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ABSTRACT 
 
Of all microelectromechanical systems (MEMS), regardless of application, micron-scale spacing 
of interleaved electrodes and high-dielectric ceramics in multilayer ceramic capacitors (MLCCs) 
provide exceptionally high capacitances in small volumes. This has led to MLCCs being the 
preferred type of capacitor in a wide range of applications where size and weight are critical 
factors. However, crack-related failures of MLCCs remain a significant issue. Resonant 
ultrasound spectroscopy (RUS) and resonant nonlinear ultrasonics are being pursued as 
nondestructive techniques for detecting subsurface cracks that can evolve into performance-
degrading electrical pathways during service. This report presents finite-element calculations of 
the vibrational modes of MLCCs. The geometric symmetry in the finite-element model was 
orthorhombic, with three orthogonal mirror planes, and the detailed internal structure of 
interleaved metallic and ceramic materials was included in the model. The assumption of three 
mirror planes enabled an analysis of the normal modes of the full model through calculations on 
a mesh, spanning just one eighth of the full volume. The computational load was further reduced 
by separating the problem into eight modal-symmetry sets with different boundary conditions for 
each set. The first three non-zero frequencies are presented for each modal symmetry set. In 
addition, displacement plots are presented for the two or three lowest-frequency modes of each 
symmetry set. These results provide information on the frequency ordering and symmetries of 
vibrational modes that can be used in the analysis of ultrasonic resonance measurements of 
MLCCs. 
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1. INTRODUCTION 
 
The development and commercialization of multilayer ceramic capacitors (MLCCs) has been a 
significant factor leading to reductions in size of a wide variety of electrical circuits, because the 
micron-scale spacing of interleaved electrodes and high-dielectric ceramics in MLCCs provides 
exceptionally high capacitance in small volumes. However, challenges exist with enhancing 
reliability of MLCCs associated with the intrinsic vulnerability of the dielectric ceramic material 
to cracking under stress during manufacture, soldering, and service [1]. Although relatively rare, 
crack-related failures of MLCCs remain a significant issue, especially in applications where the 
repercussions of failure can be catastrophic or replacement is impossible, costly or dangerous, as 
in implantable medical devices and spacecraft. 
 
Established methods for screening MLCCs for flaws before and after their incorporation in 
electrical circuits include visual inspection and measurements of electrical leakage current [1]. 
However, these methods are ineffective at detecting the presence of subsurface cracks that can 
evolve into performance-degrading electrical pathways during service [1–3]. This situation has 
motivated research on acoustic inspection methods sensitive to internal structure. Such research 
has included work on scanning acoustic microscopy, scanning laser acoustic microscopy, 
resonant ultrasound spectroscopy (RUS), electromechanical resonance spectroscopy employing 
swept-frequency impedance analyzers, and tone-burst electromechanical resonance [2–10]. 
 
Two published studies of MLCCs have included finite-element (FE) modeling of resonant 
vibrational modes to support interpretation of experimental spectra [6,9]. Prume et al. [6] 
calculated FE impedance spectra with piezoelectric and dielectric terms included in the equation 
of motion and the excitation provided through direct ferroelectric coupling to electric fields 
applied to the internal interleaved electrodes. The transduction mechanism in this model and 
corresponding impedance measurements introduces restrictions on the excited modal 
symmetries. Capacitors with industrial size designations of 1210 and 1812 were included in these 
models, and the effects of delaminations and idealized cracks with two different orientations 
were explored through comparisons of calculated and experimental spectra. Johnson et al. [9] 
reported FE normal-mode spectra and displacement patterns for several resonant modes near the 
dominant experimentally measured resonant peaks of smaller type-0603 MLCCs driven with 
ferroelectric excitation. The FE model in that study did not include ferroelectric excitation or 
piezoelectric/ dielectric terms in the equation of motion. 
 
The current report presents FE calculations of acoustic normal modes of all symmetry types, 
based on an MLCC model with dimensions and internal structure approximately matching those 
previously reported for a set of type-1210 MLCCs [10]. Internal interleaved layers of electrodes 
and ceramic are explicitly included in the model, although the geometry of these layers is 
approximated as orthorhombic to reduce the size of the computational problem (as in the work of 
Prume et al. [6]). Piezoelectric and dielectric terms are not included in the equation of motion. 
The inclusion of all modal symmetries in the model is anticipated to facilitate interpretation of 
RUS measurements, which are not limited to excitation of specific symmetries. The research 
reported here is specifically associated with experimental work that has been reported elsewhere 
on the detection of cracks in MLCCs through RUS [8] and tone-burst electromechanical 
resonance [10]. 
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1.1 Model Device 
 
1.1.1  Geometry 
 
The geometry in the FE model considered here is shown in Figure 1.1 and is based on 
measurements reported by Johnson et al. [10] for a set of type-1210 MLCCs manufactured by 
Vishay Inter-technology with model number of VJ1210Y474KXAAT.1 

 

 
 
Figure 1.1  The specimen geometry. (a) Magnified view of the single octant that is meshed and analyzed 

in the finite-element calculation and (b) geometry of the entire capacitor. The metal endcaps 
of the capacitor appear as raised areas with rounded edges. The darker grey regions in (a) 
represent the finely interleaved layers of ceramic and metallic electrodes with their largest 
surfaces in the x–y plane. Surface labels are defined in (b) as 1, 2, and 3. 

