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ABSTRACT 
 

In recent years, Bus Rapid Transit (BRT) systems have been gaining increasing popularity because of 
their effectiveness in improving urban mobility. The Utah Transit Authority (UTA) is the primary public 
transit provider in Salt Lake City and has implemented a 10.8-mile BRT route along 3500/3300 South in 
Salt Lake City. A total of 106 miles of BRT lines are planned throughout Utah, to be implemented by 
2030, in an effort to alleviate congestion and increase ridership along major corridors. This research aims 
to utilize a modeling and simulation approach to help improve the efficiency and reliability of the high-
capacity service, which makes BRT an appealing system for potential riders. First, a microscopic 
simulation is created to test a series of GPS-based transit signal priority (TSP) scenarios and evaluate their 
impact on transit and traffic operations. Second, a data-driven optimization method is implemented to 
understand the contributing factors of BRT dwell time and the benefits of an off-board fare collection 
system.  
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EXECUTIVE SUMMARY 
 

Bus Rapid Transit (BRT) is an innovative, high-capacity, lower-cost public transit solution that can 
significantly improve mobility. It is usually defined as an integrated system with a strong, transit-oriented 
identity, which consists of running ways (very often exclusive lanes), specially designed rail-like stations, 
high-capacity low-floor vehicles, improved services, and state-of-the-art Intelligent Transportation 
Systems (ITS). It provides similar quality of service as rail transit at much lower construction and 
operational costs to the transit organization, and retains the flexibility of buses. BRT has the potential to 
significantly improve efficiency and reliability of public transit, which leads to an increase in ridership. 
Certain operational strategies significantly help BRT in improving travel times, speeds, and headway 
adherence, with the most beneficial seen from the implementation of Transit Signal Priority (TSP) and 
off-board fare collection. ITS technologies, such as GPS tracking devices, Automated Passenger Counters 
(APC), Ticket Vending Machines (TVM), advanced detection systems, and signal performance 
monitoring systems, are now widely used by transit and state DOT agencies. These systems, by providing 
performance-related data, can be used to further improve the efficiency and reliability of these BRT 
systems. This research will focus on the evaluation and analysis of two operational strategies for 
improving the efficiency and reliability of BRT system: TSP and fare collection methods. The study 
reviews different TSP systems (conventional detection vs. GPS, conditional active TSP considering 
ridership and schedule/headway adherence, and adaptive TSP considering a wide range of traffic and 
transit operations), and fare collection methods being used (prepaid, tickets sold by the driver, off-board 
TVMs, on-board TVMs), and quantitative analysis is performed based on field and simulated data to 
evaluate the effectiveness of various strategies. The study is built upon the Utah Transit Authority (UTA) 
BRT system; however, the research result is quite transferable to other BRTs in the metropolitan areas 
with similar system designs and can serve as a reference for transit planners and engineers on the national 
level. 
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1.  INTRODUCTION 
 

1.1  Background 
 
The Utah Transit Authority (UTA) is the primary public transit provider in Salt Lake, Utah, counties of 
Davis, Weber, Box Elder and Tooele. The UTA’s system consists of a commuter rail (FrontRunner), light 
rail transit (LRT - TRAX), bus rapid transit (BRT - MAX), streetcar, bus (local, express, special purpose), 
and paratransit modes. In recent years, BRT systems have been gaining increasing popularity due to their 
effectiveness in improving urban mobility. BRT provides low-cost, reliable, and comfortable transit 
solutions that offer great potential to meet increasing transit demand. The relatively shorter construction 
cycle, competitive operating cost, increased capacity, and flexible integration into community are all the 
appealing traits for BRT implementation. Currently, there is one BRT deployment, 35MAX BRT, that 
operates on 3300S-3500S corridors between Millcreek and Magna in Utah, with several lines planned for 
the near future (5600 West, Provo/Orem, 4700 South, 3300 South, and others) Many of the delays 
associated with regular transit systems are minimized through the implementation of BRT mainly with 
the provision of dedicated bus lanes to avoid mix traffic congestion, off-board fare collection, transit 
signal priority (TSP), just to name a few. 
 
TSP is an operational strategy that facilitates the movement of in-service transit vehicles through 
intersections controlled by traffic signals (Smith et al., 2005). It is typically achieved by extending the 
green or reducing the red phase for transit vehicles and is intended to result in shorter and more reliable 
travel times and improved schedule adherence. Prior TSP deployments in the United States generally 
indicated average bus travel time savings of between 2% and 20%, with 8% to 12% as the most typical 
range (TCRP, 2007). However, minor increases in the delay of side-street traffic are expected with TSP 
implementations (Smith et al., 2005; TCRP, 2007). GPS-based TSP uses a GPS to achieve real-time bus 
locating and advanced wireless communication technologies to achieve comprehensive analysis of 
operating information. GPS-based TSP has advantages, including low infrastructure costs, flexibility in 
detection distance, and ability to transmit large amounts of data (Li, et al., 2008). GPS-based TSP can 
offer conditional signal priority, which considers multiple constraints, such as transit vehicle occupancy, 
schedule adherence, and real-time traffic conditions, before granting signal priority to transit vehicles. 
Thus, signal priorities are provided more efficiently and on a more informed basis, with fewer impacts on 
other traffic operations than the use of unconditional TSP. With its advantages, GPS-based TSP is being 
considered in many U.S. cities. However, existing field implementations of GPS-based TSP are rare, 
because the technologies are relatively new and its benefits and impacts have not been fully evaluated. 
 
Meanwhile, transit service reliability and efficiency are influenced by the variability in bus operating 
times. Bus operating time consists of two main components: (a) time spent between stops (running time) 
and (b) time spent at stops [dwell time (DT)]. Variability in these components can result in an increase in 
transit headway variation and, consequently, a worsening experience for transit users because of 
inconsistent wait times. The DT can account for a significant portion of the bus operating time (Tirachini, 
2013). Therefore, understanding the nature of factors influencing DT will assist transit authorities with 
planning and operating their bus systems more effectively. UTA guidelines suggest off-board fare 
collection be used on all BRT lines (UTA, 2014).  A total of 106 miles of BRT lines are planned 
throughout Utah, to be implemented by 2030, in an effort to alleviate congestion and increase ridership 
along major corridors. Thus, a thorough understanding of the contributing factors for BRT DT and the 
benefits of off-board fare collection system is becoming particularly critical as additional BRT lines are in 
the planning phase.   
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1.2 Objectives 
 
The overarching goal of this project is to assess the impacts of various strategies (i.e., TSP and off-board 
fare collection system) on the BRT’s operational performance. The first objective is to evaluate the 
benefits and impacts of GPS-based TSP at the transit corridor level by using microscopic simulation. The 
test bed is the 3300 South corridor in Salt Lake County, Utah. A proposal was introduced to convert UTA 
Bus Route 33 running along the corridor into a mixed-traffic BRT line. Eight simulation models are 
created to cover different combinations of transit operation patterns and TSP strategies. Outcomes are 
compared and analyzed to determine the relative changes in benefits and impacts on transit and non-
transit traffic operations resulting from GPS-based TSP compared with other TSP strategies in both 
regular and rapid transit operation patterns. 
 
The second objective of this study is to quantify the magnitude of advantages of off-board fare collection 
system along the existing 35M BRT line. This is achieved by determining the contributing factors of DT. 
This requires fare payment structure analysis, which could be challenging due to the non-electronic fare 
media that do not have electronic footage. We propose a genetic algorithm-based optimization method 
and regression model to disaggregate the individual contributions to DT of fare payment options, station 
placement, design, and the built environment. The modeling approach is transferable to any transit route 
or system equipped with automatic passenger counters. The fare payment analysis can assist transit 
agencies with service optimization and performance assessments. 
 
1.3 Outline of Report  
 
The rest of the report is structured as follows. Section 2 summarizes literature on TSP and DT modeling 
efforts. Section 3 describes the data collection process. Section 4 presents the methodology for both the 
TSP microscopic simulation setup and the DT modeling and fare payment structure analysis. Section 5 
demonstrates the results using UTA’s transit corridor. Section 6 presents the conclusion of this study and 
recommendations for future research.  
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2. LITERATURE REVIEWS 
 

