady et al., 2010).  While sharrows have been 
used to accomplish a wide array of operational objectives with varying levels of success, the impact on 
the overall goal of improved bicyclist safety has been largely neglected (Brady et al., 2010).   

The lone piece of research we found that examines the impact sharrows have on safety suggests sharrows 
may be less safe than other bicycle treatments or even less safe than having no bicycle treatments present 
at all (Harris et al., 2013).   Although not reaching statistical significance, the results of Harris et al. 
(2013) suggest that sharrows increase bicyclists’ risk for injury at non-intersection locations, while cycle 
tracks and bicycle lanes significantly decrease the risk of injury for bicyclists compared with similar 
roadways that lacked bicycle infrastructure.  This case-crossover study, which took place in Vancouver 
and Toronto, Canada, examined adult bicyclists who were injured and treated at a hospital.  The 
researchers identified the injury location (the case site), selected two other locations along each bicyclist’s 
route (control sites), recorded roadway characteristics of the sites, and then compared the likelihood of 
being injured based on the different roadway characteristics.  Crashes that did not result in a hospital stay 
were not included in order to better focus on safety-related health outcomes.  Dooring crashes were also 
not explicitly included or separately analyzed.  This lack of dooring crash data presents a gap in the 
current literature, as past research gives reason to believe that dooring crashes are an important crash type 
to account for when examining the impact of sharrows on bicyclist safety. 
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23. DATA 
 
In order to explore the relationship between sharrows and bicyclist safety outcomes, we examined 
Chicago on the block group level between 2011 and 2014.  To do so, we needed data regarding bicyclist 
injuries, bicyclist exposure, and bicycle treatments.  We then examine the changes in bicyclist injuries 
both within the individual treatment typologies and between the treatment typologies. 

The City of Chicago, through the Illinois Department of Transportation, provided us with bicyclist injury 
data.  These data included the location of bicyclist injuries from both dooring and non-dooring crashes 
within Chicago from 2011 through 2014.  The severity of the bicyclists’ injuries was not provided and 
was therefore not utilized in this study.  We used injuries instead of fatalities because of the relative 
scarcity of bicyclist fatalities within Chicago.  Originally in spreadsheet format, we geocoded the injury 
data using ArcGIS and created a layer with each injury crash represented as one spatial point. 

Beyond the typical absence of dooring crash data, another reason for the lack of sharrow safety research is 
inadequate bicycle exposure data.  An ideal exposure metric would include bicyclist counts for every 
segment and intersection within the city and across the desired time frame.  Unfortunately, no cities 
collect such extensive bicycling data, especially not on an adequately wide longitudinal timeframe.   

An alternative approach to accounting for bicyclist exposure is through bicycle commuter data from the 
American Community Survey (ACS).  The underlying assumption that bicycle commuters are an 
indicator of total bicycling exposure has been shown by past research to be a reasonable assumption 
(Barnes and Krizek, 2005; Turner et al., 1997) and applicable for bicycle safety studies (Aultman-Hall 
and Kaltenecker, 1999; Marshall and Garrick, 2011; Chen et al., 2012).  While not meeting the 
characteristics of an ideal exposure metric, ACS data allowed us to conduct this study with bicycle 
commuter counts on the block group level.  These journeys to work data (five-year compilations) were 
made available through the National Historical Geographic Information System (NHGIS) for each of the 
study years.   

We then obtained bicycle treatment data from the City of Chicago Data Portal in ArcGIS format.  
Because these data did not include dates of installation, we dated the bicycle treatments by utilizing 
historic satellite imagery from Google Earth, historic Google Street View, Chicago bicycle maps, and 
communications with city planners.  Installation years were identified for each roadway segment.  
Because we examined treatments implemented between 2011 and 2014, the available resources were able 
to provide the necessary precision.  We obtained 2010 block group boundary layers from the U.S. Census 
Bureau’s TIGER Products.   