 
The three exterior surfaces of the capacitor shown in Figure 1.1 (b) are defined for the purpose of 
describing the displacement pattern results. The endcap surface (with surface-normal vector in 
the 𝑦𝑦� direction) is Surface 1, the larger capacitor surface (with surfacenormal vector in the �̂�𝑧 
direction) is Surface 2, and the smaller capacitor surface (with surface-normal vector in the 𝑥𝑥� 
direction) is Surface 3. As described by Johnson et al. [10], the 70 electrodes in the core of the 
physical MLCC have a thickness of 2.0 μm and a periodicity of 16.38 μm, corresponding to a 
total thickness of 1.132 mm for the interleaved core region. The width and length of the internal 
electrodes are 2.068 mm and 2.852 mm, respectively, and connect alternately to the two metallic 
endcaps of the MLCC. The electrodes are surrounded by a ceramic filler material (a typical 
dielectric for MLCCs described in a subsequent section) with overall dimensions of 2.474 mm, 
3.040 mm, and 1.414 mm. The endcaps each consist of three metallic layers. The thicknesses of 
the metallic layers from outside to inside (tin, nickel, and silver, respectively) are 15.0 μm, 9.0 
μm, and 7.0 μm, for a total thickness on one end of 31.0 μm, resulting in final overall dimensions 
of 2.536 mm, 3.102 mm, and 1.476 mm in the  𝑥𝑥�, 𝑦𝑦�, and �̂�𝑧 directions, respectively, shown in 
Figure 1.1. 
 
  



3 
 

Nominal symmetry of the physical MLCCs is monoclinic (corresponding to the group-theoretical 
point group C2h in the Schoenflies notation), with one mirror plane (y–z) and a two-fold rotation 
axis (𝑥𝑥�) normal to this plane [11]. The exterior surfaces of the physical MLCC, as depicted in 
Figure 1.1(b), have a higher symmetry corresponding to the orthorhombic point group D2h, with 
three mirror planes and corresponding two-fold rotation axes and inversion symmetry [11]. The 
reduced symmetry of the full capacitor arises from the fact that alternating connections of the 
even number of internal electrodes to the endcaps eliminates two of the mirror planes. In this 
study, reduction in symmetry of the physical MLCC is neglected, and total symmetry of the 
capacitor is approximated as D2h. This approximation of higher symmetry is implemented in the 
model by having the electrodes in the model alternately connect to either both endcaps or neither 
endcap, rather than and alternately to one or the other endcap as in the physical capacitor. This is 
equivalent to shifting the location of a portion of the internal electrode material near the endcaps 
by one period (16.38 μm) of the interleaved structure. The effect of this approximation is 
expected to be insignificant because (1) it shifts the position of electrode material by only a small 
fraction of the exterior dimensions, (2) it does not change the relative volumes of the materials in 
the capacitor and (3) it does not lead to an introduction or splitting of degenerate modes, because 
there are no degeneracies in either the C2h or the D2h point groups. Also, the thicknesses of the 
ceramic material above and below the core region of the physical MLCCs can vary from 
capacitor to capacitor. For simplicity, it was assumed for the mesh that the x–y midplane falls 
exactly between two layers. Therefore, because the mesh assumes symmetry across the x–y 
reflection plane, an electrode with double the thickness appears at the very center of the mesh, 
and this feature does not exist in the physical MLCC. Again, because this assumption does not 
change the volume fraction of the materials, it is a useful approximation that significantly 
reduces the size of the computational problem. 
 
The D2h symmetry of the model enables the FE calculations to be performed on only one octant 
of the MLCC (as shown in Figure 1.1), with boundary conditions specified to match the 
specified modal symmetries. This resulted in a mesh with 75 total layers of elements in the �̂�𝑧 
direction within the octant. The curved bottom ceramic region was modeled with five layers of 
elements through the thickness. Each pair of electrode and ceramic layers (every 16.38 μm) was 
modeled with two elements through the thickness, resulting in 70 total layers of elements for the 
core region, 35 including dielectric and electrode materials and 35 with only dielectric material. 
As described below, the endcaps have a relatively small effect on the frequencies. Therefore, 
highly exact modeling of the endcaps is assumed not to be critical, and, to save on computational 
time, the endcaps were modeled with only one element through the thickness of each metallic 
endcap layer. The capacitor octant mesh has overall dimensions of 1.268 mm, 1.551 mm, and 
0.738 mm in the  𝑥𝑥�, 𝑦𝑦�, and �̂�𝑧 directions, respectively. These values are half of the overall 
dimensions given for the whole capacitor. A generally square mesh was implemented for the 
layers, and corners were modeled with triangular wedge elements extending radially. This mesh 
geometry is shown in Figure 1.1. A convergence study to determine the appropriate refinement 
of this core region of the mesh is described in a subsequent section. Triangular wedge elements 
were also used to connect the coarser portion of the mesh for the curved bottom ceramic region 
with the refined core region. The origin of the coordinate system is located at the center of the 
full capacitor. The total volume of the meshed octant (one eighth of entire capacitor) is 1.369 × 
10-9 m3. 
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1.1.2     Materials 
 

The interior electrodes and interior layer of the endcaps are composed of silver (Ag), the second 
layer of the endcaps is a thin nickel (Ni) diffusion barrier, and the outer layer of the endcaps is 
tin (Sn). Doped polycrystalline barium titanate (BaTiO3), a typical dielectric for MLCCs, fills 
spaces between the electrodes and the regions without electrodes near the surfaces of the 
capacitor. 
 