2.1 TSP  
 

Previous evaluations of TSP corridors showed several benefits of TSP implementations. TSP projects in 
Portland, Oregon, along Powell Boulevard and Tualatin Valley Highway that used early green–green 
extension strategies brought, respectively, reductions of 5% to 8% and 1.4% to 6.4% in bus travel times. 
The Cermak Road Bus Priority Project in Chicago, Illinois, compared situations with and without TSP on 
the basis of optimized timings and showed a 6.8% reduction in bus travel times and a 43.8% reduction in 
bus signal delays with TSP. A study of Rainier Avenue TSP in King County, Washington, reported a 
reduction in transit travel time of 8%, a reduction in transit signal delays of 24% to 34%, and a change in 
person delays at intersections of −17% to +12% (Innovative Transportation Concepts, Inc., 2001). 
Benefits of TSP vary significantly from site to site. Therefore, new TSP strategies should be evaluated 
before implementation (Park and Hu, 2014). Field studies are performed throughout the implementation 
process, but simulations are able to evaluate TSP systems before their deployments. Most recent studies 
have used simulations to evaluate TSP benefits and impacts. Field studies, however, still play a key role, 
particularly with respect to collecting data for validations of simulation models (Dale et al., 1999). 
INTEGRATION microsimulation has been used by Dion et al. (2004) and Dion and Rakha (2005) to 
evaluate TSP along transit corridors with different types of signals. VISSIM microsimulation was applied 
by Chen et al. (2008), Ghanim et al. (2013), and Zlatkovic et al. (2013) in their evaluations of TSP on, 
respectively, a BRT corridor in Beijing, a bus corridor on the campus of Michigan State University in 
East Lansing, Michigan, and a BRT corridor in Salt Lake County. Additional example applications of 
other simulation tools, such as CORSIM (Bloomberg and Dale, 2000) and Aimsun (Liao and Davis, 
2011) also exist. A limited number of studies have been conducted to evaluate GPS-based TSP in the 
United States at a corridor level. Three studies identified for this literature review are the Central Avenue 
TSP evaluation by Liao and Davis (2011) in Minneapolis, Minnesota; the SamTrans Route 390–391 
adaptive TSP study by Li et al. (2010) in San Mateo, California; and the Hillsborough Area Regional 
Transit BRT corridor TSP study by Martin et al. (2010) in Tampa, Florida. Evaluation results from the 
three studies are summarized in Table 2.1. All three projects proved through field tests or microscopic 
simulation to provide in benefits in reductions of transit delays and increases in average travel speed, with 
insignificant impacts to other traffic operations. 
 
Table 2.1  Minneapolis, San Mateo, and Tampa TSP Evaluations  
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2.2 DT Modeling  
 
The Transit Capacity and Quality of Service Manual (TCQSM) defines DT as the sum of passenger 
service time, boarding lost time, and door opening and closing time (TCRP, 2003). Passenger service time 
is understood to be the biggest contributor to DT. It is influenced by passenger demand, fare payments, 
vehicle configuration, passenger load, door usage, and platform configuration (TCRP, 2003). There are 
also secondary factors influencing DT to various extents, such as atypical passenger boarding, passenger 
age, time of the day, and fare payment issues (Tirachini, 2013). The effort to identify factors affecting 
transit DT has led to a wide-scale use of linear regression analysis since the 1970s (Feder, 1973; 
Guenthner, 1983; Levine and Torng, 1994; Bertini and El-Geneidy, 2004). DT modeling in this way, 
similar to any statistical or econometric model, relies on a sample of data gathered via different sources to 
estimate model parameters. Manual data collection provides detailed and accurate data, yet typically 
involves labor-intensive ride checks. As a result, project budgets and time constraints usually limit the 
sample sizes. Recent years have seen the growing adoption by transit agencies of technologies such as 
automatic passenger counter (APC), automatic vehicle location (AVL), and automatic fare counting 
(AFC) systems, and researchers have started to use these data sources for DT modeling. Automatic data 
collection overcomes the main challenges faced by manually collected data, such as limited sample sizes 
due to time-intensive data collection, yet it also comes with downsides of its own related to resolution, 
accuracy, and fragmented data. For example, the impacts on DT on fare transactions that do not have 
electronic footage have not been studied in previous work that used automatically collected data because 
of the absence of such information. As one of the major factors influencing passenger service time, fare 
payment structure has a direct impact on DT. Previous studies have shown that passengers’ boarding and 
alighting times depend on their fare payment method, and these findings are captured in the TCQSM 
methodologies, which include individual passenger service times by fare payment method (TCRP, 2003). 
APC data provide the total number of passengers boarding and alighting at each station, while AFC data 
provide separate counts of smart card users.  However, other payment options, including prepaid passes or 
cash transactions, cannot be traced from the APC/AFC dataset, resulting in the need for new analysis 
methods that can quantitatively identify the impact of each separately. 
 
The classic linear regression model with ordinary least squares (OLS) estimation has been widely used as 
the means for modeling bus DT. Previous studies have investigated a broad range of DT model 
specifications, from simple to multivariate regression analysis.  In the simple DT models, DT is 
considered solely a function of the number of boarding and alighting passengers (Levinson, 1983). In 
multivariate DT models, several different factors are considered, such as fare payment methods, crowding 
effect, and passenger population. It is usually expressed in the format similar to that of Tirachini (2013): 
  

 𝐷𝐷𝐷𝐷 = �α𝑖𝑖 ∗ B𝑖𝑖

𝑁𝑁

𝑖𝑖=0

+ �β𝑗𝑗 ∗ A𝑗𝑗

2

𝑗𝑗=1

+𝐶𝐶 (1) 

 
where α𝑖𝑖 is the average boarding time per passenger using the ith fare payment method; B𝑖𝑖 is the 
corresponding amount of boarding passengers; N is the number of available fare payment methods; β𝑗𝑗 is 
the average alighting time per passenger using the jth door; A𝑗𝑗 is the number of alighting passengers 
through the jth door; and C is time spent for door opening and closing (dead-time). The multivariate 
models are likely a more realistic representation of a DT model, especially given the dynamics of 
passenger boarding and alighting. 
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A summary of a selected number of studies on DT modeling is shown in Table 2.2. A fare payment 
method was repeatedly shown in the literature to be a major influence on DT. Kraft and Bergen (1974) 
were probably among the first to have studied such impacts. They found that on-board exact change fare 
payment was three seconds faster than on-board change-given fare payment. Guenthner and Hamat 
(1988) reported marginal variation of impact on DT from different fare payment methods. Fletcher and 
El-Geneidy (2013) determined that on-board cash fare payers had two seconds slower boarding times than 
prepaid pass holders. Tirachini (2013) reported that DT per passenger boarding paying with cash exact 
fare was seven seconds less than passengers paying with cash change-given. Milkovits (2008) analyzed 
the impact of fare payment methods and found that smart media cards were roughly 1.5 seconds faster to 
process than magnetic stripe tickets. Sun et al. (2014) used data from 3.3 million smart card transactions 
in Singapore and found that the boarding (alighting) interval per passenger using a smart card was about 
1.9 (1.5) seconds. A closer review of these studies showed that the estimated impact of individual fare 
payment methods varied across routes and transit systems. For example, boarding time for magnetic strip 
fare payment method was estimated to be 4.8 seconds in the Milkovits (2008) study, but 5.5 seconds in 
Tirachini (2013). While these different estimates reveal possible variations on fare payment structure 
impact because of interactions with other key variables, or indicate potential omitted (confounding) 
variable issues, the data are conclusive in one important aspect: they reveal that different payment 
structures triggered changes in DT and that the impact of different payment methods was uncovered in 
study after study. In other words, fare payment strategies can be implemented to improve the reliability of 
transit operation by reducing DT magnitudes and variation. 
 
Table 2.2  Selection of Previous Studies on DT Modeling 

Author Data Collection 
Method Sample Size Factors studied 

Feder, 1973 Manual N/A Boarding and alighting 
Kraft and Bergen, 1974  Manual N/A Time of day, fare payment method 
Levinson, 1983 Manual N/A Boarding and alighting 
Guenthner and Hamat, 
1988 Manual 266 passengers 

observed 
Boarding and alighting, fare 
payment method 

Lin and Wilson, 1992 Manual N/A Dwell time per door, Crowding 
effect 

Ashtiani and Iravani, 
2003 Manual 3,454 Number of doors used, boarding and 

alighting, crowding effect 

Rajbhandari et al., 2003 APC/AVL 40,594 Boarding and alighting, crowding 
effect, time of day 

Dueker et al., 2004 APC/AVL 350,000 
Lift operation, time of day, 
crowding, schedule adherence 
Boarding and alighting 

Milkovits, 2008  APC/AVL/AFC 173,750 Fare payment method, alighting 
through each door, crowding effect 

Fletcher and El-
Geneidy, 2013 Manual 1,746 Crowding effect, fare payment 

method 

Tirachini, 2013 Manual 1,604 Crowding, passenger age, fare 
payment method 

Stewart et al., 2014 APC/AVL 1,213,691 
Boarding and alighting through each 
door, crowding effect, presence of 
traffic light, stop effect 

Sun et al., 2014 AFC/APC 3,300,000 Smart card users time interval, 
crowding 
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The aforementioned studies on DT and fare payment methods can be categorized on the basis of data 
sources for model estimation purposes, usually by either manual or automatic data collection. While both 
face their own challenges and limitations in studying fare payment impacts, automatic data collection has 
steadily become a more promising option due to the mass amount of information that can be gathered and 
the cost effectiveness of doing so. Yet solely resorting to automatic data collection might, at times, 
downplay the significance of payment methods that do not have electronic footages, which are indeed still 
popular in a large number of transit systems, leaving their impact unknown or unjustified.  
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3. STUDY NETWORK AND DATA COLLECTION 
 

UTA is the primary public transit provider in Salt Lake City, Utah, and in Davis, Weber, Box Elder, and 
Tooele Counties in Utah. The growth of economic development and opportunities necessitated mobility 
enhancements in these counties, especially via public transit in recent decades. The ambitious program of 
transit construction, led by UTA, has simultaneously spanned across light rail (LRT-TRAX), bus rapid 
transit (BRT-MAX), commuter rail (FrontRunner), streetcars, and buses (local, express, and special 
purpose) since the 1990s. Of all the transit options available, BRT offers a unique service by combining 
the flexibility of buses with the efficiency of rail. The 35M MAX BRT was the first BRT line in Salt Lake 
City, with UTA starting its operation in 2008. The bus runs a 10.8-mile distance on the 3300 S/3500 S 
corridor connecting the suburban town of Magna, Utah, and the light rail station at Millcreek. 
 