There were considerable increases in the mileage of both bicycle lanes and sharrows in Chicago between 
2011 and 2014 (Table 23.1).  These bicycle lanes and sharrows were distributed throughout the city 
(Figure 23.1).  There were 1,948 block groups within the city that had no bicycle treatments installed in 
2012 or 2013, 42 block groups that had only sharrows installed, and 149 block groups that had only 
bicycle lanes installed.  There were also 19 block groups that had both sharrows and bicycle lanes 
installed in 2012 or 2013, and 20 block groups that had bicycle lane upgrades.  These latter 39 block 
groups were not included in the analysis. 
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Table 23.1  Descriptive Statistics for Study Block Groups 
 N Mean SD Min Max 
 
Bicyclist Injuries 

     

2011-2012 3,060 1.4 2.6 0 41 
2013-2014 3,174 1.5 2.6 0 40 

 
Bicyclist Commuters 

     

2011-2012 13,985 6.5 15.9 0 156 
2013-2014 16,903 7.9 17.0 0 167 

 

  Mileage (2011) Mileage (2014) 
 

Block Groups 
 
Sharrows 33.5 41.4 

 
42 

 
Bicycle Lanes 122.1 157.0 

 
149 

Standard 122.1 131.6 n/a 
Buffered 0 18.2 n/a 
Protected 0 7.2 n/a 

 
None n/a n/a 

 
1,948 
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Figure 23.1  Blocks Groups with Different Types of Bicycle Infrastructure and Treatments Installed in 

2012 and 2013  
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24. METHODS 
 
In order to examine the relationship between sharrows and bicyclist safety, we first explore the 
longitudinal change in injury counts within each individual treatment typology with negative binomial 
regressions.  We then explore the changes in injury rates between the different treatment typologies 
through a Kruskal-Wallis test. 

After obtaining all necessary data, we operationalized bicycle treatments on the block group level by 
designating each 2010 block group as one of three types: i) block groups that had no bicycle infrastructure 
or treatments installed in 2012 or 2013, ii) block groups that had only sharrows installed in 2012 or 2013, 
and iii) block groups that had only bicycle lanes (standard, buffered, or protected) installed in 2012 or 
2013.  We designated our “before” period as 2011-2012 and our “after” period as 2013-2014.  Block 
groups that had both sharrows and bicycle lanes installed were not included in the analysis, as combining 
the two types of treatments may have resulted in a unique impact on safety.  While these block groups 
could have been considered as their own category, their rarity (only 19 out of 2,178 block groups) 
precluded any statistical significance.  If a block group had a standard bicycle lane that was upgraded to a 
protected bicycle lane (20 block groups), we did not include it in the analysis.  Including these block 
groups with any of the other categories could confound the results.  Using data on the block group level 
employs the assumption that the impacts of bicycle treatment installation are experienced throughout the 
entire block group.  While this macro-scale approach limited the detailed exploration of the impacts of 
street design and other roadway characteristics, the methodology did allow us to accomplish a city-wide 
analysis on the block group level – a geographic level that has been shown to be effective – that included 
dooring data and bicyclist exposure. 

We derived the number of bicyclist injuries in the before and after periods by spatially joining the injury 
point layer to the block group layer in ArcGIS.  Edge issues were avoided by utilizing a 500-foot buffer 
around each block group.  We then joined the number of bicycle commuters in both the before and after 
periods for each block group from the ACS spreadsheets.  In this way, every block group included a 
typology (bicycle lanes, sharrows, or none), the number of bicyclist injuries (both dooring and non-
dooring) that occurred in the before period (2011-2012) and the after period (2013-2014), and the number 
of bicycle commuters in the before period and the after period.  Again, our goal is to first examine the 
change in bicyclist injury counts over the study period within each individual treatment typology (using 
negative binomial regressions) and then examine whether any of the treatments had a significantly better 
or worse outcome in terms of bicyclist injury rates (using a Kruskal-Wallis test). 

Using the above data, we utilized negative binomial regressions to analyze the significance of the change 
in bicyclist injury counts over the study period within each individual treatment typology.  Negative 
binomial regressions have been shown to be an appropriate approach when examining differences in 
macro-level and block-group-level bicyclist safety relative to changes in bicycle treatments (Wei and 
Lovegrove, 2012; Dumbaugh and Li, 2010).  The negative binomial regression accounts for the 
overdispersion that we had in our data – and which is typically seen in traffic crash and injury data – and 
is the most appropriate and accepted practice for road safety researchers.  We utilized the number of 
commuters and facility typology as independent variables and injury counts as the dependent variable in 
our models. 