Dopant levels and corresponding elastic-stiffness of BaTiO3 used in MLCCs are dependent on 
the capacitor manufacturer [12]. Accurate ultrasonic measurements of elastic stiffness of 
individual MLCCs are challenging, given the small volumes of ceramic regions without 
interleaved electrodes. Values of elastic stiffness of pure BaTiO3 employed here for finite 
element calculations were derived through the use of the method of Kim [13] from sets of 
published room-temperature measurements of diagonal elements of elastic stiffness and 
compliance tensors. This approach avoids typically substantial uncertainties in reported off-
diagonal elements of the tensors. Uncertainties in off-diagonal elements arise from the fact that 
these elements are not simply related to measurements of any pure mode of mechanical 
deformation [14,15]. Diagonal elements of the elastic stiffness tensor of pure BaTiO3 published 
by Zgonik et al. [16] and diagonal elements of the elastic compliance tensor published by 
Berlincourt and Jaffe [17] were used here to determine the single-crystal elastic stiffness 
constants C11, C33, C12, and C13 of BaTiO3 through the use of the method of Kim [13]. These 
elements of the stiffness tensor were then employed to estimate isotropic polycrystalline values 
through an arithmetic Voigt–Reuss–Hill average [18]. The resultant material properties for the 
BaTiO3-based ceramic are shear modulus of 56.6 GPa, bulk modulus of 141.5 GPa, Young's 
modulus of 149.8 GPa, and Poisson ratio of 0.3235. These values were used to calculate the 
elastic stiffness constants listed in Table 1.1. The value for the density of BaTiO3 is that given by 
Urek and Drofenik [19]. Table 1.1 also lists the C11 and C44 values for Ag [20], Ni [21], and Sn. 
The values of the elastic constants for Sn are a simple average of values listed by Simmons and 
Wang [22] for their calculations of Voigt–Reuss aggregate averages using single-crystal 
constants that were measured by Rayne and Chandrasekhar [23]. 
 
Table 1.1  Isotropic properties as used in the analysis 

Material C11 (GPa) C44 (GPa) Density (kg/m3) 
BaTiO3 217.0 56.6 6050 

Sn 78.8 17.9 7297 
Ag 141.5 30.2 10,501 
Ni 298.9 84.7 8909 

 
1.2 Numerical Model 
 
1.2.1 Governing Equations 
 
In this section, the weak form of the equations of motion of a homogeneous orthorhombic solid 
are derived to provide the basis for finite-element modeling [24], and the approximate 
displacements and numerical method are discussed. The equations are presented in terms of 
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rectangular Cartesian coordinates, which enable the eigenvalue problem to be separated 
according to geometric and material symmetries. This drastically reduces the computational load 
involved in the finite-element calculations [25]. The three independent displacement components 
are expressed as 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝑣𝑣 = 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧), and 𝑤𝑤 = 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧), and correspond to 
displacements in the  𝑥𝑥�, 𝑦𝑦�, and �̂�𝑧 directions, respectively. The general constitutive relation for the 
material can be expressed as  

 

⎩
⎪
⎨

⎪
⎧
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
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⎪
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⎥
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⎪
⎧
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𝜖𝜖3
𝜖𝜖4
𝜖𝜖5
𝜖𝜖6⎭
⎪
⎬

⎪
⎫

           

 

Here, σi represents the components of stress in contracted notation, Cij the components of the 
elastic stiffness tensor computed from the elastic properties listed in Table 1.1 and represented in 
standard matrix form [26], and ϵi the components of strain in contracted notation. 
Correspondence of the contracted notation and standard indicial notation for a second-order 
tensor is given, for the specific stress, elastic stiffness, and strain components, by σ1 = σ11, σ2 = 
σ22, σ3 = σ33, σ4 = σ23, σ5 = σ13, σ6 = σ12, C11 = C1111, C12 = C1122, C13 = C1133, C22 = C2222, C23 = 
C2233, C33 = C3333, C44 = C2323, C55 = C1313, C66 = C1212, ϵ1 = ϵ11, ϵ2 = ϵ22, ϵ3 = ϵ33, ϵ4 = 2ϵ23 = γ23, ϵ5 = 
2ϵ13 = γ13, and ϵ6 = 2ϵ12 = γ12 [27]. The representative directions defined by the subscripts will be 
identified for each case below. 
 
The relationships between strain and displacement are  

 

𝜖𝜖1 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑣𝑣

      𝜖𝜖2 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

 

𝜖𝜖3 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

     𝜖𝜖4 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

 

𝜖𝜖5 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑤𝑤
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     𝜖𝜖6 =
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+
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Hamilton's principle provides the starting point for each of the subsequent derivations. This can 
be written in the absence of a body force and surface traction as 
 

0 = −� � {𝜎𝜎1𝛿𝛿𝜖𝜖1 + 𝜎𝜎2𝛿𝛿𝜖𝜖2 + 𝜎𝜎3𝛿𝛿𝜖𝜖3 + 𝜎𝜎4𝛿𝛿𝜖𝜖4 + 𝜎𝜎5𝛿𝛿𝜖𝜖5 + 𝜎𝜎6𝛿𝛿𝜖𝜖6} 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
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1
2
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where V is the volume of the solid, �̇�𝑢  = ∂u 
∂t , t is time, ρ is mass density, and δ is the variational 

operator. Substitution of Eqs. (1) and (2) into Eq. (3), and with the assumption of harmonic 
motion for each of the displacement components gives the specific weak form of Hamilton's 
principle: 
 