Following in the footsteps of the 35M BRT pioneer project, several BRT lines are also being planned in 
the near future (5600 West, Provo–Orem, Utah, 4700 South, and 3300 South). The lessons learned and 
data gathered from 35M MAX can thus be directly applied for informed planning, design, and ultimately 
enhanced performance of these future projects. The 35M BRT uses low-floor, three-door buses that are 40 
feet in length. The buses have 28 seats and 32 standees, for a total capacity of 60 passengers. The 35M 
BRT buses run on 15-minute headways on weekdays and 30-minute headways every Saturday. The buses 
use, on average, about 45% of their capacity during peak hours; thus, a crowding condition rarely occurs. 
Several fare payment options are available, including onboard cash payments with exact change into the 
fare box, electronic fare payments with a smart card, prepaid tickets purchased from a ticket vending 
machine (TVM), and transfer tickets. The 35M BRT drivers are instructed to use all doors for boarding 
and alighting, and no fare inspection is required; thus, some fare evasion is expected. All three doors are 
equipped with smart card readers (tap on and off), and only passengers who wish to use onboard cash 
payments are required to board at the front door. A TVM is located at every BRT station, and no fare 
validation on boarding is necessary. The direct benefit of TVMs is the reduction in DT and operational 
delays associated with collecting a fare and the resulting interaction between drivers and passengers. 
Thus, 35M BRT provided an excellent platform for DT and fare payment structure analysis, with the 
modeling results being potentially useful to inform the upcoming BRT project designs. Figure 3.1 shows 
the 35M MAX BRT route layout. The BRT line starts at the Millcreek Station and ends at the 3500 South 
800 West Station. The Magna loop is not part of the BRT line; however, the same fleet is used to operate 
that segment. The 35M BRT line uses center-running dedicated lanes along 3500 South between 2810 
West and 3600 West and runs in mixed traffic for the rest of the route (right-of-way C). There are 14 
stations in each direction (totaling 28 stations). 
 
To model DT and the fare payment structure quantitatively, stop-level data were needed. Data used in this 
study were collected through APC-AFC systems, with the use of sample manual checks for validation 
purposes. APC-AFC records were obtained for May 2014. The APC records included a total of 34,937 
observations for 28 stops and provided information on travel direction, station ID and location, bus 
departure and arrival time, DT, number of boarding and alighting passengers, and station spacing at every 
station. AFC records included a total of 24,121 observations, with each entry representing individual 
passenger tap-on (boarding) or tap-off (alighting) at a specific date, time, and station. AFC and APC data 
were post-processed for matching on the basis of the following criteria: (a) AFC and APC records should 
have the same date and (b) the same station ID, and (c) the time stamp difference between the matching 
records is less than two minutes (to accommodate any measurement error). If AFC and APC data entries 
matched each other, then the AFC record was added to the corresponding APC observation. When an 
abnormal match appeared (e.g., AFC boarding greater than the total boarding), the record was removed 
from the data set. This process was completed with C++. Quality checks were also applied to the APC 
data set for sensor detection malfunction. A DT that was longer than three minutes or an average DT per 
passenger that was less than one second was considered an erroneous data record. To further validate the 
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automatic data collection and modeling results, a testing data set was collected to compare against the 
electronic data. Manual data collection was conducted on February 10, 2015, along 35M BRT during 
three peak periods (7 to 9 a.m., 11 a.m. to 1 p.m., and 4 to 6 p.m.). The data recorded consisted of 120 
observations of the number of onboard cash payers and prepaid pass holders. In addition, 3,340 APC and 
975 AFC records were gathered for that day, and the same matching process was conducted. The 120 
manually collected observations were integrated into the APC-AFC database for model validation. 

 

 
Figure 3.1  BRT 35M Route Layout (source: www.rideuta.com) 

To facilitate TSP microscopic simulation, transit operation data were collected for Bus Route 33. The data 
set consisted of GPS and automatic passenger counter data from April 14 to August 16, 2014. Information 
in the data set included trip numbers, stop numbers and names, actual stopping time, schedule, traveled 
distance, dwell time, and passenger boardings and alightings. Data from trips during the Tuesday and 
Thursday afternoon peak periods (4 to 6 p.m.) were used to develop bus schedules, boarding numbers, 
and alighting percentages. Traffic data were obtained through the annual average daily traffic maps 
created by the Utah Department of Transportation (UDOT, 2015), Synchro models from UDOT, and field 
data collection. The UDOT annual average daily traffic map is a Google Earth .kmz file consisting of 
annual average daily traffic data from 2011 to 2013 for major urban and rural road sections in Utah. The 
Synchro models consisted of historical turning movement data for a few signalized intersections along the 
study corridor. Field data collection was performed to obtain turning movement data for key signalized 
intersections and segmental travel time data along the study corridor. Turning movement data were 
collected on the study corridor at State Street, Main Street, 700 East, and Highland Drive intersections in 
the fall of 2014 during weekday afternoon peak periods. Travel time data were collected along 3300 
South (between West Temple and Highland Drive) in the fall of 2014 and spring of 2015 during the 
afternoon peak. The actual signal timing data for all signalized intersections along the study corridor were 
obtained in the UDOT traffic operations center. 

http://www.rideuta.com/
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4. RESEARCH METHODOLOGY  
 

4.1 Microscopic Simulation for TSP Analysis  
 
VISSIM was used for the network modeling in this research. VISSIM is a microscopic, time-step and 
behavior-based simulation platform of urban traffic and public transit operations. The modeling process 
was performed in VISSIM Version 5.40. The existing network was modeled, calibrated, and validated by 
using field data from the study corridor, including network geometry, traffic, and transit operations. 
VISSIM’s features for transit operations enabled the modeling of basic transit parameters, including 
routes, transit stops, time scheduling, TSP, and passenger movements. Passenger movements consisted of 
passenger arrivals at stops that were based on a Poisson distribution, passenger boarding for each stop, 
and passenger alighting that was based on a user-defined alighting percentage for each stop. The GPS-
based TSP tool was modeled by applying the functionality of the component object model of VISSIM 
interfacing with Excel Visual Basic for Applications programming. The final output from this process 
was a validated and calibrated simulation model of the existing conditions of the study corridor for the 
afternoon peak period, with a 15-minute warm-up time. The same model was later used for evaluating 
seven TSP and BRT scenarios. All VISSIM simulations for these scenarios were run for five random 
seeds, and all results represented averaged values from five measurements. 
 

4.1.1 Network, Control, Traffic, and Transit Inputs 
 
The study corridor was 3300 South, an urban principal arterial in Salt Lake County. UTA Bus Route 33 
runs along 3300 South and Wasatch Boulevard, with a 1-mi loop around Millcreek TRAX (light-rail) 
Station at the west end of the corridor, as shown in Figure 4.1. The 2.3-mile study section between West 
Temple and Highland Drive (dark, solid line in bottom half of Figure 4.1) has 11 signalized intersections 
and is the higher-volume section of the 3300 South corridor with more commercial land use. As the 
eastern section of the corridor has a higher percentage of residential land use in adjacent areas, with 
significantly lower traffic volumes, it was not analyzed. The simulation network was constructed to 
follow the actual layout obtained from Google Earth and field observations. The desired speeds were set 
as cumulative distributions, with the actual speed limits as 85th-percentile speeds. The speed limit along 
the study section is 35 mph. Traffic signals were set according to the UDOT’s design guidelines for 
signalized intersection and field timing data for signals by using ring barrier controllers in VISSIM. The 
hourly traffic volumes at the east and west ends of the study section, as well as at the side streets, were 
calculated by using 2013 annual average daily traffic data. Turning movements were set on the basis of 
Synchro models and field data. Traffic was generated and distributed on the network by using static 
assignment. Bus routes were modeled according to actual transit operation data. The modeling included 
defining the route, bus stop locations, schedule, passenger boardings (in counts), and passenger alightings 
(in percentages of passenger loads). 
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Figure 4.1  Study Corridor  

UTA Bus Route 33 runs in mixed traffic along the 3300 South Corridor on a 15-minute headway during 
afternoon peak hours. The study section has one bus terminal (Millcreek TRAX Station), 17 eastbound 
bus stops, and 16 westbound bus stops. The average eastbound running time of Route 33 from Millcreek 
Station to Highland Drive was 15 minutes during afternoon peak, while the average westbound running 
time along the same section was 12 minutes. The average dwell time at eastbound stops within the study 
section was seven seconds, while for westbound stops it was eight seconds. The average occupancy of 
eastbound buses within the study section was 27 passengers, while for westbound buses it was 18 
passengers. The schedule reliability of Bus Route 33 during the afternoon peak, defined by the percentage 
of on-time (with a late allowance of 0 to 4 minutes) arrivals at stops, was 90.9% for eastbound and 94.2% 
for westbound trips. For the BRT scenarios, the 15-minute headway and mixed-traffic right-of-way were 
kept in the simulation. The numbers of bus stops were reduced to seven for the eastbound direction and 
five for the westbound direction, keeping a 0.3- to 0.5-mile spacing with far side and midblock settings. 
Queue jump lanes were provided at higher-volume intersections, including State Street, 700 East, and 
1300 East. BRT vehicles were provided with a separate, short (three-second) early-green signal to move 
into the bus loading area at the far side of the intersection, ahead of other through traffic (Zlatkovic et al., 
2013). 
 