We then sought to compare the safety impacts of the different treatments.  Because the analysis called for 
the comparison of the changes between pre- and post-installation scenarios for three different groups, a 
Kruskall-Wallis test was appropriate.  This is a common approach for testing pre- and post-scenarios 
across multiple groups, especially in medical literature (Brennan et al., 1997; Ratcliffe et al., 2002; 
Şentürk et al., 2002).  The Kruskal-Wallis test is a non-parametric one-way analysis of variance used to 
compare data when the data are not normally distributed.  ANOVA was not used in this case because, 
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although the differences among group rate means were being explored, the unbalanced sample sizes 
proved problematic for this type of statistical analysis, and the data did not fit the normal distribution 
(Shaw and Mitchell-Olds, 1993). 

In order to complete the Kruskal-Wallis tests, we calculated bicyclist injury rates in the form of bicyclist 
injuries per 100 bicycle commuters.  We then weighted these rates based on the number of bicyclists in 
each block group.  For instance, the injury rate of a block group with 100 bicycle commuters was given 
more weight in the overall average than a block group that had only one bicycle commuter.  We used the 
margin of errors provided by the ACS in order to create confidence intervals around the rates.  Using the 
Kruskal-Wallis test, we first compared bicyclist injury rates within individual treatment typologies and 
then compared the changes between the different treatment typologies. 
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25. RESULTS 
 
We first analyzed the number of bicycle commuters in relation to the type of treatment that was installed 
over the study period.  Block groups with only sharrows installed had the largest increase in bicycle 
commuters, while block groups that had no treatments installed had the smallest increase in bicycle 
commuter counts and block groups that had bicycle lanes installed had the smallest percentage increase 
(Table 24.1).  These changes were significant, according to paired t-tests, for block groups that had no 
bicycle treatments installed and block groups that had sharrows installed. 

Table 25.1  Change in Bicycle Commuters for Block Groups with Different Types of Bicycle 
Infrastructure Installed and Corresponding Paired T-Test Results 

    

Bicycle 
Commuters per 

Block Group       
  n Before After Change % Change p-value 

None 1,948 6.07 7.34 1.27 20.9% 0.000 
Sharrow 42 10.31 15.50 5.19 50.3% 0.032 
Bicycle Lane 149 11.56 13.16 1.60 13.8% 0.224 

 

25.1 Injuries within Block Group Types 

Negative binomial regressions allowed us to explore changes in bicyclist injury counts that occurred 
within the block group types for three categories of injuries: total injuries, dooring injuries, and non-
dooring injuries (Table 25.2). For block groups that had no bicycle treatments installed and for block 
groups that had sharrows installed, injury counts decreased for total injuries, dooring injuries, and non-
dooring injuries. All of these changes were found to be statistically significant. For block groups that had 
bicycle lanes installed, dooring injuries experienced a statistically significant decrease. However, overall 
injuries and non-dooring injuries both increased for bicycle lane block groups. These increases were 
significant and not significant, respectively. 

Table 25.2  Negative Binomial Regression Results for Bicyclist Injuries 
from Before to After Installation 

  n B Std. Error Sig. 
None 1,948 -0.275 0.0600 0.000 

Dooring  -8.663 0.3550 0.000 
Non-Dooring  -0.204 0.0638 0.001 

Sharrow 42 -3.946 1.0188 0.000 
Dooring  -13.074 2.0787 0.000 

Non-Dooring  -6.143 2.4497 0.012 
Bicycle Lane 149 5.416 1.7730 0.002 

Dooring  -8.522 1.0761 0.000 
Non-Dooring  0.057 0.1767 0.747 
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25.2 Injury Rates within Block Group Types 