0 = � ��𝐶𝐶11
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝐶𝐶12
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+ 𝐶𝐶23
𝜕𝜕𝑤𝑤
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�
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𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
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� �
𝜕𝜕𝛿𝛿𝑢𝑢
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+
𝜕𝜕𝛿𝛿𝑣𝑣
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�

− 𝜌𝜌𝜔𝜔2(𝑢𝑢𝛿𝛿𝑢𝑢 + 𝑣𝑣𝛿𝛿𝑣𝑣 + 𝑤𝑤𝛿𝛿𝑤𝑤)� 𝑑𝑑𝑑𝑑. 

If necessary, these equations can be integrated by parts to give the differential equations of 
motion for the solid. They are not listed here. 
 
1.2.2 Finite Element Approximations 
 
Approximate solutions to the weak form of the equations of motion given in the previous section 
can be generated using piecewise approximations of the three displacement components over 
small domains. This is accomplished by approximating the displacement components u, v, and w 
using finite linear combinations of the form: 
 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑢𝑢𝑗𝑗𝜙𝜙𝑗𝑗𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧)     𝛿𝛿𝑢𝑢 = 𝜙𝜙𝑖𝑖𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑛𝑛

𝑗𝑗=1

 

𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑣𝑣𝑗𝑗𝜙𝜙𝑗𝑗𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧)     𝛿𝛿𝑣𝑣 = 𝜙𝜙𝑖𝑖𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑛𝑛

𝑗𝑗=1

 

𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)     𝛿𝛿𝑤𝑤 = 𝜙𝜙𝑖𝑖𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑛𝑛

𝑗𝑗=1

 

 

Here, ϕ
𝑢𝑢
𝑗𝑗 , ϕ

𝑣𝑣
𝑗𝑗 , and ϕ

𝑤𝑤
𝑗𝑗  are known functions of position that are taken as the independent shape 

functions associated with a conventional 8-noded brick finite element [28], n is the number of 
terms in the approximation for the displacement components and the number of nodes per 
element, and uj, vj, and wj are the nodal values of successive displacements at fixed geometric 
locations of the finite-element domain. In this study, they are located at the corners of each 
individual element [24]. 
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For the problem of free vibration, the boundary conditions are the natural type because all faces 
of the solid are stress free. In the finite element method, the natural boundary conditions are 
contained in the variational statement of the problem. Hence, there is no need to explicitly satisfy 
these conditions. Because of the layered nature of the capacitor, the usual conditions of 
displacement and traction continuity across a dissimilar material interface are satisfied, but in 
varying degrees. Specifically, the enforcement of displacement continuity across the interface is 
explicitly satisfied only at the nodal locations of the contiguous finite elements. 
 
In this study, the same form of approximation functions is used for each of the displacements. 
Given the geometric and material symmetry of the solids considered, approximation functions 
can be grouped in such a manner that smaller eigenvalue problems can be uncoupled from one 
another and solved separately. By grouping the approximation functions into odd and even 
reflection classifications, the total problem can be uncoupled into eight smaller problems where 
the matrix is of order 81. The classifications employed here for orthorhombic symmetry will be 
described in detail in a subsequent section and are discussed by Ohno [29]. 
 
Substitution of the approximate displacements and their variations into the weak forms and 
collection of terms allows for writing the equation to be solved in matrix form as: 
 

�
[𝐾𝐾11] [𝐾𝐾12] [𝐾𝐾13]
[𝐾𝐾21] [𝐾𝐾22] [𝐾𝐾23]
[𝐾𝐾31] [𝐾𝐾32] [𝐾𝐾33]

� � 
{𝑎𝑎}
{𝑏𝑏}
{𝑑𝑑}

 � − 𝜌𝜌𝜔𝜔2 �
[𝑀𝑀11] 0 0

0 [𝑀𝑀22] 0
0 0 [𝑀𝑀33]

� � 
{𝑎𝑎}
{𝑏𝑏}
{𝑑𝑑}

 � = �
{0}
{0}
{0}

�, 

where the explicit forms of the coefficient matrices are given in the Appendix. The required 
integration for each element is accomplished using Gauss quadrature [24]. The resulting 
eigenvalue problem is solved by the use of the QR algorithm [30] to provide the frequencies and 
eigenvectors containing the representation of displacement patterns of vibration. 