4.1.2 Calibration and Validation 
 
The existing network model was calibrated and validated on the basis of field data. Calibration was 
performed on the basis of traffic movement counts at major signalized intersections of the corridor. 
Segmental travel times between each pair of signalized intersections were used for validation. Simulation 
outputs were compared with field data by means of the charts shown in Figure 4.2. For both the 
calibration check of turning movements and validation check of travel times, the R2-values (.9972 and 
.8552, respectively) implied that the existing network simulation model closely matched the observed 
data and accurately reflected real-world situations. 
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(a)                                                                                       (b) 

Figure 4.2  Results of (a) Calibration and (b) Validation (veh=number of vehicles) 

4.1.3 Transit Signal Priority 
 
The VISSIM ring barrier controllers for traffic signals have built-in TSP modules. The TSP strategy was 
enabled in signal controllers of all 11 signalized intersections along the 3300 South study section. Green 
extension–early green strategies were used for the TSP. The maximum-green extension–early green 
provided in the model was 10 seconds, which is the current TSP setting used by UDOT and UTA on BRT 
routes. In actual implementation, traditional TSP applies fixed or distance-limited detections, such as 
inductive loops–transponders or infrared beacons (Chang, 2012). In the simulation models, traditional 
TSP was achieved by using dedicated detectors installed before traffic signals along the transit corridor. 
In this study, the TSP detection distance was set to 500 feet. 
 
GPS units installed on buses can locate vehicle positions and record time, and GPS-based TSP uses these 
inputs to achieve flexible granting of signal priority. In this study, the GPS-based TSP was modeled with 
the VISSIM interface for the component object model and Excel Visual Basic for Application 
programming. The program checked the buses’ position in the network and activated TSP when the bus 
reached a preset activation zone (a certain distance before signals). The length of activation zones can be 
preset flexibly. In this study, the length was set to 500 feet before signals for direct comparison with 
traditional TSP outcomes. Conditional TSP (CTSP) tools can be achieved by expanding the constraints 
for granting of signal priority on the basis of GPS-based TSP algorithms. In this study, bus occupancy and 
schedule adherence were considered as two additional constraints for TSP granting. Specific thresholds 
were set for the two constraints, with 20 passengers for occupancy and 60 seconds for schedule 
adherence, such that only buses having 20 or more passengers onboard and running 60 or more seconds 
behind schedule (schedule checkpoints were set up at the beginning of GPS activation zones) could get 
signal priority within activation zones. Constraints were set stricter in this study than in usual operations 
to get more significant results. In the simulation models, the implementation of constraints was enabled 
by using the interface for the component object model to check bus occupancy and schedule adherence. In 
actual transit operations, the same functions can be realized through cooperation among GPS, automatic 
passenger counter, and intelligent dispatching systems. 
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4.1.4 Simulation Scenarios 
 
To analyze benefits and impacts of the TSP implementation alternatives and BRT along the study corridor, 
the eight scenarios shown in Table 4.1 were created as VISSIM models. Comparative analysis, described 
in Section 5, was conducted by using simulation results obtained from the eight scenario models. 
 
Table 4.1  Simulation Scenarios 

 
 
4.2 DT Modeling 
 
4.2.1 Genetic Algorithm (GA) for Determining Behavior-Controlled DT  

 
Bus DT is generally influenced by the number of passengers boarding, alighting, or atypical passenger 
activities (e.g., bike or disabled passenger boarding/alighting). The general consensus of DT modeling 
distinguishes between sequential and simultaneous boarding and alighting. Sequential model assumes 
passenger activities (boarding and alighting) occur subsequently, and the DT is modeled as: 
 

 𝐷𝐷𝐷𝐷 = �𝑡𝑡𝑗𝑗𝑎𝑎
𝐴𝐴

𝑗𝑗=1

+  �𝑡𝑡𝑗𝑗𝑏𝑏
𝐵𝐵

𝑗𝑗=1

+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (2) 

 
where A and B represent the number of alighting and boarding passengers, respectively; 𝑡𝑡𝑗𝑗𝑎𝑎  and 𝑡𝑡𝑗𝑗𝑏𝑏 are the 
times that passenger j takes to alight or board; and dead-time is the time needed to open and close the 
doors. In case of simultaneous boarding and alighting, where boarding and alighting occur at the same 
time, DT is modeled as: 
 

 𝐷𝐷𝐷𝐷 = max��𝑡𝑡𝑗𝑗𝑎𝑎
𝐴𝐴

𝑗𝑗=1

,�𝑡𝑡𝑗𝑗𝑏𝑏
𝐵𝐵

𝑗𝑗=1

,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3) 

 
where the notations in Equation (1) still apply.  

 
Based on field observation, the simultaneous model is applicable to 35M BRT. The simultaneous model 
formulation indicates that the APC/AFC data set for modeling DT needs to be divided into three separate 
classes: boarding controlled (BC), alighting controlled (AC), and atypical situations. BC refers to 
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observations where 𝑚𝑚𝑚𝑚𝑚𝑚 �� 𝑡𝑡𝑗𝑗𝑎𝑎
𝐴𝐴

𝑗𝑗=1
,� 𝑡𝑡𝑗𝑗𝑏𝑏

𝐵𝐵

𝑗𝑗=1
,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� = � 𝑡𝑡𝑗𝑗𝑏𝑏

𝐵𝐵

𝑗𝑗=1
, AC refers to observations 

where 𝑚𝑚𝑚𝑚𝑚𝑚 �� 𝑡𝑡𝑗𝑗𝑎𝑎
𝐴𝐴

𝑗𝑗=1
,� 𝑡𝑡𝑗𝑗𝑏𝑏

𝐵𝐵

𝑗𝑗=1
,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� = � 𝑡𝑡𝑗𝑗𝑎𝑎

𝐴𝐴

𝑗𝑗=1
, and atypical scenarios refer to observations 

where 𝑚𝑚𝑚𝑚𝑚𝑚 �� 𝑡𝑡𝑗𝑗𝑎𝑎
𝐴𝐴

𝑗𝑗=1
,� 𝑡𝑡𝑗𝑗𝑏𝑏

𝐵𝐵

𝑗𝑗=1
,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. Separate DT models are needed for each class,  

 
and for this study focused on fare payment effects, the BC observations are of primary interest. Atypical 
scenarios are defined as scenarios with DT per boarding passenger longer than 10 seconds and DT per 
alighting passenger longer than five seconds. These values were chosen because they are about twice the 
estimated time of average passenger activities (see Table 5.4). In addition, our field observation attested 
that the fastest biker boarding time was approximately 10 seconds. To separate BC and AC datasets, GA 
was applied to the APC/AFC records in MATLAB. GA is a heuristic search process commonly used to 
generate solutions for optimization problems. Given an objective function, GA uses a random number 
generator to populate alternatives at each iteration. The process continues until an optimal solution is 
reached. The objective function for distinguishing BC and AC data sets was expressed as: 
   

 𝐺𝐺𝐺𝐺: minimize (𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 − 𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖)) (4) 
where; 

 𝐷𝐷𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = max��𝑡𝑡𝑗𝑗𝑎𝑎
𝐴𝐴

𝑗𝑗=1

,�𝑡𝑡𝑗𝑗𝑏𝑏
𝐵𝐵

𝑗𝑗=1

� + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (5) 

 �𝑡𝑡𝑗𝑗𝑎𝑎
𝐴𝐴

𝑗𝑗=1

= 𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ∗ 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ∗ 𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 (6) 

 �𝑡𝑡𝑗𝑗𝑏𝑏
𝐵𝐵

𝑗𝑗=1

= 𝐴𝐴𝑖𝑖 ∗ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 (7) 

with the following constraints based on previous studies and field observations:  
• 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ≤ 8 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
• 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ≤ 10 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
• 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 ≤ 5 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
• 1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 6 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 
where 𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 and 𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 are the numbers of boarding passengers with and without smart card 
payment, respectively, for the ith observation (where one observation is a stop of a bus for boarding and 
alighting); 𝐴𝐴𝑖𝑖 is the number of alighting passengers for the ith observation; 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 and 𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 are 
average boarding times for smart card users and non-users, respectively, for the ith observation; 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 
is average alighting time for the ith observation. 
 