Ridership numbers for the different typologies enabled us to normalize the bicyclist injuries and weight 
the injury rates in order to account for changes in ridership brought about by these treatments (Table 
25.3).  A Kruskal-Wallis test examined the change in injury rates between block group typologies and 
between pre- and post-conditions. Because some block groups lacked bicycle commuters, we assumed 
one rider for null values in order to avoid artificial rate inflation. Because the bicycle lane block groups 
that had the smallest increases (or actually saw decreases) in injury rates had the most bicycle commuters 
(and were therefore weighted the heaviest), the injury rates in bicycle lane block groups saw the smallest 
percentage increase and the second smallest absolute increase. This suggests that bicyclists may be safer 
in larger numbers and that bicycle lanes may have intrinsic safety benefits for bicyclists (Nordback et al., 
2014).  Similarly, block groups that had no bicycle treatments installed had their highest injury rate 
increases in block groups with relatively few bicyclists. This resulted in the smallest overall increase and 
second smallest percentage increase in bicyclist injury rates. Block groups that had sharrows installed had 
their largest injury rate increases occur in block groups that had the most riders. For this reason, the 
absolute and percentage increases in bicyclist injury rates were highest in sharrow block groups. Dooring 
injury rates were reduced in block groups that had bicycle lanes installed and in block groups that had no 
bicycle treatments installed, but dooring injury rates increased in block groups with sharrows. 

 
Table 25.3  Weighted Safety Rates for Block Groups with Different Types of Bicycle Infrastructure 

Installed 

  

Weighted Injuries per 
Year per 100 Bicycle 

Commuters   

 

  n Before After Change Change % p-value 
None 1,948 8.70 9.75 1.05 12.1%  

Dooring  1.82 1.40 -0.41 -22.5% 0.192 
Non-Dooring  6.68 8.35 1.67 25.0% 0.041 

Sharrow 42 8.97 18.28 9.31 103.8%  
Dooring  1.34 4.23 2.89 215.7% 0.124 

Non-Dooring  7.12 14.05 6.94 97.5% 0.121 
Bicycle Lane 149 16.63 18.32 1.69 10.2%  

Dooring  2.00 0.78 -1.22 -61.0% 0.053 
Non-Dooring  14.53 17.54 3.02 20.8% 0.339 
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25.3 Injury Rates between Block Group Types 

The Kruskal-Wallis test was also used to examine the differences between changes in injury rates for the 
treatments (Table 24.4).  Block groups that had bicycle lanes installed saw a statistically smaller increase 
in bicyclist injury rates compared with sharrow block groups with 95% confidence.  Block groups that 
had no bicycle treatments installed also saw a statistically smaller increase in bicyclist injury rates 
compared with sharrow block groups with 95% confidence.  Block groups that had bicycle lanes installed 
and block groups that had no bicycle treatments installed did not have significantly different changes in 
bicyclist injury rates (Table 25.4).   

Table 25.4  Significance of Kruskal-Wallis Test Examining the 
  Longitudinal Change in Bicycle Safety at 95% Confidence 
Injuries Per Year Per 100 Bicycle Commuters 
  Smaller Increase in Injury Rate 
   Bicycle Lane None 

G
re

at
er

 
In

cr
ea

se
 in

 
In

ju
ry

 R
at

e Bicycle 
Lane n/a 0.779 

Sharrow 0.050 0.004 

 

Results suggest that in Chicago for the time period studied, block groups that had sharrows installed 
experienced poorer safety outcomes than those experienced by block groups that had bicycle lanes 
installed.  Block groups that had sharrows installed also experienced poorer safety outcomes than block 
groups that did not install any bicycle treatments. Block groups that had bicycle lanes installed saw the 
largest increase in bicyclist injuries between the before and the after periods while block groups that had 
sharrows installed saw a decrease in overall bicyclist injuries.  However, after normalizing based on the 
increases in bicycle commuters, Chicago block groups that had bicycle lanes installed and those that had 
no bicycle treatments installed experienced similarly small increases in injury rates. This is partially 
because block groups with the largest increases in injuries had the smallest increases in ridership.  Block 
groups that had sharrows installed experienced large increases in both the percentage change in injury rate 
and the absolute change in injury rate. This is because sharrow block groups that had decreases in the 
injury rate had few bicycle commuters, while sharrow block groups that had increases in the injury rate 
had many bicycle commuters.  The increase in the bicyclist injury rate for Chicago block groups that had 
sharrows installed was statistically greater, with 95% confidence, than the increases experienced by 
bicycle lane block groups or those that had no treatments installed. 
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26. CONCLUSIONS 
 
This work begins to fill an important gap in bicycle treatment research by investigating the safety impact 
of sharrows.  As sharrows have become an accepted treatment in cities across the United States despite a 
lack of safety evaluation, this conversation has become a critical one. Our findings suggest that Chicago 
block groups that had sharrows installed experienced less than desirable safety outcomes for the study 
period.  This paper finds that there is reason to further question the impact of sharrows on bicyclist safety 
outcomes through future research in other contexts. 