1.2.3 Symmetry Classifications and Boundary Conditions on Final Mesh 
 

As discussed in the previous section, for the problem of free vibration of a solid, the boundary 
conditions are all the natural type, and the natural boundary conditions are contained in the 
variational statement of the problem. Therefore, if the full capacitor were meshed, there would 
be no need to explicitly satisfy these conditions. However, because the mesh uses symmetry 
across three reflection planes and only one-eighth of the MLCC is modeled, the analysis was 
completed using eight different boundary condition sets corresponding to the eight symmetry 
classifications. For the eight classifications, the displacements (u, v, and w) are either even (E) or 
odd (O) with respect to the three reflection planes [29], as summarized in Table 1.2. The 
“Subset” column of Table 1.2 lists the symmetry classifications in both Ohno's [29] notation and 
a common form of group-theoretical notation [31]. In group theory, these symmetry 
classifications correspond to the irreducible representations of the D2h point group, which is the 
orthorhombic point group with the most symmetry elements. For the remainder of this report, 
Ohno's notation will be used. The last three columns of Table 1.2 list the symmetries of the 
displacement components with respect to the reflection planes with surface-normal vectors of  𝑥𝑥�, 
𝑦𝑦�, and �̂�𝑧. 
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Different nodal degrees of freedom (DOF) were specified to zero for the boundary conditions of 
the eight subsets described in Table 1.2. The DOFs set to zero correspond to the displacements 
that are odd (O) with respect to reflection across the corresponding reflection planes. For 
example, the OD type has three sets of DOFs set to zero: u displacement of all nodes on the 
symmetry plane with the normal vector in the 𝑥𝑥� direction, v displacement of all nodes on the 
symmetry plane with the normal vector in the 𝑦𝑦� direction, and w displacement of all nodes on the 
symmetry plane with the normal vector in the �̂�𝑧 direction. Similarly, the EX type has the 
following DOFs set to zero: v and w displacements of all nodes on the symmetry plane with the 
normal vector in the 𝑥𝑥� direction, v displacement of all nodes on the symmetry plane with the 
normal vector in the 𝑦𝑦� direction, and w displacement of all nodes on the symmetry plane with the 
normal vector in the �̂�𝑧 direction. A similar pattern follows for all “O” shown in Table 1.2. 
 
Table 1.2  Reflection symmetries of the displacement components 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Subset Component x y z 
 u O E E 
OD (A1g) v 

w 
E 
E 

O 
E 

E 
O 

 u E E E 
EX (B3u) v 

w 
O 
O 

O 
E 

E 
O 

 u O O E 
EY (B2u) v 

w 
E 
E 

E 
O 

E 
O 

 u O E O 
EZ (B1u) v 

w 
E 
E 

O 
E 

O 
E 

 u O O O 
OX (B3g) v 

w 
E 
E 

E 
O 

O 
E 

 u E E O 
OY (B2g) v 

w 
O 
O 

O 
E 

O 
E 

 u E O E 
OZ (B1g) v 

w 
O 
O 

E 
O 

E 
O 

 u E O O 
EV (A1u) v 

w 
O 
O 

E 
O 

O 
E 
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Several meshes were tested to study the effect of the endcaps and to perform a convergence 
study on refinement of the mesh through the core region of electrodes. Studying the effect of the 
endcaps was important, because removing the endcaps from the mesh reduced the computational 
time required to analyze the capacitor and a convergence study could be performed more 
efficiently. It is also of interest to explore the effect of variations in the geometry of endcaps 
because visible variations in this geometry exist in physical capacitors. The effect that the 
endcaps had on the first mode frequencies of each subset is shown in Table 1.3. On average, the 
absence of the endcaps increased the first frequency of each symmetry classification by 3.4%. 
Therefore, the endcaps decrease the frequencies, which is expected with the addition of material. 
 
With the endcaps removed (3.77% volume decrease), a convergence study was performed on the 
mesh refinement of the layers. The first mesh tested consisted of 1748 elements and 2387 nodes, 
corresponding to a total of 7161 degrees of freedom. The number of elements per layer of the 
mesh was increased incrementally until less than a 1% change in frequencies was observed. The 
final mesh of the layers has over four times the number of degrees of freedom in comparison to 
the first mesh. After completion of the convergence study, the endcaps were added back to the 
model. The final mesh with endcaps, which was employed to obtain the frequency and mode 
shape results presented in the remainder of this report, consists of 9,550 elements and 10,435 
nodes, corresponding to a total of 31,305 degrees of freedom. The reflection planes with 𝑥𝑥�, 𝑦𝑦�, 
and �̂�𝑧 surface normals have 1039, 811, and 142 nodes, respectively. 
 
Table 1.3  Effect of endcaps on first mode frequencies 

 
Type 

Frequency with Endcaps 
(MHz) 

Frequency without Endcaps 
(MHz) 

OD 0.7088 0.7299 
EX 0.5899 0.6158 
EY 0.8028 0.8272 
EZ 0.4742 0.4907 
OX 0.7720 0.7920 
OY 0.7011 0.7239 
OZ 0.6569 0.6701 
EV 0.3543 0.3732 
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2. RESULTS 
 
Analyses were completed for each subset with the corresponding boundary conditions. There 
were six total zero frequencies (one per subset) present in the results of the following subsets, 
corresponding to the six rigid-body modes: EX (translation in 𝑥𝑥�), EY (translation in 𝑦𝑦�), EZ 
(translation in �̂�𝑧), OX (rotation about  𝑥𝑥�), OY (rotation about 𝑦𝑦�), and OZ (rotation about �̂�𝑧). The 
first two non-zero frequencies (eigenvalues from the FE analysis) and their corresponding mode 
shapes for all subsets are presented here. The displacement values of each node are given in the 
eigenvectors from the FE analysis output, and the mode shapes were plotted with updated nodal 
locations calculated by adding (or subtracting) these displacements to the original nodal 
locations. The third frequency for each subset is also given. Displacement patterns for the third 
modes are not presented here, with the exception of the mode with OD symmetry. This OD mode 
is especially relevant to the interpretation of some types of experimental results, because it is the 
dominant mode excited through direct ferroelectric transduction [10]. 
 