Heuristic searches that are part of GA were used to determine optimal estimates of 𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖, 𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖, and 
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 given the defined constraints, and consequently whether the ith observed DT was boarding or 
alighting controlled. Following this process, 7,725 APC observations were identified as BC, and 3,279 of 
them were identified as AC. The summary statistics of BC observations are shown in Table 4.2.  Given 
the objectives of this study, these BC observations became the focus of the remainder of the analysis. 
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Table 4.2  Summary Statistics of Boarding Controlled (BC) Observations 
Variable Obs. Mean Std. Deviation Min Max Sum 
DT 7725 17.055 13.270 4.8 169.8 - 
Weekend 7725 0.084 0.277 0 1 - 
B-EFC 7725 0.263 0.610 0 8 2033 
B-CTVM 7725 2.689 2.282 0 18 20692 
A-EFC 7725 0.051 0.235 0 3 396 
A-CTVM 7725 0.917 1.443 0 16 7087 
Door-Cycle 7725 1.288 0.496 0 5 - 
Fair-Mall stop (Magna direction) 7725 0.083 0.276 0 1 - 
3575 W stop 7725 0.035 0.185 0 1 - 
3955 W stop  7725 0.059 0.235 0 1 - 
Fair-Mall stop (TRAX direction) 7725 0.035 0.183 0 1 - 
1685 W stop 7725 0.049 0.215 0 1 - 

• DT: measures the time (in seconds) between when first doors open to last doors close. 
• B-EFC: number of passengers boarding using electronic fare payment, or number of passengers 

who use electronic fare collection (EFC) method, recorded by AFC. 
• A-EFC: number of passengers alighting using EFC, recorded by AFC.  
• B-CTVM: number of boarding passengers using non-electronic fare payment.  
• A-CTVM: number of alighting passengers using non-electronic fare payment. 
• Weekend: indicator that shows whether the observation is on weekend (1) or on weekday (0). 
• Door-Cycle: shows how many time bus doors were opened and closed during the observation, 

recorded by APC. 
• Stop-[station name]: indicator shows the station at which the observation was collected. These 

specific stations are presented in the table because of their ultimate significant impact on DT (see 
Tables 5.4 and 5.6), with other stations showing no unique effects. 

 
4.2.2 DT Modeling and Fare Payment Structure Analysis 
 
After categorizing all APC observations, atypical scenarios were excluded from the modeling effort as 
they might contain irreproducible features or belong to rare situations. In order to estimate the fare 
payment structure and their impact on DT, especially those methods that do not have an electronic 
footprint, BC-related APC observations were used in the analysis from this point forward. AC-related 
data were excluded because both on-board cash payers and prepaid pass holders share the same alighting 
behavior (no tap-off or transaction-related activity required) whereby additional information for 
separating these two fare payment methods can be obtained from BC-related APC records (e.g., different 
boarding or transaction time). 
 
Multivariate regression was adopted for DT modeling in this study. DT was represented as a linear 
collective function of independent variables, expressed as: 
 

 𝐷𝐷𝐷𝐷𝑖𝑖 =  𝛽𝛽 ∗ 𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 (8) 
 

where 𝐷𝐷𝐷𝐷𝑖𝑖 is DT for the ith observation, 𝛽𝛽 is a vector of estimable coefficients, associated with each right-
hand-side variable 𝑋𝑋𝑖𝑖 is the vector of measurable characteristics that determine DT for the ith observation, 
and 𝜀𝜀𝑖𝑖 is the disturbance term. 𝑋𝑋𝑖𝑖 in Equation (8) includes all the variables in Table 4.2 plus a constant 
term (dead-time). Therefore, the model can be rewritten as: 
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𝐷𝐷𝐷𝐷𝑖𝑖 =  𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸
∗ 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝛽𝛽𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖
+ 𝛽𝛽Fair−Mall stop (Magna direction)
∗ FairMall stop (Magna direction)𝑖𝑖 + 𝛽𝛽3575 W stop
∗ 3575 W stop𝑖𝑖 + 𝛽𝛽3955 W stop ∗ 3955 W stop 𝑖𝑖
+ 𝛽𝛽Fair−Mall stop (TRAX direction)
∗ FairMall stop (TRAX direction)𝑖𝑖 + 𝛽𝛽1685 W stop
∗ 1685 W stop𝑖𝑖 + 𝐶𝐶 + 𝜀𝜀𝑖𝑖 

(9) 

 
where 𝛽𝛽𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the parameter estimates associated with that particular right-hand-side variable, 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 is the  station dummy variable indicating the station of the ith observation, and C is the 
constant term representing the portion of dead-time that the driver spent to ensure the door area was 
cleared. 
 
In Equation (9), B-CTVM accounts for the total number of prepaid pass holders (B-TVM) and on-board 
cash payers (B-Cash). To distinguish the two sets of the passenger population based on fragmented APC 
data, search algorithm were applied. Assume all the independent variables in the model are fixed in 
repeated samples and therefore independent of the error term, their parameter estimates should remain the 
same when B-CTVM is replaced with B-TVM and B-Cash. As a result, Equation (9) can be further 
rewritten as: 
 

 

𝐷𝐷𝐷𝐷𝑖𝑖 =  𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ
∗ 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 + 𝛽𝛽𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝛽𝛽𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽Fair−Mall stop (Magna direction)
∗ FairMall stop (Magna direction)𝑖𝑖 + 𝛽𝛽3575 W stop
∗ 3575 W stop𝑖𝑖 + 𝛽𝛽3955 W stop ∗ 3955 W stop 𝑖𝑖
+ 𝛽𝛽Fair−Mall stop (TRAX direction)
∗ FairMall stop (TRAX direction)𝑖𝑖 + 𝛽𝛽1685 W stop
∗ 1685 W stop𝑖𝑖 + 𝐶𝐶 + 𝑢𝑢𝑖𝑖 

(10) 

 
From Equations (9) and (10), the following can be concluded: 

 𝛽𝛽𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝜀𝜀𝑖𝑖 = 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ ∗ 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 + 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑢𝑢𝑖𝑖 (11) 
 

where 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ  and 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇  are the parameter estimates associated with B-Cash and B-TVM variables, 
respectively, and 𝑢𝑢𝑖𝑖 is the error term of the ith observation in the updated model.  
 
The optimal OLS model will yield an estimate for  𝛽𝛽𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . Yet given the unavailability of data,  
𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ ,𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖,𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇 ,𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 are unknown in Equation (11). Thus, GA was used again to estimate 
the fare payment structure and their individual impacts on DT. 
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The optimization problem for determining the fare payment structure can be expressed as: 
 

 𝐺𝐺𝐺𝐺: min[𝑎𝑎𝑎𝑎𝑎𝑎 {(𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝜀𝜀𝑖𝑖) − �𝛼𝛼𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 ∗ 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 + 𝛼𝛼𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖
∗ 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖�}] (12a) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡    𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖, 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ∈ ℤ                                                                                              (12b)            
          𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 + 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖                                                                                              (12c) 
         𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ > 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 >  𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇                                                                                                (12d) 
         𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇 > 𝛼𝛼𝐵𝐵_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 >  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇                                                                   (12e) 
        𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ > 𝛼𝛼𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 >  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ                                                                   (12f) 
          𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝛼𝛼𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

≅ 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇                                                                                                (12g) 
         𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝛼𝛼𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 ≅ 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ                                                                                              (12h) 
          𝑢𝑢𝑖𝑖 = 0                                                                                                                               (12i) 
 

where 𝛼𝛼𝐵𝐵_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 and 𝛼𝛼𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 are the average boarding time for B-TVM and B-Cash, respectively, Slowest 
B-TVM/B-Cash (Fastest B-TVM/ B-Cash) refers to the maximum (minimum) average boarding time for 
prepaid pass holders and onboard cash payers, separately; and other notations remain the same as 
previously defined. 
 
Constraints (12b) and (12c) are integrality constraints and assure that the number of onboard cash payers 
and prepaid pass holders totals to B-CTVM. Constraints (12d) through (12f) are set on the basis of 
previous studies and our field observations. They ensure that the average boarding time for prepaid pass 
holders is shorter than onboard cash payers given the assumption that no additional interaction exists with 
their boarding. The approximate equivalence between 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇 / 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ and 𝛼𝛼𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖

/ 𝛼𝛼𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 given by 
constraints (12g) and (12h) assures that the variability of the boarding time for each observation is fully 
captured. Constraint (12i) is proven in the following proposition: if the optimal OLS model includes all 
the independent variables that affect DT, except for B-Cash and B-TVM, then 𝜀𝜀𝑖𝑖 in Equation (11) solely 
captures the variability introduced by B-Cash and B-TVM. Thus, by including these two variables into 
the updated model (Equation 11), the new error term 𝑢𝑢𝑖𝑖~0, as there exists no other unexplained variation 
for DT. 
 
By applying GA to solve Equation (12a), the result provides estimates for B-Cash and B-TVM for each 
individual observation. Thus, the parameters in Equation (10) can be estimated using OLS to 
quantitatively identify the impacts of all the variables on DT. 
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5. RESULTS AND DISCUSSION 
 

5.1 TSP Microscopic Simulation  
 
Outputs from the eight simulation scenarios included signalized intersection performance, travel times, 
and network performance measures. To estimate the benefits and impacts of different combinations of 
TSP strategies and BRT upgrades, the output data were analyzed from the perspectives of transit 
operations, non-transit operations along the corridor, and non-transit operations along side streets. All 
comparisons performed had their significance examined by using statistical tests (t-test and analysis of 
variance). 
 