While the mechanisms behind these findings are not yet understood and cannot be assembled from this 
paper’s results, one possible explanation is that the sharrows – as installed in Chicago during the study 
period – provide a false sense of security to bicyclists.  When a bicycle lane or other separated facility is 
provided, the bicyclist is granted dedicated space. This dedicated space lowers the risk of collision with a 
motor vehicle.  Alternatively, if bicycle treatments are not provided on a roadway, it is understood that the 
bicyclist will need to share the travel lane with vehicles. The bicyclist should therefore ride in a manner 
appropriate to the level of risk created by the volume, speed, and other characteristics of the roadway.  
When a sharrow is provided, however, bicyclists may believe that they are at lower risk because a 
treatment is being provided and change their behavior accordingly or, as seen in this study, new bicyclists 
may be attracted to the facility.  However, while the operations (e.g., lateral spacing) of vehicles and 
bicycles may be altered by the presence of the sharrow, those operational changes may not necessarily 
lower the probability of a collision with a motor vehicle.  Might there be situations in which moving 
bicyclists farther in or out of a lane does not make them objectively safer?  While subjective safety may 
be improved, objective safety may remain static, thus resulting in poor safety outcomes.  Researchers 
have shown that adding crosswalks without treating underlying safety issues may give pedestrians a false 
sense of security and result in increased pedestrian crash rates (Herms, 1972; FHWA, 2005).  Might 
sharrows be inducing the same phenomenon for bicyclists?  Obtaining clarity on this issue will require 
further context-sensitive research.  It is also important to recognize that all sharrows are not created equal; 
the “super sharrow” in Boston or the “green wave” sharrow in Long Beach might find different results, 
particularly in terms of helping reduce dooring crashes.  

The methodologies employed throughout this research use a number of assumptions, the validity of which 
should also be explored in future research.  First, this research employed the assumption that the impact 
of bicycle treatment installation will be experienced throughout the block group within which the 
treatment is installed.  This assumption was used primarily so we could perform analysis on the block 
group level, which allowed for the bicycle commuter metric to be utilized for exposure.  While it would 
be ideal to longitudinally examine specific corridors that had sharrows installed, this would have required 
ridership counts specific to those corridors, which was not feasible based on the size of the study and 
given data constraints, particularly related to exposure.  However, bicycle commuter counts have been 
shown to be a reasonable indicator of total bicycling exposure (Barnes and Krizek, 2005; Turner et al., 
1997) and to be applicable for bicycle safety studies (Aultman-Hall and Kaltenecker, 1999; Marshall and 
Garrick, 2011; Chen et al., 2012). 

In future corridor-level work, the amount of bicycle infrastructure could be accounted for in order to 
directly determine the strength of the relationship between sharrows and bicyclist safety, as opposed to 
the inter-typology comparative approach of this work.  Accounting for injury severity in future work may 
further inform the relationship that sharrows have with bicyclists’ safety.  Furthermore, future studies 
might benefit from the incorporation of demographics or socio-economic data into their models.  
Demographic and socio-economic factors have been shown to be correlated with bicycle ridership and 
traffic safety outcomes and may allow for a more robust model and a better understanding of the 
complexity of these issues. 
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The implications of this work could help contribute toward the goal of bettering traffic safety outcomes 
within our cities.  The objective of this research was to identify bicycle treatments that are effective at 
improving bicyclist safety.  The results of the analysis seem to indicate that we may need to further 
consider exactly where and when sharrows are used.  Under current standards and guidance, sharrows can 
be used for a wide variety of reasons and in a wide variety of roadway conditions: from wayfinding 
devices to lateral spacing guides and from local roads to arterials.  Researchers have not explored all of 
the different combinations in which sharrows can and are being used.  This paper does not claim to 
inform any of these specific scenarios but broadly identifies one case study in which safety improvements 
seem to be lacking. 