Even though displacements were only calculated for an eighth of the capacitor, the mode shapes 
were reflected across the symmetry planes (based on the symmetry patterns shown in Table 2.1), 
enabling the displacement pattern for the entire capacitor to be plotted for all the mode shapes. 
Frequency values are listed in Table 2.1 and corresponding modal displacement patterns are 
plotted in Figures 2.1–2.8. Multiple orientations are shown in the displacement plots to more 
clearly show the symmetries. 
 
Table 2.1  Calculated frequencies for each of the eight subsets 

 
 

 

 

 

 

 

 

 

Subset First frequency (MHz) Second  frequency (MHz) Third frequency (MHz) 
EV 0.3543 0.8621 1.1356 
EZ 0.4742 0.6914 1.1045 
EX 0.5899 1.0342 1.4184 
OZ 0.6569 1.2062 1.4067 
OY 0.7011 0.9699 1.0825 
OD 0.7088 0.8484 0.9769 
OX 0.7720 0.8762 1.2340 
EY 0.8028 1.0775 1.3549 
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Figure 2.1   OD (A1g) displacements: (a) 0.7088 MHz—first mode isometric view, (b) first mode top 

view, (c) first mode side view, (d) 0.8484 MHz—second mode isometric view, (e) second 
mode top view, (f) second mode side view, (g) 0.9769 MHz – third mode isometric view, (h) 
third mode top view, and (i) third mode side view. The undistorted capacitor is shown in (b), 
(e), and (h) for clarification when the results are discussed. 
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Figure 2.2   EX (B   ) displacements: (a) 0.5899 MHz—first mode isometric view, (b) first mode top 

view, (c) 1.0342 MHz—second mode isometric view, and (d) second mode top view. 
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Figure 2.3   EY (B2u) displacement patterns: (a) 0.8028 MHz—first mode isometric view, (b) first mode 

top view, (c) 1.0775 MHz—second mode isometric view, and (d) second mode top view. 
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Figure 2.4   EZ (B1u) displacement patterns: (a) 0.4742 MHz—first mode isometric view, (b) first mode 

side view, (c) 0.6914 MHz—second mode isometric view, and (d) second mode side view. 
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Figure 2.5   OX (B3g) displacement patterns: (a) 0.7720 MHz—first mode isometric view, (b) first mode 

top view, (c) 0.8762 MHz—second mode isometric view, and (d) second mode top view. 
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Figure 2.6   OY (B2g) displacement patterns: (a) 0.7011 MHz—first mode isometric view, (b) first mode 

top view, (c) 0.9699 MHz—second mode isometric view, and (d) second mode top view. 
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Figure 2.7   OZ (B1g) displacement patterns: (a) 0.6569 MHz—first mode isometric view, (b) first mode 

top view, (c) 1.2062 MHz—second mode isometric view, and (d) second mode top view. 
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Figure 2.8   EV (A1u) displacement patterns: (a) 0.3543 MHz—first mode isometric view, (b) first mode 

top view, (c) 0.8621 MHz—second mode isometric view, and (d) second mode top view. 
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3. DISCUSSION 
 
For modes whose deformation can be considered as primarily bending or flexure, most cross-
sections have a weak-bending axis and a strong-bending axis. Bending modes are typically 
characterized by displacements on the bounding surfaces of the capacitor that act in a direction 
that is normal to the surface and are symmetric about one of the two bisecting axes of the surface 
and asymmetric about the other. For example, referring to Figure 1.1 (b), two possible bending 
modes correspond to bending of Surface 2 about either the x-axis or the y-axis. The former case 
is actually the lowest flexural mode and occurs in the EZ subset (0.4742 MHz). The z 
displacements are anti-symmetric in y but are approximately constant in x. It can be seen in 
Figure 2.5 (a) and (b) that Surface 2 displaces in a bending motion about its weaker axis (x-axis) 
and Surface 1 rotates about the x-axis. The latter case of Surface 2 bending about the y-axis 
occurs in the second mode of the EZ subset (0.6914 MHz) with the expected displacement 
pattern shown in Figure 2.5 (c) and (d). The z displacements on Surface 2 vary in anti-symmetric 
fashion in the 𝑥𝑥� direction, but are approximately constant in the 𝑦𝑦� direction and Surface 3 rotates 
about the y-axis. Bending about the weaker axis corresponds to a more flexible orientation of the 
solid and therefore corresponds to a lower frequency of vibration. For the example discussed 
here, it is why the displacement pattern for the first EZ mode (bending about the weaker x-axis) 
has a lower frequency than the displacement pattern for the second EZ mode (bending about the 
stronger y-axis). 
 
Other flexural modes occur in the EX subset (0.5899 MHz) and EY subset (0.8028 MHz). For 
the EX mode, it can be seen in Figure 2.3 (a) and (b) that Surface 3 bends about the z-axis and 
Surface 1 rotates about the z-axis. For the EY mode, it can be seen in Figure 2.4 (a) and (b) that 
Surface 1 bends about the z-axis and Surface 3 rotates about the z-axis. 
 