5.1.1 Transit Travel Time 
 
Compared with that of the base model, the transit travel time was shorter in the TSP model and GPS-
based TSP model. The average eastbound transit travel time decreased by 8.7% with traditional TSP and 
9.6% with GPS-based TSP, while the average westbound transit travel time decreased by 8.4% with 
traditional TSP and 8.2% with GPS-based TSP. As the detection distance was set to 500 feet in both 
models, no significant differences were found in the effectiveness of traditional TSP and GPS-based TSP. 
This finding was supported by the similar travel time reductions in the two models compared with the 
base. The BRT upgrade was effective in reducing transit travel time because of the reduced number of bus 
stops. Additional benefits came from the queue jump lanes, an additional preferential treatment provided 
for the BRT buses. With the BRT upgrade, the average transit travel time decreased by 29.3% in 
eastbound trips and 34.1% in westbound trips compared with the base scenario. 
 
With TSP, the BRT travel time decreased further. Compared with the BRT model, the average eastbound 
transit travel time fell by 11.2% in the BRT TSP model, by 8.8% in the BRT GPS TSP model, by 6.7% in 
the BRT CTSP model, and by 3.0% in the BRT CTSP2 model. The average westbound transit travel time 
also fell by 9.1%, 4.2%, 6.4%, and 0.8%, respectively, in these same four scenarios. With TSP 
constraints, the reductions in travel time were not as significant as with unconditional TSP scenarios. 
Figure 5.1 shows the eastbound and westbound transit travel time results from the eight simulation 
models, segment by segment. 
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Figure 5.1  Transit Travel Times: (a) Eastbound and (b) Westbound (W = west; E = east) 

For some critical segments on which regular buses had been running slowly, average transit travel times 
decreased quite significantly after TSP and BRT implementations. Table 5.1 shows the two-hour total 
transit delays expressed in vehicle delay and person delay. The Δ/base row in the table shows that 
significant reductions occurred in total transit delay in Scenarios 2 to 8 compared with the base model. In 
addition, the Δ/BRT row shows significant reductions in total transit delay from Scenarios 6 and 7 
compared with the BRT model. These results are consistent with the transit travel time results, and they 
show that BRT upgrades have significant effects on reducing transit delays. The CTSP strategies are not 
as effective as unconditional TSP strategies are in reducing transit delays because CTSP strategies grant 
priority only to transit vehicles that satisfy the given constraints. 
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Table 5.1  Total Transit Delays for 2-hour Simulation  

 
 
5.1.2 Non-transit Travel Time 
 
Compared with those of the base model, the non-transit travel times did not change significantly with TSP 
strategies and BRT upgrades. In eastbound and westbound trips, the average non-transit travel times 
changed by amounts ranging from −2.3% to +1.0%. This change resulted from the relatively much larger 
non-transit volume than transit volume. The additional green seconds or reduced red seconds brought by 
TSP did not affect the majority of the non-transit traffic along the corridor. Figure 5.2 shows the 
eastbound and westbound non-transit travel time resulting from the eight simulation models, segment by 
segment. Apart from some slight changes on a few critical segments where traffic had been moving 
slowly, the average non-transit travel times remained relatively steady in the eight scenarios. 
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Figure 5.2  Non-transit Travel Time: (a) Eastbound and (b) Westbound 
 
5.1.3 Impacts on Side-Street Traffic 
 
When TSP is provided along a main corridor, green extension and early green facilitate transit operations 
along that corridor and may increase side-street traffic delays. Table 5.2 shows the two-hour total side-
street traffic delays in vehicle delay and person delay. Compared with those delays of the base model, the 
TSP and GPS-based TSP strategies resulted in significant delay increases (up to 6%) in vehicle and 
person delays experienced by side-street traffic. BRT upgrades had no additional impacts on side-street 
traffic delays because those upgrades (bus stop reductions and relocations and queue jump lanes) did not 
have direct impacts on traffic signal timing. Compared with the BRT model, the add-in of TSP strategies 
in the BRT scenario increased side-street traffic delays. However, the multi-conditional TSP (CTSP2) 
strategy helped to keep the impacts on side-street traffic delay at approximately the same level as those of 
the base model and the BRT model. 
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Table 5.2  Total Side-Street Traffic Delays for 2-hour Simulation 

 
 
Figure 5.3 shows both the average queue lengths and the average number of stops per vehicle on side 
streets. Figure 5.3a shows that the average queue lengths increased on some critical side streets, such as 
700 East and 1300 East, with TSP and BRT implementations compared with the base model. These two 
side streets, under existing conditions, already had longer traffic queues than the others. Therefore, the 
introduction of TSP strategies and BRT upgrades along the 3300 South corridor may worsen this 
situation. Figure 5.3b indicates that the average number of stops per vehicle did not change significantly 
across the eight scenarios. 
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Figure 5.3  Data for Side-Streets: (a) Average Queue Lengths and (b) Average Number of Stops 

per Vehicle 

5.1.4 Network Performance 
 
Table 5.3 shows the transit and non-transit network performance results from the eight simulation models. 
The vehicle number indices and traveled distances show that the inputs to the eight models were 
consistent. The delay results were consistent with the previous analysis reported in this paper. The stop 
delay indices show the impacts of TSP strategies and BRT upgrades on traffic movements at an entire-
network level. Average transit speed increased significantly with BRT upgrades. TSP strategies also 
helped to improve this value to a lesser extent. Average non-transit speed remained relatively steady at 19 
to 21 mph. The total transit travel time, as analyzed in the earlier section on transit travel time, revealed 
the effectiveness of different combinations of TSP strategy and BRT on transit operations. 
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Table 5.3 Transit and Non-transit Network Performances 

 
 
5.2 Results of DT Modeling and Fare Payment Structure Analysis  

 
Following the modeling process presented in Section 4.2, the result of the optimal OLS model with B-
CTVM is shown in Table 5.4. The parameters associated with all of the independent variables are 
statistically significant, and the model shows acceptable goodness-of-fit with an adjusted R-squared of 
0.59. As shown in Table 5.4, DT is a function of Weekend, B-EFC, B-CTVM, A-EFC, A-CTVM, Door-
Cycle, five different individual stop indicators, and an intercept. Even though the model used only BC-
related APC observations, it is noted that the impact of alighting passengers was statistically significant. 
This is largely because, in reality, there rarely exists perfect simultaneous or sequential boarding and 
alighting. The optimal model was selected through extensive specification testing to find the most logical 
and informative model. 
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Table 5.4  Optimal Model Specification with B-CTVM 
R-squared =   0.5943     
Adjusted R-squared =   0.5937     
F(11, 7713) =    1027.05     
Prob > F =   0.00     
DT Coefficient Std. Error t P>|t| 
Weekend * 1.411 0.349 4.04 0.000 
B-EFC * 4.992 0.163 30.64 0.000 
B-CTVM * 3.329 0.047 71.46 0.000 
A-EFC * 2.623 0.418 6.28 0.000 
A-CTVM * 1.741 0.075 23.14 0.000 
Door-Cycle * 1.580 0.196 8.06 0.000 
Fair-Mall stop indicator (Magna dir.) * 2.478 0.390 6.36 0.000 
3575 W stop indicator * -2.598 0.525 -4.95 0.000 
3955 W stop indicator * 2.222 0.413 5.38 0.000 
Fair-Mall stop indicator (TRAX dir.) * 3.766 0.560 6.72 0.000 
1685 W stop indicator * 2.479 0.456 5.44 0.000 
Constant * 2.411 0.290 8.32 0.000 

*: 99% confidence level 
 

To further replace B-CTVM with the estimated number of prepaid pass holders and onboard cash payers, 
Equation (12a) was solved with GA. The constraints (12e) and (12f) needed to be further defined based 
on field observation and the literature. TCQSM provides an estimated boarding time range of 1.75-2.5 
seconds/passenger with no fare payment (which is similar to prepaid pass holders, transfer ticket holders, 
or fare evaders), and 3.1-8.4 seconds/passenger with on-board cash payment (TRCP, 2013). Additionally, 
our field observations indicated that boarding time for prepaid pass holders took up to 4.5 
seconds/passenger. The optimal model result presented in Table 5.4 for B-CTVM (3.3 seconds/passenger) 
was used to further define the lower boundary for onboard cash payers. Thus, constraints (12e) and (12f) 
were updated as: 
 

 4.3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝛼𝛼𝐵𝐵_𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 > 1.3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (13) 
 7.3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝛼𝛼𝐵𝐵_𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖 > 3.3 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (14) 

 
GA thereby yielded the estimated number of cash payers and prepaid pass holders for each APC 
observation (B-Cash and B-TVM). Summary statistics of the results are shown in Table 5.5. 