With sharrows becoming a familiar sight on our roadways and the health benefits of bicycling becoming 
clearer, it is vital to fully understand the impact that sharrows have on bicyclist safety within our cities.  
While past research has identified spacing and other operational metrics of bicyclists as important 
metrics, it is only a theoretical means to an end.  The effectiveness of sharrows in terms of the true goal, 
which is reducing bicyclist injuries and fatalities, remains unclear in the current body of research.  This 
work begins to question their effectiveness and should act as a call for more research on the subject.  It is 
imperative that the appropriate infrastructure and treatments are in place to ensure the safety of all users 
on our roadways, and it remains to be seen what role sharrows play in this pursuit. 

 
 
 
 
  



73 
 

27. REFERENCES 
 
Alta Planning + Design. (2004). San Francisco’s shared lane pavement markings: Improving bicycle 

safety. San Francisco Department of Parking & Traffic, San Francisco, California. 
Aultman-Hall, L., and Kaltenecker, M. G. (1999). “Toronto Bicycle Commuter Safety Rates.” Accident 

Analysis and Prevention, 31: 675-686. 
Barnes, G., and Krizek, K. (2005). “Estimating bicycle demand.” Transportation Research Record, 1939: 

45-51. 
Brady, J., Loskorn, J., Mills, A., Duthie, J., and Machemehl, R. (2010). Effects of shared lane markings 

on bicyclist and motorist behavior along multi-lane facilities. The Center for Transportation 
Research, the University of Texas at Austin, Austin, Texas. 

Brennan, T. J., Umali, E. F., and Zahn, P. K. (1997). “Comparison of pre- versus post-incision 
administration of intrathecal bupivacaine and intrathecal morphine in a rat model of postoperative 
pain.” The Journal of the American Society of Anesthesiologists, 87(6): 1517-1528. 

Chen, L., Chen, C., Srinivasan, R., McKnight, C. E., Ewing, R., and Roe, M. (2012). “Evaluating the 
Safety Effects of Bicycle Lanes in New York City.” American Journal of Public Health, 102(6): 
1120-1127. 

City and County of Denver. (1993). 1993 Denver bicycle master plan. Department of Public Works, 
Denver, Colorado. 

De Hartog, J. J., Boogaard, H., Nijland, H., Hoek, G. (2010). “Do the Health Benefits of Cycling 
Outweigh the Risks?” Environmental Health Perspectives, 118(8): 1109-1116. 

Dumbaugh, E., and Li, W. (2010). “Designing for the Safety of Pedestrians, Cyclists, and Motorists in 
Urban Environments.” Journal of the American Planning Association, 77(1): 69-88. 

Federal Highway Administration. (2005). Safety Effects of Marked Versus Unmarked Crosswalks at 
Uncontrolled Locations. HRT-04-100, U.S. Department of Transportation, McLean, VA.  

Fowler, S. L., Berrigan, D., Pollack, K. M. (2017). “Perceived Barriers to Bicycling in an Urban U.S. 
Environment.” Journal of Transport & Health, 6: 474-480. 

Furth, P. G., Dulaski, D. M., Bergenthal, D., and Brown S. (2011). “More than sharrows: Lane-within-a-
lane bicycle priority treatments in three U.S. cities.” Transportation Research Board 2011 Annual 
Meeting. Washington, D.C. 

Harris, M. A., Reynolds, C. C. O., Winters, M., Cripton, P. A., Shen, H., Chipman, M. L., Cusimano, M. 
D., Babul, S., Brubacher, J. R., Friedman, S. M., Hunte, G., Monro, M., Vernich, L., and 
Teschke, K. (2013).  “Comparing the effects of infrastructure on bicycling injury at intersections 
and non-intersections using a case-crossover design.” Injury Prevention, 19: 303-310. 

Herms, B. F. (1972). “Pedestrian Crosswalk Study: Accidents in Painted and Unpainted Crosswalks.” 
Highway Research Record, 406: 1-13. 