Simple shear modes are characterized by a shearing motion and displacements predominantly 
located in one plane. The first and second OZ modes (0.6569 MHz and 1.2062 MHz, 
respectively) are shear modes involving predominantly ϵ6 strain. This is characterized by 
displacement in the x–y plane. The second OX mode (0.8762 MHz) is also a shear mode and 
involves predominantly ϵ4 strain, characterized by displacement in the y–z plane. 
 
The MLCC can also deform in a manner in which displacements of the bounding surfaces are 
still normal to the surface, but have opposite signs over that surface. Modes with this 
displacement pattern occur in the OY subset (first mode=0.7011 MHz and second mode=0.9699 
MHz). Figure 2.7 (b) and (d) shows that the original x–z bounding planes have displacements 
that are normal to the surface (i.e. in the 𝑦𝑦� direction) and vary in odd fashion about both the x 
and z-axes. This is made clear by observing that the originally horizontal centerlines in Figure 
2.7 (b) and (d) remain horizontal. This deformation pattern is also present in the OX subset (first 
mode=0.7720 MHz and second mode=0.8762 MHz) where the originally vertical centerlines in 
Figure 2.6 (b) and (d) remain vertical. Overall, the y–z plane at the center of the capacitor 
remains unchanged for modes in the OX subset and the x–z plane at the center of the capacitor 
remains unchanged for modes in the OY subset. 
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One subset where results have not yet been discussed is the EV subset, which corresponds to 
primarily torsional displacements. The lowest mode and first natural frequency for this solid 
occurs in the EV subset (0.3543 MHz) and Figure 2.9 (a) and (b) shows twisting about the y-axis. 
The second EV mode (0.8621 MHz) is characterized by twisting about the z-axis and is shown in 
Figure 2.9 (c) and (d). 
 
The last subset to discuss is the OD subset, which corresponds to primarily longitudinal 
vibration. The OD subset has displacements that do not change the initial symmetry of the 
object. As can be seen from Figure 2(a)–(c), the lowest mode shape (0.7088 MHz) involves 
primarily extension along the y-axis and is slightly concave (displacement inwards) on Surfaces 
2 and 3 and convex (displacement outwards) on Surface 1. The displacements are reversed in the 
part of the vibrational cycle that is out of phase with that shown. At each point in the cycle, the 
sign of the displacements of the surface with the smallest area (Surface 1) is opposite to that of 
the two other surfaces, which is typical given the Poisson effect for this deformation pattern. The 
undistorted capacitor is shown in Figure 2.1 (b), (e), and (h) for clarification of differences 
between the modes. The second OD mode (0.8484 MHz) is shown in Figure 2.1 (d), (e), and (f) 
and is a higher-order version of the first OD mode, with a substantial component of the 
displacements along the y-axis, but phase variation along the x-axis. The third OD mode (0.9769 
MHz) involves primarily extension/contraction along the x-axis (Figure 2.1 (g), (h), and (i)). 
 
A comparison with the experimental frequency obtained for the third OD mode is discussed here, 
because it is the dominant mode excited through direct ferroelectric transduction [10]. The 
symmetry of the ferroelectric excitation has OD symmetry and a frequency of 0.99 MHz ± 0.01 
MHz was obtained, with a standard deviation previously published [10] for the measured set of 
these capacitors. This results in a 1.32% difference from the finite element calculations of 0.9769 
MHz. The excitation symmetry has been described in previous work [32]. Future work from the 
authors will involve a comparison with the full experimental spectra. 
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4. CONCLUSIONS 
 
Frequencies and associated vibrational modes of multilayer ceramic capacitors (MLCCs) were 
investigated by finite-element (FE) calculations. The first three frequencies and two 
displacement plots were presented for the MLCCs. As previously noted, OD modes are of great 
importance for comparison to experimental results, because the third mode in this subset is the 
dominant mode excited through direct ferroelectric transduction [10]; therefore the third mode 
shape for this subset was presented. 
 
Conclusions of this study: 

• Removal of the endcaps in the FE mesh,— done to reduce computation time while refining 
the mesh of the core region—increased the lowest frequency mode of each symmetry 
classification by an average of 3.4%, which is consistent with the subtraction of material. 
This result indicates that resonant frequencies of physical MLCCs are not greatly affected by 
variations in endcap geometry. 

• The flexural mode shapes follow a pattern of bending characterized by displacements on 
bounding surfaces that act in a direction normal to the surface, vary in odd powers in one of 
the directions of the surface, and are approximately constant in the other direction. The 
lowest flexural mode is in the EZ subset (0.4742 MHz), which corresponds to bending 
motion of Surface 2 about the weaker axis (x-axis) and rotation of Surface 1 about the x-axis. 

• Modes with predominantly shear displacements occur in the OZ and OX subsets. 
• The lowest frequency overall is 0.3543 MHz is in the EV subset. It is characterized by 

primarily torsional displacements. 
• The frequencies presented range from 0.3543 MHz to 0.8028 MHz for the first frequency in 

each subset, 0.6914 MHz to 1.2062 MHz for the second frequency in each subset, and 0.9769 
MHz to 1.4184 MHz for the third frequency in each subset. 

• For all subsets, the average percent increase from first to second mode for the MLCC is 
56.7%. The average percent increase from second to third mode is 29.8%. 

• There is a 1.32% difference between the finite element calculations and the ferroelectric 
excitation experimental findings for the frequency of the third OD mode. 