 
Table 5.5  Summary Statistics of B-Cash and B-TVM 
Variable Obs. Mean Std. Deviation Min Max Sum 
B-TVM 7725 1.743 2.163 0 18 13467 
B-Cash 7725 0.935 1.605 0 12 7225 

 
The outcome presented in Table 5.5 was integrated in the OLS model for a new coefficients estimation of 
DT, where B-CTVM was replaced with B-Cash and B-TVM, as explained in Equation (9). The final 
model specification is shown in Table 5.6. 
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Table 5.6  Final Optimal Model Specifications with B-TVM and B-Cash 
R-squared =   0.9011     
Adjusted R-squared =   0.9009     
F(12, 7712) =    5852.99     
Prob > F =   0.00     
DT Coefficient Std. Error t P>|t| 
Weekend * 1.087 0.173 6.30 0.000 
B-EFC * 5.279 0.081 65.57 0.000 
B-TVM * 1.803 0.025 73.03 0.000 
B-Cash * 6.917 0.033 211.68 0.000 
A-EFC * 2.020 0.206 9.79 0.000 
A-CTVM * 1.611 0.037 43.40 0.000 
Door-Cycle * 1.509 0.097 15.60 0.000 
Fair-Mall stop indicator (Magna dir.) * 2.116 0.192 11.00 0.000 
3575 W stop indicator * -2.588 0.259 -9.98 0.000 
3955 W stop indicator * 1.617 0.204 7.92 0.000 
Fair-Mall stop indicator (TRAX dir.) * 3.432 0.277 12.40 0.000 
1685 W stop indicator * 2.287 0.225 10.15 0.000 
Constant* 2.026 0.143 14.15 0.000 

*: 99% confidence level 
 

The final model demonstrates excellent goodness-of-fit with an adjusted R-squared of 0.90. Parameters 
associated with all the variables in the specification are statistically significant. In the sections to follow, 
result interpretation were discussed in length and potential estimation concerns arising from the GA 
assumptions presented are addressed by conducting validity testing. 

 
5.2.1 Result Interpretation  
 
The final DT model showed good statistical fit with an adjusted R-squared of 0.90. All estimated variable 
coefficients were statistically significant and had plausible signs. The model interpretation and 
implications are discussed below. 
 
Boarding 
 
The average estimated boarding time for EFC users was around 5.2 seconds/passenger, which was much 
longer than the suggested time (2.75 seconds) by TCQSM (TCRP, 2013). Two possible reasons may 
contribute to the difference: the tap on/tap off EFC reader on the UTA fleet has slower refresh rates 
compared with the common smart card reader systems used in the U.S.; and a significant portion of EFC 
users delayed their boarding process by searching for the card (according to field observations).  
 
The average boarding time for passengers who use prepaid passes, transfer tickets, or fare evasion was 
about 1.8 seconds/passenger, which matches the TCQSM suggestion (1.75 seconds/passenger) (TCRP, 
2013). Average boarding time for passengers who paid their fare by cash was about 6.9 
seconds/passenger, which was approximately 2.5 seconds/passenger longer than what TCQSM suggested 
(4.5 seconds/passenger). This difference may largely be due to the fact that a sizable portion of passengers 
did not have the exact cash ready before boarding. The boarding time for on-board fare payers (including 
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cash payers and smart card users) were considerably higher than off-board fare payers (prepaid pass 
holders and transfer ticket users). By eliminating the onboard cash payment on 35M BRT (assuming that 
all cash payers will switch to prepaid passes), DT can be reduced by at least 30 minutes/day just for BC 
related observations. 
 
Alighting 

 
Due to the nature of data used for DT modeling, only BC-related APC observations were used in this 
study. Thus, it was expected that the alighting time in our model be lower than TCQSM’s suggestion, 
given the limited impact of alighting time in the data used for model estimation. The average alighting 
time for EFC users and non-EFC users was 2.0 seconds/passenger, and 1.6 seconds/passenger, 
respectively, which are indeed less than TCQSM suggested alighting time (3.5 and 1.75 
seconds/passenger, respectively). 
 
Stop Characteristics 

 
One of the critical factors affecting DT that is often neglected in most previous published studies is stop 
placement, design, and built environment. The large sample of data provided by APC offered a unique 
opportunity to explore the impact of stop characteristics on DT to an extent allowable by the data 
characteristics. 
 
The parameter estimates for fair-mall stop indicator showed that, on average, the DT is 2.1 seconds (for 
Magna direction) and 3.4 seconds (for TRAX direction) longer than other stops. This is highly likely due 
to the longer service time required for passengers carrying shopping bags. A shorter expected DT (by 2.6 
seconds) was estimated for the 3527 W stop. Being the only stop along the route placed on the roadway 
median, the built environment appears to better prepare passengers for an effective boarding. The 3955 W 
stop suffered from longer expected DT (2.2 seconds more) possibly since it is close to a hospital.  
Possibly due to its nature serving as a transfer stop, 1685 W had a longer expected DT (2.5 seconds) as 
bus drivers tend to intentionally elongate the boarding time for passengers to complete their transfer 
between Bus Route 217 and 35M.  
 
Dead-Time 

 
Dead-time consists of the time for door opening and closing and any additional time consumed. The DT 
model incorporated dead-time by including the door cycle variable and the constant term (C). Based on 
the model estimation results shown in Table 5.6, dead-time can be expressed as:  
 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1.5 ∗ 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 2 (16) 
 

In reality, the door is open/closed at least once at each stop (that has a DT). Thus, the minimum estimated 
dead-time was 3.5 seconds. 
 
Miscellaneous Factors  

 
Miscellaneous variables that could affect DT, such as time-of-day, day-of-week, and crowding effects, 
were also explored. Day-of-week yielded statistically insignificant effects on DT according to the model; 
however, it does predict that weekends are prone to have longer expected DTs. 
 
In order to capture the crowding effect, different variables such as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 –  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2  ∗  (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 +  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) used by Milkovits (18) were tested in 
the model. However, the crowding variables were determined to either not be statistically significant or 
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not have logically meaningful impact on DT. Data analysis showed that only 148 out of 7,725 (1.9%) BC 
observations experienced a load of more than 28 passengers (seating capacity). Approximately only 0.1% 
of BC observations experienced a load exceeding 58% of capacity (35 passengers), which was used as a 
threshold for identifying crowding effect in many studies (60% of capacity). Thus, crowding rarely 
occurred on 35M. Analysis also showed that in the model, time-of-day only had limited impact on DT, 
which is consistent with the finding presented in Rajbhandari et al. (2003). 
 
5.2.2 Testing Model Validity  

 
Three posterior tests are conducted for model diagnosis and to ensure its validity.  
 
Seemingly Unrelated Estimation Test  

 
Seemingly unrelated estimation test (Weesie, 1999) was applied to both models presented in Tables 5.5 
and 5.6. The purpose of the test, similar to Hausman specification test (Hausman, 1978), was to assess the 
consistency of parameter estimates of the common variables. A seemingly unrelated estimation system 
comprises of several individual relationships that are linked by the fact that their disturbances are 
correlated. Its typical applications are tests for intra-model and cross-model hypotheses. In our modeling 
context, the null hypothesis is that all the parameter estimates of the common variables in the two models 
are equal. The results (χ2 = 8.09, Pr > χ2 = 0.62) indicates the consistence of the coefficients of common 
variables in the two models (do not reject the null hypothesis). This suggests that the estimated 
coefficients of B-Cash and B-TVM do not capture additional impact on DT from other variables, thus 
solely represent B-CTVM. 
 
Model Testing and Validation  

 
The developed DT model (shown in Table 5.6) was applied to the testing data set for performance 
assessment. Using the APC/AFC data collected on February 10, 2015, GA presented in Equation (11) was 
solved for estimation of B-Cash and B-TVM. The result was compared against 120 manually collected 
records. The GA estimation matched ground truth data in 110 observations (92%), and the rest had 
minimal errors (one passenger bias). The error was usually caused by the fact that not all the cash 
boarding followed the upper and lower boundaries set in the model.  For example, sometimes cash 
payment transaction for the last passenger was completed after the bus started moving, which goes 
beyond the assumed lower boundary for cash payers. The total number of estimated B-Cash was 
approximately 10% higher than the ground truth data in these cases. 

 
Testing for Possible Bias in Parameter Estimation  

 
Coefficient estimation error introduces bias in the model, and when used for prediction, can result in 
imprecise forecasting. The purpose of this test was to determine the magnitude of this possible bias in the 
estimated parameters. The model validation process showed that error occurs when the estimating the 
number of cash payers and prepaid pass holders when comparing against ground truth data (within 10% 
difference of number of cash payers), introducing measurement error in these right-hand-side variables.  
Measurement error in right-hand-side variables can result in bias of the OLS estimator. To explore this 
further, an error range of [-15%, 15%] of total B-Cash was chosen to assess the impact of measurement 
error in the right-hand-side variables on coefficient estimates (𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ and 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇) using sensitivity 
analysis. A B-Cash value for each observation was randomly populated within the possible range. This 
was achieved by setting the threshold: 
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𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐ℎ = �
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐ℎ + 𝛼𝛼

|𝛼𝛼|
                       𝑖𝑖𝑖𝑖 0 < 𝜇𝜇 < |𝛼𝛼| 

𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐ℎ                            otherwise                   
                          (15) 

 
where 𝜇𝜇 is a random number chosen between [0,1] for each observation, and 𝛼𝛼 is the error range. The 
number of B-TVM were then updated based on new, randomly drawn B-Cash. 
 