Hunter, W. W., Srinivasan, R., and Martell, C. A. (2012). Evaluation of shared lane markings in Miami 
Beach, Florida. University of North Carolina, Highway Safety Research Center. 

Hunter, W. W., Srinivasan, R., Thomas, L., Martell, C. A., and Seiderman, C. B. (2011). “Evaluation of 
shared lane markings in Cambridge, Massachusetts.” Transportation Research Record, 2247: 72-
80. 

Johansson, C., Lövenheim, B., Schantz, P., Wahlgren, L., Almström, P., Markstedt, A., Strömgren, M., 
Forsberg, B., Sommar, J. N. (2017). “Impacts on Air Pollution and Health by Changing 
Commuting from Car to Bicycle.” Science of the Total Environment, 584-585: 55-63. 

Marshall, W. E., and Garrick, N. W. (2011). “Evidence on Why Bike-Friendly Cities Are Safer for All 
Road Users.” Environmental Practice, 13(1): 16-27. 

National Association of City Transportation Officials. (2011). Urban bikeway design guide. April 2011 
Edition. 

Nordback, K., Marshall, W. E., and Janson, B. N. (2014). “Bicyclist safety performance functions for a 
U.S. city.” Accident Analysis & Prevention, 65: 114-122. 



74 
 

Pein, W. E., Hunter, W.W., and Stewart, J. R. (1999). Evaluation of the shared-use arrow. Florida 
Department of Transportation, Pedestrian/Bicycle Safety Section. 

Pucher, J., Dill, J., and Handy, S. (2010). “Infrastructure, programs, and policies to increase bicycling: An 
international review.” Preventive Medicine, 50: S106-S125. 

Ratcliffe, J., Longworth, L., Young, T., Bryan, S., Burroughs, A., and Buxton, M. (2002). “Assessing 
health-related quality of life pre- and post-liver transplantation: A prospective multicenter study.” 
Liver Transplantation, 8(3): 263-270. 

Sando, T. (2014). Operational analysis of shared lane markings and green bike lanes on roadways with 
speeds greater than 35 mph. The Florida Department of Transportation Research Center, 
Tallahassee, Florida. 

Şentürk, M., Özcan, P. E., Talu, G. K., Kiyan, E., Çamci, E., Özyalçin, S., Dilege, S., and Pembeci, K. 
(2002). “The effects of three different analgesia techniques on long-term postthoracotomy pain.” 
Anesthesia & Analgesia, 94(1): 11-15. 

Shaw, R. G., and Mitchell-Olds, T. (1993). “ANOVA for unbalanced data: An overview.” Ecology, 74(6): 
1638-1645. 

Turner, S., Hottenstein, A., and Shunk, G. (1997). Bicycle and pedestrian travel demand forecasting: 
Literature review. Texas Transportation Institute, College Station, Texas. 

U.S. Department of Transportation. (2009). Manual on uniform traffic control devices for streets and 
highways: 2009 edition. Federal Highway Administration, McLean, Virginia. 

U.S. Department of Transportation. (2010). Evaluation of shared lane markings. Federal Highway 
Administration, Turner-Fairbank Highway Research Center, McLean, Virginia. FHWA-HRT-10-
041. 

U.S. Department of Transportation. (2011). Evaluation of pedestrian and bicycle engineering 
countermeasures: Rectangular rapid-flashing beacons, HAWKs, sharrows, crosswalk markings, 
and the development of an evaluation methods report. Federal Highway Administration, Turner-
Fairbank Highway Research Center, McLean, Virginia. FHWA-HRT-11-039. 

Wei, F., and Lovegrove, G. (2012). “An Empirical Tool to Evaluate the Safety of Cyclists: Community 
Based, Macro-Level Collision Prediction Models Using Negative Binomial Regression.” 
Accident Analysis and Prevention, 61: 129-137. 

 
  



75 
 

APPENDICES 
 
Teaching Materials 

This following first shows the assignment from CVEN 5633: Case Studies in Sustainable Transportation, 
followed by two examples of student work. 

Assignment from CVEN 5633: Sustainable Transportation 
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Example of Student Output No. 1 for CVEN 5633 
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Example of Student Output No. 2 from CVEN 5633 
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