These calculations of frequencies and mode shapes, which include all modal symmetries, will aid 
in interpreting RUS and resonant nonlinear ultrasonics measurements by enabling identification 
of measured vibrational modes. They also provide a basis for exploring dependence of resonant 
frequencies and nonlinear parameters on the location, size, and orientation of cracks. Therefore, 
the approach and results presented here are anticipated to serve a critical role in the development 
of nondestructive methods for detecting cracks in MLCCs and, thus, facilitating enhancements in 
the reliability of devices incorporating these capacitors. 
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APPENDIX A: COEFFICIENT MATRICES 
 
Elements of the coefficient matrices are given by 
 

𝐾𝐾𝑖𝑖𝑗𝑗11 = � �𝐶𝐶11
𝜕𝜕𝜙𝜙𝑖𝑖𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙𝑗𝑗𝑢𝑢

𝜕𝜕𝑥𝑥
+ 𝐶𝐶55

𝜕𝜕𝜙𝜙𝑖𝑖𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙𝑗𝑗𝑢𝑢

𝜕𝜕𝑧𝑧
+ 𝐶𝐶66

𝜕𝜕𝜙𝜙𝑖𝑖𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙𝑗𝑗𝑢𝑢

𝜕𝜕𝑦𝑦
�𝜕𝜕𝑑𝑑

 

𝑉𝑉
 

𝐾𝐾𝑖𝑖𝑗𝑗12 = � �𝐶𝐶12
𝜕𝜕𝜙𝜙𝑖𝑖𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙𝑗𝑗𝑣𝑣

𝜕𝜕𝑦𝑦
+ 𝐶𝐶66

𝜕𝜕𝜙𝜙𝑖𝑖𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙𝑗𝑗𝑣𝑣

𝜕𝜕𝑥𝑥
�𝜕𝜕𝑑𝑑 = 𝐾𝐾𝑗𝑗𝑖𝑖21

 

𝑉𝑉
 

𝐾𝐾𝑖𝑖𝑗𝑗13 = � �𝐶𝐶13
𝜕𝜕𝜙𝜙𝑖𝑖𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙𝑗𝑗𝑤𝑤

𝜕𝜕𝑧𝑧
+ 𝐶𝐶55

𝜕𝜕𝜙𝜙𝑖𝑖𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙𝑗𝑗𝑤𝑤

𝜕𝜕𝑥𝑥
�𝜕𝜕𝑑𝑑 = 𝐾𝐾𝑗𝑗𝑖𝑖31

 

𝑉𝑉
 

𝐾𝐾𝑖𝑖𝑗𝑗22 = � �𝐶𝐶22
𝜕𝜕𝜙𝜙𝑖𝑖𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙𝑗𝑗𝑣𝑣

𝜕𝜕𝑦𝑦
+ 𝐶𝐶44

𝜕𝜕𝜙𝜙𝑖𝑖𝑣𝑣

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙𝑗𝑗𝑣𝑣

𝜕𝜕𝑧𝑧
+ 𝐶𝐶66

𝜕𝜕𝜙𝜙𝑖𝑖𝑣𝑣

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙𝑗𝑗𝑣𝑣

𝜕𝜕𝑥𝑥
�𝜕𝜕𝑑𝑑

 

𝑉𝑉
 

𝐾𝐾𝑖𝑖𝑗𝑗23 = � �𝐶𝐶23
𝜕𝜕𝜙𝜙𝑖𝑖𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙𝑗𝑗𝑤𝑤

𝜕𝜕𝑧𝑧
+ 𝐶𝐶44

𝜕𝜕𝜙𝜙𝑖𝑖𝑣𝑣

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙𝑗𝑗𝑤𝑤

𝜕𝜕𝑦𝑦
�𝜕𝜕𝑑𝑑

 

𝑉𝑉
 

𝐾𝐾𝑖𝑖𝑗𝑗33 = � �𝐶𝐶33
𝜕𝜕𝜙𝜙𝑖𝑖𝑤𝑤

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙𝑗𝑗𝑤𝑤

𝜕𝜕𝑧𝑧
+ 𝐶𝐶44

𝜕𝜕𝜙𝜙𝑖𝑖𝑤𝑤

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙𝑗𝑗𝑤𝑤

𝜕𝜕𝑦𝑦
+ 𝐶𝐶55

𝜕𝜕𝜙𝜙𝑖𝑖𝑤𝑤

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙𝑗𝑗𝑤𝑤

𝜕𝜕𝑥𝑥
�𝜕𝜕𝑑𝑑

 

𝑉𝑉
 

 

Elements of the mass matrices are given by 

𝑀𝑀𝑖𝑖𝑗𝑗
11 = ��𝜌𝜌𝜓𝜓𝑖𝑖𝑢𝑢𝜓𝜓𝑗𝑗𝑢𝑢�𝑑𝑑𝑑𝑑

 

𝑉𝑉
 

𝑀𝑀𝑖𝑖𝑗𝑗
22 = ��𝜌𝜌𝜓𝜓𝑖𝑖𝑣𝑣𝜓𝜓𝑗𝑗𝑣𝑣�𝑑𝑑𝑑𝑑

 

𝑉𝑉
 

𝑀𝑀𝑖𝑖𝑗𝑗
33 = ��𝜌𝜌𝜓𝜓𝑖𝑖𝑤𝑤𝜓𝜓𝑗𝑗𝑤𝑤�𝑑𝑑𝑑𝑑

 

𝑉𝑉
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