The OLS model presented in Table 5.6 was then estimated to determine DT on the basis of the updated B-
Cash and B-TVM. After 100 iterations, the upper and lower boundaries of the estimated coefficients 𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ 
and 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇  are shown in Table 5.7.  

  
Table 5.7  Estimation Error Impact on B-TVM and B-Cash Coefficients 

Model Number of 
tests 

Parameter 
estimates 

Lowest value 
(seconds/passenger) 

Highest value 
(seconds/passenger) 

15% less cash 
boarding 100 

𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇  1.806 1.901 
𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ 6.901 7.086 

15% more cash 
boarding 100 

𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇  1.712 1.796 
𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ 6.746 6.965 

 
Note that the impact of B-Cash and B-TVM measurement error is evident in the ranges of estimates for 
𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ and 𝛽𝛽𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇 , and could therefore negatively impact the accuracy of DT predictions. As an example, 
𝛽𝛽𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶ℎ is in the range of [6.7, 7.1]. For the worst-case scenario where the number of onboard cash payers 
reaches its maximum (B-Cash=12), the resulting bias in DT estimation from a 15% measurement error in 
the right-hand-side variables is less than 4.8 seconds, which is only about 5% of the actual DT (91s). The 
magnitude of bias in parameter estimates resulting from this GA estimation is thus considered acceptable.  
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6. CONCLUSIONS 
 

6.1 TSP Performance Assessment vs. Microscopic Simulation  
 
The objective of this study was to evaluate the corridor-level effectiveness and impacts of GPS-based 
TSP strategies with mixed-traffic BRT upgrades. The study was based on the proposed 3300 South BRT 
route in Salt Lake County. Microscopic simulation was used as the main analysis tool. Eight simulation 
scenarios were created to evaluate different TSP strategies and BRT upgrade combinations. The eight 
models were (a) the base model reflecting existing conditions, (b) the TSP model with regular bus 
operations and traditional TSP strategy, (c) the GPS TSP model with regular bus operations and GPS-
based TSP strategy, (d) the BRT model with BRT upgrades and no TSP, (e) the BRT TSP model with 
BRT upgrades and traditional TSP strategy, ( f ) the BRT GPS TSP model with BRT upgrades and GPS-
based TSP strategy, (g) the BRT CTSP model with BRT upgrades and conditional TSP strategy, and (h) 
the BRT CTSP2 model with BRT upgrades and multi-conditional TSP strategy. 
 
From the analysis results, the benefits of GPS-based TSP were as follows: 

• GPS-based TSP strategies can provide transit delay reductions and travel time savings as 
effective as those of traditional TSP tools with fixed or distance-limited detection. However, the 
GPS-based TSP strategy is more advanced because of its flexibility in setting and adjusting 
detection–activation distances, its extensible features, and its relatively lower equipment costs 
(when most of the transit vehicles have been equipped with GPS). 

• In a mixed-traffic BRT system (optimization of bus stop locations and provision for queue jump 
lanes) with unconditional GPS-based TSP strategy, CTSP strategy considering bus occupancy, 
and CTSP2 strategy considering bus occupancy and schedule adherence, the total reduction in 
peak hour transit delay can be, respectively, 13%, 13%, and 3% compared with BRT alone; and 
the total savings in peak hour transit travel time in those same three scenarios can be, 
respectively, up to 9%, 7%, and 3% compared with BRT alone. 
 

The impacts of GPS-based TSP strategy were as follows: 
• The average non-transit travel time along the study corridor had no significant differences 

between a base scenario (existing conditions), a scenario with TSP strategies added, and a 
scenario with BRT upgrades made. 

• In a regular bus system, with traditional TSP and GPS-based TSP strategies, the total delays for 
peak hour side-street traffic increased by 6% compared with existing conditions. 

• In a mixed-traffic BRT system (optimization of bus stop locations and provision for queue jump 
lanes), with strategies of unconditional GPS-based TSP, CTSP considering bus occupancy, and 
CTSP2 considering bus occupancy and schedule adherence, the total delays for peak hour side-
street traffic increased, respectively, by 3%, 2%, and 1%, compared with BRT alone. 

• TSP strategy and BRT can increase the average queue lengths on critical side streets, but in 
general, the impact on queue lengths was minor. No significant impacts on the average number of 
stops on side streets were seen. 

To summarize, unconditional GPS-based TSP strategy performed as effectively as did traditional TSP. 
However, TSP strategy provided transit delay reductions and travel time savings to a lesser extent than 
the much more effective BRT upgrades. The TSP strategy alone, however, was still an effective strategy 
for improving transit operations, as multiple studies have demonstrated. Additionally, when the higher 
flexibility, higher extensibility, and lower cost of GPS-based TSP strategy, compared with traditional TSP 
strategy were considered, GPS-based TSP strategy seemed preferable for existing TSP system upgrades 
and new TSP system implementations. The tests of CTSP and CTSP2 strategies showed benefits of 
function extensions to GPS-based TSP. With TSP constraints, which are applied to the buses with a 
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higher occupancy and in need of a schedule catch-up, the transit system still experienced considerable 
delay reductions and travel time savings compared with the base scenario. At the same time, CTSP2 
strategy had minimal negative impacts on side-street traffic compared with other TSP strategies. 
 
As the models were built according to the specific situations of the selected transit route in Salt Lake 
County, the simulation results and the analysis made on the basis of these results cannot fully cover the 
range of situations on transit routes in other parts of the country. However, the comparisons of scenarios 
can provide insights to the differences in effectiveness and impacts of alternative TSP strategies. 
 
Even though GPS-based TSP strategy has multiple advantages over traditional systems, it can be 
inaccurate in densely built environments because of the urban-canyon effect. For this reason, 
geographical features and technology capabilities should be fully considered when GPS-based systems 
are being implemented and operated. Research seeking to identify potential cost-effective solutions for 
the GPS urban-canyon problem is ongoing, and various alternatives are likely to become available in the 
future. 
 
On the basis of the findings of this study, future studies will focus on evaluating adaptive TSP strategies, 
which involve communications between GPS-based TSP systems and other intelligent traffic operation 
systems to see whether it can more effectively use signal priority and maintain the minimum impacts to 
traffic operations at the corridor and network levels. 

 
6.2 DT Modeling for TVM Effectiveness Analysis  
 
DT has significant impacts on transit reliability and operational efficiency. A practical modeling approach 
is needed to objectively and quantitatively determine the factors that contribute most to DT and can be 
supported with the availability of APC data in the majority of transit systems. Greater insights can be 
gained through more robust datasets to reveal the separate impacts of fare payment structure, which 
empirically constitutes the major influence on DT. Although APC/AFC datasets offer ample amounts of 
information for transit performance analysis, the data fail to reflect the fare transactions that do not have 
electronic footage, which still account for a large portion of the fare payment structure in most transit 
systems. It thus imposes challenges in accurately estimating their impact on DT and hinders transit 
efficiency analysis for service optimization and performance assessment.  
 
The analysis and proposed modeling approach showed that the gap in fare payment structure estimation 
might be remedied by treating the DT observations as an optimization problem. GA was applied to the 
APC dataset to classify the DT observations into behavior-controlled classes: BC, AC, and atypical 
scenarios. A combined modeling approach of GA and regression analysis was able to identify the fare 
payment structure (split of different payment types at the station level) and subsequently quantify their 
impact on DT. The modeling approach was implemented using data gathered along 35M BRT operated 
by UTA in Salt Lake City, serving as the pioneer BRT project with several other BRT lines being planned 
in the near future. The route allows for several fare payment options, and inspired this research given 
recent inquiries regarding the possible mass deployment of TVMs at every BRT station and their likely 
effectiveness in improving transit operational efficiency.  
 
The final model for DT prediction showed an excellent goodness-of-fit with an adjusted R-squared of 
0.90. Validity testing indicated possible estimation bias introduced by the GA estimation of some portions 
of the fare payment structure was relatively small. The model demonstrated the advantage of off-board 
fare collection over on-board fare collection, with average boarding times of 5.2, 1.8, and 6.9 seconds 
estimated for passengers using smart cards, prepaid passes, and on-board cash payments, respectively. 
Built environment and stop design also had impacts on DT, as stations located on the median of the 
roadway were found to have shorter DT, and the ones located near shopping malls or hospitals tended to 
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have longer DT. The modeling approach is transferable to any transit routes or systems with access to the 
APC/AFC database and can help reveal why DT under certain conditions (time-of-day, station, passenger 
population, etc.) is likely to persist. The result of the model should not be the final word on the matter; 
rather it motivates the need for a next logical step: to provide guidelines and further analysis that is policy 
driven, such as fare evasion estimation, TVM cost-benefit analysis, and instructional guidance to facilitate 
smooth boarding/alighting process, all in an effort to improve transit efficiency and reduce DT variation. 
The results can be potentially useful to future BRT projects. Additional analysis on more specific impacts 
of the built environment is also needed, and will require data that represent the range of common 
characteristics for these variables. 
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